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Abstract. The complexity class TFNP consists of all NP search problems that are total in the sense
that a solution is guaranteed to exist for all instances. Over the years, this class has proved to illuminate
surprising connections among several diverse subfields of mathematics like combinatorics, computational
topology, and algorithmic game theory. More recently, we are starting to better understand its interplay
with cryptography.
We know that certain cryptographic primitives (e.g. one-way permutations, collision-resistant hash
functions, or indistinguishability obfuscation) imply average-case hardness in TFNP and its important
subclasses. However, its relationship with the most basic cryptographic primitive – i.e., one-way func-
tions (OWFs) – still remains unresolved. Under an additional complexity theoretic assumption, OWFs
imply hardness in TFNP (Hubáček, Naor, and Yogev, ITCS 2017). It is also known that average-case
hardness in most structured subclasses of TFNP does not imply any form of cryptographic hardness in a
black-box way (Rosen, Segev, and Shahaf, TCC 2017) and, thus, one-way functions might be sufficient.
Specifically, no negative result which would rule out basing average-case hardness in TFNP solely on
OWFs is currently known. In this work, we further explore the interplay between TFNP and OWFs and
give the first negative results.
As our main result, we show that there cannot exist constructions of average-case (and, in fact, even
worst-case) hardness in TFNP from OWFs with a certain type of simple black-box security reductions.
The class of reductions we rule out is, however, rich enough to capture many of the currently known
cryptographic hardness results for TFNP. Our results are established using the framework of black-box
separations (Impagliazzo and Rudich, STOC 1989) and involve a novel application of the reconstruction
paradigm (Gennaro and Trevisan, FOCS 2000).

1 Introduction

The complexity class TFNP of total search problems [MP91], i.e., with syntactically guaranteed existence of
a solution for all instances, holds a perplexing place in the hierarchy of computational complexity classes.
Given that the decision variant of these problems is trivial, the standard method for arguing computational
hardness in TFNP is via clustering these problems into subclasses characterised by the existential argument
guaranteeing their totality [Pap94]. This approach was particularly successful in illuminating the connections
between search problems in seemingly distant domains such as combinatorics, computational topology, and
algorithmic game theory (see, for example, [DGP09,KPR+13,FG18,FG19,GH19] and the references therein).
However, all results of this type ultimately leave open the possibility of the existence of polynomial time
algorithms for all of TFNP.

An orthogonal line of work, which can be traced to Papadimitriou [Pap94], shows the existence of hard
problems in subclasses of TFNP under cryptographic assumptions. Such conditional lower bounds for struc-
tured subclasses of TFNP were recently given under increasingly more plausible cryptographic assump-
tions [Jeř16,BPR15,GPS16,HY17,KS17,CHK+19a,CHK+19b,EFKP20,BG20]. The end of the line in this
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sequence of results would correspond to a “dream theorem” establishing average-case hardness in one of the
lower classes in the TFNP hierarchy (e.g. CLS [DP11]) under some weak general cryptographic assumptions
(e.g. the existence of one-way functions).

An informative parallel for the limits of this methodology can be drawn by considering average-case
hardness of decision problems in NP ∩ coNP, i.e., the decision analogue of TFNP. The existence of a hard-
on-average decision problem in NP ∩ coNP follows from the existence of hard-core predicates for any one-
way permutation [GL89]. However, the existence of injective one-way functions is insufficient for black-box
constructions of hard-on-average distributions for languages in NP∩coNP even assuming indistinguishability
obfuscation [BDV17] (in fact, [BDV17] ruled out even black-box constructions of worst-case hardness in
NP ∩ coNP using these cryptographic primitives).

For total search problems, the existence of hard-on-average TFNP distributions is straightforward ei-
ther from one-way permutations or collision-resistant hash functions. Moreover, there exist constructions
of hard-on-average TFNP distributions either assuming indistinguishability obfuscation and one-way func-
tions [BPR15,GPS16] or under derandomization-style assumptions and one-way functions [HNY17]. On the
other hand, no analogue of the impossibility result for basing average-case hardness in NP∩ coNP on (injec-
tive) one-way functions [BDV17] is currently known for TFNP. Rosen, Segev, and Shahaf [RSS17] showed
that most of the known structured subclasses of TFNP do not imply (in a black-box way) any form of cryp-
tographic hardness; thus, it is plausible that hard-on-average distributions in TFNP can be based solely on
the existence of one-way functions.

Rosen et al. [RSS17] also provided some insight into the structure of hard-on-average distributions in
TFNP. They showed that any hard-on-average distribution of a TFNP problem from any primitive which
exists relative to a random injective trapdoor function oracle (e.g. one-way functions, injective trapdoor
functions, or collision-resistant hash functions) must result in instances with a nearly exponential number of
solutions. Even though the [RSS17] result restricts the structure of hard-on-average distributions in TFNP
constructed from these cryptographic primitives, it certainly does not rule out their existence. Indeed, a
collision-resistant hash function constitutes a hard-on-average TFNP distribution, albeit with an exponential
number of solutions.

Motivated by the significant gap between negative and positive results, we revisit the problem of existence
of average-case hardness in TFNP under weak general cryptographic assumptions and address the following
question:

Are (injective) one-way functions sufficiently structured to imply hard-on-average total search problems?

Towards answering this question, we provide negative results and show that simple fully black-box con-
structions of hard-on-average TFNP distributions from injective one-way functions do not exist.

1.1 Our Results

We recall the details of the construction of a hard-on-average distribution in TFNP from one-way permuta-
tions to highlight the restrictions on the type of reductions considered in our results.

Consider the total search problem Pigeon, in which you are given a length-preserving n-bit function
represented by a Boolean circuit C and are asked to find either a preimage of the all-zero string (i.e.,
x ∈ {0, 1}n : C(x) = 0n) or a non-trivial collision (i.e., x 6= x′ ∈ {0, 1}n : C(x) = C(x′)). Pigeon is complete
for a subclass of TFNP known as PPP, and Papadimitriou [Pap94] gave the following construction of a hard
Pigeon problem from one-way permutations. Given a (one-way) permutation f : {0, 1}n → {0, 1}n and a
challenge y ∈ {0, 1}n for inversion under f , the reduction algorithm defines an instance of Pigeon by the
circuit Cy computing the function Cy(x) = f(x) ⊕ y. It is not hard to see that the instance of Pigeon Cy
has a unique solution corresponding to the preimage of y under f and, therefore, any algorithm solving it
breaks the one-wayness of f .

Note that the above construction of a hard TFNP problem is extremely simple in various aspects:

– The construction is fully black-box, i.e., the Pigeon instance can be implemented via an oracle-aided
circuit treating the one-way permutation as a black-box and the reduction inverts when given oracle
access to an arbitrary solver for Pigeon.
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– The reduction is many-one, i.e., a single call to a Pigeon-solving oracle suffices for finding the preimage
of y.

– The reduction is f -oblivious, i.e., the oracle-aided circuit Cy specifying the Pigeon instance depends
only on the challenge y and does not depend on the one-way permutation f in the sense that Cy itself
can be specified without querying f .

– The reduction is deterministic, i.e., it simply passes y to specify the Pigeon instance.

Such a fully black-box construction of Pigeon with a deterministic f -oblivious many-one reduction
exists also assuming collision-resistant hash functions exist (folklore). Specifically, for any hash function
h : {0, 1}n → {0, 1}n−1 from the collision-resistant family, the Pigeon instance is defined as C(x) = h(x) ‖ 1,
where ‖ represents the operation of string concatenation. Since C concatenates the value h(x) with 1 for any
input x, it never maps to the all-zero string and, therefore, has the same collisions as h. Note that, unlike
in the above construction from one-way permutations, the instances resulting from collision-resistant hash
functions do not have a unique solution. In fact, there are always at least 2n−1 nontrivial collisions (even
in two-to-one functions where each y ∈ {0, 1}n−1 has exactly two preimages) and this structural property is
inherent as shown by Rosen et al. [RSS17]. Importantly, the property of having nearly exponentially many
solutions is not in contradiction with the resulting distribution being hard-on-average. Currently, there is no
actual evidence suggesting that average-case hardness in TFNP cannot be based on the existence of injective
one-way functions.

The above constructions motivate us to study whether there exist such “simple” constructions of an
average-case hard TFNP problem under weaker cryptographic assumptions such as the existence of injec-
tive one-way functions, and we answer this question in negative (see Section 3.2 for the formal statement
of Theorem 1).

Theorem 1 (Main Theorem - Informal). There is no efficient fully black-box construction of a worst-
case hard TFNP problem from injective one-way functions with a randomized f -oblivious non-adaptive re-
duction.

Thus, we actually rule out a larger class of fully black-box constructions with reductions to injective
one-way functions than the deterministic f -oblivious many-one reductions from the motivating examples
of average-case hardness of Pigeon from one-way permutations, respectively collision-resistant hash func-
tions. We rule out even constructions of worst-case hard TFNP problems using randomized f -oblivious non-
adaptive3 reductions. The formal definitions of fully black-box constructions with f -oblivious non-adaptive
reductions are given in Section 3.1 (see Definition 2 and Definition 3).

Even though somewhat restricted, our results are the first step towards the full-fledged black-box sepa-
ration of TFNP and (injective) one-way functions. We note that such result would necessarily subsume the
known separation of collision-resistant hash functions and injective one-way functions [Sim98], for which,
despite the recent progress, there are only non-trivial proofs [MM11,HHRS15,BD19].

1.2 Our Techniques

Our results employ the framework of black-box separations [IR89,RTV04,Fis12]. The approach suggested
in [IR89] for demonstrating that there is no fully black-box construction of a primitive P from another
primitive Q is to come up with an oracle O relative to which Q exists, but every black-box implementation
CQ of P is broken. However, as explained in [RTV04,MM11], this approach actually rules out a larger class
of constructions (so-called "relativized" constructions), and to rule out just fully black-box constructions it
suffices to use the so-called two-oracle technique [HR04]. Here, the oracle O usually consists of two parts:
an idealised implementation of the primitive Q and a “breaker” oracle for primitive P . In our context, P
corresponds to a TFNP problem and the oracle O comprises of a random injective function (which yields an
injective one-way function) and a procedure Solve which provides a solution for any instance of a TFNP
problem. To rule out the existence of fully black-box constructions of hard-on-average TFNP problems from
injective one-way functions, one then has to argue that access to such a “breaker” oracle Solve for TFNP
does not help any reduction R in inverting injective one-way functions.
3 Reductions which can ask multiple queries in parallel to the TFNP oracle.
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The existence of a “useless” solution. At the core of our negative result is a new structural insight about
TFNP instances constructed from (injective) one-way functions. Observe that any one-way function gives
rise to a search problem with a hard-on-average distribution which is total over its support (but all instances
outside its support have no solution). Specifically, for any one-way function f : {0, 1}n → {0, 1}n+1, an
instance is any y ∈ {0, 1}n+1 and the solution for y is any x ∈ {0, 1}n such that f(x) = y. The hard-on-
average distribution then corresponds to sampling x uniformly from {0, 1}n and outputting the instance
y = f(x) (as in the standard security experiment for one-way functions). When attempting to construct
a hard search problem which is truly total and has a solution for all instances (not only for the support
of the hard distribution), one has to face the frustrating obstacle in the form of “useless” solutions which
do not help the reduction in inverting its challenge y. Note that, as the resulting TFNP problem must be
total for all oracles f , there must exist a solution even for oracles with no preimage for the challenge y.
By a simple probabilistic argument, it follows that for a random oracle f and a random challenge y, with
overwhelming probability, there exists a solution to any TFNP instance which does not query a preimage of
y, i.e., a “useless” solution from the perspective of the reduction.4

Thus, demonstrating a black-box separation would be straightforward if the TFNP solver knew which
challenge y is the reduction attempting to invert. Our solver would simply output such a “useless” solution
and we could argue via the reconstruction paradigm of Gennaro and Trevisan [GT00] that no reduction can
succeed in inverting y given access to our solver. In this work, we show that it is possible to construct a
TFNP solver which returns such a “useless” solution with overwhelming probability even though the solver
does not know the input challenge of the reduction.

Reduction-specific Solve. Note that a reduction in a fully black-box construction must succeed in breaking
the primitive P when given access to any oracle Solve (see Definition 2). In other words, to rule out the
existence of constructions with a fully black-box reduction, it is sufficient to show that for every reduction
there exists a Solve which is not helpful in inverting; in particular, Solve may depend on the reduction. To
enable Solve to answer the reduction’s query with a “useless” solution with overwhelming probability, we take
exactly this approach and construct a reduction-specific Solve for any construction of a TFNP problem from
injective one-way functions. We significantly differ in this respect from the previous works which relied on the
reconstruction paradigm of Gennaro and Trevisan [GT00], e.g., the works which employed the collision-finding
oracle of Simon [Sim98,HHRS15,PV10,RS10,BKSY11]. We note that the possibility of designing a breaker
oracle which depends on the fully black-box construction was exploited already by Gertner, Malkin, and
Reingold [GMR01], who considered Solve which depends on the implementation rather than the reduction
algorithm (as in our case). That is, to rule out the construction of a primitive P from a primitive Q, they
considered an oracle Solve that depends on the implementation CQ of the primitive P , whereas in our case
Solve depends on the reduction algorithm R that is supposed to break Q given access to an algorithm that
breaks CQ. The possibility of proving black-box separations via reduction-specific oracles was also observed
in the work of Hsiao and Reyzin [HR04] who, nevertheless, did not leverage this observation in their proofs.

On a high level, given that Solve can use the code of the reduction R, Solve can simulate R on all
possible challenges y to identify the set of challenges on which R outputs the present instance that Solve
needs to solve. As we show, the solution then can be chosen adversarially so that it avoids such solutions
of interest to the reduction. To turn this intuition into a formal proof, one needs to show that our Solve
indeed does not help in inverting injective one-way functions and we do so along the lines of the reconstruction
paradigm of [GT00].

