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Abstract

We consider the question of minimizing the round complexity of protocols for secure mul-
tiparty computation (MPC) with security against an arbitrary number of semi-honest parties.
Very recently, Garg and Srinivasan (Eurocrypt 2018) and Benhamouda and Lin (Eurocrypt
2018) constructed such 2-round MPC protocols from minimal assumptions. This was done by
showing a round preserving reduction to the task of secure 2-party computation of the oblivious
transfer functionality (OT). These constructions made a novel non-black-box use of the under-
lying OT protocol. The question remained whether this can be done by only making black-box
use of 2-round OT. This is of theoretical and potentially also practical value as black-box use
of primitives tends to lead to more efficient constructions.

Our main result proves that such a black-box construction is impossible, namely that non-
black-box use of OT is necessary. As a corollary, a similar separation holds when starting with
any 2-party functionality other than OT.

As a secondary contribution, we prove several additional results that further clarify the land-
scape of black-box MPC with minimal interaction. In particular, we complement the separation
from 2-party functionalities by presenting a complete 4-party functionality, give evidence for the
difficulty of ruling out a complete 3-party functionality and for the difficulty of ruling out black-
box constructions of 3-round MPC from 2-round OT, and separate a relaxed “non-compact”
variant of 2-party homomorphic secret sharing from 2-round OT.
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1 Introduction

Secure multiparty computation (MPC) allows mutually distrusting parties to compute a joint func-
tion f of their private inputs without revealing anything more than the output to each other.

In this paper we consider the simplest setting for MPC with no honest majority, namely MPC
with an arbitrary number of corrupted parties. We focus on the semi-honest (aka passive) security
model, where corrupted parties follow the protocol but try to (jointly) learn additional information
on inputs of uncorrupted parties from the messages they observe. We assume that corruptions are
non-adaptive (i.e., the set of corrupted parties is fixed before the protocol’s execution). Finally,
we assume by default that the parties can communicate over secure point-to-point channels, also
referred to as private channels. All of the above assumptions make negative results stronger. In
contrast, when discussing positive results, we assume by default that parties only communicate
over public channels. This makes the positive results stronger.

The design and analysis of MPC protocols crucially rely on the notion of secure reductions.
In particular, classical completeness results [Yao86, GMW87] have shown that the problem of
securely computing a general n-party functionality f efficiently reduces to the problem of securely
computing the elementary finite 2-party Oblivious Transfer (OT) functionality [Rab81, EGL85].
(Similar results have been proven for active adversaries as well [Kil88, IPS08].) Perhaps surprisingly,
for 2-party secure computation (2PC), Yao’s reduction is round preserving. That is, it incurs no
overhead in the round complexity. It additionally requires the parties to make a black-box use of
any pseudorandom generator (PRG).1

Theorem 1.1 (Black-box 2-round 2PC from OT [Yao86]) Every 2-party functionality g ad-
mits an MPC protocol that only makes parallel calls to an OT oracle and a black-box use of a PRG.

In more detail, the OT functionality FOT involves two parties referred to as Receiver and Sender.
The functionality takes a bit x from the Receiver and a pair of bits (more generally, strings) (m0,m1)
from the Sender, and delivers to the Receiver the message mx. This is done while hiding m1−x
from the Receiver and hiding x from the Sender.

Yao’s reduction makes a single round of parallel calls to FOT.2 This can be securely replaced by
parallel invocations of any OT protocol, namely a secure 2-party protocol for FOT. The resulting
construction of 2-party MPC from a 2-party OT protocol is black-box.3 This means that the MPC
protocol does not depend on the code of the underlying OT protocol, and moreover the security
proof is black-box in the sense that any adversary “breaking” the MPC protocol can be used as
a black-box to break the OT protocol. Instantiating with one of several natural known 2-round
OT protocols (whose existence follows from standard intractability assumptions), we get a 2-round
2-party MPC protocol, which is clearly optimal.

Round Complexity in the Multiparty Setting. In contrast to the 2-party setting, progress
on the round complexity of general MPC has been slow and some of the questions still remain

1Here and in the following, if we replace an OT oracle by a black-box use of an OT protocol, the additional use of
a PRG is not needed, since a PRG can be constructed in a black-box way from any OT protocol [IL89, HILL99].

2If both parties should receive an output, the reduction uses parallel OTs in both directions, where each party
acts both as a Sender and as a Receiver.

3The notion of a black-box construction used in this paper (also referred to as a black-box reduction) corresponds
to the notion of a fully black-box reduction in the taxonomy of [RTV04].
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unanswered. As already mentioned, the completeness of OT in the multiparty setting was first
established by Goldreich, Micali, and Wigderson (GMW) [GMW87]. However, their reduction
suffered from large round complexity (proportional to the circuit depth of the target function).
The question of achieving a constant-round protocol has been considered by Beaver, Micali, and
Rogaway [BMR90], who extended Yao’s garbled circuit technique to the multiparty setting. Com-
bined with the GMW result, this yields a reduction to OT with constant overhead in the round
complexity.

Theorem 1.2 (Black-box constant-round MPC from OT [GMW87, BMR90]) Every n-
party functionality admits a constant-round protocol, making parallel calls to an OT oracle and a
black-box use of a PRG.

In more concrete terms, the most round-efficient current MPC protocol that makes a black-box
use of a 2-round OT protocol requires 4 rounds of interaction [ACJ17]. The above results left a
gap between the round complexity of 2PC and MPC protocols. In a recent breakthrough, this gap
was partially closed.

Theorem 1.3 (Non-black-box 2-round MPC from OT [GS18, BL18]) Suppose a 2-round
OT protocol exists. Then every n-party functionality admits a 2-round MPC protocol.

The theorem settles the high-order bit about the minimal assumptions needed for 2-round MPC by
showing that a 2-round OT protocol is sufficient. (Being a special case of 2-round MPC, it is clearly
necessary.) However, quite surprisingly, the MPC protocol in these works inherently makes use of
the code of the underlying OT protocol. This situation is quite rare in the context of MPC protocols
and in cryptography in general (see Section 1.2), and it is not clear whether this non-black-box use
of OT is inherent. This calls for the following natural question:

Is it possible to reduce general n-party MPC to a 2-party OT protocol in a round-
preserving black-box way? In particular, is there a black-box construction of 2-round
MPC from a 2-round OT protocol?

The above question is not only of a theoretical interest, but is also potentially relevant to prac-
tice. Indeed, black-box use of cryptographic primitives tends to lead to more efficient constructions.
The goal of obtaining efficient 2-round MPC protocols is very well motivated, since such protocols
have qualitative advantages over similar protocols with a bigger number of rounds. Indeed, in a
2-round MPC protocol, each party can send its first-round messages and then go offline until all
second-round messages are received and the output can be computed. Moreover, the first-round
messages can be potentially reused for several computations in which a party’s input remains un-
changed. This is analogous to the qualitative advantage of public-key encryption over interactive
key agreement.

In this paper, we will provide a negative answer to the above question, showing that there
is a real gap between the power of round-preserving black-box reductions and round-preserving
non-black-box reductions. Our findings also reveal a rich and somewhat unexplored world of cryp-
tographic protocols that use a minimal amount of interaction. We will exhibit some of the black-box
and non-black-box connections among these primitives and relate them to standard ones.
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1.1 Our Results

We now give a more detailed account of our results. It will be convenient to present most of our
results in terms of round-preserving black-box reductions (RPBB reductions for short) from an n-
party functionality f to a p-party functionality g. The notion of RPBB reduction can have two
distinct flavors. Strict RPBB reduction corresponds to the notion known in the MPC literature as a
“(non-interactive) construction of f in the g-hybrid model”, namely a protocol that securely realizes
f using parallel invocations of an oracle computing g (possibly with different sets of parties) and no
further interaction. Free RPBB reduction is a relaxed notion that refers to a k-round protocol for f
that makes a black-box use of any k-round protocol for g and additional communication over point-
to-point channels (private channels by default). In this work we assume k = 2 by default. The latter
notion more closely resembles the complexity-theoretic notion of a “black-box reduction” (with the
round preserving property on top). Note that a strict RPBB reduction implies a free RPBB
reduction for any k (and a free RPBB separation implies a strict RPBB separation). This follows
from a parallel composition theorem for MPC in the semi-honest model (see, e.g., [Can00, Gol04]).

To illustrate the distinction between the two notions, note that in a free RPBB reduction, party
A can, for example, generate two different “first messages” of the g protocol and send both of them
to party B, which in turn decides (say, based on its input) to only respond to one of these two
messages. In a strict RPBB there is no notion of “first message” and the parties can only feed their
inputs into the g functionality and obtain the output. Similarly, in a free RPBB reduction parties
can transfer messages and randomness of the g protocol to other parties.4 As another example, let
us consider Theorem 1.1 in the context of RPBB. Viewing a PRG as a functionality, this theorem
can be interpreted as a strict RPBB reduction for g = {OT,PRG}. But it also implies a free RPBB
reduction for g = OT (without explicitly requiring PRG). The reason is that it is known that OT
implies PRG via a black-box construction, which a free RPBB can utilize, but PRGs do not exist
unconditionally in the OT-hybrid model and therefore a strict RPBB requires explicit access to the
PRG functionality.

In terms of results in this paper, we achieve all of our results with respect to the stronger notion
in the specific context. Our positive results are presented via strict RPBB reductions and our
negative results apply to free RPBB reductions (in many cases, negative results for strict RPBB
are significantly easier to achieve). We therefore often refer simply to “RPBB reduction” without
strict/free designation, and work under the convention that in the context of positive results we
refer to strict RPBB and in the context of negative results we refer to free RPBB.

1.1.1 Separating 3-Party Functionalities from 2-Party Functionalities

Our first and main result rules out RPBB reductions of general MPC to OT. That is, general
2-round MPC protocols cannot be based on a 2-round OT protocol in a black-box way. In fact, we
show that even 3-party computation of fairly simple functionalities cannot be realized via black-box
use of a 2-round OT protocol.

Theorem 1.4 (Main Result) There exists a 3-party functionality f that cannot be securely re-
alized by a 2-round protocol making a black-box use of 2-round OT protocol.

4This “transferability” feature is commonly used in applications of commitments and signatures. In the context
of OT-based MPC, it can be used to realize “security with identifiable abort” given black-box access to an OT proto-
col [IOZ14], which is impossible given only access to an OT oracle [IOS12]. Other examples for the distinction between
the two types of reductions arise in the contexts of complete functionalities [LOZ18] and OT-combiners [HKN+05].
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We stress again that we do not just rule out reductions to the ideal OT functionality, but
rather rule out all black-box constructions of 2-round MPC protocols from a 2-round OT protocol.
(Indeed, much of the technical work is devoted to coping with the weaker flavor of free RPBB
reductions; see Section 2.) Moreover, the theorem holds even for protocols in the private-channel
setting (where each pair of parties is connected via a private channel), and even when the parties
have an access to a public common reference string (CRS), and to a random oracle.

1.1.2 A Complete 4-Party Functionality

Theorem 1.4 shows that OT is incomplete for MPC under free RPBB reductions. Given this state
of affairs, one may try to prove a completeness result for some other finite functionality. We show
that this is indeed possible. Specifically, let (3, 4)−MULTPlus denote the 4-party functionality that
takes a pair of bits (xi, zi) from each of the first three parties (and no input from the fourth party)
and delivers the value x1x2x3 + z1 + z2 + z3 to all four parties where addition and multiplication
are over the binary field F2. We prove that (3, 4) − MULTPlus is MPC-complete under RPBB
reductions. (Related results have been proved in other settings [ACJ17, BGI+18, GIS18].) In fact,
we prove completeness under strict RPBB reductions, just like Theorem 1.1.

Theorem 1.5 (Black-box 2-round MPC from a 4-party functionality) Every n-party func-
tionality f can be securely realized using parallel calls to a (3, 4)−MULTPlus oracle and a black-box
use of a PRG, with no additional interaction.

It is worth noting that (3, 4) −MULTPlus is related to the standard 2-party OT functionality. In
general, for d ≤ p, let (d, p)−MULTPlus denote the p-party functionality in which each of the first
d parties holds an input (xi, zi) and the product-sum

∏
i xi +

∑
i zi is delivered to all p parties.

Then, standard 2-party OT is equivalent (under strict RPBB reductions) to (2, 2)−MULTPlus.5

1.1.3 The Land of Three-Party Functionalities

The finite (3, 4) − MULTPlus therefore stands at the entry point to the general MPC mainland.
Across the ocean, lies the island of 2-party functionalities (including the complete OT) and one
cannot cross it in a black-box round-preserving vessel. We move on and explore the mysterious
land of 3-party functionalities.

Given the incompleteness of 2-party functionalities and the completeness of 4-party function-
alities (under RPBB reductions), it is natural to ask whether 3-party functionalities are complete.
We show that the answer to this question is related to a well-known open problem in information-
theoretic cryptography.

Question 1.6 ([IK00, AIK04]) Does every finite function admit a degree-2 statistical random-
ized encoding?

A randomized encoding (RE) of a function f(x) is a randomized function f̂(x; r) that, in addition
to the input x, takes a random input r. For any input x, the random variable f̂(x), induced by a

5A reduction from OT to (2, 2) − MULTPlus follows from Theorem 1.1. For the other direction, the receiver’s
output in OT can be written as m0 + x(m1 −m0) where addition and multiplication are over F2. Therefore, we can
implement OT based on (2, 2)−MULTPlus by letting the receiver (resp., sender) play the role of the first party (resp.,
second party) with inputs x1 = x and a random bit z1 (resp., x2 = m1 −m0 and z2 = m0).

5



random choice of r, should reveal the value of f(x) and hide everything else. The power of REs
stems from the fact that even a complicated function f can admit a simple RE f̂ . A useful fact
in the context of MPC is that that every finite f admits an RE f̂(x; r) whose outputs are degree-
3 polynomial in the indeterminates (x, r). While some negative results are known for perfectly
private degree-2 RE [IK00], the feasibility of statistically private degree-2 RE (that are allowed
to have a small non-zero privacy error) has remained open for almost 20 years. (See also the
surveys [Ish13, App17].) We relate this longstanding open problem to the completeness of 3-party
functionalities under RPBB reductions.

Proposition 1.7 A positive answer to Question 1.6 would imply that Theorem 1.5 holds with
(2, 3) − MULTPlus instead of (3, 4) − MULTPlus. In particular, it would imply that there is a
complete 3-party functionality with respect to strict RPBB reductions.

The proposition implies that we cannot rule out the completeness of 3-party functionalities without
ruling out the existence of general degree-2 (statistical) randomized encoding. Similar barriers have
been established in the context of degree-2 cryptographic hash functions [AHI+17]. We note that
the completeness of (2, 3) − MULTPlus follows even from the existence of general degree-2 fully-
secure multiparty randomized encoding [ABT18] – a seemingly weaker variant of RE whose existence
is also open. (See the discussion in [ABT18].)

