
Equipping Public-Key Cryptographic Primitives with
Watermarking

(or: A Hole Is to Watermark)
Ryo Nishimaki 1

1 NTT Secure Platform Laboratories, Tokyo, Japan
ryo.nishimaki.zk@hco.ntt.co.jp

Abstract

Program watermarking enables users to embed an arbitrary string called a mark into a program
while preserving the functionality of the program. Adversaries cannot remove the mark without
destroying the functionality. Although there exist generic constructions of watermarking schemes
for public-key cryptographic (PKC) primitives, those schemes are constructed from scratch and not
efficient.

In this work, we present a general framework to equip a broad class of PKC primitives with an
efficient watermarking scheme. The class consists of PKC primitives that have a canonical all-but-one
(ABO) reduction. Canonical ABO reductions are standard techniques to prove selective security of
PKC primitives, where adversaries must commit a target attribute at the beginning of the security
game. Thus, we can obtain watermarking schemes for many existing efficient PKC schemes from
standard cryptographic assumptions via our framework. Most well-known selectively secure PKC
schemes have canonical ABO reductions. Notably, we can achieve watermarking for public-key
encryption whose ciphertexts and secret-keys are constant-size, and that is chosen-ciphertext secure.

Our approach accommodates the canonical ABO reduction technique to the puncturable pseu-
dorandom function (PRF) technique, which is used to achieve watermarkable PRFs. We find that
canonical ABO reductions are compatible with such puncturable PRF-based watermarking schemes.

Keywords: watermarking, public-key cryptography, all-but-one reduction

Contents

1 Introduction 1
1.1 Background . 1
1.2 Our Contribution . 2
1.3 Technical Overview . 3
1.4 Comparison and Related Work . 7

2 Preliminaries 10

3 Definitions of Watermarking for Cryptographic Primitives 11

4 All-But-One Reductions 15
4.1 Assumptions and Security Games . 15
4.2 Abstraction of All-But-One Reductions for Decisional Case 16
4.3 Concrete Examples . 20
4.4 All-But-N Reductions . 22
4.5 Concrete Examples of canonical ABN Reductions . 24

5 Message-Less Watermarking via Canonical ABO-reductions 26

6 Message-Embedding Watermarking via Canonical ABN-reductions 28
6.1 How to Test Circuit Similarity . 28
6.2 Message-Embedding Scheme . 30

A More Preliminaries 41
A.1 Known Facts . 41
A.2 Hard Probmlems and Algebra . 41
A.3 Basic Cryptographic Primitives . 42
A.4 Advanced Cryptographic Primitives . 45
A.5 Preliminaries on Lattices . 47

B More Definitions of Watermarking for Cryptographic Primitives 49
B.1 TBE Case . 49
B.2 Signature Case . 50

C All-But-One Reductions for Computational Case 52
C.1 Computational Assumptions and Security Games . 52
C.2 Abstraction of All-But-One Reductions for Computational Case 53
C.3 All-But-N Reductions for Computational Case . 55

D More Examples of Canonical ABO and ABN Reductions 57
D.1 More Examples of Canonical ABO Reductions . 57
D.2 More Examples of Canonical ABN Reductions . 65

1 Introduction

1.1 Background

Watermarking. Watermarking enables us to embed an arbitrary string called a “mark” into a digital
object such as images, videos, programs. While an embedded mark is extractable, a watermarked object
should be almost functionally equivalent to the original one. Watermarking ensures that no one can
remove an embedded mark without destroying the original functionality. Watermarking has two main
applications. One is identifying ownership of an object. We can verify who is the original creator of
objects by extracting an embedded mark that includes a unique identifier. The other is tracing malicious
users that illegally copy objects. Therefore, watermarking deters unauthorized distribution.

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang initiated the study of program
watermarking and gave rigorous definitions of cryptographic watermarking for programs [BGI+12].
They proved that program watermarking with perfect functionality-preserving property does not exist if
there exists indistinguishability obfuscation (IO) [BGI+12]. Hopper, Molnar, and Wagner gave more
definitions of cryptographic watermarking for perceptual objects and studied the relationships among
them [HMW07].

Earlier works presented watermarking schemes for specific classes of cryptographic functionali-
ties [NSS99, YF11, Nis13, Nis19]. However, those schemes are secure in restricted models where
we limit adversary’s strategies due to the impossibility results by Barak et al. [BGI+12]. That
is, earlier works [NSS99, YF11, Nis13, Nis19] do not consider arbitrary removal strategies. Co-
hen, Holmgren, Nishimaki, Vaikuntanathan, and Wichs presented the first watermarking scheme
for pseudorandom functions (PRFs) against arbitrary removal strategies by introducing a relaxed
functionality-preserving property [CHN+18]. In addition, they observed two facts: even if we relax
the functionality-preserving property, (1) we need to pick a target circuit from a distribution with
high min-entropy to avoid trivial attacks in the security game. (2) learnable circuit families are not
watermarkable [CHN+18]. These two facts are the reasons why most studies on cryptographic watermark-
ing [CHN+18, BLW17, KW17, QWZ18, KW19, GKM+19, YAL+19] focus on cryptographic primitives
rather than arbitrary circuits.

We focus on achieving secure watermarking for public-key cryptographic primitives against arbitrary
removal strategies in this study since public-key primitives are more versatile than secret-key ones.

Why watermarking public-key primitives?: An application. Cohen et al. [CHN+18] presented an
application of watermarked PRFs to electronic locks for cars. A car contains a PRF F and can only
be opened by running a typical challenge-response identification protocol. A car owner has a software
key (e.g., a smart-phone application) that includes a marked PRF. We can embed some identifying
information to PRFs. No one can remove the owner’s information without losing the ability to unlock
the car. Therefore, we can identify the car owner even if the software key is copied and the car is stolen
(license plates can be forged). However, an automobile manufacturer can know user keys in this scenario
since they are hard-coded in cars.1

If we can independently generate a key pair (public and secret-keys) of a public-key primitive from the
watermarking setup, then an automobile manufacturer installs the public key to a car and need not know
the secret-key. Therefore, we can run a typical challenge-response protocol by watermarkable public-key
encryption (PKE) or signature without revealing secret-keys to manufacturers.2

1If a car owner can directly install a PRF key into a car, and a watermarking scheme is public marking type, then
watermarkable PRFs work in this scenario. However, this situation is not preferable.

2If a watermarking scheme is secret marking type, then we run a secure two-party computation between a user and a
manufacturer.

1

Watermarking from scratch or retrofit. Goyal, Kim, Manohar, Waters, andWu [GKM+19] presented
the first feasibility result of watermarkable public-key cryptographic primitives from standard assumptions.
This is an excellent work on general constructions of watermarkable public-key cryptographic primitives.
However, their constructions of cryptographic primitives are built from scratch. Many efficient public-
key cryptographic schemes (without watermarking functionalities) have been already proposed. One
natural question is whether we can equip existing public-key cryptographic schemes with watermarking
functionalities. If it is possible, we can obtain many efficient watermarkable cryptographic primitives.
Our main question in this study is as follows.

Is there any general framework to equip public-key cryptographic schemes with watermarking
functionalities?

We affirmatively answer to this question in this paper.

1.2 Our Contribution

We present a general framework to equip a broad class of public-key primitives with watermarking
functionalities. The features of our watermarking schemes are as follows. Our watermarking schemes:

• almost preserve the efficiency of the original public-key primitives.
• apply to various primitives such as signature, PKE, key encapsulation mechanism (KEM), identity-
based encryption (IBE), attribute-based encryption (ABE), inner-product encryption (IPE), predicate
encryption (PE).

• are secure under the same assumptions as ones used in the original public-key primitives (i.e., CDH,
decisional linear (DLIN), DBDH, short integer solution (SIS), LWE assumptions, and more).

• are independent of the original public-key primitives. (We do not need watermarking parameters to
setup public-key primitives.)

• use simulation algorithms in security reductions of the original primitives.

More details of our watermarking schemes are explained in Section 1.4. We will explain our technique
in Section 1.3.

Our primary advantages are: (1) semi-general applicability, that is, we can usemany existing public-key
schemes almost as they are. We do not need to construct watermarkable public-key schemes from scratch.
(2) achieving CCA security for PKE. (3) efficiency based on concrete cryptographic assumptions. (See
the comparison in Table 1.) Those are obtained from our framework using simulation algorithms.

Using proof techniques as real algorithms. Our construction technique significantly deviates from
those of previous works. The most notable feature of our result is that we present a general method
to use simulation algorithms that appear in reduction-based proofs as real cryptographic algorithms.
Although our study is not the first study that uses simulation algorithms to achieve new cryptographic
functionalities [Nis13, Nis19, KNYY19a, KNYY19b],3 we present the first systematic approach using
simulation algorithms in real schemes. We abstract a commonly used proof technique and show that if a
public-key cryptographic scheme is proven to be secure via the proof technique, we can use simulation
algorithms in the reduction as watermarked cryptographic functionalities. See Section 1.3 for the detail.
This approach enables us to equip existing schemes with watermarking functionalities.

Terminology. Before we give a technical overview, we more formally explain watermarking. A
watermarking scheme consists of three algorithms called setup, marking, and extraction algorithms. A
setup algorithm Setup generates a marking key wmk and extraction key wxk. A marking algorithm

3Katsumata et al. [KNYY19a, KNYY19b] use simulation algorithms of ABE schemes to achieve homomorphic signatures.

2

Mark takes as input wmk, a circuit C, and a message ω, and outputs a marked circuit C̃. Here, C̃
should output the same output by C for most inputs. An extraction algorithm Extract takes as input
wxk and circuit C′, and outputs a string ω or special message unmarked. This type of watermarking is
called message-embedding. If Mark does not take ω as input and Extract outputs marked or unmarked,
then we call message-less watermarking. The basic security notion is unremovability, which means no
adversary can construct a circuit C∗ such that the functionality of C∗ is almost equivalent to that of C̃,
but Extract(wxk, C∗) outputs ω∗ 6= ω. If we can/not publish wmk and wxk, then we call public/secret
marking and public/secret extraction, respectively.