Applying the compression argument. Two important subtleties arise in the proof when we try to turn the
reduction into a pair of compression and decompression algorithms, which we explain next. First, the re-

4 Note that the above argument fails in the case of one-way permutations, where the challenge y ∈ {0, 1}n is in the
image for any permutation f : {0, 1}n → {0, 1}n. The construction of a TFNP problem then simply does not have
to deal with the case when the challenge y is not in the image of f , and it can ensure that every solution is useful
for inverting the challenge y. Indeed, the hard instances Cf

y of Pigeon from one-way permutations described in
Section 1.1 have a unique solution on which Cf

y always queries a preimage of y under any f .
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construction paradigm is conventionally applied to random permutations [GT00,HHRS15], whereas the re-
duction R and the algorithm Solve are designed for random injective functions. The natural approach is
to simply proceed with the same style of proof even in our setting. Specifically, one would presume that
a similar incompressibility argument can be leveraged if we manage to somehow encode the image of the
random injective function. While this intuition is correct in the sense that it allows correct compression and
reconstruction, it turns out that the space required to encode the image is too prohibitive for reaching the
desired contradiction with known information-theoretic lower bounds on the expected length of encoding
for a random injective function. To resolve this issue, we construct compressor and decompressor algorithms
for a random permutation, but we equip the algorithms with shared randomness in the form of a random
injective function h : {0, 1}n → {0, 1}n+1 independent of the random permutation π : {0, 1}n → {0, 1}n to
be compressed. Whenever the compressor and decompressor need to provide the reduction or Solve with
access to the injective function f : {0, 1}n → {0, 1}n+1, they compose the permutation π with the shared
injective function h and then pass off the composed injective function f = h ◦ π to the reduction. With this
modification, we are able to show that any reduction which succeeds in inverting injective one-way functions
given access to our Solve can be used to compress a random permutation on {0, 1}n below a standard
information-theoretic lower bound on the size of a prefix-free encoding of such random variable. We note
that this is reminiscent of the approach used in [MM11] for separating injective one-way functions from
one-way permutations.

Second, we cannot employ the actual oracle Solve in our compression and decompression algorithms:
even though we can use the reduction when compressing and decompressing the random permutation, we
must be able to consistently simulate Solve without accessing the whole permutation. In general, the choice
of the “breaker” oracle that can be simulated efficiently without too many queries to the permutation (e.g.,
the collision finding oracle of Simon [Sim98,Bae14]) is a crucial part of the whole proof, and, a priori, it
is unclear how to design a TFNP solver which also has such a property. Nevertheless, we show that there
exists a Solve which can be efficiently simulated given only (sufficiently small) partial information about
the permutation.

f -oblivious reductions. As our Solve simulates the reduction on possible challenges y, we need for technical
reasons that the reduction is f -oblivious (namely, for correctness of our encoding and decoding algorithms).
However, we believe that f -obliviousness is not overly restrictive as it is a natural property of security re-
ductions. Besides the two fully black-box constructions of Pigeon with f -oblivious reductions described
in section 1.1, f -oblivious security reductions appear also in the cryptographic literature – see for exam-
ple the standard security reduction in the Goldreich-Levin theorem establishing the existence of hard-core
predicate for any one-way function (note that this particular security reduction is also non-adaptive). A
somewhat orthogonal notion of π-oblivious construction appears in the work of Wee [Wee07]. However, it is
the implementation of the constructed primitive which is “oblivious” to the one-way permutation π in his
work.

1.3 Related Work

TFNP and its subclasses. The systematic study of total search problems was initiated by Megiddo and Pa-
padimitriou [MP91] with the definition of complexity class TFNP. They observed that a “semantic” class such
as TFNP is unlikely to have complete problems, unless NP = coNP. As a resolution, Papadimitriou [Pap94]
defined “syntactic” subclasses of TFNP with the goal of clustering search problems based on the various
existence theorems used to argue their totality. Perhaps the best known such class is PPAD [Pap94], which
captures the computational complexity of finding Nash equilibria in bimatrix games [DGP09,CDT09]. Other
subclasses of TFNP include:

– PPA [Pap94], which captures computational problems related to the parity argument like Borsuk-Ulam
theorem or fair division [FG19];

– PLS [JPY88], defined to capture the computational complexity of problems amenable to local search and
its “continuous” counterpart CLS ⊆ PLS [DP11], which captures finding the computational complexity of
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finding (approximate) local optima of continuous functions and contains interesting problems from game
theory (e.g., solving the simple stochastic games of Condon or Shapley); and

– PPP [Pap94] and PWPP ⊆ PPP [Jeř16], motivated by the pigeonhole principle and contain important
problems related to finding collisions in functions.

The relative complexity of some of these classes was studied in [BCE+98] as it was shown using (worst-case)
oracle separations that many of these classes are distinct.

Cryptographic hardness in TFNP. Hardness from standard cryptographic primitives was long known for the
“higher” classes in TFNP like PPP and PPA. We have already mentioned that one-way permutations imply
average-case hardness in PPP [Pap94] and existence of collision-resistant hashing (e.g. hardness of integer
factoring or discrete-logarithm problem in prime-order groups) implies average-case hardness in PPP (as well
as in PWPP). In addition, Jeřábek [Jeř16], building on the work of Buresh-Oppenheim [Bur06], showed that
PPA is no easier than integer factoring.

However, it is only recently that we are better understanding the cryptographic hardness of the lower
classes in TFNP. This was catalysed by the result of Bitansky et al. [BPR15] who reduced hardness in PPAD
to indistinguishability obfuscation (and injective OWFs); Hubáček and Yogev [HY17] extended this result to
CLS. In a series of recent works [CHK+19a,CHK+19b,EFKP20], the underlying assumption has been relaxed
further to cryptographic assumptions that are more plausible than indistinguishability obfuscation. Using
similar ideas, Bitansky and Gerichter [BG20] presented a construction for hard-on-average distributions in
the complexity class PLS in the random oracle model.

One-way functions and TFNP. Hubáček et al. [HNY17] showed that average-case hardness in NP (which is
implied by OWFs) implies average-case hardness in TFNP under complexity theoretical assumptions related
to derandomization. Pass and Venkitasubramaniam [PV19] recently complemented the [HNY17] result by
showing that when OWFs do not exist, average-case hardness in NP implies average-case hardness in TFNP.
However, a definitive relationship between OWFs and TFNP has remained elusive. This prompted Rosen
et al. [RSS17] to explore impossibility of reducing TFNP hardness to OWFs. They gave a partial answer
by showing that there do not exist hard-on-average distributions of TFNP instances over {0, 1}n with 2n

o(1)

solutions from any primitive which exists relative to a random injective trapdoor function oracle (e.g. one-way
functions). Their main observation was that the argument in [Rud88], which separates one-way functions
from one-way permutations, can be strengthened to separate other unstructured primitives from structured
primitives (such as problems in TFNP). However, it seems that the [Rud88] argument has been exploited to
its limits in [RSS17], and, therefore, it is not clear whether their approach can be extended to fully separate
one-way functions and TFNP. Thus, the situation is contrasting to NP ∩ coNP, the decision counterpart
of TFNP, whose relationship with (injective) OWFs is much better studied. In particular, we know that
hardness is implied by one way permutations but injective OWFs, even with indistinguishability obfuscation,
(and, therefore, public-key encryption) cannot imply hardness in TFNP in a black-box way.

2 Preliminaries

Here we present the used notation. Unless stated otherwise, all logarithms are base two. We use X to denote
the set {0, 1}∗ \X. The rather non-standard notation used is our notation of function composition.

Notation 2 (Functions) Let X,Y ⊆ {0, 1}∗, f : X → Y be a function and X ′ ⊆ X be a set. Then

1. f � X ′ denotes the restriction of f on X ′, i.e., the function f ′ : X ′ → Y such that ∀x ∈ X ′ : f ′(x) = f(x),
2. Dom(f) denotes the domain of f , i.e., the set X,
3. Im(f) denotes the image of f , i.e., the set {f(x) | x ∈ X} ⊆ Y , and
4. f [X ′] denotes the image of the restriction of f on X ′, i.e., the set Im(f � X ′).
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Notation 3 (Injective functions) We denote Injmn the set of all injective functions from {0, 1}n to {0, 1}m.
For the special case when n = m we get the set of all permutations on {0, 1}n.

The set Inj is the set of all functions f : {0, 1}∗ → {0, 1}∗, such that f can be interpreted as a sequence
f =

{
fn | fn ∈ Injm(n)

n

}
n∈N

of injective functions, where m : N → N is an injective function such that for

all n ∈ N : m(n) > n and m(n) ≤ 100nlogn.
We say that the function m is the type of f and we define the corresponding type operator τ : Inj →

(N→ N) such that τ(f) = m.
We denote the set of all possible types by T, i.e.,

T = {µ : N→ N | ∃f ∈ Inj such that τ(f) = µ}.

Through the paper fn denotes the function f � {0, 1}n (i.e., restriction of f to the domain {0, 1}n.), where
f ∈ Inj.

Note that the set Inj as defined above is reasonably restricted. The case where the length of output
of a function depends only on the length of the input is perhaps the most natural. It also makes sense to
upper bound the length of the output as for exponential stretch the reduction would just query all possible
preimages and thus would be able to invert on its own. On the other hand we cover all natural injective
function – with stretch c, where c is a fixed constant.

Notation 4 (Lexicographically smaller) We use x <lex y or y >lex x to denote the fact that a string x
is lexicographically strictly smaller than the string y.

In our proofs, we often compose a function defined on all binary strings with a function defined only for
binary strings of certain length; namely, we often want to compose a function from Inj with a permutation of
n-bit strings. The desired resulting function should always be a function from all binary strings. We redefine
the standard notation as follows:

Notation 5 (Function composition) Let X,Y, Z be any sets such that X ⊆ Y and let f : X → Y and
g : Y → Z. We then define the function g ◦ f : Y → Z as:

(g ◦ f)(x) =

{
g(f(x)) if x ∈ X,
g(x) if x ∈ Y \X.

Finally, we use some basic information-theoretic results about prefix-free codes.

Definition 1 (Prefix-free code). A set of code-words C ⊆ {0, 1}∗ is a prefix-free code if there are no two
distinct c1, c2 ∈ C such that c1 is a prefix (initial segment) of c2, i.e., for any two distinct c1, c2 ∈ C there
is 0 ≤ j < min(|c1|, |c2|) such that (c1)j 6= (c2)j.

Proposition 1 (Theorem 5.3.1 in [CT12]). The expected length L of any prefix-free binary code for a
random variable X is greater than or equal to the entropy H(X), i.e., L ≥ H(X).

Corollary 1. To encode a uniformly random permutation π ∈ Injnn using prefix-free encoding it takes at
least log(2n!) bits in expectation.

Proof. Entropy of a uniformly randomly chosen permutation from Injnn is log (2n!) as we choose uniformly
at random from 2n! distinct permutations. By Proposition 1, we get that the expected size of the encoding
is at least log (2n!). ut
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3 Separating TFNP and Injective One-Way Functions

3.1 Fully Black-Box Construction of Hard TFNP Problem from iOWF

Below, we give a definition of fully black-box construction of a hard TFNP problem from injective one-way
function.

Definition 2 (Fully black-box construction of hard TFNP problem from iOWF). A fully black-
box construction of a hard TFNP problem from injective one-way function is a tuple (R, TR, C, TC , p) of
oracle-aided algorithms R,C, functions TR, TC , and a polynomial p satisfying the following properties:

1. R and C halt on all inputs: There exists a function TR : N→ N such that for all f ∈ Inj,n ∈ N, and
y ∈ {0, 1}∗, the algorithm Rf (1n, y) halts in time TR(|y|).
There exists a function TC : N → N such that for all f ∈ Inj, and i, s ∈ {0, 1}∗, the algorithm Cf (i, s)
halts in time TC(|i|+ |s|).

2. Correctness: For all f ∈ Inj and for all i ∈ {0, 1}∗, there exists s ∈ {0, 1}∗ such that |s| ≤ p(|i|) and
Cf (i, s) = 1, i.e., for any instance of the TFNP problem there exists a solution of polynomial length.

3. Fully black-box proof of security: There exists a polynomial p′ such that for all f ∈ Inj and any
oracle-aided algorithm Solve, if

∀i ∈ {0, 1}∗ : Solvef (i) returns s such that Cf (i, s) = 1

then for infinitely many n ∈ N,

Pr
x←{0,1}n

[
Rf,Solve(1n, f(x)) = x

]
≥ 1

p′(n)
.

Definition 2 has the following semantics. The deterministic algorithm C specifies the TFNP problem and
the algorithm R is the (security) reduction which, given access to any TFNP solver, breaks the security of any
injective one-way function. For example in the case of the hard Pigeon problem from one-way permutations
discussed in Section 1.1, C would be an algorithm which on input (C, x), respectively (C, x, x′), outputs 1 if
and only if C(x) = 0n, respectively C(x) = C(x′). The reduction algorithm R(1n, y) simply queries the TFNP
solver Solve with the instance i = Cy, i.e., a circuit computing the function Cy(x) = f(x)⊕ y, and outputs
the solution s returned by Solve for which, by construction, f(s) = y.

Let us emphasize the order of quantifiers restricting the security reduction from TFNP to iOWF:

∃(R, TR, C, TC , p) ∀f ∀Solve : Solvef solves the TFNP problem C =⇒ Rf,Solve inverts f .

As the reduction must invert given access to any Solve, the oracle Solve may even depend on the behaviour
of the reduction R. In particular, Solve can simulate the security reduction R on an arbitrary input and we
leverage this crucial observation towards our negative result.

We could easily relax the definition of fully black-box construction by restricting the quantifier for all f
to the form: for all f of some type, e.g., restricting ourselves only to injective functions where fn : {0, 1}n →
{0, 1}n+1 for all input lengths n. All our results hold for the relaxed version as well.

Note that we consider security reductions which invert given access to Solve which outputs a solution
with probability 1, whereas some definitions in the literature allow the reduction to work only with some
non-negligible probability. This makes our negative result stronger – it is potentially easier to give a reduction
when given access to Solve which is guaranteed to always return a solution.