External output functionalities. The (2, 3) −MULTPlus functionality is a special case of an
external-output 3-party functionality. Formally, let g(x, y) be a 2-party functionality. The external
version of g, is the 3-party functionality fg that takes x from Alice, y from Bob and delivers g(x, y)
to Alice and Bob, and to Carol who holds no input.6 Two-round protocols for such functionalities
turn out to have interesting properties. Specifically, at the core of our main impossibility result
(Theorem 1.4) lies the following constructive theorem for external functionalities. (See Theorem 4.2
for a more detailed version.)

Theorem 1.8 (Conversion Theorem) Let g(x, y) be a 2-party functionality and let fg be its
3-party external version. Suppose fg can be securely realized in 2 rounds (over private channels) by
making a black-box use of a 2-round OT protocol. Then, fg can be securely realized over random
inputs (and private channels) given only an access to a Random Oracle. Moreover, in the resulting
protocol Carol sends no message, which implies a 2-party protocol for g over random inputs given
only a Random Oracle.

Haitner et al. [HOZ13] showed that any 2-party functionality that can be securely realized in
the Random Oracle model over random inputs is “trivial” in the sense that it admits a 2-party
protocol over random inputs with security against computationally unbounded adversaries. For
functionalities whose input domain size is polynomially bounded, security over random inputs
implies security on worst-case inputs. (See Proposition 3.2.) For such functionalities, we get the
following characterization which strengthens Theorem 1.4. (See Corollary 4.4 for more details.)

6In fact, for all of our purposes, an even weaker version suffices. In this relaxed version, all parties are allowed to
learn the output (for purposes of privacy), but only Carol is required to learn it (for purposes of correctness). Since
this leads to a cumbersome definition, we stick to the simpler version described above.
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Corollary 1.9 Let g be a 2-party symmetric boolean functionality whose domain size is polynomial
in the security parameter. Then the external-output 3-party functionality fg can be securely realized
by a 2-round protocol (over private channels) that makes a black-box use of 2-round OT if and only
if g is trivial in the sense that it can be realized with perfect security in the plain model.

A notable example for a non-trivial 2-party functionality is the AND functionality [CK89, Kus89].
Corollary 1.9 is tight in terms of round complexity. With one additional round (namely, a total

of 3 rounds), fg can be black-box reduced to 2-round OT. (Specifically, one can use Theorem 1.1
to pass the value of f(x, y) to Alice and Bob in two rounds, and then exploit the additional round
to send this value to Carol.) The 2-party completeness of OT (Theorem 1.1) also implies that
Corollary 1.9 holds when the OT functionality is replaced by an arbitrary 2-party functionality
h(x, y). Overall, we get a separation between all 2-party functionalities and all external-output
functionalities fg whose underlying g is non-trivial.

Relation with homomorphic secret sharing. Two-round MPC for external-output function-
alities can be seen as closely related to the problem of homomorphic secret sharing (HSS) [BGI16,
BGI+18]. HSS is the secret-sharing analogue of fully homomorphic encryption. A (2-party) HSS
scheme allows local computation of a function g(x, y) on independently shared inputs x and y,
where the output g(x, y) can be decoded from the pair of output shares. The standard notions
of HSS require either additive decoding over a group or, more generally, that the output shares
be compact in the sense that their size is comparable to the output size. A natural variant is to
replace compactness by the requirement that the pair of output shares give no information except
g(x, y), even from the point of view of one of the input holders. Note that in any additive HSS, this
security requirement can be easily met via a simple additive refreshing of the output shares. This
flavor of non-compact HSS easily implies (in a black-box way) a 2-round external output protocol
for g (in the private-channel setting), which by Corollary 1.9 can be separated from 2-round OT.
On the other hand, a non-black-box construction of non-compact HSS from 2-round OT follows
from [GS18, GIS18].

1.2 Discussion

In this section we give some further perspective on our results and some future research directions
which they motivate.

1.2.1 Why is the multiparty setting different from the 2-party setting?

It is instructive to reconsider the round complexity of MPC in light of our results. Protocols with
low round complexity are based on two types of reductions.

1. A degree reduction that takes a general n-party functionality f and reduces it (via RPBB
reduction) to a degree-d functionality for a constant d. Specifically, the standard machinery
of randomized encoding leads to degree 3. In the special case of two parties, we can trivially
reduce the degree down to 2, and so we get a degree reduction to d = min(3, n).

2. A player reduction that takes an n-party functionality of degree d and reduces it to the (d, p)–
MULTPlus functionality. We show that p can be dropped down to d + 1 and, in any case, it
is no larger than n, leading to an expression of the form p = min(d+ 1, n).
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In the special case of two parties (n = 2) we get an RPBB reduction to (2, 2)–MULTPlus which is
equivalent to OT. For large n’s, this leads to the completeness of (3, 4)–MULTPlus (Theorem 1.5).
In order to prove that OT is complete (under RPBB reductions) one would have to bypass two
barriers: A Degree barrier (prove completeness of degree 2 functionalities) and a Player reduction
barrier (reducing the 3-party functionality (2,3)–MULTPlus to (2,2)–MULTPlus). While the first
barrier is well-known, the second one appears to be new to this work. Clearly, both barriers
are bypassed by non-black-box techniques (Theorem 1.3). We show that this is inherent for the
second “player reduction” barrier, and leave the possibility of breaking the degree-barrier via RPBB
reduction open.

1.2.2 On the Role of Non-Black-Box Constructions in Cryptography

Our main result provides a very natural example of a pair of cryptographic primitives for which
a non-black-box construction of one from the other exists but a black-box construction can be
ruled out. Thus, our work further demonstrates the essential role of non-black-box techniques in
cryptography.

To give some historical perspective, following the seminal result of Impagliazzo and Rudich [IR89]
and subsequent works on black-box separations in cryptography [Sim98, GKM+00, RTV04], the
question of finding a pair of “natural” cryptographic primitives for which a non-black-box reduction
is provably necessary has been put forward as a desirable but elusive goal.7 For some of the conjec-
tured candidate examples, such as constructing “malicious OT” from “semi-honest OT,” black-box
constructions were subsequently found [HIK+11]. However, in recent years several such provable
examples emerged. We survey some of the most notable ones below.

• Non-interactive commitments from OWFs: Mahmoody and Pass [MP12] showed that non-
interactive commitments cannot be constructed from so-called “hitting-OWFs” in a black-
box manner, even though a non-black-box construction was previously shown [BOV03]. One
nice feature of this example is that a non-interactive commitment is a very basic primitive.
However, in comparison hitting-OWFs have found little other applications in cryptography.
Furthermore, the separation here is intuitively weak since knowing the circuit size of the OWF
enables a black-box construction. This is contrasted with the non-black-box constructions of
2-round MPC from OT [GS18, BL18], which make an essential use of the full code of the OT
protocol.

• Two-round OT extension: Beaver gave a construction of two-round OT extension [Bea96]
making a non-black-box use of one-way functions. This construction can be cast in the OT-
hybrid model. However, very recently, Garg et al. [GMMM18] showed that a back-box variant
of such a constriction is impossible. They showed that such constructions are not possible
even when black-box use of a random oracle (and not just a one-way function) is allowed. One
limitation of this example is that the separation is only proved for protocols in the OT-hybrid
model.

• IBE from CDH (or Generic Groups): In a recent result, Döttling and Garg [DG17b] show that
Identity-Based Encryption (IBE) can be realized under the Computational Diffie-Hellman

7The question is informal due to the subjective nature of the term “natural primitive.” It should not be confused
with the question of black-box vs. non-black-box simulation, for which Barak’s breakthrough non-black-box simulation
technique [Bar01] gave the first such natural examples.

8



(CDH) assumption, while black-box constructions of the same had been previously ruled
out [BPR+08, PRV12]. However, in this case both the positive and the negative result use
strong “structured” primitives.

In another very related example, Döttling and Garg [DG17a] showed a generic non-black-box
construction of hierarchical-IBE from IBE but we can expect a black-box impossibility for
the same using techniques from [BPR+08].8

• Constructions of IO : In a very recent work, Garg et al. [GMM17] showed that indistinguisha-
bility obfuscation (IO) [GGH+13] cannot be constructed from compact functional encryption
(FE) in a black-box manner, even though non-black-constructions achieving this were already
known [BV15, AJ15].

• Secret-Key FE vs Public-Key FE : In a recent work, Kitagawa et al. [KNT18] showed that
public-key FE can be constructed from secret-key FE in a non-black-box manner, even though
black-box positive constructions had been previously ruled out [AS15].

In comparison with the above works, our main result has the advantage that it considers two
very natural and simple primitives. Our separation lives entirely in the “passive adversary” world,
and does not depend on the input domain being super-polynomial. For instance, our separation is
also meaningful for MPC with a uniform input distribution over a constant-size domain. Thus, it
is arguably similar in spirit to the Impagliazzo-Rudich separation of key agreement from one-way
functions [IR89], except that in the latter case no analogous non-black-box construction is known.

1.3 Open Problems

While we settle the main open question concerning black-box round-optimal MPC, our work leaves
several interesting directions for future research. We highlight a few below, focusing on our current
setting of semi-honest security with no honest majority.

• 3-round MPC from black-box OT. Our main result rules out 2-round MPC protocols
making a black-box use of 2-round OT. On the other hand, a previous result of Ananth et
al. [ACJ17] shows that such 4-round protocols exist (over public channels). What about 3-
round protocols? In Section 6 we show that extending our negative result to 3-round protocols
(even over public channels) would require settling Question 1.6 in the negative. This barrier
does not seem to apply to 3-round protocols in which the first round messages do not depend
on the inputs, or alternatively 2-round protocols with a public-key infrastructure (PKI) setup.

• Black-box use of stronger primitives. Can our negative result be bypassed by replacing
OT with stronger or more structured primitives? It is known that 2-round MPC can make
black-box use of different flavors of multi-key homomorphic encryption [MW16, DHRW16]
or homomorphic secret sharing [BGI17, BGI+18]. However, this is almost immediate from
the definitions of such primitives. Using simpler structured primitives, such as a “DDH-
hard” group or a generic group, we have black-box 2-round protocols that require a PKI
setup [GIS18]. Can we get similar group-based constructions in the plain model? Alterna-
tively, can the separation be bypassed by using stronger variants of 2-round OT, such as OT
with high information rate [DGI+19] or OT with a stronger notion of receiver privacy [IP07]?

8Even though we expect such an impossibility to hold, we are not aware of a work that gives a full proof of this
claim.
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• Minimal complete primitive for 2-round MPC. We have shown the existence of a
4-party functionality such that general MPC reduces to parallel calls to this functionality
without further interaction. We have also ruled out such a 2-party functionality. This leaves
open the 3-party case. As in the case of 3-round MPC from 2-round OT, we can show that
proving a negative result would require settling Question 1.6 in the negative.

• Standard MPC vs. client-server MPC. Our main negative result automatically carries
over to the stronger client-server model for MPC, where n clients interact with n servers who
have no inputs or outputs. It is known that 2-round client-server MPC can be constructed
in a non-black-box way from standard 2-round MPC [GIS18]. Whether such a black-box
construction exists remains open.

2 Technical Overview

In this section, we give a high-level overview of our techniques in proving the main result (Theo-
rem 1.4). To keep the exposition simple, we restrict ourselves to proving the impossibility result
for securely computing external-AND.

External-AND Functionality. Let us denote the three parties by (P1, P2, P3). The private
input of P1 is a bit x, the private input of P2 is a bit y, and P3 does not have any private input.
The functionality f× outputs x · y to all the parties. That is, f×(x, y,⊥) = x · y.

Main Idea. To prove the impossibility result, we define a set of oracles such that 2-round oblivious
transfer exists with respect to these oracles, but there exists no 2-round, semi-honest protocol for
securely computing f×. This is sufficient to rule out a black-box transformation from 2-round
oblivious transfer to 2-round, 3-party semi-honest protocols for general functionalities. Below, we
describe these oracles (throughout this overview, λ denotes the security parameter):

• OT1 is a random length tripling function that takes in the receiver’s choice bit b ∈ {0, 1} and
its random tape r ∈ {0, 1}λ and outputs the receiver’s message otm1.

• OT2 is a random length tripling function that takes in the receiver’s message otm1, the sender’s
inputs m0,m1 ∈ {0, 1}, its random tape s ∈ {0, 1}λ and outputs the sender’s message otm2.

• OT3 is a function that takes the transcript (otm1, otm2) along with (b, r) as input and outputs
mb if there exists unique (m0,m1, s) for which OT1(b, r) = otm1 and OT2(otm1,m0,m1, s) =
otm2. Otherwise, it outputs ⊥.

As observed by [HKN+05], the oracles (OT1,OT2,OT3) naturally give rise to a 2-round oblivious
transfer protocol. Specifically, letting b, r denote the input/randomness of the receiver, and letting
(m0,m1), s denote the input/randomness of the sender, the protocol proceeds as follows: The
receiver sends otm1 = OT1(b, r) to the sender, who responds with otm2 = OT2(otm1,m0,m1, s),
allowing the receiver to output the value OT3(otm1, otm2, b, r).

In this work, we prove that the existence of a 2-round protocol for external-AND with respect
to the oracles (OT1,OT2,OT3) implies a two-party protocol for computing g(x, y) = x · y in the
random oracle model. (Note that we start with a three-party protocol for an external functionality,
and show a two-party protocol for a related functionality.) The existence of such two-party protocol

10



is known to be impossible [CK89, Kus89, HOZ13, MMP14] and therefore the original protocol can
also not exist. This proves Theorem 1.8 discussed above, and implies Theorem 1.4 as a corollary.

Outline. The above result is proven using a sequence of transformations depicted in Figure 1.

2-round, 3-party protocol Π for f×

2-round, 2-party protocol Π for g with PDT

2-round protocol Π1 for g with PDT and no OT3 queries in generating the first message

2-round protocol Π2 for g with PDT and no OT3 queries in generating both the messages

Multi-round protocol Π∗ for g with PDT in RO model

Multi-round, information-theoretic protocol for g

Step 1

Step 2

Step 3

Step 4

[HOZ13, MMP14]

Figure 1: Key Steps in the Proof. Here, PDT denotes publicly decodable transcript, g(x, y) = x·y
and f×(x, y,⊥) = g(x, y).

Step-1: Publicly Decodable Transcript. Let Π be a 2-round protocol for securely computing
f× w.r.t. (OT1,OT2,OT3). We first show that this implies a 2-round, 2-party protocol Π for
computing the two-party functionality g = g(x, y) = x · y, which has an additional special property
– the output is publicly decodable from the transcript. More formally, there exists a deterministic
algorithm Dec that computes the output of the functionality given the transcript of the two-party
protocol. In particular, if there exists a protocol Π that computes g with publicly decodable
transcript, then Dec on input T (which is the transcript of the protocol Π) outputs g(x, y). In
terms of security, Π is required to have the standard security properties of a two-party (semi-
honest) protocol, i.e., the corrupted party does not learn any information about the other party’s
input except the output.