1.3 Technical Overview

We present how to equip public-key primitives that have canonical all-but-one reductions4 with water-
marking functionalities. All-but-one (ABO) reductions are standard proof techniques to prove selective
security of public-key primitives [BB11, SW05, GPSW06a, Kil06, ABB10, AFV11, GVW15a, BGG+14,
GVW15b]. Although our technique is not fully general, that is, we cannot apply our technique to all
selectively secure public-key primitives, many well-known schemes fall into the class of canonical ABO
reductions, where our technique applies. Roughly speaking, our watermarked cryptographic functionalities
are simulation algorithms in ABO reductions. This technique is of independent interest because we can
use simulators in security reductions as real algorithms for achieving new functionalities.

Our watermarking schemes based on canonical ABO reductions are message-less. To achieve message-
embedding watermarking, we need to extend (canonical) ABO reductions to (canonical) all-but-N (ABN)
reductions. However, ABO reductions are simpler to explain and it is easy to upgrade ABO reductions to
ABN reductions for pairing-based schemes.5 Thus, we first explain ABO reductions.

All-but-one reduction. An ABO reduction is a polynomial-time algorithm that solves a problem
instance π of a hard problem Π by using an adversary A that breaks selective security of a cryptographic
primitive Σ. To explain ABO reductions and selective security, we introduce oracles in security games.

Adversaries have access to oracles that receives queries from adversaries and returns answers in some
security games. Adversaries also declare a target to attack Σ at some point in the security game of Σ. We
prohibit adversaries from sending a special query (or queries) that satisfies some conditions related to the
target to prevent trivial attacks. We call such a special query “query on the target”. In selective security
games, adversaries must declare the target at the very beginning of the game.6

When we prove that if Π is hard, then Σ is selectively secure, we construct the following reduction R.
After an adversary declares a target at the beginning of a selective security game, R simulates a public
parameter by using a problem instance of Π and the target and sends the public parameter to the adversary.
Then, R simulates answers to all queries from the adversary except the queries on the target by using the
problem instance (and the target). Note that R completes the simulation without (master) secret-keys of Σ.
This type of reduction is called all-but-one reductions due to the simulation manner. In other words, if
there exists an ABO reduction, then there exists an oracle simulation algorithm that works for all queries
except the target.

We give an example. In the selective security game of signature, an adversary A declares a target
message m∗ at the beginning of the game. Then a challenger sends a public verification-key VK to A.
After that, A can send polynomially many queries (i.e., messages) and receives signatures corresponding
to the queried messages (except m∗). At some point, A sends a challenge (m∗, σ∗).

4See Section 4.2 for the formal definition and the meaning of “canonical”.
5There is no general conversion from ABO to ABN reductions, but upgrading is possible for many concrete schemes by

using programmable hash. See Section 4.5 for more detail.
6In adaptive security games, adversaries can select the target at any time.

3

A typical example of ABO reductions is the security reduction of the Boneh-Boyen signature
scheme [BB11]. The reduction (or called simulator) R is given a CDH instance π = (G, Gx, Gy) where
G is a generator of a group G. When the adversary A declares a target m∗, R simulates VK by using π
and m∗ (embedding π and m∗ into VK). Next, R simulates signatures σm for queried message m from A
except m∗. Here, R implicitly embeds Gxy into the signing key by setting parameters carefully (note that
R does not have Gxy). Thus, if we assume A breaks the signature scheme, then R can extract Gxy from
the forged signature σ∗ output by A.

Although R embeds m∗ in VK, the distribution of VK by R is perfectly the same as the original
distribution. In addition, R can perfectly simulate signatures for messages except for the target message m∗
due to the embedding of m∗. For notational convention, we separate this signature simulation algorithm
part as SimSign 6=m∗ . That is, we can construct an algorithm SimSign 6=m∗ from π and m∗ that outputs σm
for input m except m∗. This is not necessarily possible for all selectively secure schemes since R might
use oracle answers for simulation. Thus, we say a reduction is “canonical” if SimSign 6=m∗ does not rely
on oracle answers and is described as a stateless randomized algorithm. This proof style is sometimes
called puncturing proof technique [SW14] since m∗ is like a hole in the message space and the reduction
has no way to generate σm∗ for m∗. The graphical explanation is described in Figure 1.

Although the case of encryption is slightly different from that of signatures, we can consider similar
simulation strategies for encryption. In the PKE case, there is no “attribute”, but we can use a part of a
ciphertext (sometimes called tag) as an attribute (in particular, in the CCA setting).

A
MSG

m∗

σ∗

π R

mi

sol

SimSign 6=m∗

m∗

VK

σmi

Figure 1: Illustration of ABO reduction from the selective security of signature to Π. Solid lines denote outputs by
the adversary A of signature. Dashed lines denote simulation by the reduction R. The grayed circle is the hole.
Value sol denotes a solution to π.

Ahole is to watermark. Wemove to explain our unified framework to achieve watermarkable public-key
primitives by using canonical ABO reductions. Roughly speaking, a punctured hole in an ABO reduction
works as a watermark because adversaries cannot fill the hole. More concretely, we can consider the
oracle simulation part SimSign 6=m∗ of the canonical reduction R as a watermarked signature generation
circuit in the signature case. In addition, no adversary can recover the ability to generate σm∗ from
SimSign 6=m∗ because otherwise, the adversary can break the security of the signature scheme. (The
message m∗ is the target.)

The ABO oracle simulation algorithm SimSign 6=m∗ preserves the functionality of the signature
generation circuit except for an input m∗. To detect whether a circuit is watermarked or not, we check

4

W
MSG

m∗

Sign=m∗

π R′

σ∗sol

SimSign 6=m∗

m∗

VK

Figure 2: Illustration of reduction from the security of watermarking to π. Solid lines denote outputs by the
adverasryW of watermarking. Dashed lines denote simulation by reduction R′. The grayed circle is the hole.
Value sol denotes a solution to π.

whether the circuit generates a correct output for the punctured input.7 We can check whether a signature
is valid for an message or not by using its verfication algorithm. If a circuit does not generate a valid
output for the punctured input (i.e., the hole), then we consider it as watermarked. In almost all ABO
reductions, we have efficient algorithms that check the validity of answers from oracles.

The unremovability holds as follows. We construct a reduction R′ that solves a problem instance π by
using a watermarking adversaryW . R′ can give SimSign 6=m∗ toW since R′ has π and m∗.8 Assume
thatW can remove the watermark. That is, we assumeW is given SimSign 6=m∗ and generates a circuit
Sign=m∗ that can generate a signature for the target m∗ (i.e., filling the hole). Then, R′ can break the
security of signature. This is because Sign=m∗ yields a forgery σ∗ for the target m∗. We can extract the
solution for π from σ∗ as the ABO reduction for Boneh-Boyen signature scheme.

Put it differently, the canonical ABO reduction R(π) works as well even if we replace the adversary
A of a cryptographic scheme Σ with the adversaryW for watermarking, which removes the watermark.
The modified reduction R′(π) can solve π because the power of removing the watermark byW leads to
breaking the security of Σ. Therefore, the watermarking scheme is secure if the underlying problem is
hard. The graphical explanation is described as in Figure 2.

There are a few issues in the overview above. One issue is giving the description of SimSign 6=m∗
to the adversary since it has only black-box access to the signature generation oracle in the security
game. This issue is the reason why we use “canonical” ABO reductions. If ABO reductions satisfy the
canonical property, then SimSign 6=m∗ does not need oracle answers from the hard problem Π to simulate
the signature generation oracle and can be described as a stateless randomized algorithm.

Another issue is how to prepare a problem instance and randomness for simulating VK in an ABO
reduction. To create an ABO reduction in the real world, we need a problem instance π. However, what
we have in the real world is not a problem instance but a secret signing-key. It is easy to find that we can
perfectly simulate a problem instance and randomness for reductions by using a secret key in the real
world for most ABO reductions. In addition, although SimSign 6=m∗ includes randomness for simulating
VK, this is not an issue thanks to the randomness of the problem instance π (i.e., secret-key in the real

7A useless circuit that outputs ⊥ for all inputs is watermarked by this detection. To prevent this, we test the functionalities
of circuits. See Section 6 for details.

8We do not explain how to determine m∗ here since it is not essential in this overview.

5

world). See Sections 4 to 6 for details.
Although we gave only intuitions in this section, we formalize properties of canonical ABO reductions

in Section 4 and prove that we can achieve watermarking from canonical ABO reductions in Sections 5
and 6.

Extension to all-but-N reduction. The watermarking based on ABO reductions above is message-less
watermarking. To embed an arbitrary N-bit string, we need all-but-N reduction, which can simulate
oracle answers except queries on N targets. Here, N is an a-priori bounded polynomial in the security
parameter. We can easily extend known cryptographic primitives that have ABO reductions to ones
that have all-but-N reductions by using the technique of programmable hash functions [HK12] for
pairing-based cryptography. We also use the fully key-homomorphic technique [BGG+14] in the lattice
setting or dynamic q-type assumptions [AHY15] for the Boneh-Boyen IBE. See Section 4.4 for the detail.

First, we explain a reasonable but faulty idea to achieve message-embedding watermarking based on
all-but-N reductions since it helps to understand our idea. We prepare N pairs of strings {t∗i,b}i∈[N],b∈{0,1}
as the public parameter of watermarking. To embed a message ω = (ω1, . . . , ωN) ∈ {0, 1}N , we
consider an oracle simulation algorithm that can generate answers for queries except N points in
P := {t∗1,ω1

, . . . , t∗N,ωN
}. Concretely, in the case of signature, a signature oracle simulation algorithm

SimSign/∈P outputs a signature σm for a message m such that m /∈ P.9 To extract an embedded message
from a circuit C′, we run the answer checking algorithm as in the message-less scheme for each i ∈ [N]
and b ∈ {0, 1}. If C′ outputs a valid σt∗i,1 for input t∗i,1 and does not output a valid σt∗i,0 for input t∗i,0, then
we set the i-th bit of a message to 0 and vice versa.

