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Abstract. Kansal and Dutta recently proposed a multisignature scheme
at AFRICACRYPT 2020. This is the first lattice-based multisignature
scheme that generates a multisignature in only a single round of inter-
action and supports public key aggregation. In this letter, we provide
a cryptanalysis of this multisignature scheme and demonstrate that the
scheme does not satisfy unforgeability requirements. We present an at-
tack strategy to demonstrate that if an adversary obtains a sufficient
number of signatures from a signer, he/she can recover the private key
of the signer in polynomial time. We also uncover the root cause of the
attack and provide a possible solution for this attack to aid future designs
of secure multisignature schemes.
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1 Introduction

The multisignature scheme, first introduced by Itakura and Nakamura [8], con-
stitutes a digital signature scheme in which multiple users can cooperatively sign
on a single message and the signature can be verified through the public keys
of these users. In general, the size of a multisignature is more compact than the
total size of the independent signatures of the users, constituting an advantage
of multisignature schemes. Therefore, multisignature schemes are suitable for
use in blockchain technology for reducing the size of transactions [2,10,13].

However, the security of the above multisignature schemes is based on the dis-
crete logarithm problem. Shor [15,16] has discovered that there exists a quantum
algorithm that can solve this hard problem. Therefore, with the gradual maturity
of quantum computing technology, these multisignature schemes are becoming
less secure. Accordingly, studies have proposed quantum-resistant multisignature
schemes [3,6,7,14]. Nevertheless, these schemes are limited because they require
multiple rounds of computation for signers to generate a signature. In addition,
they do not support public key aggregation; specifically, to verify a signature,
the verifier must store all of the signers’ public keys and verify them individually.

To address the aforementioned limitations, Kansal and Dutta [9] recently
proposed an optimal single-round multisignature scheme. The security of this
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scheme is based on the shortest integer solution (SIS) problem, a lattice hard
problem; therefore, the scheme is considered to be resistant to quantum attacks.
Furthermore, this scheme is equipped with a public key aggregation feature that
enables users to aggregate all public keys into a single public key; the size of the
aggregate key is the same as that of a single public key.

1.1 Contribution

The purpose of this letter is to demonstrate the limitations of the scheme pro-
posed by Kansal and Dutta [9]. First, we reveal the flaw in the security proof
of their scheme. Subsequently, we execute a forgery attack algorithm to demon-
strate that their scheme does not meet unforgeability requirements. Specifically,
we demonstrate that after obtaining a sufficient number of signatures provided by
the same signer, our attack algorithm can retrieve the private key of the signer
from the signatures. Additionally, in accordance with the parameter require-
ments stipulated by a previous study [9], we present an experimental evaluation
to illustrate that our proposed attack is practical and useful under robust pa-
rameter settings for lattice-based cryptosystems. Finally, we present an analysis
of the root cause of the attack and a possible solution to the problem, doing so
to inspire new designs of improved multisignature schemes.

1.2 Organization

The remainder of this letter is organized as follows. Section 2 introduces the defi-
nition and security model of the concept of a multisignature. Section 3 presents a
summary of the multisignature scheme proposed by Kansal and Dutta. Section
4 demonstrates first, the susceptibility of their scheme to forgery attacks and
second, the usefulness of our proposed attack under robust parameter settings.
Section 5 discusses the root cause of the attack and provides a possible solution.
Finally, Section 6 concludes this letter.

2 Definition and security model of multisignature concept

This section provides a summary of the multisignature scheme presented in [9].
A multisignature scheme MS comprises four algorithms—namely a parameter
generation algorithm pg, key generation algorithm kg, key aggregation algorithm
kag, and verification algorithm vrf—and one protocol, namely an interactive
signature generation protocol sg,

– MS.pg(1λ)→ Y. This probabilistic polynomial time (PPT) algorithm takes
a security parameter λ as its input and outputs a public parameter set Y.

– MS.kg(Y, i) → (pki, ski). This PPT algorithm takes a user i and the public
parameter set Y as its inputs and outputs the public key pki and private key
ski of user i.
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– MS.kag(Y,PK) → pkagPK. This deterministic algorithm takes the public
parameter set Y and a set of public key of signers PK as its inputs and
outputs an aggregated public key pkagPK.

– MS.sg(Y,PK,SK,M) → msigPK,M . Let PK = {pki1 , · · · , pkil},SK =
{ski1 , · · · , skil}, and IPK = {i1, · · · , il}. In this protocol, each signer i ∈ IPK
uses PK along with its private key ski to generate a signature Ti,M for mes-
sage M . The designated signer then aggregates all signatures Ti,M , i ∈ IPK
into a multisignature msigPK,M .