To transform a 2-round protocol for f× into a 2-round protocol Π for g with publicly decodable
transcript, we use a standard player emulation technique. Concretely, we ask P1 to choose a
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uniform random tape for P3 and send this random tape in the first round. Using this random tape,
P1 and P2 can generate the messages P3 would have sent in the original protocol. Additionally, P1

and P2 forwards all its outgoing messages that are sent to each other as well the messages sent to
P3 in the original protocol.

This protocol satisfies public decodability since given the transcript of the protocol (which
includes the entire view of P3 in the original protocol), one can run the output computing algorithm
of P3 to learn g(x, y). Further, the security follows directly from the security of the original protocol
when (P1, P3) and (P2, P3) are corrupted.9

Remaining Steps – Removing OT3 Queries. In the remainder of the proof, we show that
use of the oracle OT3 can be removed. More specifically, we show how to convert any two-round
two-party secure computation protocol Π with access to (OT1,OT2,OT3) and publicly decodable
transcript into a two-party protocol that computes the same functionality, but with a few differences.
The oracles OT3 will no longer be used in the new protocol, but this will come at a cost, both in
round-complexity and in security:

• The round complexity of the protocol will grow by a polynomial factor (essentially upper
bounded by the query complexity of Dec).

• The correctness and security guarantees will only be with respect to random inputs (we call
this “security over random inputs” ). One instructive way to think about security over random
inputs is to think of a protocol between parties that have no input, and at the beginning of the
execution they sample a random input using their local random tape (or shared randomness)
and proceed to execute the protocol. Note that this makes simulation easier since we no
longer need to worry about consistency with an adversarially chosen (or sampled) input.

In other words, the new protocol Π∗ only makes queries to (OT1,OT2) which are essentially
random oracles. Therefore, Π∗ securely computes g in the random oracle model. However, it follows
from [HOZ13, MMP14] that such a protocol can be used to securely compute g in the information-
theoretic setting and this is known to be impossible for the AND functionality [CK89, Kus89] (even
with security over random inputs as described above).

The remainder of the overview describes this transformation. We transform Π to Π∗ through a
sequence of steps. We first transform Π to Π1 in which the first message function of the protocol
does not make any OT3 queries (Step 2 below). Then, we transform Π1 to Π2 such that the first
and second message functions of the protocol do not make any OT3 queries (Step 3 below). Finally,
we transform Π2 to Π∗ such that the decoder Dec does not make any OT3 queries (Step 4 below).
It is the final step that incurs the blow-up in the round complexity. Additional details follow.

Step-2: Π ⇒ Π1. The first message function of Π has access to (OT1,OT2,OT3) oracles and
may make multiple queries to all of them. In order to perform this transformation, we devise a
mechanism to emulate the OT3 oracle without making actual queries to it. Recall that any query to
the OT3 oracle contains ((otm1, otm2), (b, r)) and it outputs mb if and only if there exists (m0,m1, s)
for which OT1(b, r) = otm1 and OT2(otm1,m0,m1, s) = otm2. The first step of the OT3 oracle is

9It is easy to see that the security of the transformed protocol requires security against collusion of P1, P3 since
P1 has the entire view of P3. We also require security against (P2, P3) collusion since P1 forwards all its messages
sent to P3 in the second-round of the protocol.
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easy to emulate; we can query OT1 on (b, r) and check if the output is otm1. To emulate the second
step, we maintain a list of all the queries/responses made by the first message function to OT2. If
we find an entry (otm1,m0,m1, s, otm2) in this list, we output mb; else, we output ⊥. Note that
since OT2 is length tripling, it is injective with overwhelming probability. Thus, if we find such an
entry then our emulation is correct. On the other hand, if we don’t find such an entry, we output ⊥
and it can be easily shown that the original oracle also outputs ⊥ except with negligible probability.
Thus, our emulation is statistically close to the real oracle.

Step-3: Π1 ⇒ Π2. It might be tempting to conclude that a similar strategy as before should work
even for OT3 queries made in the second round. That is, maintain the list of queries to the OT2

oracle and when the second message function makes an OT3 query, check if there is entry in this
list with the response equal to otm2. If such an entry is found, output the corresponding mb; else,
output ⊥. This strategy fails because in the second round it is possible that the relevant OT2 query
was made by the other party and therefore it is not possible for each party to only consider the list
of OT2 queries made locally. Note, however, that only one simultanous round of communication
has been made by the parties so far. Therefore, it must be the case that the party that made the
OT2 query also made the respective OT1 query.

To take care of such queries, that we call “correlated queries”, we modify the first round of Π1

as follows. The parties will prepare an additional list L that contains all correlated queries that
are “likely” to be asked by the other party. (No OT3 calls will be made while preparing this list.)

The parties will now send this list L along with the first round message of Π1. Now, when the
second message function of a party in Π1 attempts to make an OT3 query on (otm1, otm2, (b, r)),
we first check if otm1 is valid (by querying OT1) and then answer this query as follows. If otm2 is
a result of a local query then find the response using the list of local queries/responses. If otm2 is
a correlated query, use the list L sent by the other party to answer. If we don’t find any entry in
the local list or the correlated list, we output ⊥. We show that with overwhelming probability, the
real oracle also outputs ⊥ in this case. We also prove that sending this additional list of “likely”
correlated queries does not harm the security of Π2.

To conclude, we describe how the list L is generated, say by P1. Note that the list needs to be
generated at a point where P1 already decided on its first Π1 message; now it just needs to come
up with L. To this end, P1 executes many copies of Π1 executions of P2, each time with fresh
randomness and random input. Then the list L contains the responses to the list of all correlated
OT2 queries, i.e., the valid queries made to OT3 by “virtual” P2 such that both OT1 and OT2 have
been generated by P1. This will allow to preserve correctness on an average input, and does not
violate privacy since given the first Π1 messages, anyone can sample such executions.

Step-4: Π2 ⇒ Π∗. At the end of step-3, we have a protocol where the first and the second
message functions do not make any queries to the OT3 oracle. However, for the parties to learn
the output, they must run the decoder Dec on the transcript, and this decoder might make queries
to OT3. Recall that Dec is a deterministic decoding function whose input is the transcript of the
interaction. Further recall that Π∗ will be a protocol that does not use OT3 but will have many
communication rounds.

In Π∗, the parties will first execute the two rounds of Π2 to obtain a transcript. Then one of
the parties (say P1) starts executing the decoder, where for each OT3 query that the decoder needs
to make, if P2 has made the relevant OT2 query, then it will “help out” P1 by sending the decoded
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value. This will proceed for as many rounds as the number of queries that Dec needs to make, but
eventually it will allow P1 to complete the execution of Dec locally and compute the output of the
functionality. We will then need to show that privacy is not harmed in this process. Details follow.

Let us go back to the point where both parties finished executing the two rounds of Π2 now
wish to engage in joint decoding. One of the parties, say P1, starts running the decoder on the
transcript, and along the way maintain the list of OT1,OT2 made by Dec in this process. When
the decoder attempts to make an OT3 query on input ((otm1, otm2), (b, r)), P1 checks if otm1 is
valid (by making a query to OT1). It then checks if there is an entry (otm1,m0,m1, s, otm2) in the
list of OT2 queries made by the decoder and in the case such an entry is found, it answers with
mb. If such an entry is not found, P1 checks its local list of queries/responses made to OT2 during
the generation of the first two messages. If it finds an entry (otm1,m0,m1, s, otm2) in that list, it
answers with mb. If this list does not contain a relevant entry, there are 3 possibilities.

1. otm2 is not in the image of OT2 oracle in which case P1 has to output ⊥.

2. otm2 is in the image of OT2 oracle and P2 has made this query.

3. otm2 is in the image of OT2 oracle and P2 has not made this query.

The probability that case-3 happens can be shown to be negligible for similar reasons to ones
discussed above: if neither party made the relevant OT2 query then the value otm2 is almost surely
invalid. Thus, P1 must decide whether it is in case-1 or case-2 and if it is in case-2, it must give the
corresponding mb. To accomplish this, P1 sends a message to P2 with (b, otm2) and asks P2 to see
if there is an entry of the form (otm1,m0,m1, s, otm2) in its local list of queries to OT2 oracle. If
yes, P2 responds with mb; else, it responds with ⊥. P1 just gives P2’s message as the corresponding
response to that query. This blows up the number of rounds of the protocol Π∗ proportional to the
number of queries made by the decoder.

Observe that Π∗ does not make any queries to the OT3 oracle. At the end, P1 learns the
output g(x, y) and it can send this as the last round message to P2. Thus, Π∗ also has publicly
decodable transcript. The correctness of this transformation directly follows since we prove that
case-3 happens with negligible probability and if OT2 is injective (which occurs with overwhelming
probability), it follows that if an entry is found in either of the lists of the two parties or on the
local list of the decoder, the response given by the emulation is correct.

To see why this transformation is secure, notice that the query ((otm1, otm2), (b, r)) is made by
the Dec by just looking at the transcript. Hence, there is no harm in P1 sending (b, otm2) to the
other party. Similarly, if P2 has indeed made a query to OT2 such that the response obtained is
otm2, it should follow from the security of Π2 that the P2’s privacy is not affected if it sends mb to
P1. Indeed, this information is efficiently learnable given the transcript and an access to the OT3

oracle. However, there is a subtle issue with this argument which we elaborate next.

Problem of Intersecting Queries. A subtle issue arises when we try to formally reduce the
security of Π∗ to the security of Π2. To illustrate this, let us assume the case where P2 is corrupted.
To get a reduction to the security of Π2, we must give an algorithm that takes the view of P2 in
Π2 and efficiently generates the view of P2 in Π∗. In particular, it must generate the additional
messages in Π∗ given only the view of P2 in Π2. This algorithm is allowed to make OT3 queries as we
are trying to give a reduction to the security of Π2. For the sake of illustration, assume that the Dec
makes a single OT3 query. A natural approach for this algorithm is to take the transcript available
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in the view of P2 and start running the decoder on the transcript. When the decoder makes an OT3

query, the algorithm uses the real OT3 oracle to respond to this query. However, notice that the
algorithm must generate the messages that correspond to answering this OT3 query in Π∗. Recall
that in Π∗, P1 first checks in its local list whether there an entry of the form (otm1,m0,m1, s, otm2),
and only if such an entry is not found, P1 sends the message (b, otm2) to P2. Thus, to generate the
transcript of Π∗, the algorithm must somehow decide whether P1 would find this entry in its local
list or not. However, the algorithm is only given the view of P2 and does not have any information
about the queries that P1 has made to OT2.

We see that the problem arises when there is an OT2 query that potentially was made by both
parties. To handle this issue, we resort to the notion of intersection queries taken from the key-
agreement impossibility result [IR89, BM09]. These works show that it is possible, in polynomial
time, to recover a superset of all oracle queries made by both parties (with all but small probability).
Given this algorithm, we modify the transformation as follows. The parties will first run the two
rounds of communication of Π2. Then they will run the intersection query finder to recover the
intersection query superset. We assume for the purpose of this outline this process is deterministic.
Now, upon each potential OT3 query of the decoder, P1 will look for the preimage query not only
in its query history, but also in the superset of intersection queries, and send a message to P2 only
if the preimage is not found in either of these lists. In particular this means that if the preimage
is in the intersection query superset, then we are guaranteed that P1 will not send a message.

The above modified protocol can be efficiently simulated, since the simulator can also run the
intersection query finder and recover the same superset as the parties. Now, if OT3 gives a valid
answer, the simulator looks for a preimage in the intersection query superset. If it finds one, then
it concludes that P1 will not send any message to P2. If not, then it knows that (except with
small probability) exactly one of the parties made the preimage query, and it furthermore knows
the internal state of one of the parties, so it knows whether this party made the preimage query.
This allows the simulator to always deduce which is the party that made the preimage query and
simulate appropriately.

3 Preliminaries

Throughout the paper, we let λ denote a security parameter. A function µ(·) : N→ R+ is said to be
negligible if for any positive integer c, there exists λ0, such that for all λ ≥ λ0, we have µ(λ) < λ−c.
We will use negl(·) to denote an unspecified negligible function and poly(·) to denote an unspecified
polynomial function. For a string x ∈ {0, 1}n and an index i ∈ [n], let xi denote the symbol at
the i-th coordinate of x, and for any T ⊆ [n], let xT ∈ {0, 1}|T | denote the projection of x to the
coordinates indexed by T . For a function f : Xn → Y n, we use fi to denote the function defined
as f(·)i i.e., i-th coordinate of the output, and define fT analogously.

For a probabilistic algorithm A, we denote by A(x; r) the output of A on input x with the
content of the random tape being r. When r is omitted, A(x) denotes a probability distribution.
For a finite set S, we denote by x ← S the process of sampling x uniformly from the set S. We
will use PPT as an abbreviation for Probabilistic Polynomial Time.
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3.1 Secure Multiparty Computation

Below we define (δ, ε, S)-secure multiparty computation protocols in the presence of oracles with
security against semi-honest adversaries. The parameter δ lower-bounds the correctness probability
(i.e., the probability that the output is correct), the parameter ε upper-bounds the privacy error,
and S upper-bounds the number of oracle queries that a distinguisher is allowed to make. All three
parameters are functions of the security parameter λ. The default communication model that we
consider in this work assumes that every pair of parties is connected by a private point-to-point
channel. This makes negative results stronger. Whenever our results apply to the alternative
public-channel setting, we state it explicitly. This makes positive results stronger. By default, we
allow distinguishers as well as honest parties to be unbounded algorithms with a restriction only
on the number of oracle queries made. This only strengthens our lower-bounds. We mention that
all the positive results in this paper yield efficient protocols.

Definition 3.1 Let O be a set of oracles, {Xλ}, {Yλ} be sequences of finite sets and f = {fλ :
Xn
λ → Y n

λ } be an n-party functionality. Let ΠO be a multiparty protocol computing f by making
poly(λ) queries to O. We say that ΠO is efficiently computable if it can be implemented by oracle-
aided Turing machines that run in time poly(λ). We denote the view of party Pi (that includes the
input, randomness and message transcript, including the answers of the oracles) in the execution
of the protocol ΠO(1λ, x1, . . . , xn) (with the input of Pi being equal to xi) by viewPi(1

λ, x1, . . . , xn)
and denote the transcript of the protocol by T[Π(1λ, x1, . . . , xn)]. For any ε(λ), δ(λ) : N → [0, 1]
and S(λ) : N → N, we say that the protocol ΠO (δ, ε, S)-securely computes f in the presence of
O = {Oλ} if:

• Correctness. For every ~x = (x1, . . . , xn) ∈ Xn
λ and for every i ∈ [n], the probability that

party Pi at the end of protocol ΠO(1λ, x1, . . . , xn) outputs the i-th output of fλ(x1, . . . , xn) is
at least δ(λ).