This construction achieves the functionality of message-embedding watermarking. However, it is not
secure because the adversary knows which points should not be punctured. That is, the points in P :=
{t∗1,1−ω1

, . . . , t∗N,1−ωN
} (and P) are publicly available information. We call P the negation of punctured

points P in this section. As already observed in some watermarkable PRFs [CHN+18, KW17, QWZ18],
public punctured points could hurt watermarking security. In our case, adversary can easily destroy the
functionality of cryptographic primitive at any point. More concretely, the adversary can easily modify a
watermarked circuit where t∗i,ωi

is punctured but t∗i,1−ωi
is not punctured into a circuit that does not work

for point t∗i,1−ωi
too. Then, the extraction algorithm above outputs ⊥ for the malformed circuit since the

circuit outputs ⊥ both for t∗i,0 and t∗i,1.
To solve the issue, we generate punctured points P and its negation P by using PRFs and hide them

instead of using publicly known punctured points and its negation. This technique is commonly used
in watermarkable PRFs [CHN+18, KW17, QWZ18]. We pseudo-randomly determine punctured points
and its negation based on an embedded mark and the public parameter of the target master secret-key
to be watermarked. Then, the adversary has no idea about the negation of punctured points P (and P).
Therefore, it is hard for the adversary to intentionally modify a watermarked circuit into a circuit that
does not work for points in P. In fact, we must prepare many punctured points pi := (t(1)i,ωi

, . . . , t(T)i,ωi
) and

its negation pi := (t(1)i,1−ωi
, . . . , t(T)i,1−ωi

) for each bit position i and check all points to extract i-th bit of
an embedded message, where T is a polynomial in the security parameter. If a circuit output ⊥ for all
points in pi and a correct value for at least one point in pi, we extract ωi as the i-th bit. To change the i-th
bit of the embedded message without recovering the original functionality, adversaries must destroy the
functionality of a circuit for all points in pi. Advesaries can indiscriminately destroy the functionality
without knowing points (pi, pi). However, if the adversary makes a circuit that does not work for a 1/2
plus a non-negligible fraction of inputs, then we can check that the circuit is not functionally similar to the
original watermarked circuit. To make a circuit that is functionally similar to the watermarked circuit, but

9All-but-N reductions should be able to generate N simulated challenge ciphertexts in the encryption case. This simulation
is easy to achieve by using random self-reducibility of underlying hard problems for the discrete-logarithm-based case. In the
LWE case, polynomially many (so, N) problem instances can be given.

6

the extraction algorithm does not output ωi from, all the adversary can do is recovering the functionality
of the watermarked circuit at punctured points P (pi). This event contradicts to all-but-N reductions as
the case of the message-less scheme. Thus, we can achieve unremovability.

Although the message-embedding scheme above is secret marking and secret extraction, it is secure
even if the adversary has the oracle access to the marking and extraction oracles. See Section 6 for the
detail.

1.4 Comparison and Related Work

In this section, we review previous works on watermarking.10 First, we compare our watermarking
schemes with the schemes by Goyal et al. [GKM+19].

Efficient direct constructions and generic constructions. Goyal et al. [GKM+19] constructed a
secret marking and secret extraction watermarking scheme for ABE (GKM+ABE) from mixed functional
encryption (FE) and delegatable ABE, which can be instantiated only by the LWE assumption. They
also constructed a public marking and public extraction watermarking scheme for PE (GKM+PE) from
(bounded collusion-resistant) hierarchical FE, which can be instantiated by any PKE. Although the LWE
assumption instantiates the schemes, the constructions are inefficient since they rely on heavy tools
like mixed FE and hierarchical FE even for watermarkable PKE. In particular, in their watermarkable
encryption schemes, not only the public key length but also the ciphertext length depend on the length
of embedded massages (and the number of collusions in the GKM+PE case). The ciphertext size of
GKM+ABE and GKM+PE is huge (See Table 1). They constructed a public marking and public extraction
watermarking scheme for signature (GKM+SIG) from a prefix-constrained signature, which is instantiated
with OWFs. GKM+SIG scheme is relatively efficient if it is instantiated with a signature scheme based on
the symmetric external Diffie-Hellman (SXDH) assumption [CLL+14] since the transformation does not
incur significant overhead.11

Ourwatermarking schemes can generally equip public-key primitiveswithwatermarking functionalities
if the primitives satisfy some conditions. The equipping procedure incurs only a little overhead. Although
we need to modify public-key schemes so that they have O(`λ)-size master public parameters to achieve
message-embedding watermarking where ` is the mark length and λ is the security parameter, the size of
signatures/secret-keys/ciphertexts does not change. The signatures/secret-keys/ciphertexts consist of only
a few group elements if we use group-based schemes. In addition, if we use a q-type assumption, we
can use the original Boneh-Boyen scheme as it is (even the master public key is constant-size). Thus,
our watermarkable public-key primitives are as efficient as known efficient public-key primitives such as
Boneh-Boyen IBE scheme [BB11]. Therefore, in the case of encryption, our schemes are more efficient
than those of Goyal et al. in the asymptotic sense. See Table 1 for the efficiency comparison.

Functionalities of watermarking. In GKM+PE, GKM+SIG, and our schemes, the watermarking setup
algorithms are completely separated from the key generation algorithm of public-key primitives. However,
in GKM+ABE, we need the public parameter of the watermarking scheme to generate keys of public-key
primitives.

Although our message-embedding scheme is secret marking and secret extraction, it is secure even
if adversaries have access to marking and extraction oracles, which answer a marked circuit and an
embedded mark for queried circuits, respectively. GKM+ABE is also secret marking and secret extraction
and secure under the marking and extraction oracles, but the number of extraction queries is a-priori
bounded. On the other hand, GKM+PE and GKM+SIG are public marking and public extraction.

10We do not consider constructions from strong assumptions such as IO in this study.
11We focus on constructions in the standard model in this paper. If we instantiate a signature scheme with Schnorr signature

scheme [Sch91], GKM+SIG would be more efficient.

7

Table 1: Efficiency Comparison of Message-Embedding Watermarking (Advanced) Public-Key Encryption and
Signature. We ignore MPK part in MSK. In “Assumption” column, we put references for concrete instantiations.
Parameters λ and ` are the security parameter and the length of marks, respectively. In general, |G| = cλ and
|GT | = cTλ for some small constant c and cT (depends on pairing groups). We do not put Ours2 in this table since
it is message-less type.

|MPK| |MSK| |SK| or |σ| |CT| Assumption

GKM+ABE poly(λ, `) poly(λ) poly(λ) poly(λ, `)c LWE [GKW18]
GKM+PE Q · poly(λ, `) Q · poly(λ, `) poly(λ, `) Q · poly(λ, `)d PKE

Ours1 PKEa (2`λ + 5)|G| (2`λ + 2)|Zp| N/A 6|G| DLIN [Kil06]
Ours1 KEMb (`λ + 4)|G|+ |hk| (`λ + 3)|Zp| N/A 2|G|+ |r| DBDH [BMW05]
Ours1 KEMb 4|G|+ |hk| 3|Zp| N/A 2|G|+ |r| q-type [AHY15]
Ours1 IBE (`λ + 4)|G| (`λ + 3)|Zp| 2|G| 2|G|+ |GT | DBDH [BB11]
Ours1 IBE 4|G| 3|Zp| 2|G| 2|G|+ |GT | q-type [AHY15]
Ours1 IBE `poly(λ) poly(λ) poly(λ) poly(λ)e LWE [BGG+14]
GKM+SIG (`+ 3)|G| |Zp| (`+ 7)|G| N/A CDH [Wat05]
GKM+SIG 8|G|+ |GT | 8|Zp| 16|G|+ |GT | N/A SXDH [CLL+14]
Ours3 SIG (`λ + 4)|G| (`λ + 3)|Zp| 2|G| N/A CDH [BB11]
Ours3 SIG 4|G| 3|Zp| 2|G| N/A q-type [AHY15]
Ours3 SIG `poly(λ) poly(λ) poly(λ) N/A LWE [BGG+14]

a Tag-based encryption.
b Value hk and r are a hash key and randomness of a chameleon hash function.
c At least `7λ7.
d At least `2λ2 if instantiated with FE by Ananth and Vaikuntanathan [AV19].
e At most O(λ3 log2 λ).

Our schemes for signature/TBE/KEM/IBE and all GKM+ schmes are message-embedding watermark-
ing, but our schemes for ABE/PE are message-less watermarking.

Watermarking user secret-keys v.s. master secret-keys. In GKM+ABE and GKM+PE, we can
watermark user secret-keys such as secret-keys for identities (resp. policies) in IBE (resp. ABE). On the
other hand, in our schemes, we can watermark master secret-keys of tag-based encryption (TBE), KEM,
IBE, ABE, and PE. TBE is a variant of PKE. For signature/KEM/PKE cases, there is no difference since
master secret-keys are user secret-keys in these cases.

Security level. There are several security measures. (1) Ours for TBE/KEM achieves CCA-security,
but GKM+ABE and GKM+PE for PKE do not. (2) GKM+PE and GKM+SIG are adaptively secure, but
GKM+ABE and ours are selectively secure in terms of public-key primitives. In terms of embedded
messages, GKM+ schemes are adaptively secure, but ours are selectively secure. See Section 3 for selective
security of watermarking. (3) All schemes are secure even if the authority of watermarking setup is
corrupted. (4) Regarding the parameter on howmuch adversaries should preserve functionalities to succeed
attacks, GKM+ schemes are better than ours. (GKM+ is 1/poly(λ) while ours is 1/2 + 1/poly(λ).)
(5) We can consider three types of collusion-resistance in this study.

Collusion-resistance w.r.t. cryptographic primitives: In security games of cryptographic primitives,
adversaries are often allowed to send queries to master secret-key based oracles that gives additional
information such as signatures in the signature case and secret-keys for identities in the IBE
case. We say collusion-resistant w.r.t. cryptographic primitives if cryptographic schemes are
secure even in such a setting. Both GKM+SIG and our watermarking schemes for signatures are
collusion-resistant w.r.t. cryptographic primitives. GKM+ABE and our watermarking schemes for
encryption (IBE, ABE, and PE) are collusion-resistant w.r.t. cryptographic primitives. On the other
hand, GKM+PE is bounded collusion-resistant w.r.t. cryptographic primitives, where the number
of queries is a-priori bounded.