We consider some restricted classes of security reductions as defined below.

Definition 3 (Deterministic/randomized, many-one/non-adaptive, f-oblivious reductions). Let
(R, TR, C, TC , p) be a fully black-box construction of a hard TFNP problem from injective one-way functions.

We distinguish deterministic / randomized reductions. For a randomized security reduction, we extend the
input of R to a triple (1n, y; r), where the meaning of n, resp. y, remains unchanged (i.e., n is the security
parameter, y is the challenge), and r ∈ {0, 1}∗ is the randomness of the security reduction.
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The security reduction R is many-one if for all f ∈ iOWF , for any oracle Solve and for all y ∈ {0, 1}∗,
Rf,Solve(1n, y) makes at most one query to the oracle Solve.

The security reduction R is non-adaptive if for all f ∈ iOWF , for any oracle Solve and for all y ∈
{0, 1}∗, the queries of Rf,Solve(1n, y) to the oracle Solve do not depend on the answers received from Solve.

The security reduction R is f -oblivious if for all y ∈ {0, 1}∗, for any oracle Solve and any pair of
functions f, f ′ ∈ iOWF , QSolve(R

f,Solve(1n, y)) = QSolve(R
f ′,Solve(1n, y)) (i.e., queries to the oracle Solve

depend only on the input y and are independent of the oracle f).

The security reduction R can learn something about f in various ways. It may query f directly or the
information might be deduced from the solution of some queried instance of the TFNP problem returned by
Solve. We introduce the following notation in order to distinguish where queries originate which allows us
to reason about the view the security reduction has over the function f in our proof of Theorem 1.

Notation 6 (Query sets Q) We distinguish the following sets of queries to oracles depending on where
these queries originated and which oracle is queried.

– Let Q(Cf (i, s)) denote the set of all preimages x ∈ {0, 1}∗ on which the oracle f has been queried by C
running on an input (i, s).

– Let QSolve(R
f,Solve(1n, y)) denote the set of all instances i ∈ {0, 1}∗ on which the oracle Solve has been

queried by R running on a security parameter n and challenge y.
– Let Qdir

f (Rf,Solve(1n, y)) denote the set of preimages x ∈ {0, 1}∗ on which the oracle f has been queried
by R running on an input y and security parameter n.

– Let Qindir
f (Rf,Solve(1n, y)) denote the set of all preimages x ∈ {0, 1}∗ on which the oracle f has been

queried indirectly, i.e., it has been queried by C running on an input (i, s) where i ∈ QSolve(R
f,Solve(1n, y))

and s = Solvef (i).
– Let Qf (Rf,Solve(1n, y)) = Qdir

f (Rf,Solve(1n, y)) ∪Qindir
f (Rf,Solve(1n, y)).

Note that these sets may not be disjoint. When f is a partial function (i.e., when f is not defined on all
inputs) the query set contains all queries queried up to the point of the first undefined answer and the query
with the undefined answer is included as well.

3.2 Impossibility for a Deterministic f-Oblivious Many-One Reduction

In this section, we show that there is no fully black-box construction of a hard TFNP problem from injective
one-way functions with a deterministic f -oblivious many-one reduction. The proof of this result is already
non-trivial and highlights our main technical contributions. In Section 5, we explain how to extend this result
to rule out fully black-box constructions even with a randomized f -oblivious non-adaptive reduction.

Theorem 1. There is no fully black-box construction (R, TR, C, TC , p) of a worst-case hard TFNP problem
from injective one-way functions with deterministic f -oblivious many-one reduction with success probability
at least 2−0.1n such that both running times TR, TC ∈ O(npolylog(n)).

In the above theorem, the running time of both R and C is restricted to quasi-polynomial. Note that
the standard notion of cryptographic constructions requires R,C to run in polynomial time in order to be
considered efficient. We are ruling out a broader class of potentially less efficient reductions.

The proof of Theorem 1 uses, on a high level, a similar template as other black-box separations in the
literature. For any fully black-box construction with a deterministic f -oblivious many-one reduction, we
provide an oracle Solve which finds a solution for any TFNP instance (i.e., TFNP is easy in the presence of
Solve) and argue that it does not help the reduction in inverting injective one-way functions. The description
of our oracle Solve is given in Algorithm 1 and explained below.
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Algorithm 1: The oracle Solve.
Hardwired : a fully black-box construction (R, TR, C, TC , p) of a hard TFNP problem from iOWF
Oracle access: an injective function f = {fn}n∈N ∈ Inj
Input : an instance i ∈ {0, 1}∗
Output : a solution s ∈ {0, 1}∗ such that Cf (i, s) = 1

1 Compute Yi =
⋃TC(|i|+p(|i|))

n=1

{
y ∈ Im(fn) | i ∈ QSolve(R

f,Solve(1n, y))
}

2 Compute Ni = {n ∈ N | Yi ∩ Im(fn) 6= ∅}
3 for n ∈ Ni do
4 Compute Yi,n = Yi ∩ Im(fn)
5 end
6 Compute Si,f =

{
s ∈ {0, 1}∗ | |s| ≤ p(|i|) and Cf (i, s) = 1

}
7 while True do
8 Bi,f = {s ∈ Si,f | f [Q(Cf (i, s))] ∩ Yi = ∅}
9 if Bi,f 6= ∅ then

10 return lexicographically smallest s ∈ Bi,f

11 end
12 Choose n ∈ Ni such that |Yi,n|

2n
is maximized.

13 Set Ni = Ni \ {n}
14 Set Yi = Yi \ Yi,n

15 end

Oracle Solve: Let (R, TR, C, TC , p) be the construction of a hard TFNP problem from injective one-way
function with a deterministic f -oblivious many-one security reduction which is hardwired in the oracle Solve.
Ideally, Solve should output a solution i which gives the reduction R no information about the inversion
of its challenge y. Unfortunately, Solve is unaware of the particular challenge y on which Rf (1n, y) queried
Solve with the instance i. Nevertheless, Solve can compute the set Yi of all challenges y on which the
reduction would query the instance i.5 The challenges in Yi become “protected” and Solve will attempt to
provide a solution which does not reveal a preimage of any y ∈ Yi (i.e., s such that Cf (i, s) does not make
an f -query on a preimage of any y ∈ Yi).

Note that we could run into a potential technical issue when defining Yi, as the set of all challenges y
on which R queries the instance i might be infinite. However when the instance i is queried by the security
reduction R on some very long challenge y then C contributes no indirect query to f−1(y) as the running
time of C depends only on the length of the instance i. More formally: the running time of C is bounded by
TC(|i|+ p(|i|)) thus C cannot query f on longer inputs. Therefore, we can consider only possible challenges
y from Im(fn) for n ≤ TC(|i|+ p(|i|)).

On lines 2–6, Solve computes the following auxiliary sets Ni, Yi,n, and Si,f . The set Ni contains all
input lengths for the preimages x such that Rf,Solve(1n, f(x)) queries the instance i. Solve then splits Yi
into subsets Yi,n using the input lengths of interest in Ni. Finally, Solve computes the set Si,f which is the
set of all possible solutions for the instance i.

The strategy of Solve is to return a solution from the set of “benign” solutions Bi,f , which do not induce
any query to preimages of the protected challenges in Yi. If there is any such benign solution then Solve
simply halts and returns the lexicographically smallest one. Unfortunately, it might be the case that every
solution queries a preimage of some y ∈ Yi, e.g., if the instance i is queried for all challenges y of a given
preimage length n and on each solution s at least one x of length n is queried (i.e., Bi,f = ∅ unless we
remove Yi,n from Yi). Since Solve in general cannot output a solution while protecting the whole set Yi, it
will proceed to gradually relax the condition on the set of protected challenges.

Note that we might allow Solve to return a solution even though it induces queries to preimages of
protected challenges, as long as the reduction queries the instance i on the corresponding image length

5 Here we crucially rely on f -obliviousness of the reduction algorithm R which ensures that Yi depends only on the
image of f .
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Algorithm 2: The algorithm Encoden.
Hardwired : a fully black-box construction (R, TR, C, TC , p) of a hard TFNP problem from iOWF
Common Input: an injective function h ∈ Inj shared with Decoden

Input : a permutation π ∈ Injnn on {0, 1}n
Output : an encodingM of π

1 f = h ◦ π, i.e., f(x) =

{
h(π(x)) for all x of length n
h(x) otherwise

2 INVf =
{
y ∈ Im(hn) | RSolve,f (1n, y) = f−1(y)

}
3 Gf =

{
y ∈ INVf | f−1(y) /∈ Qindir

f (Rf,Solve(1n, y))
}

4 Yf = ∅ and Xf = ∅
5 while Gf 6= ∅ do
6 Pick lexicographically smallest y ∈ Gf

7 Gf = Gf \
(
f [Qf (R

f,Solve(1n, y))] ∪ {y}
)

8 Yf = Yf ∪ {y} and Xf = Xf ∪ {f−1(y)}
9 end

10 if |Xf | < 20.6n then
11 returnM = (0, π)
12 end
13 else

14 returnM = (1, |Xf |, Yf , Xf , σ = f � ({0, 1}n \Xf )) ∈ {0, 1}
1+n+

⌈
log ( 2n

|Yf |
)
⌉
+

⌈
log ( 2n

|Xf |
)
⌉
+dlog(|{0,1}n\Xf |!)e

15 end

often enough, as any fixed solution induces only a bounded number of queries to f . Therefore, if the set of
challenges on which R queries i is dense enough w.r.t. some image length then, with overwhelming probability,
an arbitrary solution will be benign for the random challenge y given to the reduction. Thus, we allow Solve
to return a solution revealing preimages of challenges from the auxiliary set Yi,n maximizing |Yi,n|

2n . If the
fraction |Yi,n|

2n is small then Solve is able to find a benign solution which protects the preimages of length n
(see Claim 14). Whereas, if the fraction |Yi,n|

2n is large enough then any fixed solution will be benign w.r.t.
the actual challenge of R with overwhelming probability as each solution can induce queries to only a small
number of preimages of challenges from the set Yi,n (see Claim 13).

In order to show formally that Solve does not help in inverting the injective one-way function, we
employ an incompressibility argument similar to [GT00]. Specifically, we present algorithms Encoden (given
in Algorithm 2) and Decoden (given in Algorithm 3) which utilize the reduction R to allow compression of a
random permutation more succinctly than what is information-theoretically possible. When compressing the
random permutation by Encoden, we have access to the whole permutation and we can effectively provide
the reduction with access to Solve. However, to be able to use the reduction also in the Decoden, we have
to be able to simulate access to our Solve oracle given access only to a partially defined oracle f (as we are
reconstructing f). For the description of the algorithm SolveSim, which simulates the Solve oracle for the
purpose of decoding in Decoden, see Algorithm 4.

Encoden algorithm: The algorithm Encoden (Algorithm 2) uses the reduction R to compress a random
permutation π on bit strings of length n. Note that even though R succeeds in inverting an injective function,
for technical reasons, we leverage its power in order to compress a permutation. One particular issue we would
run into when trying to compress an injective function f which is not surjective is that the encoding would
have to comprise also of the encoding of the image of f which might render the encoding inefficient.

Nevertheless, in order to use the reduction for compressing, we must provide it with oracle access to an
injective function which is not a bijection. Thus, we equip Encoden (as well as Decoden) with an injective
function h. Encoden then computes the function f as a composition of the functions h ◦ π and uses the
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Algorithm 3: The algorithm Decoden.
Hardwired : a fully black-box construction (R, TR, C, TC , p) of a hard TFNP problem from iOWF
Common Input: an injective function h ∈ Inj shared with Encoden

Input : an encodingM
Output : a permutation π ∈ Injnn
Hardwired : f -oblivious many-one fully black-box construction (R, TR, C, TC , p)

1 ParseM = (b,M′), where b ∈ {0, 1}
2 if b = 0 then
3 Decode π fromM′
4 return π

5 end
6 ParseM′ = (|Xf |, Yf , Xf , σ)

7 Set partial function f ′ =

{
σ for inputs of length n
h otherwise

// f ′ is defined only outside Xf

8 while Yf 6= ∅ do
9 Pick lexicographically smallest y ∈ Yf

10 Let f ′′(x) =

{
y for all x ∈ Dom(h) \Dom(f ′)

f ′(x) otherwise

11 x = Rf ′′,SolveSim(h,f ′,·)(1n, y)
12 Let f ′(x) = y
13 Set Yf = Yf \ {y}
14 end
15 return π = (h−1 ◦ f ′) � {0, 1}n

reduction with respect to the composed oracle f . We emphasize that h is independent of π, therefore it
cannot be used in order to compress π on its own.

First, Encoden computes the set INVf which is the set of all challenges y on which the reduction
successfully inverts (i.e., the reduction returns f−1(y)). Then Encoden computes the set Gf , which is the
set of “good” challenges y, on which the reduction successfully inverts even though Solve returns a solution
which does not induce a query to any preimage of y. This set is used to reduce the size of the trivial encoding
of f as the part of f for the challenges in Gf will be algorithmically reconstructed by Decoden using the
security reduction R.

Specifically, Encoden computes Yf , the subset of Gf for which the preimages will be algorithmically
reconstructed, as follows: Encoden processes the challenges y inGf one by one in lexicographically increasing
order and stores all f -queries needed for reconstruction by R (i.e, for any x such that there was an f -query
x, the element f(x) is removed from the “good” set Gf as we cannot reconstruct the preimage of y using R
without knowing the image of x under f).

Encoden outputs an encodingM which describes the size of Xf , the sets Yf and Xf (where Xf is the set
of preimages corresponding to Yf ), and the partial function representing the function f on inputs of length n
outside of Xf . Thus, the encoding saves bits by not revealing the bijection between Xf and Yf which is
algorithmically reconstructed instead (Lemma 4). Specifically, the size of Xf (equal to the size of Yf ) can be
encoded using log 2n = n bits. Yf is a subset of Im(fn) = Im(hn) and it is encoded using dlog

(
2n

|Yf |
)
e bits as

the index of the corresponding subset of size |Yf | (the set Xf is encoded in a similar manner). Finally, the
bijection between {0, 1}n \Xf and Im(f) \ Yf is encoded as the index of the corresponding permutation on
a set of size | {0, 1}n \Xf | using dlog (| {0, 1}n \Xf |!)e bits.