• Security. For every set T ⊆ [n] and every pair of inputs ~x = (x1, . . . , xn), ~x′ = (x′1, . . . , x
′
n)

for which f(~x) = f(~x′) and ~xT = ~x′T , and every non-uniform distinguisher D making at most
S(λ) queries to the oracle O,

|Pr[DO({viewPi(1λ, ~x)}i∈T ) = 1]− Pr[DO({viewPi(1λ, ~x′)}i∈T ) = 1]| ≤ ε(λ).

We further consider a relaxation of the above to the case where the inputs are selected uniformly
from the domain Xn

λ . In this case, the correctness and privacy should hold over a random choice of
(x1, . . . , xn)← Xn

λ and we say that the protocol securely-computes f over random inputs. Specifi-
cally, for every set T ⊆ [n] and for every non-uniform distinguisher D making at most S(λ) queries
to the oracle O, we require

|Pr[DO(~x, ~x′, {viewPi(1λ, ~x)}i∈T ) = 1]− Pr[DO(~x, ~x′, {viewPi(1λ, ~x′)}i∈T ) = 1]| ≤ ε(λ) (3.1)

where ~x← Xn
λ , and ~x′ is sampled uniformly from Xn

λ conditioned on (~xT = ~x′T and f(~x) = f(~x′)).

The latter notion of random-input security relaxes standard security analogously to the standard
relaxation of semantic security of a cipher to security for random plaintext messages. Here too,
it is not hard to show that the two notions are equivalent up to a loss which is polynomial in the
domain size.
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Proposition 3.2 (From random-input to standard security) Let ΠO be a protocol that (1−
α, ε, S)-securely computes f over random inputs. Let N be the size of the domain of f . Then the
protocol ΠO is also a (1−Nα,N2ε, S)-secure protocol for f (over worst-case inputs).

Proof If correctness fails over some (worst-case) input ~x = (x1, . . . , xn) ∈ Xn
λ with probability

larger than Nα, then it fails over a random input with probability at least α. Similarly, if a
distinguisher D breaks security with advantage N2ε over some (worst-case) inputs ~x, ~x′ for which
f(~x) = f(~x′) and ~xT = ~x′T , then the there exists a distinguisher D′ (with similar complexity) that
works over random inputs with advantage at least ε. (Specifically, the distinguisher D′ applies D
when the inputs are ~x, ~x′, and otherwise outputs the constant 1.)

Remark 3.3 (Simulation-based security) Our security definitions use indistinguishability be-
tween inputs rather than a simulator. However, these definitions (both for standard and for random-
input security) imply a standard simulation based definition with respect to a simulator that makes
polynomially-many queries to the oracle (but is computationally unbounded). Indeed, the simula-
tor can sample ~x′ from D|(~xT = ~x′T , f(~x) = f(~x′)) and run the honest execution of the protocol
with the input ~x′. We note that allowing computationally unbounded simulators can only make
negative results stronger. However, we will mainly be interested in functions and distributions for
which the above inverse-sampling can be done efficiently. In such cases, computationally unbounded
simulation implies the standard notion of efficient simulation.

Remark 3.4 (Notation) When it is clear from the context, we use δ, ε,and S to denote δ(λ), ε(λ),
and S(λ).

3.2 Black-Box Reductions and Separations

We recall the notion of black-box constructions and separations [RTV04]. We refrain from restating
the involved definitional framework that underlies these notions, we just recall that a cryptographic
primitive is characterized by its correctness and security properties. The security property is defined
as a computational task that is attempted by an adversary, where a construction of the primitive
is deemed secure if no adversary of a certain class (usually polynomial time machines) can succeed
in this task. We refer to success in the task as “braking security” of the construction.

We define the notion of fully black-box reductions below. We note that one can consider different
flavors of black-box separations, but for the purposes of this work we believe that it is sufficient
to consider the most basic notion. For the purpose of the definition we assume that the syntax of
a cryptographic primitive (and of an adversary) contains only a single algorithm. This does not
limit generality (in all cases that are relevant to this work) since we can always replace algorithms
(A1, . . . , Ak) with a single algorithm A s.t. A(i, x) = Ai(x).

Definition 3.5 A primitive Q reduces to primitive P in a fully black-box manner, if there exist
polynomial time oracle machines R,B s.t. for every construction p of the primitive P it holds that
q = Rp is a construction of the primitive Q with the following properties.

• If p has correctness then so does q.

• For all A, if A breaks the security of q, then BA,p breaks the security of p.
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Definition 3.6 Let P be a cryptographic primitive and let O be some oracle. A computationally
unbounded oracle machine M is O-query-bounded if MO makes at most a polynomial number of
queries to its oracle during its execution. We say that p = CO is a construction of P in the presence
of O if p has correctness and security against any O-query-bounded adversary.

The definition extends to the setting where O is a distribution over oracles. In such a case
the construction p = CO should be interpreted as a randomized construction, whose first step is
to sample the specific oracle from the distribution O, and then to apply C. Likewise, an O-query-
bounded adversary is also a randomized entity where in the first step the oracle is sampled and then
the machine makes queries as needed.

The following proposition as an immediate consequence of the definition.

Proposition 3.7 Let Q,P be cryptographic primitives such that there is a fully black-box reduction
from Q to P , and let O be an oracle or a distribution over oracles. If there is a construction of P
in the presence of O then there is a construction of Q in the presence of O.

Proof Let R,B be the fully black-box reduction and let C be such that p = CO is a construction
of P in the presence of O. Define D as RC , i.e. q = DO = RC

O
. From the properties of the

reduction, q has correctness. Assume towards contradiction that there exists O-query-bounded A
such that AO breaks the security of q. From the properties of the reduction BAO would break the
security of p = CO. However, BAO,CO is O-query-bounded in contradiction to the unconditional
security of p against such adversaries.

4 Main Result

In this section, we state and prove our main result.

3-party Functionality. Let {Xλ}λ, {Yλ}λ, and {Zλ}λ be a sequence of finite sets. Let P1, P2,
and P3 to be the three parties. The private input of P1 is a string x ∈ Xλ and the private input of P2

is a string y ∈ Yλ. P3 does not have any private inputs. For any gλ : Xλ×Yλ → Zλ, define a 3-party
functionality fgλ that outputs gλ(x, y) to all the parties. In other words, fgλ(x, y,⊥) = gλ(x, y).
We sometimes identify g with the two-party symmetric functionality that takes x from P1, takes
y from P2 and delivers the output g(x, y) to both parties. For ease of notation, we will drop the
subscript λ when denoting f and g.

Lemma 4.1 There exists a set of oracles O such that:

• There exists a 2-round, (1 − negl(λ), negl(λ), λω(1))-secure efficiently-computable protocol for
computing any two-party functionality h : Xλ × Yλ → Zλ in the presence of O.

• For any g : Xλ × Yλ → Zλ, if there exists a 2-round, (1− negl(λ), negl(λ), λω(1))-protocol that
securely computes fg over private channels in the presence of O, then for every polynomial
α, there exists a multi-round, (1− 1/α(λ), 1/α(λ), λω(1))-secure protocol that computes fg on
random inputs over private channels in the random oracle model. Moreover, in this protocol,
party P3 does not send any messages and hence, we get a two-party protocol.
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The proof of Lemma 4.1 is postponed to the next subsection. We continue by exploring the
implications of the lemma. The conversion theorem from the introduction (Theorem 1.8), can now
be formally derived.

Theorem 4.2 (Conversion Theorem, Theorem 1.8, restated) Let g(x, y) be a 2-party func-
tionality. The external version of g is the 3-party functionality fg that takes x from Alice, y from
Bob and delivers g(x, y) to Alice and Bob, and to Carol who holds no input.

Suppose there is a fully-black-box reduction from 2-round secure computation of fg to 2-round OT
over private channels. Then, for every polynomial α, the functionality fg can be (1−1/α(λ), 1/α(λ), λω(1))-
securely computed over random inputs given only an access to a Random Oracle over private chan-
nels. Moreover, in the resulting protocol Carol sends no message and so it yields a two-party protocol
for (1− 1/α(λ), 1/α(λ), λω(1))-securely computing g with over random inputs given only an access
to a Random Oracle.

Proof We apply Proposition 3.7 where the primitive P is set to be 2-round OT and the primitive
Q is set to be 2-round secure computation of fg. By the first part of Lemma 4.1, there is a
construction of P in the presence of O. Therefore by the proposition, there is also a construction of
2-round secure computation of fg in the presence of O. We now apply the second part of Lemma 4.1,
and derive the theorem.

To simplify the following statements, let us say that a functionality f can be weakly-realized at
the presence of oracle O over worst-case inputs (resp., random inputs) if for every polynomial α(·)
there exists a protocol that (1 − 1/α(λ), 1/α(λ), λω(1))-securely computes f over private channels
on worst-case inputs (resp., random inputs) given an access to the oracle O. (That is, it achieves
privacy and correctness errors of 1/α(λ) against super-polynomial adversaries.)

The following proposition follows immediately from the transference theorem of Haitner et
al. [HOZ13, Theorem 1.1].

Proposition 4.3 (RO removal) If a 2-party functionality g can be weakly-realized over random
inputs given an access to a Random Oracle, then it can also be weakly-realized over random inputs
in the plain model.

Let us restrict our attention to 2-party (symmetric) Boolean functionalities g whose domain is
polynomially bounded in the security parameter. By Proposition 3.2, if g can be weakly-realized
over random inputs then it can be weakly-realized over worst-case inputs. We use this to show
that fg has a 2-round black-box reduction to a 2-round OT if and only if g is trivial. Here we
call a 2-party functionality trivial if it can be weakly-realized over worst-case inputs in the plain
model. More precisely, it is trivial if it admits a 2-party information-theoretic semi-honest protocol
over worst-case inputs with privacy and correctness errors of 1/α(λ) for an arbitrary, predefined,
polynomial α.

Corollary 4.4 (Corollary 1.9 restated) Let fg be an external-output version of a Boolean 2-
party functionality g, whose domain is polynomially-bounded. Then fg can be securely realized by
a 2-round private-channel protocol that makes a black-box use of 2-round OT if and only if g is
trivial. Specifically, the two-party AND functionality that takes in x, y ∈ {0, 1} and outputs x · y is
non-trivial and therefore it cannot be computed by a 2-round protocol that makes a black-box use of
2-round OT.
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Proof Suppose that fg can be securely-computed by a 2-round private-channel protocol that
makes a black-box use of 2-round OT. Then, by Proposition 4.3 and Theorem 4.2, the functionality
g can be weakly-realized in the plain model with information-theoretic security over random inputs.
Since the domain of g is polynomially-bounded, Proposition 3.2 further implies that fg can be
weakly-realized in the plain model with information-theoretic security over worst-case inputs and
therefore it is trivial.

For the other direction, the classical impossibility result of Chor and Kushilevitz [CK91] shows
that a 2-party Boolean function g is trivial if and only if it can be written as g(x, y) = g1(x)⊕g2(y).
For such a trivial g, the function fg admits a 2-round perfect protocol in the plain model; In the
first round, P1 sends a random pad r to P2, and in the second round P1 (resp. P2) sends to the
other two parties the value g1(x)⊕ r (resp., g2(y)⊕ r). Consequently, fg can be securely-computed
by a 2-round private-channel protocol that makes a black-box use of 2-round OT. Finally, the
non-triviality of AND follows from [BGW88, CK91].

4.1 Proof of Lemma 4.1

We start by describing the oracles.

Oracles O. O is a triple (OT1,OT2,OT3) = {(OTn1 ,OTn2 ,OTn3 )}n∈N with the following syntax
(We will use OT1 to denote {OTn1}n∈N and so on).

• OTn1 is a random length tripling function that takes in the receiver’s choice bit b ∈ {0, 1} and
its random tape r ∈ {0, 1}n and outputs the receiver’s message otm1.

• OTn2 is a random length tripling function that takes in the receiver’s message otm1, the sender’s
inputs m0,m1 ∈ {0, 1}, its random tape s ∈ {0, 1}n and outputs the sender’s message otm2.

• OTn3 is a function that takes the transcript (otm1, otm2) along with (b, r) as input and outputs
mb if there exists a unique (m0,m1, s) for which OT1(b, r) = otm1 and OT2(otm1,m0,m1, s) =
otm2. Otherwise, it outputs ⊥.

Notation. The response obtained when (b, r) ∈ {0, 1} × {0, 1}∗ (resp. (otm1,m0,m1, s) ∈
{0, 1}∗ × {0, 1} × {0, 1} × {0, 1}∗) is queried to OT1 (resp. OT2) is given by OT

|r|
1 (b, r) (resp.

OT
|s|
2 (otm1,m0,m1, s) if |otm1| = 3|s|+ 3; else ⊥.).

We now recall some basic properties of these oracles.

Fact 4.5 With probability at least 1− 2−n, the oracles OTn1 and OTn2 are injective.

Fact 4.6 Let Q = {(xi, yi)}i∈[q] denote a set of query/response pairs where xi ∈ {0, 1}n and yi ∈
{0, 1}3n for every i ∈ [q]. Let HQ denote the random variable that represents a random oracle
H : {0, 1}n → {0, 1}3n conditioned on being consistent with Q, i.e., H(xi) = yi for every i ∈ [q].
Then, for any y ∈ {0, 1}3n, y 6= yi for all i ∈ [q], the probability that y is in the image of HQ is at
most 2−2n.

As already mentioned, the oracles O naturally give rise to a two-round oblivious transfer pro-
tocol [HKN+05], and, by Yao’s completeness result (Theorem 1.1), to a general two-round protocol
for two-party functionalities.
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Proposition 4.7 ([HKN+05, Yao86]) An efficiently computable 2-round oblivious transfer pro-
tocol with negligible security and correctness errors exists in the presence of O. Consequently,
any two party functionality h : Xλ × Yλ → Zλ can be efficiently computed by a 2-round, (1 −
negl(λ), negl(λ), λω(1))-secure protocol in the presence of O.

The following lemma (whose proof is postponed to the next subsection) will complete the proof
of Lemma 4.1.

Lemma 4.8 Suppose there exists a 2-round, (1 − negl(λ), negl(λ), λω(1))-protocol Π that securely
computes fg over private-channels in the presence of O. Then, for every polynomial α, there exists
a multi-round, (1 − 1/α(λ), 1/α(λ), λω(1))-secure protocol Π∗ that computes fg on random inputs
over private-channels in the random oracle model. Furthermore, P3 sends no messages in this
protocol and hence, we get a two-party protocol for computing g.

4.2 Proof of Lemma 4.8

Following the outline sketched in Section 2, we gradually transform (in each of the following sub-
sections) the protocol in the hypothesis of Lemma 4.8 to the protocol in the implication.