8

Collusion-resistance w.r.t. watermarkable cryptographic primitives: We say that a watermarking
scheme is collusion-resistant w.r.t. watermarkable cryptographic primitives if it is unremovable
even if adversaries have access to the master secret-key based oracle explained above in security
games of watermarking for public-key primitives. Both GKM+SIG and our schemes for signature
are collusion-resistant w.r.t. watermarkable cryptographic primitives. Our watermarking schemes
for encryption (IBE, ABE, and PE) are collusion-resistant w.r.t. watermarkable cryptographic
primitives, but GKM+ABE and GKM+PE schemes are not.

Collusion-resistance w.r.t. watermarking: We say that a watermarking scheme is collusion-resistant
w.r.t. watermarking (collusion-resistant watermarking) if it is unremovable even if adversaries are
given many watermarked keys for the same original key. GKM+ABE, GKM+PE, and GKM+SIG
are collusion-resistant watermarking, but ours are not.
We emphasize that even if watermarking schemes do not satisfy collusion-resistance w.r.t. water-
marking, they have an application to ownership identification. This is because each user can use
different keys in some settings, as we can see in the application to electronic car-lock in Section 1.1.
Moreover, collusion-resistant watermarkable encryption is essentially the same as traitor tracing (the
definition by Goyal [GKM+19] for PKE implies traitor tracing).12 In some scenarios (ownership
identification), traitor tracing (and collusion-resistant watermarking) is over-engineered. Thus,
watermarking without collusion-resistance w.r.t. watermarking is meaningful enough. Moreover,
if we would like to use collusion-resistant watermarkable PKE, we already have traitor tracing
schemes [BSW06, GKW19]. If we want to trace users in public-key primitives, we can directly
consider traceable primitives rather than collusion-resistant watermarkable public-key primitives.
The construction technique by Goyal et al. relies on that of traitor tracing [CFN94, NWZ16] to
achieve collusion-resistance w.r.t. watermarking.

Summaryof comparison. Wesummarizewatermarkable public-key primitives byGoyal et al. [GKM+19]
and ours in Tables 1 and 2. PE and ABE include PKE/IBE/IPE as special cases. Notably, ours achieves
CCA security for PKE. In addition, our message-embedding scheme (Ours1 in Table 2) is much more
efficient than GKM+ABE and GKM+PE as we see in Table 1. In particular, the size of secret-keys and
ciphertexts in our scheme does not depend on `. If we use q-type assumption (Definition D.16), then even
the size of master public key does not depend on `.

The disadvantages of Ours1 and Ours3 are (1) not collusion-resistant (2) secret marking/extraction (3)
selective security (4) watermarking for master secret-keys (this is not a disadvantage for PKE and signature)
(5) not supporting functionalities beyond IBE. We do not have a useful application of watermarking
for master secret-keys in IBE/ABE/PE cases. On the other hand, all GKM+ constructions achieve
collusion-resistance, watermarking for user secret keys, and support functionalities beyond IBE. GKM+PE
and GKM+SIG achieve adaptive security. Although Ours2 is public marking/extraction and supports
functionalities beyond IBE, it is message-less type and watermarking for master secret-keys. Therefore,
GKM+ constructions and ours are incomparable.

More on related work. Cohen et al. gave the first positive result on program watermarking by
introducing the statistical functionality-preserving property [CHN+18]. They presented public extraction
message-embedding watermarkable PRFs based on IO. Subsequently, Kim and Wu [KW17, KW19]
(KW17 and KW19) and Quach, Wichs, and Zirdelis [QWZ18] (QWZ18) presented secret extraction
message-embedding watermarkable PRFs based on the LWE assumption. The KW19 and QWZ18
schemes are secure against extraction oracle attacks. In addition, QWZ18 scheme is public marking.

12Collusion-resistant watermarkable signatures may have an application to group signatures. However, the application is
non-trivial since we should be able to trace users from signatures (not from signing keys) in the group signature setting.

9

Table 2: Comparison of Watermarking (Advanced) Public-Key Encryption. WM, CR,MO, and XO stands for
watermarking (or watermarkable), collusion-resistance, marking oracle, and extraction oracle, respectively.

GKM+ABE Ours1 Ours2 GKM+PE GKM+SIG Ours3

Primitive ABE PKEa/IBE ABE/IPE/PE PE SIG SIG
Assumption LWE DBDH/DLIN/LWE PKE OWF CDH/SIS

Message-embedding X X × X X X
Public mark × × X X X ×

AgainstMO attack X X X X X X
Public extraction × × X X X ×

Against XO attack bounded X X X X X
Separated setup × X X X X X
Marking MSK × X X × N/A N/A
Marking SK X × × X X X

CCA-secure PKE × Xa Xa × N/A N/A
CR w.r.t. primitive X X X bounded X X

CR w.r.t. WM primitive × X X × X X
CR w.r.t. WM X × N/A bounded X ×

Selective/Adaptive sec. selective selective selective adaptive adaptive selective
Sec. against authority X X X X X X

a TBE and KEM.

Regarding message-embedding watermarkable PRFs, KW17, KW19, and QWZ18 schemes are relatively
efficient since they are based on the LWE assumption.

Baldimtsi, Kiayias, and Samari presented watermarking schemes for public-key primitives in a relaxed
model, where a trusted watermarking authority generates not only watermarked keys but also unmarked
keys and algorithms are stateful [BKS17]. We do not compare their scheme because this is a weaker
model.

Goyal et al. presented not only constructions but also rigorous definitions of watermarkable
public-key primitives and a relaxed functionality-preserving property for watermarkable public-key
primitives [GKM+19].13

Organization. In Section 2, we provide preliminaries and basic definitions. Section 3 introduces the
syntax and security definitions of watermarking. Section 4 defines canonical ABO reductions and gives
examples of them. In Section 5, we present our message-less watermarking scheme and prove its security.
In Section 6, we present our message-embedding watermarking scheme and prove its security.

2 Preliminaries

We define some notations and introduce cryptographic notions in this section.

Notations and basic concepts. In this paper, x ← X denotes selecting an element from a finite set X
uniformly at random, and y← A(x) denotes assigning to y the output of a probabilistic or deterministic
algorithm A on an input x. When we explicitly show that A uses randomness r, we write y← A(x; r). For
strings x and y, x‖y denotes the concatenation of x and y. Let [`] denote the set of integers {1, · · · , `},
λ denote a security parameter, and y := z denote that y is set, defined, or substituted by z. PPT stands for
probabilistic polynomial time.

13Cohen et al. [CHN+15] considered watermarkable public-key primitives before Goyal et al., but even if a scheme satisfies
their definitions, there exists simple attacks as observed by Goyal et al. [GKM+19].

10

• A function f : N → R is a negligible function if for any constant c, there exists λ0 ∈ N such
that for any λ > λ0, f (λ) < λ−c. We write f (λ) ≤ negl(λ) to denote f (λ) being a negligible
function.

• If X (b) = {X(b)
λ }λ∈N for b ∈ {0, 1} are two ensembles of random variables indexed by λ ∈N,

we say that X (0) and X (1) are computationally indistinguishable if for any PPT distinguisher D,
there exists a negligible function negl(λ), such that

∆ := |Pr[D(X(0)
λ) = 1]− Pr[D(X(1)

λ) = 1]| ≤ negl(λ).

We write X (0) c≈ X (1) to denote that the advantage ∆ is negligible.
• The statistical distance betweenX (0) andX (1) over a countable set S is defined as∆s(X (0),X (1)) :=

1
2 ∑α∈S |Pr[X(0)

λ = α]− Pr[X(1)
λ = α]|. We say that X (0) and X (1) are statistically/perfectly

indistinguishable (denoted by X (0) s≈ X (1)/X (0) p
≈ X (1)) if ∆s(X (0),X (1)) ≤ negl(λ) and

∆s(X (0),X (1)) = 0, respectively. We also say that X (0) is ε-close to X (1) if ∆s(X (0),X (1)) = ε.

Definition 2.1 (Circuit similarity). Let C be a circuit class whose input space is {0, 1}`. For two circuits
C, C′ ∈ C and a non-decreasing function ε : N→N, we say that C is ε-close to C′ if it holds that

Pr[C(x) 6= C′(x) | x ← {0, 1}`] ≤ ε. (denoted by C ∼=ε C′)

Similarly, we say that C is ε-far to C′ if it holds that

Pr[C(x) 6= C′(x) | x ← {0, 1}`] > ε. (denoted by C 6∼=ε C′)

3 Definitions of Watermarking for Cryptographic Primitives

In this section, we introduce the definitions of watermarking for cryptographic primitives. Although our
definitions basically follow those of Goyal et al. [GKM+19], there are several differences.

We focus on cryptographic primitives that have a master parameter generation algorithm PGen and
a master secret-key based algorithm MSKAlg in this study. For example, in IBE/ABE/IPE, PGen is a
setup algorithm Setup and MSKAlg is a key generation algorithm for identity/attribute/policy KeyGen.
In TBE/KEM/signature, PGen is a key generation algorithm Gen and MSKAlg is a decryption/signing
algorithm Dec/Sign. See Definition A.9 for TBE. Hereafter, we do not explicitly treat KEM, but it is
easy to adapt all definitions to the KEM setting. We formalize the notion of master secret-key based
cryptographic schemes as follows.

Definition 3.1 (Master secret-key based cryptographic scheme). A master secret-key based crypto-
graphic scheme Σ with spaces (T ,Q,P ,Rmka) has at least two algorithms PGen and MSKAlg.

Master parameter generation: PGen(1λ) takes as input the security parameter and outputs a master
public parameter PP ∈ PP and a master secret key MSK ∈ MSK. We often omit spaces PP
andMSK from Σ.

Master secret-key based algorithm: MSKAlg(MSK, X) takes MSK and an input X ∈ Q and outputs
Y ∈ P . The randomness space of MSKAlg isRmka.