A small technicality arises when the set Xf , respectively the set Yf , is not large enough, the above
mentioned encoding would be inefficient as the trivial encoding outputting the whole description of the
function would use fewer bits. Thus, Encoden simply outputs the trivial encoding when Xf is too small.
The first bit of the encoding distinguishes between the two cases.
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Decoden algorithm: The encoding returned by Encoden is uniquely decodable by Decoden given in
Algorithm 3 (see Section 4.2). When the output of Encoden starts with 0, the rest of the encoding is an
encoding of π and we are immediately done with its reconstruction. If the output starts with bit 1, the
following n bits represent |Xf | = |Yf |. Decoden then reads the following

⌈
log
(

2n

|Xf |
)⌉

bits of the encoding to
reconstruct the set Yf (as the j-th subset of 2n of size |Xf |). Similarly, Decoden reconstructs the setXf using
the following

⌈
log
(

2n

|Xf |
)⌉

bits. The remaining bits represent σ, a restriction of f on all the n-bit inputs outside
of Xf , given by the index of the corresponding bijection between {0, 1}n \Xf and Im(f)\Yf . Note that such
encoding of σ does preserve the structure of the restriction but it looses the information about the domain
and image of σ. However, both are easy to reconstruct. The domain is simply {0, 1}n \ Xf and the image
of σ can be computed from Yf and the common input h as Im(σ) = Im(f)\Yf = Im(h◦π)\Yf = Im(h)\Yf .

Decoden then computes the remaining preimages one by one in lexicographic order using the security
reduction R, adding the reconstructed mapping into a partial function f ′. Note that during the computation
of the preimage of y, the reduction might make an f -query on x which has no defined output. But as
Decoden takes y ∈ Yf in the same order as Encoden added them to the set Yf , this happens if and only if
the preimage of y is being queried. Thus, we answer any such query by y (it is crucial that this happens only
for f -queries made directly by R) which is captured in the definition of the auxiliary function f ′′ defined by
Decoden and used as the oracle for the security reduction R.

Once Encoden finds the preimages of all challenges y from Yf , the function f ′ is defined everywhere.
To reconstruct the permutation π on {0, 1}n, Decoden can simply compose the inverse of h with the
reconstructed function f ′.

SolveSim algorithm: For the ease of presentation we usually do not explicitly mention the oracle h as it is
given by context (we run Decoden and SolveSim) with respect to only one h at a time.

The computation of the algorithm SolveSim (Algorithm 4) is similar to the computation of Solve (Al-
gorithm 1). First SolveSim computes the sets Yi. There is one big difference between Solve and SolveSim.
As SolveSim does not have access to the whole f it uses h or the partial knowledge of f , namely the partial
function f ′ everywhere f is used in the Solve algorithm.

– We use h whenever we need to determine the image of fn for some n. As ∀n ∈ N : Im(hn) = Im(fn)
using Im(hn) instead of Im(fn) makes no difference to the computation.

– The second place where h is used instead of f is when SolveSim computes the set Yi, especially when
determining images y for which the security reduction R queries the given instance i. SolveSim computes
the same Yi as if it used f by the f -obliviousness of the security reduction.

– In all other places SolveSim uses the partial knowledge of f (i.e., the partial function f ′). This causes a
real difference in the computation. Especially the set Si,f ′ (as computed by SolveSim) may differ a lot
from Si,f (as computed by Solve) as some solutions from Si,f potentially query some unknown parts
of f . Thus the set Si,f ′ computed by SolveSim is just a subset of the whole Si,f . Si,f ′ contains only
the solutions SolveSim is “aware of” (f ′ is defined for all queries and thus SolveSim may verify the
solution). The rest of the computation is practically the same except that SolveSim is restricted just
to the set of solutions Si,f ′ . The main trick is that we will make sure that SolveSim is aware of the
solution which should be returned and it does not matter that it ignores other solutions of the instance.

Structure of the proof of Theorem 1. Lemma 1 shows that given an instance i of the TFNP problem repre-
sented by the algorithm Cf , our Solve always returns a solution, i.e., an s such that Cf (i, s) = 1 (formal
proof is given in Section 4.1). Thus any distribution of instances of the TFNP problem is easy in the presence
of Solve.

Lemma 1. For any instance i ∈ {0, 1}∗ and any f ∈ Inj, the algorithm Solvef (i) halts and returns a
solution, i.e., it returns a string s ∈ {0, 1}∗ such that |s| ≤ p(|i|) and Cf (i, s) = 1.

To argue that Solve does not help in inverting injective functions, we analyze the joint properties of the
algorithms Encoden and Decoden. First, we show that Decoden always returns the correct permutation
encoded by Encoden (see Section 4.2 for the formal proof).
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Algorithm 4: The algorithm SolveSim.
Input : A function h ∈ Inj, partial injective function f ′ ∈ Inj, and an instance i ∈ {0, 1}∗

Output : Solution, i.e., s ∈ {0, 1}∗ such that Cf ′(i, s) = 1
Hardwired : f -oblivious many-one fully black-box construction (R, TR, C, TC , p)

1 Compute Yi =
⋃TC(|i|+p(|i|))

n=1

{
y ∈ Im(hn)

∣∣ i ∈ QSolve(R
h,Solve(1n, y))

}
2 Compute Ni = {n ∈ N | Yi ∩ Im(hn) 6= ∅}
3 for n ∈ Ni do
4 Compute Yi,n = Yi ∩ Im(hn)
5 end

6 Compute Si,f ′ =
{
s ∈ {0, 1}∗

∣∣∣ |s| ≤ p(|i|) and Q(Cf ′(i, s)) ⊆ Dom(f ′) and Cf ′(i, s) = 1
}

7 while True do
8 Bi,f ′ = {s ∈ Si,f ′ | f [Q(Cf ′(i, s))] ∩ Yi = ∅} // "benign" solutions
9 if Bi,f ′ 6= ∅ then

10 return lexicographically smallest s ∈ Bi,f ′

11 end
12 Choose n ∈ Ni such that |Yi,n|

2n
is maximized.

13 Set Ni = Ni \ {n}
14 Set Yi = Yi \ Yi,n

15 end

Lemma 2. For all n ∈ N, π ∈ Injnn, and h ∈ Inj,

Decodehn(Encodehn(π)) = π,

where Encoden, respectively Decoden, is given in Algorithm 2, respectively Algorithm 3.

Second, we show that the encoding output by Encoden is prefix-free (see Section 4.3 for the formal
proof).

Lemma 3. Let h ∈ Inj be any injective function and n ∈ N, then the encoding given by the algorithm
Encoden (Algorithm 2) is prefix-free, i.e.,

∀π, π′ ∈ Injnn such that π 6= π′ : Encodehn(π) is not a prefix of Encodehn(π
′).

Finally, we bound the expected size of the encoding given by Encoden (see Section 4.4) which contradicts
the information-theoretic bound implied by Corollary 1.

Lemma 4. Let (R, TR, C, TC , p) be a fully black-box construction of a hard TFNP problem from an injective
one-way function. Assume n ∈ N is large enough so that n ≥ 50 and 2q(n) + 1 ≤ 20.2n, where q(n) is the
maximal number of f -queries made by C on the queried instance (see Definition 4). Let the success probability
of R be β ≥ 2−0.1n, i.e., for any f we have

Pr
x←{0,1}n

[Rf,Solve(1n, f(x)) = x] = β ≥ 2−0.1n.

Then
∃h ∈ Inj : Eπ←Injnn,h←Inj [|Encodehn(π)|] ≤ log 2n!− 8

10
n20.1n.

In Claim 11, we show that the upper bound 2q(n) + 1 ≤ 20.2n used in the statement of the lemma is
without loss of generality for large enough n and for the efficient algorithms R,C. We use this fact in the proof
of the main theorem (Theorem 1), but for the ease of presentation we state the claim only in Section 4.4.

Equipped with the above lemmata, we can prove Theorem 1.
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Proof (of Theorem 1). For contradiction suppose there is such a reduction (R, TR, C, TC , p). Then by Lemma 1
the algorithm Solve (Line 1) returns a valid solution with probability one. Thus the reduction R given access
to any oracle f ∈ Inj and the oracle Solve (Line 1) must invert f with high probability, i.e.,

Pr
x←{0,1}n

[
Rf,Solve(1n, f(x)) = x

]
≥ 1

p′(n)

for some polynomial p′ and infinitely many n ∈ N.
Let n ∈ N be large enough such that

1. 2q(n) + 1 ≤ 20.2n,
2. Prx←{0,1}n

[
Rf,Solve(1n, f(x)) ∈ f−1(f(x))

]
≥ 1

p′(n) ,

where q(n) is the maximal number of f -queries made by C on the queried instance (see Definition 4). Note that
in Claim 11 we show that the bounds on running times TC , TR ∈ O(npolylog(n)) imply that q(n) ∈ o(20.2n).
Thus for large enough n the upper bound 2q(n) + 1 ≤ 20.2n holds without loss of generality.

For any h ∈ Inj we can use the algorithm Encodehn (Algorithm 2) to encode a given permutation
π ∈ Injnn. Decodability of the encoding follows from Lemma 2. Moreover by Lemma 3 the encoding is a
prefix-free code. By Lemma 4 there is a function h ∈ Inj such that the pair Encodehn,Decodehn defines an
encoding of π ← Injnn with expected length at most log(2n!) − 8

10n2
0.1n. This contradicts the information-

theoretic bound (Corollary 1). ut

4 Proofs of the Supporting Lemmata

The first lemma we need to prove is that the algorithm Solve halts and returns a valid solution on any
input TFNP instance i. Section 4.2 is devoted to proving the correctness of our encoding, i.e., the fact that
the algorithm Decoden uniquely and correctly decodes Encoden’s input permutation. We show that the
encoding itself is prefix-free in Section 4.3.

Section 4.4 is the core of the incompressibility argument. We show that the expected size of our encoding
is smaller than the information-theoretic bound.

4.1 Solve Always Returns a Solution

In this section we show that algorithm Solve halts and returns a proper solution. When the algorithm
Solve halts it is easy to show that the returned solution is a valid solution of the given TFNP problem and
that it is of the correct length (such a solution has to exist by correctness of the reduction). Thus the proof
essentially reduces to proving that Solve eventually halts, at latest when the set Yi becomes empty.

Lemma 1. For any instance i ∈ {0, 1}∗ and any f ∈ Inj the algorithm Solvef (i) halts and returns a
solution, i.e., it returns a string s ∈ {0, 1}∗ such that |s| ≤ p(|i|) and Cf (i, s) = 1.

Proof. First observe that all sets Yi, Ni, Yi,n and Si,f are well defined and can be computed in finite time.
Notice that in each iteration of the while loop we remove one n from the set Ni. Thus after |Ni| iterations
the set Ni is empty. During the whole algorithm we keep the invariant that

Yi ⊆
⋃
n∈Ni

{0, 1}n

(see lines 1, 2 and 14, 13). After |Ni| iterations of the while loop the set Yi is empty as well. Once Yi = ∅,
the set Bi = Si,f . As the set Si,f is nonempty by correctness of the TFNP problem (see Definition 2 -
Correctness) the algorithm Solve always halts.

Finally when the algorithm returns (only line 10 of Algorithm 1), it returns a string s from the set
Bi ⊆ Si,f . Thus |s| ≤ p(|i|) and Cf (i, s) = 1 by the definition of the set Si,f (see line 6 of Algorithm 1). ut
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4.2 Encoding Is Uniquely Decodable

In this section, we show that the encoding given by Encoden (Algorithm 2) is uniquely decodable by
Decoden (Algorithm 3), i.e., we prove the following lemma.

Lemma 2. For any n ∈ N, any π ∈ Injnn and for any h ∈ Inj

Decodehn(Encodehn(π)) = π,

where Encoden, Decoden are as described in Algorithms 2 and 3.
To prove this lemma, we work with a partial function f ′ computed during the decoding. We show

by induction on the number of steps of Decoden that during the whole computation f ′ agrees with the
function f . During decoding we fill in the undefined values of f ′. To find the missing values we find preimages
of challenges y from image of f one by one using the reduction algorithm R.

We need to show that the missing mapping is computed correctly. To this end, we show that the reduction
as run during the decoding phase gives the same output as it gave when run during the encoding phase. To
prove this we show that all f -queries (both direct and indirect) made by the reduction (when run in the
decoding phase) are answered exactly as if f would be queried.

The first step is to show that all direct f -queries are answered correctly (Claim 7).

Claim 7. Let n ∈ N be any number, h ∈ Inj be any function, π ∈ Injnn be any permutation and let f = h◦π.
LetM be the output of Encodehn(π) (see Algorithm 2) and assume thatM = (1, |Xf |, Yf , Xf , σ). Let j ∈ N
be such that 1 ≤ j ≤ |Xf |.

Let y be the j-th lexicographically smallest string from Yf (i.e., y is picked in the j-th iteration of the
while loop, see line 8 of Algorithm 3). Let

f ′ = f � ({x ∈ Xf | f(x) is the k-th lexicographically smallest in Yf for k < j} ∪Xf )

and

f ′′ : {0, 1}∗ → {0, 1}∗ be such that f ′′(x) =

{
f ′(x) for x ∈ Dom(f ′)

y otherwise

Then
∀x′ ∈ Qdir

f (Rf,Solve(1n, y)) f ′′(x′) = f(x′).

Note that if Decoden computed the first j − 1 preimages then f ′, f ′′ from Algorithm 3 correspond to
their definition given in Claim 7. This is formalized in the proof of Claim 9.