4.2.1 Publicly-Decodable Protocol

We switch terminology and move from three-party protocols in which the third party is silent (as
in Lemma 4.8) to the, more convenient terminology of two-party protocols with publicly-decodable
transcripts.

Definition 4.9 A two-party protocol is publicly decodable if at the final step P1 and P2 compute
their output by applying a deterministic algorithm Dec on the transcript.

In general any protocol can be transformed into a publicly decodable protocol at the expense of
adding an additional message (in which P1 sends its output). In the following lemma, we show that
a three-party protocol for fg can be transformed into a two-party publicly-decodable protocol for
g without any overhead in the round complexity.

Lemma 4.10 Suppose there exists a 2-round, (δ, ε, S)-secure protocol Π for fg in the presence of
oracle O that makes poly(λ) queries to O. Then there exists a publicly-decodable (δ, ε,Ω(S))-secure
protocol Π for computing g in two rounds in the presence of O making poly(λ) oracle queries.

Proof The transformation is via standard player emulation technique. We now describe Π.

1. In round-1, party P1 will choose an uniform random tape r3 for P3 and emulate P3 using
this random tape. P1 generates the first round messages msg1

3→2,msg1
3→1 sent by P3 in Π to

P2, P1 respectively using r3. P1 also generates its first round messages msg1
1→2 and msg1

1→3

to be sent to P2 and P3 respectively in Π. It sends (msg1
1→2,msg1

3→2) to P2 in the first round
of Π. P2 generates (msg1

2→1,msg1
2→3) which are the first round messages to be sent to P1 and

P3 respectively in Π and sends them to P1.

2. In round-2, P1 generates msg2
1→2 and msg2

1→3 using its private input, its randomness and the
messages it received so far. It also uses r3 and the messages intended to P3 to generate P3’s
round-2 message msg2

3→2 to P2 in Π. It sends (r3,msg1
1→3,msg2

1→3,msg2
1→2,msg2

3→2) to P2.
Similarly, in round-2, P2 sends (msg2

2→1,msg2
2→3) to P1.
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Finally, P1 and P2 compute the decoding algorithm Dec executing the output computing algo-
rithm of P3 to output g(x, y).

For every subset T ⊆ [3], let Sim
O
T be the simulator for Π when the subset T gets corrupted.

We set SimO1 = Sim
O
{1,3}, Sim

O
2 = Sim

O
{2,3} and the properties follow directly from the guarantees of

Π.

Next steps. By Lemma 4.10, the hypothesis of Lemma 4.8 implies a 2-round (δ, ε, S)-secure
publicly-decodable protocol Π for g in the presence of oracle O that makes poly(λ) queries to O
where δ = 1− negl(λ), ε = negl(λ) and S = λω(1)). For a polynomial ρ(λ), our goal is to construct
a new a multi-round, (δ − O(1/ρ(λ)), ε − O(1/ρ(λ)), S − poly(ρ, λ))-secure two-party protocol Π∗

that computes g over random inputs. This will be done via a sequence of transformations. In the
first transformation, we remove all the queries made to the OT3 oracle in generating the first round
message of the protocol. In the second transformation, we remove all the OT3 oracle queries during
the generation of the second round message of the protocol. In the final transformation, we remove
the OT3 oracle queries made by Dec.

4.2.2 Transformation-1: Π⇒ Π1

We now transform Π to Π1 such that no OT3 queries are made during the generation of the first
round message in Π1. We parameterize Π1 with an arbitrary polynomial ρ (which will determine
the correctness and the security error) and denote by Π1[ρ] the parameterized version. We now
give the description of Π1 in Figure 2.

Claim 4.11 Let ρ be an arbitrary polynomial. Then, Π1[ρ] is a publicly-decodable protocol that
computes g in 2-rounds with (δ−1/ρ(λ), ε+ 1/ρ(λ), S)-security in the presence of (OT1,OT2,OT3)
making poly(λ) oracle queries.

Proof We now argue that the party’s emulation of OT3 oracle in the first round is 1/ρ(λ)-close
to the real oracle. Notice that if OT1(b, r) 6= otm1 or if |r| ≤ log(1/p), then the emulation is perfect.
We now show that if r > log(1/p), the emulation is 1/ρ(λ)-close to the real oracle. To see this,
observe that for any query such that otm2 is found in the list L2

P , the emulation of the oracle is
perfect as long as OT2 is injective and this happens with probability at least 1 − p (Fact 4.5). If
such a response is not found then the probability (over the choice of the random oracle OT2) that
a string otm2 is in the image of this oracle is at most p (Fact 4.6). Thus, in this case, both the
real oracle and party’s emulation will output ⊥ except with probability p and hence, by a standard
union bound, party’s emulation of OT3 oracle is (q + 1)p = 1/ρ(λ)-close to the real oracle.

To argue security, notice that with all but (q+1)p probability over random choice of OT2, party’s
emulation of the OT3 oracle in Π1 is identical to the real oracle and hence, for every inputs x, y and
every fixing of the randomness of the parties, the view of each party in Π1 will be (q + 1)p-close
to their view in Π (where the probability is taken over the choice of OT2). The security follows
directly from the security of Π.

4.2.3 Transformation-2: Π1 ⇒ Π2

We now transform Π1 to Π2 such that in protocol Π2, the parties do not make any OT3 oracle queries
when generating the second round message. As mentioned in Section 2, in this transformation each
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Transformation Π⇒ Π1:

• Parameters: Let q = q(λ) be the number of oracle queries that each party makes in
the first and the second rounds of Π. Let ρ = ρ(λ) be an arbitrary polynomial and set
p = 1

q·ρ .

• Preprocessing Phase: For every λ′ ≤ log(1/p), each party P ∈ {P1, P2} makes ora-
cle queries to OTλ

′
2 on every point in the domain. Party P creates a list LP2 with the

queries/responses to the OT2 oracle respectively.

• Round-1: In round-1 of Π1, party P starts executing the first round message func-
tion of Π (on their private input and randomness) and appends the list LP2 with
the queries/responses made to the OT2 oracle in the generation of the first round
message. Whenever the first message function of Π makes an OT3 oracle query on
(otm1, otm2, (b, r)), the P generates the response to this query as follows:

– It makes an OT1 oracle call on (b, r) and checks if the response is otm1. If not, it
outputs ⊥ as the response to the OT3 query.

– If |r| ≤ log(1/p), this query can be answered by an exhaustive search on the list LP2
as it contains all the responses to every point in the domain of OT2.

– Otherwise, P checks if there is an entry ((otm1,m0,m1, s), otm2) in the list LP2 . If
such an entry is not found, it outputs ⊥ as the response to the corresponding OT3

query. Else, it outputs mb.

• Round-2 and Decoder: Remain as in Π.

Figure 2: Description of Π1.

party P finds a list, LP , of “likely” correlated queries that are made by the other party P with
sufficiently large probability when the inputs of P are chosen at random. We give the description
in Figure 3.

Remark 4.12 It is instructive to note that if the input space is large (say larger than n) then the

list LP may completely miss a query that happens with high probability on a specific input of P .
For this reason, the transformation achieves correctness (and security) only with respect to random
inputs.

Claim 4.13 Let ρ be an arbitrary polynomial. Then Π2[ρ] is a 2-round publicly-decodable protocol
computing g on random inputs with (δ − O(1/ρ(λ)), ε + O(1/ρ(λ)), S − poly(λ, ρ))-security in the
presence of (OT1,OT2,OT3) making poly(λ, ρ) oracle queries.

Proof Let G (for good) denote the event in which Π2’s emulation of the OT3 oracle to the second
message of function of Π1 is identical to the real oracle. To prove correctness, it suffices to show
that G happens except with O(1/ρ(λ)) where the probability is taken over the inputs (x, y), the
random tapes, and the oracles.
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Transformation Π1 ⇒ Π2:

• Parameters: Let ρ = ρ(λ) be an arbitrary polynomial. Let q1 = q1(λ) be the number of oracle queries
that each party makes in the first and the second rounds of Π1. We define t = q1λρ and set p = 1

tq1ρ
.

• Preprocessing Phase: For every λ′ ≤ log(1/p), each party P ∈ {P1, P2} makes oracle queries to OTλ
′

2

on every point in the domain. Party P creates a list LP2 with the queries/responses to the OT2 oracle.

• Round-1: P1 (resp., P2) has input x (resp., y) and random tape R1 (resp., R2) for the protocol Π1[ρ].
(Additional random bits will be sampled on the fly.) The first round message from party P ∈ {P1,P2} to
the other party P is generated as follows:

1. P runs the first round message function of Π1[ρ], and whenever she accesses the oracle OT2, she
appends the query/response pair to the list LP2 . Let π1

1,P→P denote the first-round message (of Π1)

that is generated in this process. Here, we view the preprocessing part of Π1 as part of the first
message function.

2. Next, P initializes an empty list LP and runs t “auxiliary” executions of the other party P in Π1

as follows.

3. In every execution i, P samples a random input and a random tape for P and computes its first
message. This part of the computation may call the oracles OT1 and OT2, and P maintains the
corresponding list `i2 of query/response pairs to the oracle OT2. Next, P calls the second-message
function of P in Π1 (on the same input/random tape) and feeds π1

1,P→P as the first message of P
in the emulated protocol. During this computation, calls to the oracle OT2 are recorded in the list
`i2 as before. In addition, any OT3-query (otm1, otm2, (b, r)) is emulated as follows:

– Make an OT1 oracle call on (b, r) and checks if the response is otm1. If not, output ⊥ as the
response to the OT3 query.

– If |r| ≤ log(1/p), this query can be answered by an exhaustive search on the list LP2 as it
contains all the responses to every point in the domain of OT2.

– Otherwise, check if there is an entry ((otm1,m0,m1, s), otm2) in the list, `i2, of queries/responses
to the OT2 oracle made by the emulated P in that specific execution. If yes, output mb.

– Else, in list LP2 , check if there is an entry ((otm1,m0,m1, s), otm2). If yes, output mb and add
((otm1, otm2, (b, r)),mb) to the list LP . Otherwise, output ⊥.

4. P sends π1
1,P→P and the list LP to the other party.

• Round-2: The second round message from party P ∈ {P1,P2} to P is generated as follows:

1. P starts executing the second message function of Π1[ρ] with the first round message from P set to
π1
1,P→P and extends the list LP2 with those queries made by the second message function. Now, it

emulates the access to the oracle OT3 on a query (otm1, otm2, (b, r)) as follows:

(a) It makes an OT1 oracle call on (b, r) and checks if the response is otm1. If not, it outputs ⊥
as the response to the OT3 query.

(b) If |r| ≤ log(1/p), this query can be answered by an exhaustive search on the list LP2 as it
contains all the responses to every point in the domain of OT2.

(c) Else, it checks if there is an entry ((otm1,m0,m1, s), otm2) in the list LP2 . If such an entry is
found, it outputs mb.

(d) Else, it uses the list LP obtained from the other party and checks if there is an entry
((otm1, otm2, (b, r)),mb). If yes, it outputs mb. Else, it outputs ⊥.

• Decoding: Both parties take the transcript, remove the lists (L1, L2) sent by the parties, and apply the
decoder Dec of Π.

Figure 3: Description of Π2.
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As before, if OT1(b, r) 6= otm1 or if |r| ≤ log(1/p), the emulation is perfect. From now on we
therefore consider only OT3 queries whose r part is longer than log(1/p). Let I denote the event
that the oracles OT1 and OT2 are injective, which happens with probability at least 1−p by Fact 4.5.
Under I, every query (otm1, otm2, (b, r)) for which otm2 is found in the list of queries/responses to
the OT2 oracle or in the list L sent by the other party, is being emulated perfectly.

It suffices to deal with the case that the response is not found in any of the lists available to P ,
and so the emulation outputs ⊥ (in Step 1d). Let G1 (resp., G2) denote the event in which every
such ⊥-query, made by P1 (resp., P2), is also evaluated to ⊥ by the oracle OT3. We show that G1

fails to happens with probability at most q1(p+ 1/(ρq1) + e−λ). (A symmetric argument applies to
G2 as well.)

For every query (otm1, otm2, (b, r)) for which P1 reaches to Step 1d, we distinguish between two
cases. If otm2 was not a response obtained by one of the queries made by one of the parties in Π1,
then the probability (over the choice of the oracles) that the OT3 oracle does not output ⊥ is at
most p (by Fact 4.6). Otherwise, we have the following event (?): The OT3-query (otm1, otm2, (b, r))
was issued by P1 on a string otm2 that was obtained by P2 and the response to this query does not
appear in the list LP2 that P2 sent in the first round of Π2. Call such a query (otm1, otm2, (b, r))
“light” if it is issued by the second-message function of P1 in Π1[ρ] with probability at most 1/(q1ρ),
and “heavy” otherwise. Here the probability is measured with respect to a random execution of P1

over random inputs where the first-round incoming message, π1
1,P2→P1

, is fixed to its value in the
“main” execution. (The latter is a random variable which is induced by the inputs, y and R2 of
P2.) For every fixing of π1

1,P→P the following holds: If the query is light, then the probability of the

event (?) is at most 1/(q1ρ) (by definition). On the other hand, the probability that the response
to a heavy query does not appear in the list LP2 that was sampled by P2 (and was sent in Π2) is at
most (1− 1/(q1ρ))q1ρλ ≤ e−λ. Overall, for any given query the event (?) happens with probability
at most 1/(q1ρ) + e−λ. Applying union-bound over all q1 queries, we get that G1 happens except
with probability q1(p+ 1/(q1ρ) + e−λ). Overall, we get that

Pr[G] ≥ Pr[G1 ∧G2 ∧ I] ≥ 1−
(
p+ 2q1(p+ 1/(q1ρ) + e−λ)

)
≥ 1−O(1/ρ).

We now argue security. Notice that the only difference in the transcripts between the protocols
Π1 and Π2 is in this additional lists (LP1 , LP2). We show that there exists an efficient, poly(λ)-query,
algorithm A that, given the transcript of Π1 and an oracle access to (OT1,OT2,OT3), can generate
a pair of lists that are identical to the lists (LP1 , LP2) sent in the protocol except with probability
O(1/ρ(λ)) (over the choice of the oracles). Formally, for any fixed inputs x, y and randomness
R1, R2 of the parties in the original protocol Π1, with probability of 1−O(1/ρ(λ)) over the choice
of the oracles O = (OT1,OT2,OT3), it holds that

A(T1) = (LP1 , LP2),

where T1 is the transcript of Π1 and (LP1 , LP2) are the lists sent in Π2 where in both executions x, y
and R1 and R2 are being used and the randomness is induced only by the choice of (OT1,OT2,OT3).