We assume that MSK includes PP. Σ = (PGen, MSKAlg, . . .) has additional algorithm other than PGen
and MSKAlg. The space T is used in the security game defined later.14

14Jumping ahead, T is a space where adversaries select targets at the beginning of security games.

11

Remark 3.2. In Definition 3.1, an output by MSKAlg is typically a secret key for an identity/policy X,
signature for a message X. In the TBE case, X consists of a tag and ciphertext, and Y is a plaintext. We
can consider encryption, decryption, and verification algorithms as additional algorithms. Definition 3.1
captures most popular cryptographic schemes such as PKE, TBE, IBE, ABE, IPE, PE, FE, signature,
constrained signature.

Table 3: Concrete spaces and algorithms of master secret-key based cryptographic scheme.

tag-based PKE IBE SIG

T tag space T AG identity space ID message spaceMSG
Q tag and ciphertext space T AG × CT ID MSG
P plaintext space PT ∪ {⊥} secret key space SK signature space SIG
MSKAlg(MSK, ·) Dec(sk, ·) KeyGen(MSK, ·) Sign(sk, ·)

Definition 3.3 (Validity check algorithm for master secret-key based cryptographic scheme). A
master secret-key based cryptographic scheme Σ with spaces (T ,Q,P ,Rmka) can have an optional
algorithm Valid-Out that takes as inputs PP, X ∈ Q, and Y ∈ P and outputs >/⊥. For all
(PP, MSK) ← PGen(1λ) and all X ∈ Q, Valid-Out(PP, X, Y) outputs > if and only if Y ←
MSKAlg(MSK, X).

Remark 3.4. Although we do not explicitly consider validity check algorithms in signature and advanced
encryption schemes, we can implement validity check algorithms in most schemes (and all schemes in this
paper). See examples in Sections 4.3 and 4.5 and Appendices D.1 and D.2. Note that Y is not necessarily
unique since MSKAlg might be a randomized algorithm.

Definition 3.5 (Watermarkable Public-Key Scheme). A watermarking scheme with mark spaceMw
for master secret-key based cryptographic scheme Σ with spaces (T ,Q,P ,Rmka) is a tuple of algorithms
(WMSetup, Mark, Extract) with the following properties:

Setup: WMSetup(1λ) takes as input the security parameter and outputs a watermarking public parameter
wpp, a marking key wmk, and an extraction key wxk.

Mark: Mark(wpp, wmk, MSK, ω) takes as input wpp, wmk, the master secret key MSK ∈ MSK of
Σ, and a mark ω ∈ Mw and outputs a deterministic circuit C̃ : Q×Rmka → P . Note that C̃
explicitly takes the randomness of MSKAlg.

Extract: Extract(wpp, wxk, PP, C′) takes as input wpp, wxk, the public parameter PP ∈ PP of Σ, and
a circuit C′ : Q×Rmka → P and outputs a mark ω′ ∈ Mw or a special symbol unmarked.

Remark 3.6. We can separately treat watermarking schemes and cryptographic primitives in our definition
while in the definition of Goyal et al. [GKM+19], key generation algorithms of cryptographic primitives
need public parameters of watermarking. The separated definition is preferable and the same definition as
that of Cohen et al. [CHN+18].

Hereafter, we set wsk := wmk = wxk since we consider only two cases. One is the public
marking and extraction case (wmk = wxk = ⊥) and the other is the secret marking and extraction case
(wsk = wmk = wxk) in this paper.

Hereafter, we focus on advanced encryption (IBE, IPE, ABE, PE) rather than TBE and signature
for readability. We present variants for TBE and signature in Appendix B since it is easy to adapt the
definition below to the TBE and signature settings.

12

Definition 3.7 (Correctness (Advanced encryption)). Let WMΣ = (WMSetup, Mark, Extract) be a
watermarking scheme for advanced encryption scheme Σ = (Setup, KeyGen, Enc, Dec) with spaces
(T ,Q,P ,Rmka). In this case, T = AT T , Q = POL, P = SK, where AT T and POL is an
attribute and policy space, respectively. We say that WMΣ is correct if it satisfies the following.

Extraction correctness: For all (wpp, wsk)← WMSetup(1λ), all marks ω ∈ Mw,

Pr[Extract(wpp, wsk, PP, Mark(wpp, wsk, MSK, ω)) 6= ω | (PP, MSK)← Setup(1λ)] ≤ negl(λ).

Meaningfulness: There are two variants of meaningfulness.
Strong meaningfulness. For all fixed circuits C : POL×Rmka → SK,

Pr
[
Extract(wpp, wsk, PP, C) = unmarked

∣∣∣∣ (wpp, wsk)← WMSetup(1λ)
(PP, MSK)← Setup(1λ)

]
> 1−negl(λ).

Weak meaningfulness. For all (wpp, wsk)← WMSetup(1λ),

Pr[Extract(wpp, wsk, PP, KeyGen(MSK, ·)) = unmarked | (PP, MSK)← Setup(1λ)] > 1−negl(λ).

Functionality-preserving: For all (wpp, wsk) ← WMSetup(1λ), for all (PP, MSK) ← Setup(1λ),
all marks ω ∈ Mw, there exists PS ⊂ AT T such that N := |PS| ≤ poly(λ), for all
ρmka ∈ Rmka, all attributes x ∈ AT T \ PS and all policy P ∈ POL such that P(x) = >, we
have that

Pr[C̃(P, ρmka)
p
≈ KeyGen(MSK, P) | C̃ ← Mark(wpp, wsk, MSK, ω)] > 1− negl(λ).

Here, PS stands for a “punctured set” since C̃ does not work for policy P such that x ∈ PS and
P(x) = ⊥.

Condition P(x) = ⊥ means attribute x is not qualified to policy P.

In the IBE case, T = Q = ID (identity space), P = idi, x = id, and P(x) = ⊥ means idi 6= id.

Remark 3.8. Although our definition has a few differences from the standard functionality preserving in
the cryptographic watermarking context [CHN+18, KW17] on the surface, ours is basically the same as
the standard one. We select the definition above to emphasize that there exists a punctured set PS , and
the set is explicitly used in the security definition.

In addition, this functionality-preserving is stronger than that by Goyal et al. [GKM+19] since the
output distribution of marked circuits is perfectly the same as that of the original circuit on almost all
inputs.

Definition 3.9 (Selective-Mark ε-Unremovability for Advanced Encryption). For every PPT A, we
have

Pr[Expurmv-enc
A,WMΣ

(λ, ε) = 1] ≤ negl(λ),

where ε is a parameter of the scheme called the approximation factor and Expurmv-enc
A,WMΣ

(λ, ε) is the game
defined as follows.

1. The adversary A declares a target mark ω∗ ∈ Mw.

2. The challenger generates (PP, MSK) ← Setup(1λ), (wpp, wsk) ← WMSetup(1λ), and C̃ ←
Mark(wpp, wsk, MSK, ω∗), and gives (PP, wpp, C̃) to A. At this point, a set PS ⊂ T such that
|PS| = poly(λ) is uniquely determined by (wpp, wsk, PP, ω∗).

13

3. A has oracle access to the key generation oracle KO. If KO is queried with a policy P ∈ POL
such that P(t∗i) = ⊥ for all t∗i ∈ PS , then KO answers with KeyGen(MSK, P). Otherwise, it
answers ⊥. Condition P(x) = ⊥ means attribute x is not qualified to policy P.

4. A has oracle access to the marking oracleMO. IfMO is queried with a master secret key
MSK′ ∈ MSK and a mark ω′ ∈ Mw, then does the following. If the corresponding master public
parameterPP′ is equal toPP, then outputs⊥. Otherwise, answers withMark(wpp, wsk, MSK′, ω′).

5. A has oracle access to the extraction oracle XO. If XO is queried with a PP′ and circuit C′, then
XO answers with Extract(wpp, wsk, PP′, C′).

6. Finally,A outputs a circuitC∗. IfA is admissible (defined below) andExtract(wpp, wsk, PP, C∗) 6=
ω∗ then the experiment outputs 1, otherwise 0.

We say that A is ε-admissible if C∗ output by A in the experiment above satisfies

Pr
[
Valid-Out(PP, P, C∗(P, ρmka)) = >

∣∣∣∣ P← POL
ρmka ← Rmka

]
≥ ε.

See Definition 3.3 for Valid-Out.

The admissibility requires the adversary to output C∗ that agrees on an ε fraction of inputs with C.
This formalizes that C∗ should be similar to the original circuit C.

Remark 3.10. Our definition is the same as that of Goyal et al. [GKM+19] except for that

1. A must declare the target mark ω at the beginning of the game.

2. A does not receives answers for inputs in PS from the key generation oracle.

3. we do not consider collusion-resistance w.r.t. watermarking. That is, A is given only one target
circuit C̃.

4. we consider the oracles KO in the unremovability game while Goyal et al. do not.

5. we consider watermarking for master secret-keys. Thus, the admissible condition for advanced
encryption (i.e., beyond PKE or TBE) is in terms of Valid-Out.

Unforgeability. Wecan consider another security notion forwatermarking, called unforgeability [CHN+18,
BLW17, KW17], in the secret marking setting. Unforgeability says that adversaries cannot generate
a marked circuit with sufficiently different functionality from that of given marked circuits without a
marking key.

We do not formally define unforgeability in this work as Goyal et al. did not. However, we can achieve
unforgeability by embedding not only a mark but also a signature for the embedded mark and master
public key as Goyal et al. observed [GKM+19].15

On security against malicious authority. Our watermarkable public-key primitives are trivially secure
against authorities of watermarking schemes if the underlying public-key primitives are secure since
parameter generation algorithms PGen are independent of watermarking setup algorithms WMSetup.
Thus, we omit the definition of security against malicious authority.

15ePrint archive report 2019/628, Section 3.4 and C.4 (version 20190908).

14

4 All-But-One Reductions

In this section, we formalize a class of security reductions, called canonical all-but-one (ABO) reductions.
Canonical ABO reductions are often used to prove the hardness of breaking many cryptographic primitives.
A typical example is the security reduction of Boneh-Boyen IBE based on the decisional bilinear
Diffie-Hellman assumption [BB11].