Proof (of Claim 7). Let x′ be any query from Qdir
f (Rf,Solve(1n, y)). We distinguish the following four cases:

x′ /∈ Xf : In this case f ′(x′) is defined (it is set before the first iteration of the while loop). Thus f ′′(x′) =
f ′(x′) = f(x′), where the last equality follows from the assumptions.

x′ ∈ Xf ∧ f(x′) <lex y: Then f ′(x′) is defined in the j-th iteration, because Decoden (Algorithm 3) com-
putes preimage of f(x′) before y. Thus f ′′(x′) = f ′(x′) = f(x′), where the last inequality follows from
the assumptions.

x′ ∈ Xf ∧ f(x′) = y: In this case f ′(x′) is undefined (we are computing the preimage of y in j-th iteration
of while loop), thus by definition of f ′′, f ′′(x′) = y = f(x′).

x′ ∈ Xf ∧ f(x′) >lex y: As f(x′) >lex y, the Encoden (Algorithm 2) processes y before f(x′). Then if x′ is
in Qdir

f (Rf,Solve(f,·)(1n, y)), Encoden removes f(x′) from Gf (line 7, Algorithm 2). Thus f(x′) is never
added into Yf which is a contradiction.

ut
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Claim 7 shows that each direct oracle query to f (that is a query done by the reduction itself) is answered
correctly by f ′′. Next we show that both algorithms Solve (Algorithm 1) and SolveSim (Algorithm 4)
answer the TFNP query with the same solution whenever the algorithm Decoden queries SolveSim during
the simulation of the security reduction R.

The main observation is that the algorithm SolveSim is aware of the solution returned by Solve (i.e.,
f ′ is defined for all f -queries made during the computation). Then we show that the procedure which picks
the solution out of all solutions in algorithm Solve gives the same result in algorithm SolveSim, which is
possibly aware only about few solutions of the instance. Here we utilize the fact that the algorithm Solve
always returns lexicographically smallest solution.

Claim 8. Let n ∈ N be any number, h ∈ Inj be any function, π ∈ Injnn be any permutation and let f = h◦π.
LetM be the output of Encodehn(π) (see Algorithm 2) and assume thatM = (1, |Xf |, Yf , Xf , σ). Let j ∈ N
be such that 1 ≤ j ≤ |Xf |. Let y be the j-th lexicographically smallest string from Yf (i.e., y is picked in the
j-th iteration of the while loop). Let

f ′ = f � ({x ∈ Xf | f(x) is the k-th lexicographically smallest in Yf for k < j} ∪Xf ).

Then the query to Solve is answered correctly, i.e.,

∀i ∈ QSolve(R
f,Solve(1n, y)) Solvef (i) = SolveSim(h, f ′, i).

Proof. We fix i ∈ QSolve(R
f,Solve(1n, y)). Let sSolve be the solution returned by Solvef (i) and sSolveSim be

the solution returned by SolveSim(h, f, i). To prove sSolve = sSolveSim, we examine the sets Sf,i, Bf,i, Sf ′,i
and Bf ′,i used in the algorithms Solve and SolveSim. For the ease of presentation we denote the sets as
follows:

SSolve,f Let SSolve,f denote the set Sf,i as computed by algorithm Solve (Line 1, line 6).
SSolveSim,f ′ Let SSolveSim,f ′ denote the set Sf ′,i as computed by algorithm SolveSim (Algorithm 4, line 6).
BSolve,f,k Let BSolve,f,k denote the set Bf,i as computed in the k-th iteration of the while loop by the algorithm

Solve (Algorithm 1, line 8).
BSolveSim,f ′,k Let BSolveSim,f ′,k denote the set Bf ′,i as computed in the k-th iteration of the while loop of the algorithm

SolveSim (Algorithm 4, line 8).

Moreover by f -obliviousness the sets Ni, Yi, Yi,n depend only on the image of f which is identical to the
image of h and h is known to SolveSim. Thus all sets used in algorithms Solve and SolveSim except for
SSolve,f , SSolveSim,f ′ , BSolve,f,k, BSolveSim,f ′,k are independent of f (just dependent on its image) and thus
can be computed by both Solve and SolveSim.

First recall that y ∈ Yf thus by the definition of Yf , respectively the definition of Gf ⊇ Yf (Algorithm 2,
lines 3, 4, 6, and 8) we get that f−1(y) /∈ Q(Cf (i, s)) as images of all x ∈ Qf (Rf,Solve(1n, y)) ⊇ Q(Cf (i, s))
are removed from Gf (Algorithm 2, line 7). This means that for any x ∈ Q(Cf (i, s)) either x /∈ Xf or
f(x) <lex y, in both cases f ′(x) is defined and f ′(x) = f(x) by the assumption of the claim. Thus

sSolve ∈ SSolveSim,f ′ . (1)

On the other hand by the assumptions of the claim f ′ ⊆ f , thus every s ∈ SSolveSim,f ′ is a solution also
with respect to f . In other words sSolveSim ∈ SSolve,f and more generally the following equation holds:

SSolveSim,f ′ ⊆ SSolve,f . (2)

During the entire computation both Solve and SolveSim hold the exact same set Yi, as that is computed
and updated independently of f , respectively f ′. Thus by the definition of BSolveSim,f ′,k and BSolve,f,k and
the equation 2 we have that

∀k ∈ N BSolveSim,f ′,k = BSolve,f,k ∩ SSolveSim,f ′ . (3)
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Fix k ∈ N such that BSolve,f,k or BSolveSim,f ′,k is nonempty. We show that both sets BSolve,f,k and
BSolveSim,f ′,k are non-empty. Moreover we show the following:

{sSolve, sSolveSim} ⊆ BSolve,f,k ∩BSolveSim,f ′,k (4)

We distinguish the following cases:

BSolve,f,k = ∅ By the assumption BSolveSim,f ′,k 6= ∅. Thus SolveSim returns in the k-th iteration of the while loop
and the returned solution sSolveSim has to be contained in BSolveSim,f ′,k. By the equation 3 we get that
sSolveSim ∈ BSolve,f,k. Which is a contradiction as we assumed that BSolve,f,k is empty.

BSolve,f,k 6= ∅ As BSolve,f,k 6= ∅, the Solve algorithm returns in the k-th iteration of the while loop and thus
sSolve ∈ BSolve,f,k. By the equation 1 sSolve is contained in SSolveSim,f ′ too. Thus by Equation 3
sSolve ∈ BSolveSim,f ′,k. Now using the fact that BSolveSim,f ′,k 6= ∅ and the same argumentation as in
the case above we get that sSolveSim ∈ BSolveSim,f ′,k and sSolveSim ∈ BSolve,f,k. Which proves that both
sSolve, sSolveSim ∈ BSolve,f,k ∩BSolveSim,f ′,k.

Thus we proved that both algorithms Solve and SolveSim return in the k-th iteration of their while loop.
Recall that the lexicographically smallest solution from BSolve,f,k, respectively BSolveSim,f ′,k is returned.
Thus by Equation 4 both algorithms Solve and SolveSim return the same string sSolve = sSolveSim. ut

We combine the Claims 7 and 8 to show that the function f ′ is defined consistently with f during the
whole computation.

Claim 9. Let n ∈ N be any number, h ∈ Inj be any function, π ∈ Injnn be any permutation and let f = h◦π.
LetM be the output of Encodehn(π) (see Algorithm 2) and assume thatM = (1, |Xf |, Yf , Xf , σ). Let j ∈ N
be such that 0 ≤ j ≤ |Xf |. Let f ′ be the partial function computed by Decodehn(M) after j iterations of the
while loop (line 8, Algorithm 3). Then

f ′ ⊆ f
i.e., for any x ∈ Dom(f ′) we have f ′(x) = f(x).

Proof. We proceed by induction on the number of iterations of the while loop of the algorithm Decoden
(Algorithm 3). Before the first iteration, we set f ′ = σ for inputs of length n (see line 11 of Algorithm 2).
Recall that σ = f � ({0, 1}n \ Xf ) on inputs of length n. For inputs of length different from n we set f ′
according to h, which is the same as f as f(x) = h(x) for all inputs x of length different from n. Thus, we
immediately get f ′ ⊆ f .

In each iteration of the while loop, the algorithm Decoden (Algorithm 3) sets the preimage of exactly
one y ∈ Im(f). We show that the preimage is computed correctly. Suppose that we are in the j-th iteration
of the while loop (line 8, Algorithm 3) and y is chosen in the j-th iteration as the lexicographically smallest
string in Yf (i.e., for all y′ ∈ Im(f), y′ <lex y, we know the preimage of y′). We set the preimage of y in f ′

to be the output of Rf
′′,SolveSim(h,f ′,.)(1n, y).

Note that the fact that y is in Yf implies that Rf,Solve(f,·)(1n, y) = f−1(y), as y ∈ Yf are taken from
the set INVf (see line 2, Algorithm 2). As the preimage of y is computed as Rf

′′,SolveSim(h,f ′,.)(1n, y), we
need to show that all oracle queries in the computation are answered the same way as in the computation
Rf,Solve(f,.)(1n, y). Then f ′−1(y) = Rf

′′,SolveSim(h,f ′,.)(1n, y) = Rf,Solve(f,.)(1n, y) = f−1(y).
We use Claims 7 and 8 to argue that the queries were answered correctly. Note that the assumption on

f ′ used in these claims follows from the induction hypothesis. As in the j-th iteration of the while loop f ′
is defined for all x /∈ Xf and for the j − 1 preimages of the lexicographically smallest y ∈ Yf . By induction
hypothesis it is defined correctly (gives the same output as f on all x ∈ Dom(f ′)). By Claim 7 all f -queries
are answered correctly, i.e., for any

x′ ∈ Qdir
f (Rf,Solve(f,.)(1n, y)) we have f ′′(x′) = f(x′).

To prove that Solve query is answered correctly observe that by f -obliviousness of the reduction the same
TFNP instances are queried, i.e.,

QSolve(R
f ′′,SolveSim(h,f ′,·)(1n, y)) = QSolve(R

f,Solve(1n, y)).
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By Claim 8 the query to SolveSim is answered identically as it would be answered by Solve. Thus
Rf
′′,SolveSim(h,f ′,.)(1n, y) = Rf,Solve(f,.)(1n, y) and the preimage of y is set correctly. ut

Finally we use Claim 9 to prove that Decoden correctly decodes the message of Encoden and outputs
the right permutation.

Proof (of Lemma 2). We assume that the first bit of the output of Encoden (Algorithm 2) is 1, otherwise
a full description of π has been sent to Decoden (Algorithm 3) and the lemma holds trivially. Let f = h ◦π
similarly as in the Encoden algorithm (Algorithm 2). We have to show that Decoden (Algorithm 3) on
line 15 holds function f ′ such that f ′ = f . We use Claim 9 to get that f ′ ⊆ f . Now observe that on line 15 of
Algorithm 3 the function f ′ is defined for all inputs. Thus f ′ = f . Finally the Decoden algorithm returns
a function (h−1 ◦ f) � {0, 1}n = (h−1 ◦ h ◦ π) � {0, 1}n = π. ut

4.3 Encoding Is Prefix-free

To be able to directly leverage coding theory we show that our encoding is in fact prefix-free. If the set of
invertible images Yf is small the encoding starts with a “0” bit followed by a trivial (prefix-free) encoding of
the given permutation. Otherwise we show that the two codewords either differ at the beginning or are of
the same length. Unique decodability gives us that such codewords must differ.

Lemma 3. Let h ∈ Inj be any injective function and n ∈ N, then the encoding given by the algorithm
Encoden (Algorithm 2) is prefix-free, i.e.,

∀π, π′ ∈ Injnn such that π 6= π′ : Encodehn(π) is not a prefix of Encodehn(π
′).

We use the Claim 10 which computes the size of an encoding of a permutation π as returned by Encoden
(Algorithm 2).

Claim 10. The size of the encoding computed by Encoden (Algorithm 2) is

1. 1 + dlog(2n!)e bits in case Encoden (Algorithm 2) returnedM = (0, π) on line 11, and
2. 1 + n + 2

⌈
log
(

2n

|Xf |
)⌉

+ dlog((2n − |Xf |)!)e bits in case Encoden (Algorithm 2) returned a message
M = (1, |Xf |, Yf , Xf , σ) on line 14.

Proof. When we say that we encode an index of a combinatorial object, we mean that we enumerate all
instances of this object in some natural order and then encode the index of our particular instance. Specifically
for the case of k-element subsets of a set of size n, we enumerate all such subsets in the lexicographical order
and then just give an index – a number between one and

(
n
k

)
always using precisely

⌈(
n
k

)⌉
bits (we use leading

zeroes as a padding in case there would be less bits). Similarly, for the case of permutations of n objects, we
enumerate all such permutations in lexicographical order and then give the particular index using exactly
dn!e bits (again, potentially padding the index with leading zeroes).

1. In the first case (return on line 11) the encoding consists of the single “0” bit and an index of a permutation
on binary strings of length n. Thus we use 1 + dlog(2n!)e bits.

2. In the second case (return on line 14) the encoding consists of a single “1” bit, a size of the set Xf ⊆
{0, 1}n (this is always encoded by n bits), two sets Xf ⊆ {0, 1}n and Yf ⊆ Im(fn) both of size |Xf |
and thus encoded using

⌈
log
(

2n

|Xf |
)⌉

bits each, and an index of a bijection between {0, 1}n \ Xf and
Im(fn) \ Yf . Note that we do not have to encode the domain and the image of σ, as those can be
computed (domain from the set Xf and the image from the sets Yf and Im(hn) = Im(fn). Thus we
always use 1 + n+ 2

⌈
log
(

2n

|Xf |
)⌉

+ dlog((2n − |Xf |)!)e bits for the encoding.
ut
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Now we use Claim 10 to show that the encoding is prefix-free.