Before describing A, we claim that its existence implies security over randomly chosen inputs.
For concreteness, we focus on security against P1. (The argument for P2 is similar). Let viewΠ1

P1
(x, y)

(resp., viewΠ2

P1
(x, y)) denote the view of P1 when the protocol Π1 (resp., Π2) is invoked over inputs

(x, y) and oracles O. Consider the mapping A′ that, given v1 (presumably viewΠ1

P1
(x, y)), recovers

the lists (LP1 , LP2) by applying A on the transcript part of v1, and outputs v1 extended with the
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lists (LP1 , LP2). Let x and y0 be random inputs in Xλ and Yλ, and let y1 be a random sibling of
y0, i.e., y1 is uniformly distributed among all strings y ∈ Yλ for which f(x, y) = f(x, y0). Note
that the marginal distribution of (x, y1) is also uniform over Xλ × Yλ. Next observe that for every
b ∈ {0, 1}, the random variables

(x, y0, y1,A′(viewΠ1

P1
(x, yb)),O) and (x, y0, y1, view

Π2

P1
(x, yb),O) (4.1)

are identically distributed whenever (1) the output of A is the same as the lists (LP1 , LP2) sent
by the parties on the real transcript; and (2) the transcript T1 together with the oracles sat-
isfy the event G (defined above). By union bound, both events happen except with probability
O(1/ρ(λ)) over a random choice of the inputs and the oracles. Hence, for every b ∈ {0, 1}, the
random variables in (4.1) are O(1/ρ(λ))-close in statistical distance. That is, even unbounded ad-
versaries that can make unbounded number of queries to the oracles O cannot distinguish between
(x, y0, y1,A′(viewΠ1

P1
(x, yb))) and (x, y0, y1, view

Π2

P1
(x, yb)) with advantage better than O(1/ρ(λ)). To-

gether with the privacy of Π1 (over worst-case inputs), this implies that (x, y0, y1, view
Π2

P1
(x, y0))

cannot be distinguished from (x, y0, y1, view
Π2

P1
(x, y1)) with advantage better than ε+O(1/ρ(λ)) by

(S− poly(λ))-query distinguishers. Indeed, a distinguisher DO(x, y0, y1, v
2) that violates the above

gives rise to a distinguisher D′O(x, y0, y1, v
1) := DO(x, y0, y1,A′(v1)) that violates the security of

Π1.
We move on to describe the algorithm A. Roughly speaking, the algorithm A generates the

list LP just like in protocol Π2, except that calls to OT3 will not be emulated, and instead will be
answered directly by querying the oracle OT3. Specifically, A extracts from the transcript the first
round message, π1

1,P→P , sent by a party P ∈ {P1, P2} in Π1, and executes t = q1λρ independent

executions of the other party P with uniformly chosen input and randomness. It then executes the
second message function of P in the protocol Π1 with respect to the incoming message π1

1,P→P .

During these executions A delivers OT3-queries to the OT3 oracle. For every such valid query made
to the OT3 oracle (i.e., the response is not ⊥) whose r part has length greater than λ′ and for which
otm2 is not a response obtained from OT2 in this execution, it will add ((otm1, otm2, b, r),mb) to
the list LP of party P where mb is the response from OT3.

We analyze A. Fix the inputs x, y the randomness R1, R2 of the parties in the main execution
(of Π1) and the randomness that is being used in the auxiliary executions. Let us assume that
the oracles are injective. In this case, the simulation deviates from the real interaction only if the
simulator (resp. the real execution) adds an entry ((otm1, otm2, (b, r)),mb) to the list LP although
this entry is not being added in the real execution (resp. the simulation). This happens only if
the corresponding OT3-query does not evaluate to ⊥ (by the oracle OT3) although its otm2-part is
not found in the OT2-lists of both parties that were generated by the first round functions during
the corresponding random execution of Π1. By Fact 4.6, this event happens with probability at
most p per OT3 query. Applying a union bound over all queries (in all emulations of both parties)
and on the event that the oracles fail to be injective, we conclude that, except with probability
p + 2ptq1 < O(1/ρ), all the entries in the lists generated by A are identical to the entries in the
lists generated in the protocol.

4.2.4 Transformation-3: Π2 ⇒ Π∗

We now transform Π2 into Π∗ that computes g in O(n) rounds in the presence of oracles (OT1,OT2)
without making OT3 queries. We will make use of the following “dependency learner” Eve that was
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defined by Barak and Mahmoody [BM09].

Lemma 4.14 ([BM09]) Let O be a set of random oracles. Let ΠO be an interactive protocol
between P1 and P2 in which they might use private randomness (but no inputs otherwise) and they
each ask at most m queries to O. Then, there is a deterministic eavesdropping algorithm Eve
(whose algorithm might depend on P1 and P2) who gets as input a parameter ε ∈ (0, 1) and the
transcript T of a random execution of the protocol ΠO (with the views of P1 and P2 being random
variables viewP1 and viewP2), asks at most poly(m/ε) queries to the random oracles O, such that
the probability that P1 and P2 have an “intersection query” outside of the queries asked by Eve to
any oracle O ∈ O is at most ε. That is,

∀O ∈ O, Pr[QO(viewP1) ∩QO(viewP2) 6⊆ QO(viewEve)] ≤ ε,

where QO(viewP ) denotes the (random variable) that consists of all the oracle queries that were
asked by P .

We give the description of Π∗ in Figure 4.
We show that the protocol Π∗ is a (δ−O(1/ρ(λ)), ε−O(1/ρ(λ)), S−poly(ρ, λ))-secure protocol

that computes g over random inputs, thus proving Lemma 4.8.
The following claim shows that the emulation of the decoder is typically consistent with OT3,

and therefore establishes the correctness of Π∗.

Claim 4.15 (Correctness) For every fixing of the inputs and local private tapes, except with
probability O(1/nρ(λ)) over the choice of the oracles, all the OT3 queries of Dec2 are answered
consistently with the answers of the real OT3 oracle. Consequently, for uniformly chosen inputs
(x, y) the output of both parties Dec∗ equals to g(x, y) with probability at least δ −O(1/ρ(λ)).

Proof We begin by proving the first part. As before, if OT1(b, r) 6= otm1 or if |r| ≤ log(1/p), then
the emulation is perfect. We now show that, except with probability O(1/nρ(λ)), the emulated
answers to all the queries for which r > log(1/p) are consistent with the answers of the real oracle.
Let us first assume that the oracles OT1,OT2 are injective which, by Fact 4.5, happens except
with probability p. Observe that when the output of the emulation is not ⊥, it is consistent with
the OT1,OT2 queries and, therefore, by injectivity, must be also consistent with OT3. Hence, the
emulation may disagree with the real oracle only when the emulated output is ⊥. Let us therefore
consider a query (otm1, otm2, (b, r)) for which the emulation returns ⊥. Recall that this happens
only if otm2 does not appear in any of the L2 lists of P1, P2,Eve and the decoder. Therefore, by
Fact 4.6, the response from the actual OT3 oracle will also be ⊥ except with probability p over
the choice of OT2. Overall, by a union bound, the emulation agrees with the oracle on all queries
except with probability p+ np ≤ O(1/nρ(λ)).

To prove the “consequently” part, observe that the only difference between Π2 and Π∗ is how
the OT3 queries of Dec2 are answered. Hence, conditioned on the event that the emulation is
perfect, the output of Π∗ on (x, y) is equal to the output of Π2 over (x, y), and so the claim follows
from the average-case correctness of Π2 (as proved in Claim 4.13).

We now show the privacy.

Claim 4.16 (Privacy) For every non-uniform distinguishers D1, D2 making at most S − poly(λ)
queries to the oracles O′ = (OT1,OT2) it holds that:

|Pr[DO
′

1 ((y, y′), viewP1(x, y)) = 1]− Pr[DO
′

1 ((y, y′), viewP1(x, y′)) = 1]| ≤ ε+O(1/ρ(λ))
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Transformation Π2 ⇒ Π∗:

• Parameters: Let q2 = q2(ρ) be the number of oracle queries that each party makes in
the first and the second rounds of Π2 and let n = n(λ) be the number of oracle queries
made by the decoder. Let ρ = ρ(λ) be an arbitrary polynomial and set p = 1

(q2+n2)ρ
. Let

ε′ = 1/(2nρ).

• Preprocessing Phase: For every λ′ ≤ log(1/p), each party P ∈ {P1, P2} makes ora-
cle queries to OTλ

′
2 on every point in the domain. Party P creates a list LP2 with the

queries/responses to the OT2 oracle.

• Executing Π2: Each party P ∈ {P1, P2} in Π∗ executes the first and the second round
messages of Π2[ρ] while updating the list LP2 with the queries/responses to the OT2 oracle.
Let T denote the resulting transcript for the first two rounds.

• Calling the dependency learner Eve: P1 invokes the dependency learner Eve for the
protocol Π2 (which is promised by Lemma 4.14) over the transcript T with proximity
parameter ε′. Let LE2 be the list of OT2 queries made by Eve to the OT2 oracle.

• Executing the decoder Dec2: Next, P1 invokes the Π2-decoder Dec2 over the tran-
script T. (Recall that the decoder is deterministic.)For every OT1,OT2 queries made by
Dec2, P1 maintains a list of the queries/responses obtained. For every OT3 query on
(otm1, otm2, (b, r)) made by Dec2, P1 gives the response as follows:

1. It makes an OT1 oracle call on (b, r) and checks if the response is otm1. If not, it
outputs ⊥ as the response to the OT3 query.

2. If |r| ≤ log(1/p), this query can be answered by an exhaustive search on the list LP2
as it contains all the responses to every point in the domain of OT2.

3. Else, P1 checks if there is an entry ((otm1,m0,m1, s), otm2) in the list of
queries/responses to the OT2 oracle made by Dec2. If such an entry is found, it
outputs mb.

4. Else, P1 checks if there is an entry ((otm1,m0,m1, s), otm2) in the LP1
2 or LE2 list. If

yes, it gives mb as the response.

5. Else, P1 sends (otm1, otm2, (b, r)) to P2. The other party P2 sends mb if an
(otm1, (m0,m1, s), otm2) entry appears in its LP2

2 list, and otherwise sends ⊥. P1

responds to decoder’s query with this message.

• At the end of the execution, the decoder Dec2 outputs a value z (supposedly g(x, y)) and
P1 sends it as the last round message. Both parties output z.

Figure 4: Description of Π∗.
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|Pr[DO
′

2 ((x, x′), viewP2(x, y)) = 1]− Pr[DO
′

2 ((x, x′), viewP2(x′, y)) = 1]| ≤ ε+O(1/ρ(λ)),

where (x, y)← Xλ × Yλ, y′ ∈ Yλ is chosen uniformly from the set {y′ : g(x, y′) = g(x, y)}, x′ ∈ Xλ

is chosen uniformly from the set {x′ : g(x′, y) = g(x, y)}, and viewPi(x, y) denotes the view of Pi in
the execution of Π∗ on inputs (x, y).

4.2.5 Proof of Claim 4.16

For i ∈ [n], we define a hybrid protocol Π∗i which differs from Π∗ only in the way that the OT3-
queries of the decoder are being answered. Specifically, the first i queries are answered exactly as in
Π∗, and in the last n−i queries we modify Step 5 and instead of sending the query (otm1, otm2, (b, r))
to P2, we send it to the OT3 oracle (and deliver the response to the decoder).

Notice that Π∗n is identical to Π∗. We also show that Π∗0 inherits its security from Π2. In the

following, let viewiP (x, y) be the view of P in an execution of Π∗i (x, y) and let viewΠ2

P (x, y) be the
view of P in an execution of Π2(x, y).

Claim 4.17 There exist efficient transformations A1,A2 that make no calls to the O = (OT1,OT2,OT3)-
oracles such that for any x, y, for any choice of the random tapes for the parties, and for i ∈ {1, 2}
the random variables

(Ai(viewΠ2

Pi (x, y)),O) and (view0
Pi(x, y),O)

are O(1/nρ(λ))-close (over the choice of the oracles).

Note that the above means that indistinguishability holds even with respect to an unbounded
distinguisher that makes unbounded number of queries to the oracles O.
Proof Let us fix the inputs x, y and the random tapes of the parties, and conditioned on the
event I that the oracle OT2 is injective on inputs whose s part has length greater than log(1/p).
By Fact 4.5, this event happens except with probability p < O(1/nρ(λ)).

The protocol Π∗0(x, y) is identical to Π2(x, y) with two minor modifications. Starting with P1,
the only difference is that in Π2 when P1 runs the decoder Dec2 all the OT3 queries are answered by
the OT3 oracle, whereas in Π∗0 the OT3 queries that reach to Steps 1–4 are answered locally. (This
means that, syntactically, the view of P1 in Π2 contains the answers to all these queries whereas
the view in Π∗0 does not contain the corresponding responses.) Observe that, under I, the answers

obtained in both cases are the same. Therefore the transformation A1 that takes viewΠ2

P1
(x, y) and

removes the responses to the OT3 queries that reach Steps 1–4, satisfies the claim with statistical
deviation of p.

We move on to P2. In Π∗0, party P2 gets the output z from P1 at the end, whereas in Π2, party
P2 invokes the decoder Dec2 locally on the transcript. This means that, syntactically, the view of
P2 in Π2 contains the answers to all the decoder’s queries whereas the view in Π∗0 does not contain
the corresponding responses but contains the message z. Consider the transformation A2 that takes
viewΠ2

P2
(x, y), computes the output z′ that is induced by the view, appends z to viewΠ2

P1
(x, y) and

removes all the responses to the queries made by Dec2. Again, whenever I happens, the simulated
outcome z′ is equal to the actual message z sent in Π2. Therefore, by Fact 4.5, A2 satisfies the
claim with statistical deviation of p < O(1/nρ(λ)).

We show that privacy is approximately preserved when moving between neighboring hybrids.
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Claim 4.18 For every i ∈ [n] and every ε′ > 0, there exist two algorithms A1 and A2 that make at
most poly(λ, 1/δ′, 1/ε′) queries to O = (OT1,OT2,OT3) such that, for uniformly chosen (x, y) ←
Xλ × Yλ, the random variables

(y,A1(viewi−1
P1

(x, y)),O) and (y, viewiP1
(x, y),O)

are O(1/nρ(λ))-close (in statistical distance) and

(x,A2(viewi−1
P2

(x, y)),O) and (x, viewiP2
(x, y),O)

are O(1/nρ(λ))-close.

Proof We start with the description of A1. On input viewi−1
P1

, the algorithm A1 emulates the
execution of P1 in Π∗i up to the generation of the i-th OT3 query (otm1, otm2, (b, r)) of the decoder.
At this point, it checks whether one of the conditions (1–4) holds. If this is the case, then it outputs
viewi−1

P1
as is. Otherwise, if the emulation reaches Step 5, the algorithm does the following:

• It queries the OT3 oracle on (otm1, otm2, (b, r)) and gets a response a.