4.1 Assumptions and Security Games

We need to define cryptographic assumptions and security games before we formalize canonical ABO
reductions. The types of reductions depend on whether security games and underlying cryptographic
assumptions are computational or decisional. Therefore, we consider two types of assumptions and
games. However, we focus on the decisional case in the main body for readability. See Appendix C for
the computational case.

Definition 4.1 (Decisional assumption). A decisional assumption DA for problem Π is formalized by a
game between the challenger E and the adversary A. The problem Π consists of an efficient problem
sampling algorithm PSampleb for b ∈ {0, 1}. The game ExptDA

Π,E↔A(λ, b) is formalized as follows.

• On input security parameter λ, E samples a problem instance πb ← PSampleb(1λ).

• E sends πb to A and may interact with A(1λ, πb).

• At some point, A outputs a guess coin∗ and the game outputs coin∗.

We say a decisional assumption holds (or problem Π is hard) if it holds

AdvDA
Π,E↔A(λ) := |Pr[ExptDA

Π,E↔A(λ, 0) = 1]− Pr[ExptDA
Π,E↔A(λ, 1) = 1]| ≤ negl(λ).

This definition captures the well-known DDH, DBDH, k-Lin, matrix-DDH, quadratic residuosity,
LWE, decisional q-type assumptions (and more). Note that the assumption above also captures interactive
oracle assumptions since A may interact with the challenger that plays the role of oracles. An example of
interactive oracle assumptions is Definition D.17.

Definition 4.2 (Selective Security Game (Decisional Case)).We define selective security games (deci-
sional case) between a challenger C and an adversary A for a master secret-key based scheme Σ with
spaces (T ,Q,P ,Rmka) associated with challenge spaceH, challenge answer space I , and admissible
condition Adml. (See Table 4 for concrete examples.) The admissible condition Adml outputs > or ⊥
depending on whether a query is allowed or not.

We define the experiment Expd-goal-atk
A,Σ (λ, coin) between an adversary A and a challenger as follows.

1. A submits a target t∗ ∈ T to the challenger.

2. The challenger runs (PP, MSK)← PGen(1λ), and gives PP to A.

3. A sends a query query ∈ Q to the challenger. If Adml(t∗, query) = >, the challenger sends an
answer answer← MSKAlg(MSK, query) to A. On the other hand, if Adml(t∗, query) = ⊥, the
challenger outputs ⊥. (A can send polynomially many queries.)

4. At some point,A sends a challenge challenge ∈ H to the challenger. The challenger generates a chal-
lenge answer c-ans∗ ∈ I by using (t∗, PP, challenge, coin) (denoted by Ca(t∗, PP, challenge, coin))
and sends c-ans∗ to A.

5. Again, A is allowed to query (polynomially many) query ∈ Q such that Adml(t∗, query) = >.

15

6. A outputs a guess coin∗ for coin. The experiment outputs coin∗.

We say that Σ is secure if for all A, it holds that

Advd-goal-atk
A,Σ (λ) := |Pr[Expd-goal-atk

A,Σ (λ, 0) = 1]− Pr[Expd-goal-atk
A,Σ (λ, 1) = 1]| ≤ negl(λ).

We say an adversary is successful if the advantage is non-negligible. We can consider the multi-
challenge case, where the targets are~t∗ ∈ T N instead of the single t∗.

A concrete example ofAdml(t∗, query) isAdml(t∗, query) = > if and only if t∗ 6= t where query = t
in the signature/TBE/IBE cases (t is a message/tag/identity).

Although we can consider a stronger variant, called adaptive security games, we consider only selective
security games since ABO reductions are basically applicable in the selective setting.

4.2 Abstraction of All-But-One Reductions for Decisional Case

Now, we are ready to define ABO reductions for the decisional case. We put red underlines on the parts
related to “canonical” parts.

First, we present a simplified definition that does not capture the TBE/KEM case for readability.

Definition 4.3 (Canonical All-But-OneReduction forDecisional Case (Simplified)). Let Σ be amaster
secret-key based scheme with (T ,Q,P ,Rmka) associated with challenge space H, challenge answer
space I , and admissible condition Adml. (See Table 4 for concrete examples.) A security reduction
algorithm R from Σ to a hard problem Π is a canonical all-but-one reduction (or Σ has a canonical
all-but-one reduction to Π) if it satisfies the following properties.

Oracle access: A has oracle access to OMSK : Q → P in the security game Expd-goal-atk
A,Σ . This

oracle receives a query query ∈ Q and does the following. If Adml(t∗, query) = >, where t∗ is
defined below, it sends an answer answer← MSKAlg(MSK, query) to A. On the other hand, if
Adml(t∗, query) = ⊥, it outputs ⊥.

Selective reduction: R simulates the security game Expd-goal-atk
A,Σ of Σ between the challenger C and

the adversary A to win the game ExptDA
Π,E↔R. That is, R plays the role of the challenger C in

Expd-goal-atk
A,Σ and that of the adversary in ExptDA

Π,E↔R.

1. A declares an arbitrary string t∗ ∈ T at the very begnning of the game and send t∗ to R.
(We can allow R to determine t∗ in some security games.)

2. R is given a problem instance π of the hard problem Π.
3. R simulates public parameters PP of Σ by using π and t∗ and sends PP to A.
4. R simulates an oracle OMSK of the security game of Σ when A sends oracle queries.

That is, when A sends a query query ∈ Q, R simulates the value OMSK(query) and
returns a simulated value answer ∈ P to A. If Adml(t∗, query) = ⊥, then R outputs ⊥.
At the oracle simulation phase, R never interacts with E .

5. At some point, A sends a challenge query challenge ∈ H to R.
6. R chooses coin← {0, 1} and simulates a challenge answer c-ans∗ ∈ I ofCa(PP, t∗, challenge, b)

by using (π, PP, t∗, challenge, coin). It sends c-ans∗ to A. R is allowed to interact with E at
this phase.

7. We can allow A to send queries to OMSK again. At some point, A outputs coin∗.
8. Finally, R outputs a bit sol := 0 if coin = coin∗. Otherwise (coin 6= coin∗), outputs sol := 1.

16

R consists of three algorithms (PSim, OSim, CSim) introduced below.

All-but-one oracle simulation: R can perfectly simulate the public parameter of Σ and the oracleOMSK.
That is, there exist parameter and oracle simulation algorithms PSim and OSim such that for
all (PP, MSK) ← PGen(1λ), b ∈ {0, 1}, π ← PSampleb(1λ), t∗ ∈ T , and query ∈ Q where
Adml(t∗, query) = >, it holds that

PSim(π, t∗; ρ)
p
≈ PP,

OSim(π, ρ, t∗, query)
p
≈ OMSK(query),

where ρ is the randomness of PSim. Note that a query query such that Adml(t∗, query) = ⊥ is not
allowed in the selective security game of Σ. In particular, OSim

• is described as a stateless randomized algorithm.
• does not have any oracle access.

Challenge simulation Let ρ be the randomness used by PSim. R does all the steps from (1) to (5) in the
selective reduction above and can simulate the challenge answer for the challenge query from A.
That is, there exists a challenge simulation algorithm CSim such that in the selective game above, if
π0 ← PSample0(1λ), then R perfectly simulates Expd-goal-atk

A,Σ (λ, coin) and it holds that

CSim(π0, ρ, t∗, challenge, coin)
p
≈ Ca(PP, t∗, challenge, coin).

In addition, if π1 ← PSample1(1λ), then the output of CSim(π1, ρ, t∗, challenge, coin) is a valid
challenge answer, but independent of coin and

Pr[coin = coin∗] = 1
2

.

This property immediately implies

AdvDA
Π,E↔R(λ) ≥

1
2

Advd-goal-atk
A,Σ (λ).

See Corollary 4.4 for the proof. (Recall that R outputs sol := 0 if coin = coin∗, otherwise sol := 1.)

Answer checkability: There exists an efficient validity check algorithm Valid for Q such that for all
(PP, MSK)← PGen(1λ), query← Q, answer← OMSK(query),

Pr[Valid(PP, query, answer) = >] = 1− negl(λ).

On the other hand, for all b ∈ {0, 1}, π ← PSampleb(1λ), t∗ ∈ T , PP← PSim(π, t∗; ρ), query
such that Adml(t∗, query) = ⊥,

Pr[Valid(PP, query, OSim(π, ρ, t∗, query)) = >] ≤ negl(λ).

Attack substitution: R can solve a problem π if we have a valid answer answer∗ ∈ P for query∗ ∈ Q
such that Adml(t∗, query∗) = ⊥ (i.e., inadmissible query) instead of a successful adversary A in
the selective reduction. That is, there exists an efficient algorithm Solve such that for all b ∈ {0, 1},
π ← PSampleb(1λ), t∗ ∈ T , query∗ ∈ Q, answer∗ ∈ P such thatValid(PP, query∗, answer∗) =
> and Adml(t∗, query∗) = ⊥, we have that Solve(π, ρ, t∗, query∗, answer∗) outputs sol for π and

AdvDA
Π,E↔R(λ) > negl(λ),

where ρ is the randomnesses to sample PP in the selective reduction.

17

Problem instance simulation: We can perfectly simulate a problem instance and randomness used to
generate PP in PSim if we have a master secret key of Σ. That is, there exists an efficient algorithm
MSKtoP such that for all (PP, MSK) ← PGen(1λ), π ← PSample0(1λ), all ρ ← RPSim, and
all t∗ ∈ T ,

(π′, ρ′, PP)
p
≈ (π, ρ, PP′),

where (π′, ρ′)← MSKtoP(1λ, MSK, t∗), PP′ = PSim(π, t∗; ρ), ρ′ is a randomness to simulate
PP via PSim, andRPSim is the randomness space of PSim. We can relax this condition to statistical
indistinguishability for uniformly random t∗ (instead of all t∗ ∈ T).

Corollary 4.4. In the selective reduction in Definition 4.5, it holds that

AdvDA
Π,E↔R(λ) ≥

1
2

Advd-goal-atk
A,Σ (λ).