– MS.vrf(Y,msigPK,M ) → 0/1. This deterministic algorithm takes the public
parameter set Y and a multisignature msigPK,M as its inputs and outputs 1
if msigPK,M is valid. Otherwise, it outputs 0.

Definition 1 (Completeness of multisignature [9]). A multisignature
scheme MS meets completeness requirements if for any Y ← MS.pg(1λ), for
any message M , and for any set of public keys PK = {pk1, pk2, · · · , pkN} with
a corresponding set of secret keys SK = {sk1, sk2, · · · , skN , where (pki, ski) ←
MS.kg(Y, i) for i = 1, 2, · · · , N , the following holds.

if msigPK,M ← MS.sg(Y,PK,SK,M),
then MS.vrf(Y,msigPK,M ) = 1.

For a multisignature scheme, the stipulated security requirement is that of
unforgeability, which ensures that no PPT adversary can forge a multisignature
with at least one honest signer [2]. This security requirement is modeled herein

through an experiment ExpunforgF (λ) involving a simulator S and a forger F ,
described as follows.

– Setup : The simulator S first generates system parameters Y and a challenge
public key pki∗ for user i∗. The simulator S then sends (Y, pki∗) to the forger
F .

– Queries : The forger F is allowed to query the signature oracle for (Mi,PKi)
in polynomial time, where Mi is a message and PKi is a set of public keys
with pki∗ ∈ PK. The simulator S then returns a signature Ti∗,M on M .

– Forgery : The forger F outputs a forgery msig∗PK,M on the message M
for the set of public keys PK. The simulator S returns 1 if the following
conditions hold:

1. MS.vef(Y,msig∗PK,M )→ 1,

2. pki∗ ∈ PK,

3. M has not been queried in the signature oracle.

Otherwise, S returns 0.

Definition 2 (Unforgeability of multisignature). A multisignature scheme

MS is unforgeable if AdvunforgF (λ) = Pr[ExpunforgF (λ) = 1] ≤ negl(λ) for all PPT ad-
versaries F in the unforgeability experiment. Here negl(λ) is a negligible function
in λ.
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3 Kansal and Dutta’s multisignature scheme

In this section, we revisit the multisignature scheme proposed by Kansal and
Dutta [9].

– MS.pg(1λ)→ Y. In this algorithm, given a security parameter λ, the trusted
key generation center executes the following steps to generate the public
parameter set Y:

• choose n = O(λ), q = O(n3), and m ≥ 2ndlog qe.
• choose a standard deviation σ = Ω(

√
n log q log n).

• select a matrix A ∈ Zn×mq .
• choose three cryptographically secure hash functions: H0 : {0, 1}∗ →
Zm×nq , H1 : {0, 1}∗ → Dm×n

Zq,σ
, and H2 : {0, 1}∗ → Dn×n

Zq,σ
. Here Dk×l

Zq,σ
=

{W ∈ Zk×lq : ‖W‖ ≤ σ
√
k}.

• output the public parameter Y = (n, q,m, σ,A, H0, H1, H2).

– MS.kg(Y, i)→ (pki, ski). In this algorithm, given a public parameter Y, each
signer i executes the following steps to generate its public key pki and private
key ski:

• choose a short matrix Vi ∈ Dm×m
Zq,σ

.

• compute Yi = A ·Vi mod q ∈ Zn×mq .

• set the public key pki = Yi ∈ Zn×mq and private key ski = Vi ∈ Dm×m
Zq,σ

.

– MS.kag(Y,PK) → pkagPK. In this deterministic algorithm, given a public
parameter Y and a set of public key PK = {pki1 , pki2 , · · · , pkil}, any user
can compute an aggregated public key by computing the following equation:

pkagPK =
∑
i∈IPK

pki ·H1(pki,PK) ∈ Zn×nq ,

where IPK = {i1, i2, · · · , il} is the index set of PK.
– MS.sg(Y,PK,SK,M) → msigPK,M . Given a public parameter Y, a set of

public keys PK = {pki1 , pki2 , · · · , pkil} along with the corresponding private
keys SK = {ski1 , ski2 , · · · , skil}, and a message M , this interactive protocol
executes the following steps to generate a multisignature:

• each signer i ∈ IPK computes a signature, as expressed in the following
equation:

Ti,M = H0(M,PK)

+ ski ·H1(pki,PK) ·H2(M),

where ski = Vi, pki = Yi, and IPK is the index set of PK.
• the designated signer first verifies whether each signature satisfies the

following two conditions:

∗ ‖Ti,M‖ ≤ ‖H0(M,PK‖+ σ3m
√
n.