Proof (of Lemma 3). Let π, π′ ∈ Injnn be any permutations such that π 6= π′. Let Eh(π) = |Encodehn(π)|
and Eh(π

′) = |Encodehn(π
′)|. Note that by Lemma 2, Encodehn(π) 6= Encodehn(π

′), otherwise we could
not uniquely decode the permutation. First observe that if both Encodehn(π),Encodehn(π

′) start with bit
0, then

Eh(π) = 1 + dlog(2n!)e = Eh(π
′).

Combining the facts that Encodehn(π) 6= Encodehn(π
′), but Eh(π) = Eh(π

′), we get that Encodehn(π) is
not a prefix of Encodehn(π

′).
We have described the encoding formally in the proof of Claim 10. It suffices to prove the lemma for the

case when both encodings Encodehn(π) and Encodehn(π
′) start with bit 1. Note that the following n bits

denote the size ofXh◦π. Thus, if |Xh◦π| 6= |Xh◦π′ |, the encodings Encodehn(π) and Encodehn(π
′) differ on the

first n+1 bits and Encodehn(π) is not a prefix of Encodehn(π
′). On the other hand, if |Xh◦π| = |Xh◦π′ | = a

then the lengths Eh(π) and Eh(π′) are equal:

Eh(π) = 1 + n+ 2

⌈
log

(
2n

a

)⌉
+ dlog((2n − a)!)e = Eh(π

′).

In combination with Encodehn(π) 6= Encodehn(π
′), we get Encodehn(π) is not a prefix of Encodehn(π

′),
which concludes the proof of the lemma. ut

4.4 Bounding the Size of the Encoding

The most important part of the whole proof is of course bounding the expected size of our encoding. Claim 12
bounds the probability that a random y is in the good set (Algorithm 2, line 3), i.e., the set of challenges y
where the reduction inverts and the solution returned by Solve does not query a preimage of the challenge
itself.

Definition 4. Let (R, TR, C, TC , p) be any f -oblivious many-one fully black-box reduction from iOWFto
TFNP. By q : N→ N we denote the function which upper bounds the number of queries which might be done
indirectly, i.e.,

q(n) = sup
f∈Inj, x∈{0,1}n

y=f(x)

{
|Q(Cf (i, s))|

∣∣ i ∈ QSolve(R
f,Solve(1n, y)), s ∈ {0, 1}∗, |s| ≤ p(|i|)

}
.

Note that the queries considered above are indirect (i.e., they originated in C and we do not consider f -queries
made directly from R).

Lemma 4. Let (R, TR, C, TC , p) be any deterministic f -oblivious fully black-box many-one reduction from
iOWFto TFNP. Assume n ∈ N is large enough so that n ≥ 50 and 2q(n)+1 ≤ 20.2n where q(n) is the maximal
number of f -queries made by C on the queried instance (see Definition 4). Let the success probability of R
be β ≥ 2−0.1n, i.e., for any f ∈ Inj we have

Pr
x←{0,1}n

[Rf,Solve(1n, f(x)) = x] ≥ β ≥ 2−0.1n.

Then
∃h ∈ Inj : Eπ←Injnn [|Encodehn(π)|] ≤ log 2n!− 8

10
n20.1n.

In Claim 11, we show that for quasi-polynomial algorithms R,C and for large enough n the bound on
q(n) used in the statement of Lemma 4 is without loss of generality.
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Claim 11. Let (R, TR, C, TC , p) be any deterministic f -oblivious many-one fully black-box reduction from
iOWFto TFNP. Let TC be an upper bound on the running time of the algorithm C and TR be an upper bound
on the running time of the algorithm R. We can bound q(n), i.e., the maximal number of f -queries made by
C on any queried instance (see Definition 4), by

q(n) ≤ TC(2p(TR(101nlogn))). (5)

Moreover, if both TC , TR ∈ O(npolylog(n)) then

q(n) ∈ o(20.2n). (6)

Proof. For any x ∈ {0, 1}n the reduction Rf,Solve(1n, f(x)) is running on input of length at most n +
100nlogn ≤ 101nlogn (see Notation 3) and thus can query the TFNP instance i of length at most TR(101nlogn).
Thus any considered input of C (consisting of i and s ∈ {0, 1}∗ of length at most p(|i|)) is of length at most
p(TR(101n

logn)) + TR(101n
logn) ≤ 2p(TR(101n

logn)). Finally, we can bound the number of queries of C by
its running time by TC(2p(TR(101nlogn))). This concludes the proof of inequality 5.

Note that when both TC and TR are in O(npolylog(n)), then also:

q(n) ≤ TC(2p(TR(101nlogn))) ∈ O(npolylog(n)) ⊆ o(20.2n),

which proves the inequality 6. ut

We prove the bound on the expected length of the encoding (stated in Lemma 4) with expectation taken
not only over the choice of π but also over the choice of h← Inj (the expectation could be also understood
to be taken over the choice of f ← Inj where f = h ◦ π). Then we use an averaging argument to show that
there exists h ∈ Inj for which the encoding is short enough.

Now we bound the probability that a given y is “good”. That is the reduction returns the preimage of y
and, moreover, the Solve query is answered with a solution which is independent of the preimage of y (i.e.,
there is no query to the preimage of y during computation Cf (i, s), where i is the queried instance and s is
the returned solution). We distinguish two bad events:

1. the reduction does not invert and
2. the Solve solution queries the preimage.

We bound the probability of both these events and then use them to bound the overall probability of y not
being “good”.

For bounding the probability of the event that Solve solution queries the preimage of y, the following two
bounds will come handy. We fix the queried instance i, look at only one preimage length n and distinguish
two cases:

1. There are many challenges y from the image of {0, 1}n for which the reduction queries the instance i. In
this case the bound in Claim 13 will be used to show that the solution does not “help” the reduction too
much.

2. Or there exist only few challenges y of the same length n, such that i is queried. In this case we
want to bound the probability that Yi,n (i.e., the “protected” images of fn as in Algorithm 1) becomes
“unprotected” (i.e., removed from Yi and the “benign” solution may query the preimage of some y from
Yi,n) before the solution is returned. We bound this probability in Claim 14.

Claim 12. Let (R, TR, C, TC , p) be any deterministic f -oblivious many-one fully black-box reduction from
iOWFto TFNP. Let n ∈ N be any natural number and let π ∈ Injnn be any permutation. Let q(n) be the
maximal number of f -queries made by C on the queried instance (see Definition 4). Then

Pr
x←{0,1}n,h←Inj

[f(x) /∈ Gf ] ≤
2q(n)

2n/2
+ Pr
x←{0,1}n,h←Inj

[Rf,Solve(1n, y) 6= f−1(y)],

where both f = h ◦ π and Gf are as defined in the algorithm Encoden (see line 2 Algorithm 2).
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Claim 13 bounds the probability that Solve returns a solution querying the preimage of length n for
some challenge y on which the reduction is running. We bound the probability for any fixed instance i. The
bound is meaningful only for the case that on a given preimage length the reduction queries the instance i
often (i.e., for many different preimages x, the reduction running on f(x) queries the i).

In this case, we leverage the fact that there are at most q(n) queries made on each solution. Thus no
matter which solution is returned from the Solve algorithm, it queries at most q(n) different preimages x. In
other words the returned solution could be “useful” for the reduction for at most q(n) out of many different
challenges.

Claim 13. Let (R, TR, C, TC , p) be any deterministic f -oblivious many-one fully black-box reduction. Let
i ∈ {0, 1}∗ be any instance of the corresponding TFNP problem (defined by C). Let

q = max
f∈Inj,s∈{0,1}∗
s.t. |s|≤p(|i|)

|Q(Cf (i, s))|.

Let k ∈ N and let Y ⊆ {0, 1}∗ be a set of size k and

FY = {f | f ∈ Inj and Y ⊆ Im(f)} .

Then for any f ∈ FY and for any s ∈ {0, 1}∗, such that |s| ≤ p(|i|):

Pr
y←Y

[f−1(y) ∈ Q(Cf (i, s))] ≤ q

k
.

Proof. The probability follows from the fact that for any s ∈ {0, 1}∗, |s| ≤ p(|s|) Cf (i, s) makes at most q
queries to f (i.e., |Q(Cf (i, s))| ≤ q). Thus

Pr
y←Y

[f−1(y) ∈ Q(Cf (i, s))] ≤ |Q(Cf (i, s)|
|Y |

≤ q

k
.

ut

Now we bound the probability that for some instance i the algorithm Solve returns a solution which hits
the preimage of some reduction’s challenge f(x). This bound is meaningful in the case when the reduction
does not query i on many different challenges f(x′), where x′ is of the same length as x.

Recall that Yi,n is the set of challenges y of length n on which the reduction queries the instance i, i.e.,
this bound is used when Yi,n is small. Note that if the returned solution queries the preimage of any y from
Yi,n, it may “help” the reduction non-trivially (imagine Yi,n containing only one element - then Solve may
potentially reveal all preimages of length n over different instances).

We want to bound the probability that Solve stops to “protect” Yi,n before returning the solution (i.e.,
removes Yi,n from Yi). Thus we want to show that there is a solution which does not query preimage of
any y from Yi,n. The problem is that it is not sufficient to show it for a single fixed preimage length n. As
even though we have such a solution, there might be smaller Yi,n′ , such that its preimages are queried on all
solutions. Then Solve would have to stop “protecting” Yi,n′ to be able to return a solution. The problem
occurs if Solve stops “protecting” Yi,n before Yi,n′ .

We show that if we stop “protecting” the sets Yi,n in order given by decreasing density ( |Yi,n|
2n ) this is not

the case. Especially we bound the probability that there exists a solution which does not query preimage
neither for any y from Yi,n nor for any y from Yi,n′ , where the density of Yi,n′ is smaller (i.e., |Yi,n′ |

2n′
≤ |Yi,n|

2n ).
To bound this probability, we consider another function g ∈ Inj, which is similar to f , but we “hide” the

preimages of all Yi (the set of all “protected” images of different lengths). This means that for any x ∈ f−1[Yi]
we let g(x) = y′, where y′ is chosen outside of the Im(f). By correctness there is a solution with respect to g
that cannot query the preimage of any y from Yi (as Yi is not in the image set). We go back to f and show
that with high probability this solution remains to be a solution and that it also does not query a preimage
of any y ∈ Yi.
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Claim 14. Let (R, TR, C, TC , p) be any f -oblivious many-one black-box reduction. Let i ∈ {0, 1}∗ be any
instance of the corresponding TFNP problem and

q = max
f∈Inj,s∈{0,1}∗
s.t. |s|≤p(|i|)

|Q(Cf (i, s))|.

Let α : N → [0, 1] be any function, Y ⊆ {0, 1}∗ be any finite set, and µ ∈ T be any type. Let FY be the set
defined as follows

FY = {f ∈ Inj | Y ⊆ Im(f), τ(f) = µ, and ∀n ∈ N : |Y ∩ Im(fn)| ≤ α(n)2n} , (7)

where fn = f � {0, 1}n. Let BADf denote the event that

∀s ∈ {0, 1}∗ such that |s| ≤ p(|i|) either Cf (i, s) 6= 1 or Y ∩ f [Q(Cf (i, s))] 6= ∅.

Suppose FY is nonempty, then
Pr

f←FY

[BADf ] ≤ α(n)q.

Proof. We define the following set

HY = {h ∈ Inj | τ(h) = µ and Y ∩ Im(h) = ∅} . (8)

Let Xf,Y be the set of preimages of Y in f (i.e., Xf,Y = f−1[Y ]).
Now we can bound the probability as follows (we prove the inequality below):

Pr
f←FY

[BADf ] ≤ sup
h∈HY

Pr
f←FY

[BADf | f � Xf,Y = h � Xf,Y ] (9)

Let HY,f be defined as follows:

HY,f = {h ∈ HY | f � Xf,Y = h � Xf,Y }.

We show that the set HY,f is finite for any f ∈ FY . Moreover we prove that for any f, f ′ ∈ FY the sets HY,f
and HY,f ′ are of the same size. We compute the size of the set HY,f as follows:

|HY,f | =
∣∣{h ∈ HY | f � Xf,Y = h � Xf,Y }

∣∣ = (10)

=
∏

n∈N, m=µ(n)
s.t. {0,1}m∩Y 6=∅

((
2m − 2n

|Y ∩ {0, 1}m|

)
(|Y ∩ {0, 1}m|!)

)
. (11)

By definition, both f, h ∈ Inj (see equation 7 - definition of FY and equation 8 - definition of HY ), and
furthermore Im(h)∩ Y = ∅ (see equation 8 for definition of HY ). The equation 11 follows from the fact that
there are

(
2m−2n

|Y ∩{0,1}m|
)
(|Y ∩ {0, 1}m|)! possibilities how to define h � (Xf ∩ {0, 1}n). Note that size of HY,f is

finite, as Y is finite set and thus the product contains finitely many factors. Observe also that |HY,f ′ | = |HY,f |
as the size depends only on the type µ and set Y , but is not dependent on the exact mapping f .

It suffices to prove that for each h ∈ HY :

Pr
f←FY

[BADf | f � Xf,Y = h � Xf,Y ] ≤ α(n)q.

By the correctness of the underlying TFNP problem (see Definition 2 for the exact order of the quantifiers),
there exists s ∈ {0, 1}∗ such that |s| ≤ p(i) and Ch(i, s) = 1. Let Q be the set of queries made on the solution
Ch(i, s), i.e., Q = Q(Ch(i, s)). Note that if Q ∩ Xf,Y is empty then all queries C makes on input i, s are
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answered equally for h as for f thus s is solution also with respect to f (i.e., Cf (i, s) = 1) and Q(Cf (i, s))
has empty intersection with Xf,Y (as Q(Cf (i, s)) = Q). Thus we may rewrite the probability as follows:

Pr
f←FY

[BADf | f � Xf,Y = h � Xf,Y ] ≤ Pr
f←FY

[Xf,Y ∩Q 6= ∅]

≤
∑
n∈N

Pr
f←FY

[Xf,Y ∩Q ∩ {0, 1}n 6= ∅]. (by union bound)

We bound the probability for a single n and the corresponding output length m = |f(0n)|. Let qn denote
the number of queries of length n, i.e., qn = |Q ∩ {0, 1}n|. We may bound the probability as follows:

Pr
f←FY

[Xf,Y ∩Q ∩ {0, 1}n 6= ∅] ≤ sup
k∈N

Pr
f←FY

|Xf,Y ∩{0,1}n|=k

[Xf,Y ∩Q ∩ {0, 1}n 6= ∅] (12)

≤ sup
k∈N

|Q ∩ {0, 1}n| ·
(
2n−1
k−1

)(
2n

k

) (13)

= sup
k∈N

k

2n
qn (14)

The inequality 12 follows from the fact that condition |Xf,Y ∩{0, 1}n| = k over different k creates a partition
of the probabilistic space. The inequality 13 is computed as follows:

1. We have
(
2n

k

)
possibilities how to choose a subset of {0, 1}n of size k (the set Xf,Y ∩ {0, 1}n).