• It adds (otm1, otm2, (b, r)) as the message from P1 to P2 to the transcript Ti−1 (extracted
from viewi−1

P1
) and it also adds the response obtained from OT3 oracle as the incoming message

sent from P2 to P1 in Ti−1. Let T∗i−1 be the augmented transcript.

Analysis of A1. Fact 4.5 implies that OT1 and OT2 are injective on inputs of length ≥ log(1/p)
with probability at least 1−p. We condition on this event and prove that the tuple (y,A1(viewi−1

P1
),O)

is p-close to the tuple (y, viewiP1
,O). Notice that the only difference between A1(viewi−1

P1
) and viewiP1

is in answering the i-th oracle query of the decoder and the corresponding messages exchanged.
We show that the response of the i-th query to the decoder and the messages exchanged while
answering this query are identical in the two distributions except with probability p. Let the i-th
oracle query of the decoder be (otm1, otm2, (b, r)). Observe that the only case where A1(viewi−1

P1
)

differs from viewiP1
is when otm2 is in the image of OT2 oracle, but it is not in the list of queries

made by either parties, Eve or Dec2. However, by Fact 4.6, the probability that this event happens
(over the choice of the oracles) is at most p. Overall, the deviation is 2p ≤ O(1/nρ(λ)).

Description of A2. We now give the description of A2. Given an input viewi−1
P2

, the algorithm
A2 parses the view into the input y and random tape r, the transcript T corresponding to the first
two rounds of Π∗i−1, the transcript Ti−1 of the remaining rounds of Π∗i−1, and the last message z
(presumably the output) sent by P1. The algorithm A2 outputs (y, r,Ti, z) where Ti is generated
as follows.

1. A2 runs Eve on T and let LE2 be the list of OT2 queries made by Eve. In addition, A2 starts
running (the deterministic) Dec2 on the transcript T. The first i− 1 queries that Dec2 makes
to the oracle OT3 are being answered directly by using the OT3 oracle. Given the i-th OT3

query, (otm1, otm2, (b, r)), of the decoder Dec2, the algorithm A2 proceeds as follows.

2. If one of the following conditions hold, set Ti = Ti−1:

(a) The evaluation of the OT1 oracle on (b, r) is not equal to otm1.
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(b) |r| ≤ log(1/p).

(c) There is an entry ((otm1,m0,m1, s), otm2) in the list of queries/responses to the OT2

oracle made by Dec2.

(d) There is an entry ((otm1,m0,m1, s), otm2) in the LE2 list.

3. Otherwise, if there is an entry ((otm1,m0,m1, s), otm2) in the LP2
2 list, then A2 appends

(otm1, otm2, (b, r)) as message from P1 to P2 and mb as the response from P2 to P1 to the
transcript Ti−1 to obtain Ti.

4. Otherwise (if such an entry is not found in either lists), A2 queries the OT3 oracle on
(otm1, otm2, (b, r)) and obtains the response. If the response was ⊥, it adds (otm1, otm2, (b, r))
as message from P1 to P2 and ⊥ as the response from P2 to P1 to the transcript Ti−1 to obtain
T∗i−1. Otherwise, it sets Ti = Ti−1.

Analysis of A2. Consider the random experiment in which the inputs x and y are chosen at
random, as well as the random tapes of both parties and the oracles O. Let us condition on the
following events: (1) The oracles OT1 and OT2 are injective on inputs of length ≥ log(1/p); and (2)
The emulation of the decoder up to step i by A2 is consistent with its emulation by P1 in Π∗i−1. By
Fact 4.5 and Claim 4.15 both events happen except with probability p+O(1/nρ(λ)) ≤ O(1/nρ(λ)).
Let us condition on these events and prove that the tuple (x,A2(viewi−1

P1
),O) is (ε′+p)-close to the

tuple (x, viewiP1
,O).

Observe that, under these events, the i-th OT3 query of the decoder, (otm1, otm2, (b, r)), is
identical in both the simulation (performed by A2) and the real protocol Π∗i−1. Hence, deviation
may happen only if either (A) the simulation appends the query to the transcript but the real
execution does not; or (B) the real-execution appends the query to the transcript but the simulation
does not.

We start with Case (A). The simulation appends the query only in Steps 3 and 4. In the latter
case (Step 4), the real execution also appends the query. Hence, Case (A) may happen only in
Step 3, which means that the query is an intersecting query (it appears both in LP1

2 and LP2
2 ) but

it was not detected by Eve (does not appear in LE2 ). By Lemma 4.14, this event happens with
probability at most ε′.

Finally, observe that Case (B) may happen only if the simulation reaches to Step 4 and the
query is not evaluated to ⊥. This means that otm2 is in the image of OT2 oracle, but it is not in
the list of queries made by any of the parties, which, by Fact 4.6, happens with probability at most
p (over the choice of the oracles).

We can now complete the proof of Claim 4.16. First, by iteratively composing Claim 4.18 and
applying Claim 4.17, there exists an algorithm A1 (resp. A2) that makes at most npoly(λ) = poly(λ)
queries to the oracles O such that for every b ∈ {1, 2}, the random variables

(x, y,Ab(viewΠ2

Pb
(x, y)),O) and (x, y, viewPb(x, y),O)

are O(1/ρ(λ))-close where (x, y) are uniformly distributed and view stands for the view under Π∗.
(The above notation is somewhat redundant since for b = 1 the random variable x appears as part
of P1’s view and for b = 2 the random variable y appears as part of P2’s view.)
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Next, consider a distinguisher D that attacks the privacy of P1 in Π∗ with respect to random
inputs. (The case of P2 is symmetric.) That is, D makes at most S′ queries to O′ and

|Pr[DO
′
((y, y′), viewP1(x, y)) = 1]− Pr[DO

′
((y, y′), viewP1(x, y′)) = 1]| > ∆,

where (x, y) ← Xλ × Yλ, and y′ ∈ Yλ is chosen uniformly from the set {y′ : g(x, y′) = g(x, y)}.
It follows that the adversary D′OT1,OT2,OT3(y, y′, v) that computes v′ = AOT1,OT2,OT3

1 (v) and then
outputs DOT1,OT2(y, y′, v′) satisfies

|Pr[D′O((y, y′), viewΠ2

P1
(x, y)) = 1]− Pr[D′O((y, y′), viewΠ2

P1
(x, y′)) = 1]| > ∆−O(1/ρ(λ)).

(Here we use the fact that the marginal distribution of (x, y′) is also uniform over Xλ × Yλ.) Since
D′ makes at most S′+ poly(λ) queries to O, Claim 4.13 implies that for some constant c, whenever
S′ < S − λc the distinguishing advantage ∆ is at most ε+O(1/ρ(λ)). Claim 4.16 follows.

5 Separating Non-Compact HSS from 2-Round OT

In this section, we present a simple corollary of our main separation to a natural variant of homo-
moprhic secret sharing (HSS). Concretely, we show a black-box separation between a weak 2-party
flavor of “non-compact HSS” and 2-round oblivious transfer. Non-compact (2-party) HSS is similar
to the notion of 2-input HSS from [BGI+18] in that it allows a local computation of a function
g(x, y) on independently generated shares of x and y. However, instead of the usual requirement
that the output shares be additive or compact, here we require that they reveal no additional
information except the output.

Definition 5.1 (Non-compact HSS) A 2-party non-compact homomorphic secret sharing (non-
compact HSS) for a function g : {0, 1}λ×{0, 1}λ → {0, 1}λ is a triple of PPT algorithms (Share,Eval,Dec)
with the following syntax.

• Share(x) takes an input x ∈ {0, 1}λ and outputs two shares (x1, x2).

• Eval(j, (xj , yj)) takes in j ∈ {1, 2} and the j-th shares of the inputs and outputs zj (an output
share).

• Dec(z1, z2) is a deterministic algorithm that takes output shares z1, z2 and outputs a string z.

We say that (Share,Eval,Dec) is a (δ, ε)-non-compact HSS for computing g if it satisfies the following
two properties:

• Correctness. For any x, y ∈ {0, 1}λ, we require

Pr[Dec(z1, z2) = f(x, y)] ≥ δ(λ)

where (x1, x2)← Share(x), (y1, y2)← Share(y) and zj ← Eval(j, (xj , yj)) for j ∈ {1, 2}.

• Security. There exist PPT Sim1, Sim2, and Sim such that for every input x, y ∈ {0, 1}λ and
every efficient nonuniform distinguishers D1, D2, and D making at most S queries to O the
following holds:

|Pr[D1(x, (r1, s1), y1, z2)]− Pr[D1(Sim1(x, f(x, y)))]| ≤ ε(λ)
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|Pr[D2((y, (r2, s2), x2, z1))]− Pr[D2(Sim1(y, f(x, y)))]| ≤ ε(λ)

and
|Pr[D(z1, z2)]− Pr[D(Sim1(f(x, y)))]| ≤ ε(λ)

where (x1, x2)← Share(x; r1), (y1, y2)← Share(y; r2) and zj ← Eval(j, (xj , yj); sj).

When the error parameters ε, δ are omitted, they are understood to be negligible.

Previous definitions of HSS [BGI16, BGI+18] require that each input share hide the input, and
make no security requirements involving the output shares. However, we note that the default
syntactic requirement for HSS schemes as defined in [BGI16, BGI+18] is that the output decoder
computes addition over a finite Abelian group. This type of additive HSS implies our notion of
non-compact HSS by masking the two output shares with a random group element. Thus, the
following separation result applies also to additive HSS. Finally, note that the above definition does
not explicitly require that each input share hide the input. However, for nontrivial functions g this
is implied by the above requirements, and in any case not requiring this makes the negative result
stronger.

Towards separating non-compact HSS from 2-round OT, we use the following simple transfor-
mation of HSS to a 2-round protocol with publicly decodable transcript.

Claim 5.2 For any δ, ε > 0, (δ, ε)-non-compact HSS for computing g in the can be used as a
black box to construct a protocol (Π,Dec) for computing g in 2 rounds with (δ, ε)-publicly decodable
transcript.

Proof We start with the description of Π. In the first round, the party P ∈ {P1, P2} runs Share
on its input and sends the other party’s share. The parties then run Eval on the shares to obtain z1

and z2 respectively. In the second round, the parties exchange z1 and z2. We define Dec to extract
(z1, z2) and run the decoder for HSS to learn g(x, y). The security properties directly follow from
the properties of non-compact HSS.

Using the black-box separation of Corollary 4.4, we get the following corollary.

Corollary 5.3 There is no black-box construction of non-compact 2-party HSS for g(x1, x2) =
x1 ∧ x2 from 2-round OT.

In contrast, a non-black-box construction of non-compact 2-party HSS from 2-round OT easily
follows from the positive result for the 2-round client-server model from [GIS18] via a simple
syntactic translation. Indeed, consider such a protocol for a function g(x, y) with 2 input clients,
two servers, and a single output client. The interaction in such a protocol consists of a message
from each input client to each server, followed by a message from each server to the output client.
Assume without loss of generality that the two input clients run the same algorithm. Then Share(x)
outputs the pair of messages sent by a client on input x, Eval(j, (x1, x2)) the message sent by server
j upon receiving messages (xj , yj) from the client, and Dec(z1, z2) returns the output of the output
client upon receiving messages z1, z2.

The above positive (non-black-box) result extends to multi-party non-compact HSS, and ac-
tually yields the slightly stronger non-compact HSS primitive with the guarantee that each strict
subset of the shares hide the input. As discussed above, this standard HSS requirement is not is
not explicitly required by our definition, which always allows the simulator to learn the output.
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6 Minimal Complete Primitives for 2-round MPC

In this section we study the existence of complete primitives for 2-round MPC. A k-party func-
tionality G is complete in this setting, if any n-party functionality can be securely realized using
parallel (ideal) calls to G and no additional interaction. Note that each call to G may involve a
different set of k parties, but the sets can overlap in the sense that each of the n parties can be
involved in multiple calls.

Our main separation implies in particular that k = 2 is insufficient for completeness. In the
following we show that k = 4 is sufficient, and give evidence for the difficulty of obtaining a negative
result for k = 3.

The following dMULTPlus function will be used to construct the complete primitive. This
function can be defined over any finite ring; by default, we consider the ring to be Z2.

dMULTPlus((x1, z1), . . . , (xd, zd)) = x1 · . . . · xd +
d∑
i=1

zi.

We define FdMULTPlus to be the ideal functionality that takes (x1, z1) from a party Pi1 , (x2, z2) from
a party Pi2 , and so on and outputs dMULTPlus((x1, z1), . . . , (xd, zd)) to all n parties. In our default
semi-honest setting, this can be implemented via parallel calls to a (d + 1)-party functionality,
where the parties include all d input holders and an additional “external” party, and all d + 1
parties receive the output. Alternatively, each instance can deliver the output to only one of the
d+ 1 parties.

We show that parallel calls to FdMULTPlus are complete for evaluating degree-d polynomials. A
similar results is implicit in [BGI+18, GIS18], except that the protocols from these works addi-
tionally use two rounds of point-to-point communication. We consider here polynomials over mn
input variables, where each party contributes m inputs. We also assume for simplicity that the
polynomial is the sum of monomials of degree exactly d. This is without loss of generality, since
smaller degree monomials can be handled by setting auxiliary input variables to 1. Finally, while
we consider here polynomials over Z2, the following lemma and its proof can be extended to any
finite ring.

Lemma 6.1 Let d be a positive integer and g : {0, 1}mn → {0, 1} be a degree-d functionality
over Z2. That is, g((x1, . . . , xm), . . . , (xmn−m+1, . . . , xmn)) =

∑
ai1...idxi1xi2 . . . xid. There exists a

perfectly secure protocol for computing g against a semi-honest adversary (corrupting an arbitrary
subset of parties), where the protocol makes parallel calls to the FdMULTPlus functionality and uses
no further interaction.

Proof For every d sized subset {i1, . . . , id} ∈ [mn], the parties Pbi1/mc+1, . . . , Pbid/mc+1 do the
following:

• Party Pbij/mc+1 chooses a random bit r
ij
i1,...,id

.

• If ai1,...,id = 0, then the parties call the FdMULTPlus function on inputs (0, ri1i1,...,id), . . . , (0, r
id
i1,...,id

).

• Else, the parties call FdMULTPlus function on inputs (xi1 , r
i1
i1,...,id

), . . . , (xid , r
id
i1,...,id

).

The parties then sum up their chosen random bits and send them to every other party. We note
that this can be achieved via the ideal functionality with two dummy parties who both send (1,0)

34



to the functionality and the specific party sends (ri, 0) where ri is the sum of the chosen random
bits. To obtain the output, the parties sum up the outputs from FdMULTPlus with the sum of all the
random bits obtained from every party.