Proof. If R is given π0 ← PSample0(1λ), then R perfectly simulates Expd-goal-atk
A,Σ (λ, coin). Therefore,

it holds

Pr[ExptDA
Π,E↔R(λ, 0) = 0] = Pr[coin = 0]Pr[Expd-goal-atk

A,Σ (λ, 0) = 0 | coin = 0]

+ Pr[coin = 1]Pr[Expd-goal-atk
A,Σ (λ, 1) = 1 | coin = 1]

=
1
2

Pr[Expd-goal-atk
A,Σ (λ, 0) = 0] +

1
2

Pr[Expd-goal-atk
A,Σ (λ, 1) = 1].

On the other hands, if R is given π1 ← PSample1(1λ), then all A can do is random guessing. Therefore,
it holds

Pr[ExptDA
Π,E↔R(λ, 1) = 0] =

1
2

.

We obtain the inequality by simple probability calculation.

On canonical property. As we can see in concrete examples (not only) in Sections 4.3 and 4.5
and Appendices D and D.2 (but also in many works), well-known selectively secure schemes have
canonical ABO reductions. If a scheme has a reduction that must interact with the challenger in an
assumption to simulate OMSK, then the reduction is not canonical. Interestingly, even if a reduction is
allowed to interact with the challenger, the reduction could be canonical as long as the reduction does
not need the interaction for simulating OMSK. More specifically, a canonical reduction is allowed to
interact with the challenger in the assumption to simulate a challenge answer. We present such an example
in Example D.15.

Next, we give the general definition of canonical ABO reductions that also captures the TBE/KEM
case. It is almost the same as Definition 4.3. However, we need to consider fine-grained query spaces and
more general validity check algorithms to take honestly generated ciphertexts into account.

Definition 4.5 (Canonical All-But-One Reduction for Decisional Case). Let Σ be a master secret-
key based scheme with (T ,Q,P ,Rmka) associated with sub-query space Qt, aux-query space Qaux,
challenge spaceH, challenge answer space I , and admissible condition Adml.

This definition is the same as Definition 4.3 except the following three properties.

Oracle access: A has oracle access toOMSK : Qt×Qaux → P in the security game Expd-goal-atk
A,Σ . This

oracle receives a query (str, query) ∈ Qt×Qaux and does the following. IfAdml(t∗, (str, query)) =
>, it sends an answer answer← MSKAlg(MSK, query) toA. On the other hand, ifAdml(t∗, (str, query)) =
⊥, it outputs ⊥. We also set Q := Qt ×Qaux.

18

Answer checkability: First, there exists an efficient sampling algorithm SampQaux
(1λ; ρq) that samples

an element in Qaux ⊂ Qaux. Next, there exists an efficient validity check algorithm Valid for
Qaux such that for all (PP, MSK) ← PGen(1λ), query = (str, query) where str ← Qt and
query← SampQaux

(1λ; ρq), answer← OMSK(query),

Pr[Valid(PP, query, ρq, answer) = >] = 1− negl(λ).

On the other hand, for all b ∈ {0, 1}, π ← PSampleb(1λ), t∗ ∈ T , PP ← PSim(π, t∗; ρ),
query = (str, query) such that Adml(t∗, query) = ⊥ where query← SampQaux

(1λ; ρq),

Pr[Valid(PP, query, ρq, OSim(π, ρ, t∗, query)) = >] ≤ negl(λ).

Attack substitution: R can solve a problem π if we have a valid answer answer∗ ∈ P for query∗ =
(str∗, query) ∈ Qt ×Qaux such that Adml(t∗, query∗) = ⊥ (i.e., inadmissible query) instead of a
successful adversary A in the selective reduction. That is, there exists an efficient algorithm Solve
such that for all b ∈ {0, 1}, π ← PSampleb(1λ), t∗ ∈ T , query∗ = (str∗, query) ∈ Qt ×Qaux
where query ← SampQaux

(1λ; ρq), answer∗ ∈ P such that Valid(PP, query∗, ρq, answer∗) = >
and Adml(t∗, query∗) = ⊥, we have that Solve(π, ρ, t∗, query∗, ρq, answer∗) outputs sol for π
and

AdvDA
Π,E↔R(λ) > negl(λ),

where ρ is the randomnesses to sample PP in the selective reduction.

Table 4 shows concrete example of spaces and oracles for various cryptographic primitives.

Table 4: Concrete sets, oracle, and admissible condition of ABO reductions for encryption.

ABO reduction tag-based PKE IBE KP-ABE

T tag space T AG identity space ID attribute space AT T
Qt tag space T AG identity space ID policy space POL
Qaux ciphertext space CT ∅ ∅
Qaux valid ciphertext space ∅ ∅
P plaintext space PT ∪ {⊥} secret key space SK secret key space SK
H plaintext space PT 2 plaintext space PT 2 plaintext space PT 2

I T AG × CT CT CT
OMSK dec oracle Dec(dk, ·) key oracle KeyGen(MSK, ·) key oracle KeyGen(MSK, ·)
Adml(·, ·) = > t∗ 6= t t∗ 6= id P(t∗) = ⊥

On validity check algorithm. The validity check algorithm in Definition 4.5 verifies that a value in P
is a correct value for input query = (str, query) ∈ Qt ×Qaux. Let ρq = (m, ρct) be the randomness to
sample query, ρmka ← Rmka, answer = C(query, ρmka). Then, Valid is described as follows.

Valid(PP, query, ρq, answer) :=

{
Valid-Out(PP, str, C(str, ρmka)) SIG/IBE/ABE
C(Enc(PP, m, str; ρct), str) ?

= m TBE

where in the case of SIG/IBE/ABE, query = ⊥ and ρq = ⊥, and in the case of TBE query =
Enc(PP, m, str; ρct), ρq = (m, ρct), m ∈ PT , and ρct is the randomness for Enc.

19

4.3 Concrete Examples

First, we list the references of well-known schemes that fall into the class of canonical ABO reduc-
tions [BMW05, BB11, SW05, Kil06, GPSW06a, BH08, CHKP12, AL10, ABV+12, Wat11, AFV11,
KP13, GVW15a, BGG+14, GVW15b]. Note that this is not the exhaustive list.

Next, we present concrete examples by picking up well-known selectively secure schemes. We often
omit parameters if it is clear from the context.

Example 4.6 (Boneh-Boyen IBE). The Boneh-Boyen IBE scheme BB consists of the following algorithms.

Setup(1λ) :

• Generate params := (p, G, GT, e, G)← Gbmp(1λ).
• Choose x, y← Zp and h← Zp and set G1 := Gx, G2 := Gy, H := Gh.
• Output MPK := (params, G, G1, G2, H) and MSK := (MPK, x, y, h).

KeyGen(MSK, id) :

• For id ∈ Zp, choose r ← Zp and output SKid := (Gx
2 (G

id
1 · H)r, Gr).

Enc(MPK, m) :

• For M ∈ GT, choose s← Zp and output CT := (e(G1, G2)s ·M, Gs, (Gid
1 · H)s).

Dec(SKid, CT) :

• Parse skid = (D1, D2) and CT = (C0, C1, C2), output C0 · e(C2, D2) · e(C1, D1)
−1.

The reduction algorithm R of BB IBE scheme consists of three algorithms (PSim, OSim, CSim).
Below, we let π := (G, Gx, Gy, Gz, T), t∗ := id∗, query := idi, query := ⊥, ρq := ⊥, challenge :=
(M0, M1), be a DBDH instance, the target identity, a query to the key generation oracle, a sub-query, the
randomness to sample query ∈ Qaux, the challenge messages, respectively.

PSim(π, t∗): This algorithm is given a DBDH instance π and a target identity t∗ = id∗ and simulate
MPK. It chooses β ← Zp, sets G1 := Gx, G2 := Gy, and H := G−id∗

1 · Gβ, and outputs
MPK := (G, G1, G2, H). The randomness ρ of this algorithm is ρ := β

OSim(π, ρ, t∗, query): This algorithms simulate secret keys for identity query = idi ∈ Zp such that
idi 6= id∗ = t∗. It parses ρ = β, chooses r ← Zp and outputs SKidi = (D1, D2) where

D1 := G
−β

idi−id∗

2 (Gidi
1 H)r, D2 := G

−1
idi−id∗

2 Gr.

The randomness ρo of this algorithm is ρo = r.

CSim(π, ρ, t∗, challenge, coin): This algorithms simulate a challenge ciphertext for challenge = (M0, M1)
under identity t∗ = id∗. It parses ρ = β and outputs

CT∗ := (Mcoin · T, Gz, (Gz)β).

The auxiliaryABO reduction algorithms ofBB IBE scheme consists of three algorithms (Valid, Solve, MSKtoP).

Valid(MPK, query, ρq, answer): This algorithm parses MPK = (G, G1, G2, H), query = (id,⊥), ρq =
⊥, and answer = (D1, D2) (this is secret key SKid for identity id) and checks

e(G, D1) = e(G1, G2) · e(Gid
1 H, D2). (1)

If it holds, then output >. Otherwise, outputs ⊥.

20

Solve(π, ρ, t∗, query∗, ρq, answer∗): First, this algorithm parses id∗ = t∗, query∗ = (id∗,⊥), ρ = β,
and ρq = ⊥. It chooses M0, M1 and coin← {0, 1} and computes

CT∗ := (Mcoin · T, Gz, (Gz)β).

(this is the same as the output of CSim(π, ρ, t∗, challenge, coin)). Then, it parses answer∗ =
(Gx

2 (G
id∗
1 H)r, Gr) and decrypts CT∗ by using (Gx

2 (G
id∗
1 H)r, Gr). If it obtains Mcoin, then outputs

0, otherwise 1.

MSKtoP(1λ, MSK, t∗): First, this algorithms parses MSK = (MPK, x, y, h), chooses z ← Zp, and
computes β := x · id∗ + h. Then, it outputs π := (G, Gx, Gy, Gz, e(G, G)xyz) and ρ′ := β =
x · id∗ + h.

Theorem 4.7. Boneh-Boyen IBE scheme has a canocanil ABO reduction to the DBDH problem.