2. But there are at most |Q ∩ {0, 1}n| ·
(
2n−1
k−1

)
ways to choose the set in such a way that it has nonempty

intersection with Q. We have to pick at least one x from Q ∩ {0, 1}n and the remaining k − 1 elements
can be chosen arbitrarily from the remaining 2n − 1 elements.

Now we use the definition of FY (see Equation 7) to bound k
2n and we get the following bound:

Pr
f←FY

[Xf,Y ∩Q ∩ {0, 1}n 6= ∅] ≤ sup
k∈N

k

2n
qn ≤ α(n)qn. (15)

Finally we summarize all the inequalities above:

Pr
f←FY

[BADf ] ≤ sup
h∈HY

Pr
f←FY

[BADf | f � Xf,Y = h � Xf,Y ] (see inequality 9)

≤ sup
h∈HY

∑
n∈N

Pr
f←FY

[Xf,Y ∩Q ∩ {0, 1}n 6= ∅]

≤ sup
h∈HY

∑
n∈N

α(n)qn.

Using the definition of qn = |Q ∩ {0, 1}n| we can bound
∑
n∈N qn =

∑
n∈N |Q ∩ {0, 1}n| = |Q| ≤ q, by

assumption. This concludes the proof as the sum
∑
n∈N α(n)qn can be upper bounded by α(n)q and thus

Prf←FY
[BADf ] ≤ α(n)q.

ut

We are ready to lower bound the probability that we can compute x from f(x) using the security reduction
R and f defined on values different from x, i.e., we upper bound the following probability

Pr
x←{0,1}n, h←Inj

f=h◦π

[f(x) /∈ Gf ],

where π ∈ Injnn is a permutation and Gf is as defined in the algorithm Encoden (see line 3 of Algorithm 2).

Proof (of Claim 12). Recall that y ∈ Im(fn) is in Gf if it satisfies the following two conditions:
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1. Rf,Solve(1n, y) inverts f on y, and
2. there is no indirect query for y (i.e., f−1(y) /∈ Qindir

f (Rf,Solve(1n, y)).

Thus, we bound the probability using union bound as follows:

Pr
x←{0,1}n, h←Inj

f=h◦π

[f(x) /∈ Gf ] ≤ Pr
x←{0,1}n, h←Inj

f=h◦π

[x /∈ INVf ] + Pr
x←{0,1}n, h←Inj

f=h◦π

[x ∈ Qindir
f (Rf,Solve(1n, f(x)))].

By definition of INVf (see line 2 of Algorithm 2)

Pr
x←{0,1}n, h←Inj

f=h◦π

[x /∈ INVf ] = Pr
x←{0,1}n, h←Inj

f=h◦π

[Rf,Solve(1n, f(x)) 6= x].

It suffices to show that

Pr
x←{0,1}n, h←Inj

f=h◦π

[x ∈ Qindir
f (Rf,Solve(1n, f(x)))] ≤ 2q(n)

2n/2
. (16)

As the TFNP instance queried defines a partition of the probability space we may bound:

Pr
x←{0,1}n, h←Inj

f=h◦π

[x ∈ Qindir
f (Rf,Solve(1n, f(x)))] (17)

≤ sup
i∈{0,1}∗

Pr
x←{0,1}n, h←Inj

f=h◦π

[x ∈ Qindir
f (Rf,Solve(1n, f(x))) | i ∈ QSolve(R

f,Solve(1n, f(x))].

(18)

This allows us to fix any instance i ∈ {0, 1}∗ and bound the probability that x was indirectly queried only
for the case when TFNP instance i was queried.

We use the following notation in the rest of the proof. Let tend
i,f = j if the algorithm Solvef (i) returns

the solution in the j-th iteration of the while loop (see line 7 of Algorithm 1). Furthermore let tdel
i,f,n denote

the iteration of the same while loop in which Yi,n is removed from Yi (see line 14 of Algorithm 1). Note that
we set tdel

i,f,n =∞ in the case when Yi,n is never removed from Yi.
Let α : N→ [0, 1] be a function chosen later in the proof. We can rewrite the probability as follows:

Pr[x ∈ Qindir
f (Rf,Solve(1n, y))] = (19)

= Pr
[
x ∈ Qindir

f (Rf,Solve(1n, y))
∣∣ tend
i,f ≤ tdel

i,f,n

]
Pr
[
tend
i,f ≤ tdel

i,f,n

]
(20)

+ Pr

[
x ∈ Qindir

f (Rf,Solve(1n, y))

∣∣∣∣ tend
i,f > tdel

i,f,n and
|Yi,n|
2n

≤ α(n)
]
Pr

[
tend
i,f > tdel

i,f,n and
|Yi,n|
2n

≤ α(n)
]

(21)

+ Pr

[
x ∈ Qindir

f (Rf,Solve(1n, y))

∣∣∣∣ tend
i,f > tdel

i,f,n and
|Yi,n|
2n

> α(n)

]
Pr

[
tend
i,f > tdel

i,f,n and
|Yi,n|
2n

> α(n)

]
,

(22)

where the probability is over the choice of h← Inj, x← {0, 1}n such that when we set f = h ◦ π, y = f(x)
then i ∈ QSolve(R

f,Solve(1n, y)) holds (the TFNP instance i is fixed and we chose uniformly at random x, h
such that i is queried).

Observe that,
Pr
[
x ∈ Qindir

f (Rf,Solve(1n, y))
∣∣ tend
i,f ≤ tdel

i,f,n

]
= 0

where the probability is over the choice of h← Inj, x← {0, 1}n such that when we set f = h ◦ π, y = f(x)
then i ∈ QSolve(R

f,Solve(1n, y)) holds. This holds because the returned solution does not contain preimage
of any element from Yi by definition and y ∈ Yi during the iteration tend

i,f .
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Using this and bounding some of the probabilities by 1 we get the following bound:

Pr[x ∈Qindir
f (Rf,Solve(1n, y))]

≤ Pr

[
tend
i,f > tdel

i,f,n and
|Yi,n|
2n

≤ α(n)
]
+ Pr

[
x ∈ Qindir

f (Rf,Solve(1n, y))

∣∣∣∣ tend
i,f > tdel

i,f,n and
|Yi,n|
2n

> α(n)

]
,

where the probability is over the choice of h← Inj, x← {0, 1}n such that when we set f = h ◦ π, y = f(x)
then i ∈ QSolve(R

f,Solve(1n, y)) holds.
We bound the second probability using Claim 13 for instance i, k = |Yi,n| ≥ α(n)2n, the set Y = Yi,n

and q(n) as the upper bound on the number of f -queries made by C. This bounds the probability by

Pr

[
x ∈ Qindir

f (Rf,Solve(1n, y))

∣∣∣∣ tend
i,f > tdel

i,f,n and
|Yi,n|
2n

> α(n)

]
≤ q(n)

k
≤ q(n)

α(n)2n
,

where the probability is over the choice of h← Inj, x← {0, 1}n such that when we set f = h ◦ π, y = f(x)
then i ∈ QSolve(R

f,Solve(1n, y)) holds.
We can use Claim 14 to bound the first probability. We actually bound the probability that Yi,n is not

deleted before solve returns supposing that Yi,n has small density, i.e.,

Pr

[
tend
i,f > tdel

i,f,n and
|Yi,n|
2n

≤ α(n)
]
≤ Pr

[
tend
i,f > tdel

i,f,n

∣∣∣∣ |Yi,n|2n
≤ α(n)

]
,

where the probability is over the choice of h← Inj, x← {0, 1}n such that when we set f = h ◦ π, y = f(x)
then i ∈ QSolve(R

f,Solve(1n, y)) holds.
We want to argue that Yi,n is not deleted before Solve returns. There might be preimage lengths n′ such

that whenever Yi,n is “protected” Yi,n′ is also “protected” (in particular all n′ satisfying |Yi,n′ |/2n
′ ≤ |Yi,n|/2n).

Thus we need to use Claim 14 for the set Y which is a union of Yi,n′ with small density (i.e., small |Yi,n′ |/2n
′
).

As the density is computed with respect to the length of the preimage (not the length of the image) it is
practical to consider probability just over functions of the same type. For these reasons we upper bound the
probability as follows:

Pr

[
tend
i,f > tdel

i,f,n

∣∣∣∣ |Yi,n|2n
≤ α(n)

]
≤ sup
µ∈T

Pr

[
tend
i,f > tdel

i,f,n

∣∣∣∣ |Yi,n|2n
≤ α(n) and τ(h) = µ

]
,

where the probability is over the choice of h← Inj, x← {0, 1}n such that when we set f = h ◦ π, y = f(x)
then i ∈ QSolve(R

f,Solve(1n, y)) holds. Now we fix some type µ and continue just with functions of the
type µ.

We need to determine the set Y we use in the Claim 14. Let Y del
i be the set Yi as defined in the algorithm

Solve in the iteration in which Yi,n is deleted. We want Y ⊆ {0, 1}∗ to match the set Y del
i . More precisely

we want Y such that it can be partitioned into sets Yi,n′ where n′ ∈ N in such a way that

1. Y =
⋃
n′∈N Yi,n′ ,

2. ∀n′ ∈ N ∀y ∈ Yi,n′ : |y| = µ(n), and
3. ∀n′ ∈ N : |Yi,n′ | ≤ α(n)/2n

′
.

We can bound the probability as follows

Pr

[
tend
i,f > tdel

i,f,n

∣∣∣∣ |Yi,n|2n
≤ α(n) and τ(h) = µ

]
≤ sup

Y
Pr

[
tend
i,f > tdel

i,f,n

∣∣∣∣ |Yi,n|2n
≤ α(n), τ(h) = µ, and Y del

i = Y

]
,

where the probability is over the choice of h← Inj, x← {0, 1}n such that when we set f = h ◦ π, y = f(x)
then i ∈ QSolve(R

f,Solve(1n, y)) holds and the supremum is over all sets Y satisfying the conditions above.
Observe that the set Y del

i satisfies all conditions on Y (i.e., we can choose Y in such a way that it matches
Y del
i ). The first two conditions are satisfied trivially by setting each Yi,n′ to the corresponding set in Solve.
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The third condition follows from the fact that we are in the iteration in which Yi,n should be removed from
Yi. We are removing the set Yi,n with the highest density and |Yi,n|/2n ≤ α(n) thus all other sets Yi,n′ ⊆ Y del

i

have density at most α(n).
Now we fix any set Y satisfying the conditions above and we upper bound the probability using Claim 14

for instance i, q(n) being an upper bound on the number of f -queries made by C, α(n) being the density of
challenges y and our fixed set Y .

Recall the definition of FY from Claim 14:

FY = {f ∈ Inj | Y ⊆ Im(f) and ∀n ∈ N : |Y ∩ Im(fn)| ≤ α(n)2n} , (23)

Observe that FY is not empty. Claim 14 gives us that

Pr
f←FY

[∀s ∈ {0, 1}∗ such that |s| ≤ p(|i|) : either Cf (i, s) 6= 1 or Y ∩ f [Q(Cf (i, s))] 6= ∅] ≤ α(n)q(n).

Observe that by the definition of Y = Y del
i and FY (see Claim 14), this bounds the probability that

there was a suitable solution for returning before Yi,n was deleted from Yi, i.e., it bounds the probability
tend
i,f > tdel

i,f,n and thus we get

Pr

[
tend
i,f > tdel

i,f,n

∣∣∣∣ |Yi,n|2n
≤ α(n) and τ(h) = µ and Y del

i = Y

]
≤ α(n)q(n),

where the probability is over the choice of h← Inj, x← {0, 1}n such that when we set f = h ◦ π, y = f(x)
then i ∈ QSolve(R

f,Solve(1n, y)) holds.
Summarizing the above inequalities we get

Pr[x ∈Qindir
f (Rf,Solve(1n, y))]

≤Pr

[
tend
i,f > tdel

i,f,n and
|Yi,n|
2n

≤ α(n)
]
+ Pr

[
x ∈ Qindir

f (Rf,Solve(1n, y))

∣∣∣∣ tend
i,f > tdel

i,f,n and
|Yi,n|
2n

> α(n)

]
≤ q(n)

α(n)2n
+ α(n)q(n),

where the probability is over the choice of h← Inj, x← {0, 1}n such that when we set f = h ◦ π, y = f(x)
then i ∈ QSolve(R

f,Solve(1n, y)) holds.
Finally we set α(n) = 1

2n/2 to get

Pr
x←{0,1}n, h←Inj

f=h◦π

[x ∈ Qindir
f (Rf,Solve(1n, f(x)))] ≤ q(n)

α(n)2n
+ α(n)q(n) ≤ 2q(n)

2n/2
.

This concludes the proof of Claim 12 as we proved that

Pr
x←{0,1}n, h←Inj

f=h◦π

[f(x) /∈ Gf ] ≤ Pr[x /∈ INVf ] + Pr[x ∈ Qindir
f (Rf,Solve(1n, f(x)))]

≤ Pr
x←{0,1}n,h←Inj

[Rf,Solve(1n, y) 6= f−1(y)] +
2q(n)

2n/2
.

ut

Finally, we upper bound the expected size of encoding produced by Encoden (see Algorithm 2) stated
in Lemma 4.