The correctness of the above protocol is easy to verify. To show security, consider the corrupted
set T ⊆ [n]. The simulator is given (x(i−1)m+1, . . . , xim) for every i ∈ T and the output of g. For
every d sized subset {i1, . . . , id} such that for each j ∈ [d], bij/mc + 1 ∈ T and ai1,...,id = 1, the
simulator adds xi1 . . . xid to g. Let g′ be the resulting value. Let i∗ 6∈ T be an arbitrary element.
For every i 6= i∗ and i 6∈ T , the simulator sends a random bit as the sum of Pi’s random bits.
For every d sized set {i1, . . . , id} that contains at least one j ∈ [d] such that bij/mc + 1 6∈ T , the
simulator outputs a random bit as the response from FdMULTPlus. For i∗, the simulator outputs
g′ plus the sum of the all the random bits chosen as the sum of its random bits. The simulator
outputs this transcript along with the input and uniformly chosen random tape for the parties in
T . The output of the simulator is identical to the real views of the corrupted parties.

We recall the best known result on the round complexity of semi-honest MPC from black-box
2-round OT. (The protocol also makes a black-box use of a PRG, which can be simulated via
black-box call to the OT protocol.)

Claim 6.2 ([ACJ17]) There exists a 4-round protocol (over public channels) for securely realizing
an arbitrary functionality f , with security against a semi-honest adversary, making black-box use
of 2-round OT.

One can similarly prove a 3-round protocol for degree-2 functions, via a reduction to F2MULTPlus,
by using the following claim.

Claim 6.3 There exists a 3-round protocol (over public channels) for securely realizing the F2MULTPlus

functionality, with security against a semi-honest adversary, making black-box use of 2-round OT.

Proof Let (x1, z1) be the input of P1 and (x2, z2) be the input of P2. Let the 2-round OT protocol
be denoted by a tuple of 3 algorithms (OT1,OT2,OT3). P1 calls OT1(x1, r) (where r is uniformly
chosen) and sends otm1 to P2. P2 calls OT2(otm1, (0 ·x2 + z2, 1 ·x2 + z2), s) (for a randomly chosen
s) and sends otm2 to P1. P1 calls OT3(otm1, otm2, (x1, r)) to get x1x2 + z2. (Note that since P1

knows z1, this does not reveal to P1 more than output of F2MULTPlus.) In the final round, P1 sends
(x1x2 + z1 + z2) to every party. The correctness is easy to see, and security follows directly from
the security of a 2-round oblivious transfer protocol.

We note that by using Lemma 6.1, Claim 6.3 can be extended from F2MULTPlus to any degree-2
functionality.

6.1 Completeness of a 4-party Primitive

We apply Lemma 6.1 to show that parallel invocations of F3MULTPlus suffice for computing any
functionality. We formulate the general version of this theorem that applies to any (polynomial-
time) functionality but only offers computational security using a black-box PRG. Alternatively,
for functionalities in intermediate complexity classes such as NC1 or LOGSPACE, a similar result
holds with perfect security and without a PRG.

Theorem 6.4 Let f be an n-party functionality. There exists a protocol Πf for securely computing
f against a semi-honest adversary (corrupting an arbitrary subset of parties), where Πf makes
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parallel calls to the F3MULTPlus functionality and uses no further interaction. The protocol Πf can
either be: (1) computationally secure using a black-box PRG, where the complexity of the parties
is polynomial in n, the security parameter λ and the circuit size of f , or alternatively (2) perfectly
secure, where the complexity of the parties is polynomial in n and the branching program size of f .

Proof The proof is adapted from [GIS18] (see Theorem 4.10). We consider here the first case of
a computationally secure protocol for circuits. A perfectly secure protocol for branching programs
can be obtained similarly, using the randomization technique for branching programs from [IK00,
AIK04].

Assume that f is represented by a circuit comprised entirely of NAND gates.
We will now recall the semantics of a BMR garbled gate. The BMR garbling for a NAND gate

g that takes wires a and b as input and the output wire is c is a set of values {G̃ir1,r2}r1,r2∈{0,1},i∈[n],
where

G̃jr1,r2 =

(
n⊕
i=1

Fkia,r1
(g, j, r1, r2)⊕ Fkib,r2

(g, j, r1, r2)

)
⊕ kjc,0 ⊕ (χr1,r2 ∧ (kjc,1 ⊕ k

j
c,0))

where χr1,r2 = ((
⊕n

i=1 λi,a ⊕ r1) · (
⊕n

i=1 λi,b ⊕ r2)⊕ 1)⊕ (
⊕n

i=1 λi,c). Here, F is a PRF, kix,r where
x ∈ {a, b, c, } and r ∈ {0, 1} is a PRF key, λi,x for x ∈ {a, b, c, } are bits.10 The PRF keys kix,r and
the bits λi,x are chosen by each party before the first round of the protocol.

We notice that each output bit of {G̃ir1,r2}r1,r2∈{0,1},i∈[n] is a degree-3 functionality.

Protocol Description. We now describe the protocol for securely computing f using parallel
calls to F3MULTPlus.

1. For every wire w, which is the input wire of a party Pi, the other parties Pj will set λj,w = 0.
The party Pi will compute αw = λi,w ⊕ xw.

2. For every αw, the party Pi, the party P who owns w and a dummy party P ′ will call FdMULTPlus

functionality on ((kiw,0 ⊕ kiw,1, kiw,0), (αw, 0), (1, 0)). All the parties receive kiw,αw .

3. Use Lemma 6.1 to securely compute {G̃ir1,r2}r1,r2∈{0,1},i∈[n] by making parallel calls to F3MULTPlus

for every NAND gate g in f .11

4. Evaluate the BMR garbled circuit to obtain the output.

The proof of security follows directly from the fact that the set of all {G̃ir1,r2}r1,r2∈{0,1},i∈[n] together
with {kiw,αw , αw}w∈inp constitutes a computationally private randomized encoding [BMR90, AIK06]
of the function f and the inputs x1, . . . , xn.

Recall that F3MULTPlus takes inputs from 3 parties and delivers the output to all parties. As
noted above, we can reduce this to n invocations of a 4-party functionality that delivers the output
to a single party. Combining this with Theorem 6.4, we conclude that there is a 4-party functionality
which is complete for 2-round MPC.

10For simplicity we use here a PRF. Alternatively, the protocol could make a black-box use of a length-doubling
PRG or any one-time symmetric encryption scheme.

11Here, the parties will compute the PRF outputs locally and give these as inputs to the protocol.
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Corollary 6.5 There exists a finite 4-party functionality G such that every n-party functionality
f admits a secure protocol making only parallel calls to G with no further interaction. The protocol
can either be: (1) computationally secure using a black-box PRG, where the complexity of the parties
is polynomial in n, the security parameter λ and the circuit size of f , or alternatively (2) perfectly
secure, where the complexity of the parties is polynomial in n and the branching program size of f .

6.2 The Degree-2 Barrier

In this section we show that an open question regarding the existence of degree-2 randomized
encodings of functions may be a barrier for closing the remaining gap between our positive and
negative results. We start by defining the classes PREN[d] and SREN[d].12

Definition 6.6 (Randomized Encoding of Functions [IK00, AIK04]) Let f : {0, 1}n → {0, 1}
be a function. We say that a function f̂ : {0, 1}n×{0, 1}ρ → {0, 1}` is a perfectly private random-
ized encoding of f if for every input x ∈ {0, 1}n, the distribution f̂(x; r), induced by an uniform
choice of r ← {0, 1}ρ, encodes the output f(x) in the following sense:

• Correctness. There exists a decoding algorithm Dec such that for every x ∈ {0, 1}n,

Pr
r←{0,1}ρ

[Dec(f̂(x; r)) = f(x)] = 1

• Privacy: There exists a randomized algorithm S (called a simulator) such that for every
x ∈ {0, 1}n and for a uniformly chosen r ← {0, 1}ρ, the distributions S(f(x)) and f̂(x; r) are
identical. In the relaxed notion of statistically private randomized encoding, all algorithms
are given an additional input σ (a statistical security parameter), their running time should
be polynomial in σ, and the statistical distance between the distributions Sσ(f(x)) and f̂σ(x; r)
should be negligible in σ.

We let PREN[d] (resp. SREN[d]) denote the class of all functions f : {0, 1}n → {0, 1} for which
there exists a perfectly (resp., statistically) private randomized encoding f̂ that is computed by a
vector of degree-d polynomials over Z2 in the input variables x and r, where in the statistical case
the polynomials may depend on σ.

A longstanding open question in information-theoretic cryptography, first posed in [IK00] (see
also Question 5.5 in [AHI+17]), is whether every finite function is in SREN[2]. This is open even if we
allow constant simulation error (say, statistical distance of 0.01) and even without any restriction
on the running time. (In contrast, the class PREN[2] was shown to contain only very special
functions [IK00].) Moreover, the question is open even if Z2 is replaced by a larger field or ring.
The following theorem implies that in order to rule out either a complete 3-party primitive or a
3-round general MPC protocol from black-box 2-round OT, one must settle this question in the
negative. Alternatively, proving that every finite function is in SREN[2] would settle the above
questions in the affirmative.

Theorem 6.7 Suppose the function f0(x1, x2, x3, x4) = x1x2x3 + x4 (over Z2) is in SREN[2].
Then Corollary 6.5 holds for a 3-party functionality G (instead of 4-party), and Claim 6.3 holds for
arbitrary n-party functionalities (instead of the F2MULTPlus functionality or degree-2 functionalities).

12Our definitions of PREN and SREN are slightly different (simplified) variants of the corresponding classes
from [AIK04].
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Proof If the above f0 is in SREN[2], then 3MULTPlus is also in SREN[2] (see, e.g., Lemma 4.12
in [AIK04]). We can then apply Lemma 6.1 to perfectly realize F3MULTPlus using parallel calls to
F2MULTPlus with no further interaction. It follows that Theorem 6.4 holds with F2MULTPlus instead
of F3MULTPlus, and Corollary 6.5 with the 3-party functionality corresponding to F2MULTPlus. The
stronger version of Claim 6.3 would then follow by combining the current Claim 6.3 with the
stronger version of Theorem 6.4.

Acknowledgements. We thank Iftach Haitner, Mohammad Mahmoody, and Rotem Tsabary
for helpful discussions.
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[DG17a] Nico Döttling and Sanjam Garg. From selective IBE to full IBE and selective HIBE.
In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS,
pages 372–408. Springer, Heidelberg, November 2017.
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[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail
Ostrovsky. Trapdoor hash functions and their applications. In Advances in Cryptology
- CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2019, Proceedings, Part III, pages 3–32, 2019.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption
and its applications. IACR Cryptology ePrint Archive, 2016:272, 2016.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Commun. ACM, 28(6):637–647, 1985.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

[GIS18] Sanjam Garg, Yuval Ishai, and Akshayaram Srinivasan. Two-round MPC:
Information-theoretic and black-box. In TCC 2018, Part I, LNCS, pages 123–151.
Springer, Heidelberg, March 2018.

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The relationship between public key encryption and oblivious trans-
fer. In FOCS 2000, pages 325–335, 2000.

[GMM17] Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. When does functional
encryption imply obfuscation? In Yael Kalai and Leonid Reyzin, editors, TCC 2017,
Part I, volume 10677 of LNCS, pages 82–115. Springer, Heidelberg, November 2017.

[GMMM18] Sanjam Garg, Mohammad Mahmoody, Daniel Masny, and Izaak Meckler. On the
round complexity of OT extension. LNCS, pages 545–574. Springer, Heidelberg, 2018.

40



[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Alfred Aho, editor,
19th ACM STOC, pages 218–229. ACM Press, May 1987.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press, 2004.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. LNCS, pages 468–499. Springer, Heidelberg, 2018.

[HIK+11] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-
box constructions of protocols for secure computation. SIAM J. Comput., 40(2):225–
266, 2011.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999.

[HKN+05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust
combiners for oblivious transfer and other primitives. In Ronald Cramer, editor, EU-
ROCRYPT 2005, volume 3494 of LNCS, pages 96–113. Springer, Heidelberg, May
2005.

[HOZ13] Iftach Haitner, Eran Omri, and Hila Zarosim. Limits on the usefulness of random
oracles. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 437–456.
Springer, Heidelberg, March 2013.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st FOCS, pages 294–304.
IEEE Computer Society Press, November 2000.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity
based cryptography (extended abstract). In 30th Annual Symposium on Foundations
of Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1
November 1989, pages 230–235, 1989.

[IOS12] Yuval Ishai, Rafail Ostrovsky, and Hakan Seyalioglu. Identifying cheaters without an
honest majority. In Theory of Cryptography - 9th Theory of Cryptography Conference,
TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, pages 21–38,
2012.

[IOZ14] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation
with identifiable abort. In Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings,
Part II, pages 369–386, 2014.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In
Theory of Cryptography, 4th Theory of Cryptography Conference, TCC 2007, Amster-
dam, The Netherlands, February 21-24, 2007, Proceedings, pages 575–594, 2007.

41



[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 572–591. Springer, Heidelberg, August 2008.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In 21st ACM STOC, pages 44–61. ACM Press, May 1989.

[Ish13] Yuval Ishai. Randomization techniques for secure computation. In Manoj Prabhakaran
and Amit Sahai, editors, Secure Multi-Party Computation, volume 10 of Cryptology
and Information Security Series, pages 222–248. IOS Press, 2013.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages
20–31. ACM Press, May 1988.

[KNT18] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Obfustopia built on secret-key
functional encryption. LNCS, pages 603–648. Springer, Heidelberg, 2018.

[Kus89] Eyal Kushilevitz. Privacy and communication complexity. In 30th FOCS, pages 416–
421. IEEE Computer Society Press, October / November 1989.

[LOZ18] Yehuda Lindell, Eran Omri, and Hila Zarosim. Completeness for symmetric two-party
functionalities: Revisited. J. Cryptology, 31(3):671–697, 2018.

[MMP14] Mohammad Mahmoody, Hemanta K. Maji, and Manoj Prabhakaran. Limits of random
oracles in secure computation. In Moni Naor, editor, ITCS 2014, pages 23–34. ACM,
January 2014.

[MP12] Mohammad Mahmoody and Rafael Pass. The curious case of non-interactive commit-
ments - on the power of black-box vs. non-black-box use of primitives. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
701–718. Springer, Heidelberg, August 2012.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Aus-
tria, May 8-12, 2016, Proceedings, Part II, pages 735–763, 2016.

[PRV12] Periklis A. Papakonstantinou, Charles W. Rackoff, and Yevgeniy Vahlis. How powerful
are the ddh hard groups? Cryptology ePrint Archive, Report 2012/653, 2012. https:
//eprint.iacr.org/2012/653.

[Rab81] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81,
Harvard Aiken Computation Laboratory, 1981.

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between
cryptographic primitives. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS,
pages 1–20. Springer, Heidelberg, February 2004.

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions be
based on general assumptions? In Kaisa Nyberg, editor, EUROCRYPT’98, volume
1403 of LNCS, pages 334–345. Springer, Heidelberg, May / June 1998.

42



[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

43