∗ A ·Ti,M = A ·H0(M,PK) + Yi ·H1(pki,PK) ·H2(M).
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• if the verification is successful, then the designated signer returns
the multisignature msigPK,M = (TM , pkagPK, IPK,M), where TM =∑
i∈IPK

Ti,M mod q; otherwise, it returns ⊥.

– MS.vrf(Y,msigPK,M ) → 0/1. In this algorithm, given a public parameter Y
and a multisignature msigPK,M = (TM , pkagPK, IPK,M), the verifier out-
puts 1 if

• A ·TM = A · |IPK| ·H0(M,PK) + pkagPK ·H2(M) and

• ‖TM‖ ≤ |IPK| · (‖H0(M,PK)‖+ σ3m
√
n).

Otherwise, it outputs 0.

4 Cryptanalysis of Kansal and Dutta’s multisignature
scheme

4.1 Flaw in Kansal and Dutta’s security proof

Although Kansal and Dutta presented a security proof to demonstrate that their
multisignature scheme is unforgeable, we identified a flaw in their proof. Specifi-
cally, if an adversary F can output a forgery msig∗PK,M = (T∗M , pkagPK, IPK,M),
the simulator S can then run the generalized forking lemma and obtain another
forgery msig′PK,M = (T′M , pkag

′
PK, IPK,M). Kansal and Dutta claimed that be-

cause A ·T∗M = A ·T′M mod q and ‖T∗M −T′M‖ ≤ σ4m
√
n, the simulator S can

obtain a solution V∗ = T∗M −T′M to the SIS problem.

As mentioned in their proof, the two forgeries msig∗PK,M
and msig′PK,M can be obtained under two different random-
ness settings ρ = (ζ,C1,C2, · · · ,Ct−1,Ct, · · · ,CqH ) and ρ′ =
(ζ,C1,C2, · · · ,Ct−1,C

′
t, · · · ,C′qH ), respectively. Additionally, the outputs

of the oracle H1 are set according to the randomness settings. Specifically,
Ej = H1(pkj ,PK) = Cq and E′j = H1(pkj ,PK) = Cq for j ∈ IPK and
q ∈ 1, · · · , qH , respectively. According to the property of the generalized forking
lemma [4], we determine that Ej is equal to E′j for all j ∈ IPK only in phases
before the forking point. Therefore, we obtain

A ·T∗M
= A ·

∑
i∈IPK

T∗i,M

=
∑
i∈IPK

A ·H0(M,PK) + Yi ·H1(pki,PK) ·H2(M)

=
∑
i∈IPK

A ·H0(M,PK) + Yi ·Ei ·H2(M)
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and

A ·T′M
= A ·

∑
i∈IPK

T′i,M

=
∑
i∈IPK

A ·H0(M,PK) + Yi ·H1(pki,PK) ·H2(M)

=
∑
i∈IPK

A ·H0(M,PK) + Yi ·E′i ·H2(M).

Hence, A ·T∗M 6= A ·T′M mod q; thus, A · (T∗M −T′M ) 6= 0 mod q. Accordingly,
we can conclude that V∗ = T∗M −T′M is not a solution to the SIS problem.

4.2 Forgery attack on Kansal and Dutta’s scheme

In this section, we demonstrate a forgery attack executed to break the unforge-
able security of Kansal and Dutta’s multisignature scheme. At a high level, we
demonstrate that after obtaining a sufficient number of signatures from a same
signer, the adversary can recover the private key of the signer. Subsequently,
the adversary can use the obtained private key to adaptively sign any messages
that can pass the verification process. Let F be the malicious adversary, given
the challenge public key pk∗. Additionally, F can access the hash oracles and
signature oracle.

– Let t = dm/ne; F first queries the signature oracle for t times for different
PK on arbitrary messages (i.e., for i, j ∈ {1, · · · t}, and Mi can be equal to
Mj).

– Then, without loss of generality, the signatures have the following relations:

Tpk∗,M1 = H0(M1,PK1)

+ sk∗ ·H1(pk∗,PK1) ·H2(M1)

Tpk∗,M2 = H0(M2,PK2)

+ sk∗ ·H1(pk∗,PK2) ·H2(M2)

...