Proof (of Lemma 4). We denote Eh(π) the size of encoding, i.e., Eh(π) = |Encodehn(π)| and set f =
h ◦ π. First we bound the size of encoding for permutation π in the case that Encoden returned M =
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(1, |Xf |, Yf , Xf , σ), i.e., |Xf | ≥ 20.6n. We denote the size of Xf by A and set N = 2n. As stated in Claim 10
the size of encoding from algorithm Encoden in case A ≥ 20.6n is

Eπ←Injnn, h←Inj
[
Eh(π) | A ≥ 20.6n

]
= 1 + n+ 2

⌈
log

((
N

A

))⌉
+ dlog ((N −A)!)e

≤ 4 + n+ log

((
N

A

)2

· (N −A)!

)

= 4 + n+ log (N !) + log

((
N

A

)
1

A!

)
.

We bound the last term as follows:

log

((
N

A

)
1

A!

)
≤ log

((
eN

A

)A ( e
A

)A)
= A (n+ 2 log e− 2 logA) .

Recall that by assumption 20.6n ≤ A on the other hand A = |Xf | ≤ 2n as Xf ⊆ {0, 1}n. Now we
differentiate by A and get

(A (n+ 2 log e− 2 logA))′ = n+ 2 log e− 2 logA− 2

ln 2
.

The derivative is negative and the function is decreasing for A ∈ [20.6n, 2n] and n ≥ 50. We can bound

log

((
N

A

)
1

A!

)
≤ A (n+ 2 log e− 2 logA)

≤ 20.6n
(
n+ 2 log e− 2 log 20.6n

)
(decreasing for A ∈ [20.6n, 2n])

≤ 20.6n (−0.1n) . (using n ≥ 50)

If we combine the above bounds, we get the following bound on the size of the encoding for case A ≥ 20.6n:

Eπ←Injnn, h←Inj
[
Eh(π) | A ≥ 20.6n

]
= 4 + n+ log (N !) + log

((
N

A

)
1

A!

)
≤

≤ 2n+ log (N !) + 20.6n (−0.1n) ≤
≤ log (N !)− n20.2n.

Now we bound the probability that |Xf | ≥ 20.6n. By assumption of the lemma we can bound (2q(n)+1) ≤
20.2n and we get

Pr
π←Injnn, h←Inj

f=h◦π

[|Xf | ≥ 20.6n] ≥ Pr[|Gf | ≥ (2q(n) + 1)20.6n]

= Pr[|Gf | ≤ 2n − (2q(n) + 1)20.6n]

= Pr[|Gf | ≤ 2n − 20.8n]. (2q(n) + 1 ≤ 20.2n)

By Claim 12 we can bound the expected size of Gf as follows:

Eπ←Injnn, h←Inj
f=h◦π

[|Gf |] ≤
(
2q(n)

2n/2
+ (1− β(n))

)
2n

≤
(
2q(n)

2n/2
+ (1− 2−0.1n)

)
2n (as β(n) ≥ 2−0.1n)

≤ 2 · 20.7n + 2n − 20.9n (as 2q(n) ≤ 20.2n)

≤ 2n − 9

10
20.9n. (as n ≥ 50)
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We can use the Markov inequality to bound

Pr
π←Injnn, h←Inj

f=h◦π

[|Gf | > 2n − 20.8n] ≤
2n − 9

102
0.9n

2n − 20.8n
.

Combining these inequalities we get:

Pr
π←Injnn, h←Inj

f=h◦π

[|Xf | ≥ 20.6n] ≥ Pr[|Gf | ≤ 2n − 20.8n]

= 1− Pr[|Gf | > 2n − 20.8n]

≥ 1−
2n − 9

102
0.9n

2n − 20.8n

≥ 8

10
2−0.1n. (n ≥ 50)

We are ready to bound the size of the encoding as follows:

Eπ←Injnn, h←Inj [Eh(π)] = Pr
π,h

[
|Xπ◦h| < 20.6n

]
(1 + logN !) + Pr

π,h

[
|Xπ◦h| ≥ 20.6n

]
Eπ,h[Eh(π) | |Xπ◦h| ≥ 20.6n]

≤ Pr
π,h

[
|Xπ◦h| < 20.6n

]
(1 + logN !) + Pr

π,h
[|Xπ◦h| ≥ 20.6n]

(
log (N !)− n20.2n

)
≤ 1 + log (N !)− Pr

π,h
[|Xπ◦h| ≥ 20.6n]n20.2n

≤ 1 + log (N !)−
(

8

10
2−0.1n

)
n20.2n

≤ log (N !)− 8

10
n20.1n.

Finally by averaging argument there exists h ∈ Inj such that Eπ←Injnn [Eh(π)] ≤ log (N !)− 8
10n2

0.1n. ut

5 Extensions

5.1 Non-Adaptive Reductions

It is possible to extend our proof from Section 3.2 to rule out even non-adaptive security reductions which
submit multiple queries to the oracle Solve in parallel, though still f -obliviously, as defined in Definition 3.

Notice that the algorithms Solve, Encoden, Decoden, and SolveSim are well defined even for non-
adaptive reductions and we can use them without any change. Our analysis showing that Solve always
returns a solution (Lemma 1), that Decoden correctly decodes the permutation (Lemma 2), and that the
encoding is prefix-free (Lemma 3) remain unchanged as well. The statement of Lemma 4 also holds without
a change.

The only change in our proof would be in the proof of Claim 12 in Equation 17, where we are upper
bounding the probability of an indirect hit. To deal with non-adaptive reductions, we would have to use
union bound to bound the probability that there would be a queried instance causing an indirect hit. Thus
the supremum in Equation 18 will be multiplied by TR(n+ 100nlog(n)) (the upper bound on the number of
Solve queries).

Accordingly, the bound on the indirect hit (Equation 16) changes to

Pr
x∈{0,1}n, h∈Inj

f=h◦π

[x ∈ Qindir
f (Rf,Solve(1n, f(x)))] ≤ TR(n+ 100nlog(n)) · 2q(n)

2n/2
. (24)
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Algorithm 5: The oracle Solve (for a randomized security reduction).
Hardwired : a fully black-box construction (R, TR, C, TC , p) of a hard TFNP problem from iOWF
Oracle access: an injective function f = {fn}n∈N ∈ Inj
Input : an instance i ∈ {0, 1}∗
Output : a solution s ∈ {0, 1}∗ such that Cf (i, s) = 1

1 Compute Yi =
⋃TC(|i|+p(|i|))

n=1

{
y ∈ Im(fn) | Prr←{0,1}∗ [i ∈ QSolve(R

f,Solve(1n, y; r))] > 0
}

2 for y ∈ Yi do
3 Let n = |f−1(y)|
4 Set // compute probability reduction runs on y conditioned on i has been queried
5

pi(y) =
Prr←{0,1}∗

[
i ∈ QSolve(R

f,Solve(1n, y; r))
]

Prr←{0,1}∗,y′←Yi,|y′|=|y| [i ∈ QSolve(Rf,Solve(1n, y′; r))]

6 end
7 Compute Si,f =

{
s ∈ {0, 1}∗ | |s| ≤ p(|i|) and Cf (i, s) = 1

}
8 while True do
9 Bi,f = {s ∈ Si,f | f [Q(Cf (i, s))] ∩ Yi = ∅}

10 if Bi,f 6= ∅ then
11 return lexicographically smallest s ∈ Bi,f

12 end
13 Choose y ∈ Yi such that pi(y) is minimized.
14 Set Yi = Yi \ {y}
15 end

This is still O(npolylog(n)). This propagates in the proof of Lemma 4 when bounding

Eπ←Injnn, h←Inj
f=h◦π

[|Gf |]

in the same way as we bound the term by 20.2n. Therefore, we can prove the following strengthening of
Theorem 1.

Theorem 15. There is no fully black-box construction (R, TR, C, TC , p) of a hard TFNP problem from injec-
tive one-way functions with deterministic f -oblivious non-adaptive reduction with success probability at least
2−0.1n such that both running times TR, TC ∈ O(npolylog(n)).

5.2 Randomized Reductions

In this section, we describe how to generalize our proof to handle fully black-box constructions of hard TFNP
problems from iOWFwith randomized security reductions.

First, we need to change our algorithm Solve. One could imagine that the construction has some in-
stance i created for a concrete challenge y, on which R queries i with high probability. But R might also
query the instance i for many other challenges y′ (on each of them with small probability) to hide the real
challenge y. Thus we need to take the probability of querying the instance i into account.

Our new Solve works as shown in Algorithm 5. Note that it is an extension of the previous algorithm
(i.e., if the security reduction ignores its random bits, Solve removes strings from Yi in the same order
but Algorithm 5 removes challenges one by one like instead of in “batches” Yi,n like Algorithm 1). The
proof that the new Solve returns a solution is fairly similar to the proof of Lemma 1. Note that due to
f -obliviousness we are still able to simulate this algorithm (all added computation depends only on the Im(f)
and is independent of the concrete mapping f).

We also need to change the algorithms Encoden and Decoden as these algorithms need to share the
randomness used for the reduction. Thus we equip them with a set of strings ry for y ∈ Im(hn), where every
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ry will be used for running the security reduction on challenge y. Note that we can bound the length of each
ry by TR(n + 100nlogn). This is because we can bound the input on which R is run by n + 100nlogn and
thus bound the running time of R by TR(n+ 100nlogn). If ry is longer the reduction is not able to use it.

We want encoding to be uniquely decodable and prefix-free. We show this not just for any choice of
h ∈ Inj but also for any choice of the random bits ry, where y ∈ Im(hn). The proofs follows the same
blueprint as the proofs of Lemmas 2 and 3.

The main difference is in the part when we are bounding the size of the encoding (Section 4.4). We need
to change Claims 13 and 14 to reflect the fact that we are removing challenges y from the set Yi based on
the probabilities pi(y).

Both statements of Claims 13 and 14 use a finite set of challenges Y . In our new version of these claims
we partition the set Y = ∪n∈NYn where each Yn ⊆ {0, 1}µ(n) (where µ is a fixed function type) and for each
Yn we have a distribution DY,n.

Here we describe an alternative to Claim 13. Instead of the set Y from the claim we consider Y with the
distributions DY,n, note that for this we need to consider just functions of some fixed type µ (thus FY is
restricted to functions of type µ). We take Y ′ =

{
y ∈ Y | Prz←DY

[z = y] ≤ γ
(
|f−1(y)|

)}
. By union bound (k-

th query was on a preimage of some y ∈ Y ) we can show that for any f ∈ Inj and any s ∈ {0, 1}∗, |s| ≤ p(|i|):

∀n ∈ N : Pr
y←DY,n

[y ∈ Y ′ and f−1(y) ∈ Q(Cf (i, s))] ≤ qγ (n) .

In the alternative to Claim 14 we also use any finite set Y . Now we assume that for each n ∈ N and for
each y ∈ Yn Prz←DY,n

[z = y] ≥ γ(n). Recall the definition of Fy (Claim 14):

FY = {f ∈ Inj | Y ⊆ Im(f), τ(f) = µ, and ∀n ∈ N : |Y ∩ Im(fn)| ≤ α(n)2n} . (25)

Observe that for each n we have |Y ∩ Im(fn)| = |Yn| ≤ 1/γ(n) and thus we may use Claim 14 for α defined
as ∀n ∈ N : α(n) = 1

γ(n)2n to get that

Pr
f←FY

[∀s ∈ {0, 1}∗ such that |s| ≤ p(|i|) either Cf (i, s) 6= 1 or Y ∩ f [Q(Cf (i, s))] 6= ∅] ≤ q

γ(n)2n
.

To put things together like in Claim 12 we again follow the flow of the original proof. We need to redefine
the deletion time tdel

i,f,n when the set Yi,n was deleted from Yi. We instead work with the time tdel
i,f,y when the

single challenge y was deleted for each y ∈ Yi.
The bound Equation 19 is substituted by the following:

Pr[x ∈ Qindir
f (Rf,Solve(1n, y))] =

= Pr
[
x ∈ Qindir

f (Rf,Solve(1n, y))
∣∣ tend
i,f ≤ tdel

i,f,y

]
Pr
[
tend
i,f ≤ tdel

i,f,y

]
+ Pr

[
x ∈ Qindir

f (Rf,Solve(1n, y))
∣∣ tend
i,f > tdel

i,f,y and pi(y) ≥ γ(n)
]
Pr
[
tend
i,f > tdel

i,f,y and pi(y) ≥ γ(n)
]

+ Pr
[
x ∈ Qindir

f (Rf,Solve(1n, y))
∣∣ tend
i,f > tdel

i,f,y and pi(y) < γ(n)
]
Pr
[
tend
i,f > tdel

i,f,y and pi(y) < γ(n)
]
,

Now similarly as in the previous proof we show that the first summand is zero, the second can be bounded
using our alternative of Claim 14 and the third by the alternative of Claim 13 (where we additionally need
to fix the type of the function similarly as we did when we were using Claim 14 in the original proof).

After the averaging argument which chooses the function h we average again to get suitable randomness
for the security reduction (both are independent of π).

This can be combined with the previous changes to get the full strength theorem:

Theorem 16. There is no fully black-box construction (R, TR, C, TC , p) of a hard TFNP problem from injec-
tive one-way functions with randomized f -oblivious non-adaptive reduction with success probability at least
2−0.1n such that both running times TR, TC ∈ O(npolylog(n)).
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6 Conclusions

In this work, we have shown that there are intrinsic barriers preventing simple fully black-box constructions
of hard TFNP problems from injective one-way functions. The main technical contribution of our work is the
technique of designing a “TFNP-breaker” oracle Solve which depends on the reduction.

The natural direction towards extending our results would be attempting to lift the restriction to f -
oblivious and non-adaptive reductions. One reason for why this might be challenging is that a black-box
separation of TFNP and injective one-way functions would subsume the separation of collision-resistant hash
functions and one-way functions which already has a non-trivial proof.
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