Tpk∗,Mt = H0(Mt,PKt)
+ sk∗ ·H1(pk∗,PKt) ·H2(Mt)

– For i = 1, · · · , t, F computes the following matrices:

Oi = Tpk∗,Mi
−H0(M1,PKi) ∈ Zm×nq

Pi = H1(pk∗,PKt) ·H2(Mi) ∈ Zm×nq

and

Q = [O1|O2| · · · |Ot] ∈ Zm×(nt)q

R = [P1|P2| · · · |Pt] ∈ Zm×(nt)q ,
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such that Q = sk∗ ·R.
– F then defines two square matrices Q′ ∈ Zm×mq and R′ ∈ Zm×mq whose

columns are the first m columns of Q and R, respectively.
– Finally, F can recover the corresponding private key sk∗ of the challenge

public key pk∗ by computing the following equation:

sk∗ = Q′ · (R′)−1,

where (R′)−1 is the inverse of R′.

Section 5 details the attack and its root cause.

4.3 Experimental evaluation

This section presents an experimental evaluation to demonstrate that even under
robust parameter settings, Kansal and Dutta’s multisignature scheme is suscep-
tible to our proposed attack. Table 2 presents information on our experimen-
tal platform. The algorithm was written using SageMath mathematical soft-
ware1 (version 9.1) and in Python language2 (version 3.7). The source code of
our algorithm can be found at https://gist.github.com/cryptanalysis-MS/
5741b817afcfe60af12f41465127d8a5.

To illustrate that our proposed attack is effective under robust lattice param-
eter settings, we select three parameter settings from [11], as shown in Table 1.
Moreover, these parameter settings meet the parameter requirements described
in [9]:

– q = O(n3),
– m ≥ 2ndlog qe, and
– σ = Ω(

√
n log q log n).

.
Furthermore, to generate matrices with a discrete Gaussian distribution and

width σ such that their norm is less than the required norm (e.g., ‖sk∗‖ ≤ σ
√
m),

our program recursively adopts SageMath’s built-in function, namely Discrete-
GaussianDistributionIntegerSampler. The results reveal that after obtaining at
least dm/ne number of signatures from the same signer for different PK on ar-
bitrary messages, our proposed attack algorithm requires approximately 11.921,
35.625, 68.484, and 118.656 s to recover the signer’s private key under our pa-
rameter settings.

5 Discussion

In this section, we first discuss the root cause of the attack and then provide
possible solutions.

1 https://www.sagemath.org/
2 https://www.python.org/
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Table 1. Time taken to recover signer’s private key from the collected signatures under
four parameter settings

Set n q m σ Time (s)

1 128 2053 1953 152 11.921
2 192 4093 3194 211 35.625
3 256 4093 4259 256 68.484
4 320 4093 9643 433 118.656

Table 2. Information on experimental platform

Description Data

CPU Intel(R) Core(TM) i7-8700
CPU clock rate 3.2 GHz
CPU processor number 6
Operation system Windows 10.0.18363
Random access memory 16.0 GB
Solid state disk 465.1 GB

In most lattice-based signature schemes [1,5,12], the main technique for hid-
ing the information of the signer’s private key entails adding “small” noise to the
signature. Therefore, with the help of the corresponding public key, any verifier
can verify the signature by eliminating the noise. However, in Kansal and Dutta’s
multisignature scheme, randomness is not added to generate the signature Ti,M ,
except for the signer’s private key.

Apparently, because m ≥ 2ndlog qe, no right inverse matrix of H1(pki,PK) ·
H2(M) ∈ Zm×nq exists. Therefore, we cannot directly eliminate H1(pki,PK) ·
H2(M) to recover the private key ski. However, in our proposed attack algo-
rithm—as described in Section 4—after obtaining dm/ne signatures, any at-
tacker can derive a square matrix R′ ∈ Zm×mq and further recover the private
key by computing the inverse of R′.

Herein, we note that if at least two signatures (Tpk∗,Mi
,Tpk∗,Mj

), where
i, j ∈ {1, · · · , t} and i 6= j, are generated from the same set of public keys
PK, then R′ becomes a singular matrix. Accordingly, a simple solution to avoid
such an attack is to restrict the signer to update their key pair after signing
dm/ne − 1 numbers of signatures on the same set of public keys. To allow the
signer to generate signatures at a number greater than the maximum allow-
able number of signatures, we may adopt the strategy underlying multisignature
schemes [3,6,7,14], specifically by adding some noise that can be eliminated dur-
ing verification. Nevertheless, the question of how to construct a secure and
quantum-resistant single-round multisignature scheme still requires addressing.

6 Conclusion

In this letter, we present a cryptanalysis of the multisignature scheme proposed
by Kansal and Dutta. We demonstrate that an adversary can easily recover a
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signer’s private key and further forge their signatures. Based on our experimental
evaluation, we suggest for Kansal and Dutta’s multisignature scheme to be used
only when the signer does not need to generate an excessively large number of
signatures.
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