It is easy to see this theorem holds, but we give a proof for confirmation. We omit proofs for other
examples of canonical ABO or ABN reductions.

Proof. We prove each properties of canonical ABO reductions.
Oracle access: By definition of IBE,A is given an oracle access to KeyGen(MSK, ·). The admissible

condition is defined as follows: Adml(id∗, idi) = > if and only if id∗ 6= idi.
Selective reduction: This immediately follows by definition. It is easy to see that the reduction

has the canonical property (adversaries never interact with the challenger of the DBDH problem) since
adversaries do not have any oracle access in the DBDH problem.

All-but-one oracle simulation: The real distribution ofMPK is (G, Gx, Gy, Gh)where x, y, h← Zp.
The simulated distribution of MPK is (G, Gx, Gy, G−id∗x+β) where x, y, β ← Zp. For any id∗, these
distributions are perfectly indistinguishable (PSim(π, id∗; β)

p
≈ MPK) since x, h, β are uniformly random.

OSim(π, β, id∗, idi) outputs D1 = Gx
2 (G

idi
1 · H)

r− y
idi−id∗ and D2 = Gr− y

idi−id∗ by simple calcu-
lation. For any idi, id∗, r − y

idi−id∗ is uniformly random since y, r are uniformly random. Thus,

OSim(π, β, id∗, idi)
p
≈ KeyGen(MSK, idi). In particular, OSim is a stateless randomized algorithm and

does not have any oracle access.
Challenge simulation: CSim(π, β, id∗, (M0, M1), coin) outputs (Mcoin · T, Gz, (Gid∗

1 · H)z) since
Gid∗

1 · H = Gβ. If T = e(G, G)xyz, T = e(G1, G2)z and CSim(π, β, id∗, (M0, M1), coin)
p
≈

Enc(MPK, id∗, Mcoin) since z is uniformly random. If T ← GT, the information about coin is perfectly
hidden and what adversaries can do is random guessing.

Answer checkability: The algorithm Valid outputs > if and only if answer ← KeyGen(MSK, id).
For any G1, D2 ∈ G, there exists α, r ∈ Zp such that G1 = Gα and D2 = Gr. Then, the RHS
of Equation (1) is

e(G, Gα
2) · e((Gid

1 H)r, G) = e(G, Gα
2 (G

id
1 H)r).

This is equal to the LHS of Equation (1). By the property of e(·, ·), it holds that D1 = Gα
2 (G

id
1 H)r.

Therefore, (D1, D2) is a valid key if Equation (1) holds. The other direction is trivial.
On the other hand, OSim(π, β, id∗, id∗) (Adml(id∗, id∗) = ⊥) cannot output a valid output since

1
id∗−id∗ is not defined.

Attack substitution: If T = e(G, G)xyz, CT∗ = (Mcoin · e(G1, G2)z, Gz, (Gid∗
1 · H)z) as we

observed in the challenge simulation property. When Solve is given answer∗ = (Gx
2 (G

id∗
1 H)r, Gr), it

obtains Mcoin by computing e(Gz, Gx
2 (G

id∗
1 H)r)/e((Gid∗

1 H)z, Gr). On the other hand, if T ← GT,
Solve obtains a random element, which is different from Mcoin except negligible probability. Thus, the
reduction can solve π.

21

Problem instance simulation: The distribution by MSKtoP is (G, Gx, Gy, Gz, e(G, G)xyz, x · id∗ +
h) where x, y, z, h← Zp. On the other hand, when π ← PSample0(1λ), the real problem instance and
randomness for simulating MPK are (G, Gx, Gy, Gz, e(G, G)xyz, β), where x, y, z, β← Zp. These two
distributions are perfectly indistinguishable even if MPK is given since x, h, β are uniformly random and
MPK = (params, G, G1, G2, H).

We have many examples of canonical ABO reduction, as we list at the beginning of this subsection.
See Appendix D.1 for concrete descriptions of Kiltz tag-based encryption [Kil06], Boneh-Boyen
signature [BB11], Boyen-Mei-Waters KEM [BMW05], Agrawal-Boneh-Boyen IBE [ABB10], and ABE
by Goyal et al. [GPSW06a].

4.4 All-But-N Reductions

We can extend canonical ABO reductions to canonical all-but-N (ABN) reductions. Here, N is an a-priori
bounded/unbounded polynomial of the security parameter. Roughly speaking, a canonical ABN reduction
punctures N points~t∗ = (t∗1 , . . . , t∗N) ∈ T N in a master secret-key based algorithm MSKAlg instead of a
single point t∗.

Definition 4.8 (Canonical All-But-N Reduction for Decisional Case). Let Σ be a master secret-key
based scheme for (T ,Q,P ,Rmka) associated with a sub-query space Qt, aux-query space Qaux,
challenge spaceH, challenge answer space I , and admissible condition Adml. (See Table 4 for concrete
examples.) A security reduction algorithm R from Σ to a hard problem Π is a canonical all-but-N
reduction (or Σ has a canonical all-but-N reduction to Π) if it satisfies the following properties.

Oracle access: A has oracle access to OMSK : Qt ×Qaux → P in the security game Expd-goal-atk
A,Σ . We

also set Q := Qt ×Qaux. In some security games, we possibly set Qaux := ∅ or Qt := ∅.

Selective reduction: R simulates the security game Expd-goal-atk
A,Σ of Σ between the challenger C and

the adversary A to win the game ExptDA
Π,E↔R. That is, R plays the role of the challenger C in

Expd-goal-atk
A,Σ and that of the adversary in ExptDA

Π,E↔R.

1. A declares arbitrary strings~t∗ ∈ T N at the very beginning of the game and send~t∗ to R.
(We can allow R to determine~t∗ in some security games.)

2. R is given a problem instance π of the hard problem Π.
3. R simulates public parameters PP of Σ by using π and~t∗ and sends PP to A.
4. R simulates an oracle OMSK of the security game of Σ when A sends oracle queries. That

is, when A sends a query query ∈ Q, R simulates the value OMSK(query) and returns a
simulated value answer ∈ P toA. If Adml(t∗i , query) = ⊥ for some i ∈ [N], then R outputs
⊥. At the oracle simulation phase, R never interacts with E .

5. At some point, A sends a challenge query ~challenge ∈ HN to R.
6. R chooses coin← {0, 1} and simulates challenge answers c-ans∗i ∈ I ofC(PP, t∗i , challengei, coin)

for all i ∈ [N] by using (π, PP,~t∗, ~challenge, coin). It sends ~c-ans∗ to A. R is allowed to
interact with E at this phase.

7. We can allow A to send queries to OMSK again. At some point, A outputs coin∗.
8. Finally, R outputs a bit sol := 0 if coin = coin∗. Otherwise (coin 6= coin∗), outputs sol := 1.

R consists of three algorithms (PSim, OSim, CSim) introduced below.

22

All-but-N oracle simulation: R can perfectly simulate the public parameter of Σ and the oracle OMSK.
That is, there exists parameter and oracle simulation algorithms PSim and OSim such that for
all (PP, MSK)← PGen(1λ), b ∈ {0, 1}, π ← PSampleb(1λ),~t∗ ∈ T N , and query ∈ Q where
Adml(t∗i , query) = > for all i ∈ [N],

PSim(π,~t∗; ρ)
p
≈ PP,

OSim(π, ρ,~t∗, query)
p
≈ OMSK(query),

where ρ is the randomness of PSim. Note that a query query such that Adml(t∗i , query) = ⊥ for
some i ∈ [N] is not allowed in the selective security game of Σ. In particular, OSim

• is described as a stateless randomized algorithm.
• does not have any oracle access.

Challenge simulation: Let ρ be the randomness used by PSim. R does all the steps from (1) to (5) in the
selective reduction above and can simulate the challenge answer for the challenge query from A.
That is, there exists a challenge simulation algorithm CSim such that in the selective game above,
if π0 ← PSample0(1λ), then R perfectly simulates Expd-goal-atk

A,Σ (λ, coin) and it holds that for all
i ∈ [N]

CSim(π0, ρ, t∗i , challengei, coin)
p
≈ Ca(PP, t∗i , challengei, coin).

In addition, ifπ1 ← PSample1(1λ), then for all i ∈ [N], the output ofCSim(π1, ρ, t∗i , challengei, coin)
is a valid challenge answer, but independent of coin and

Pr[coin = coin∗] = 1
2

for all i ∈ [N]. This property immediately implies

AdvDA
Π,E↔R(λ) ≥

1
2

Advd-goal-atk
A,Σ (λ).

See Corollary 4.4 for the proof. (Recall that R outputs sol := 0 if coin = coin∗, otherwise sol := 1.)

Answer checkability: First, there exists an efficient sampling algorithm SampQaux
(1λ; ρq) that samples

an element in Qaux ⊂ Qaux. Next, there exists an efficient validity check algorithm Valid for
Qaux such that for all (PP, MSK) ← PGen(1λ), query = (str, query) where str ← Qt and
query← SampQaux

(1λ; ρq), answer← OMSK(query),

Pr[Valid(PP, query, ρq, answer) = >] = 1− negl(λ).

On the other hand, for all b ∈ {0, 1}, π ← PSampleb(1λ), ~t∗ ∈ T N , PP ← PSim(π,~t∗; ρ),
query = (str, query) such that Adml(t∗i , query) = ⊥ for some i ∈ [N] where query ←
SampQaux

(1λ; ρq),

Pr[Valid(PP, query, ρq, OSim(π, ρ,~t∗, query)) = >] ≤ negl(λ).

Attack substitution: R can solve a problem π if we have a valid answer answer∗ ∈ P for query∗ =
(str∗, query) ∈ Qt ×Qaux such that Adml(t∗, query∗) = ⊥ (i.e., inadmissible query) instead of a
successful adversary A in the selective reduction. That is, there exists an efficient algorithm Solve
such that for all b ∈ {0, 1}, π ← PSampleb(1λ),~t∗ ∈ T N , query∗ = (str∗, query) ∈ Qt×Qaux

23

where query ← SampQaux
(1λ; ρq), answer∗ ∈ P such that Valid(PP, query∗, ρq, answer∗) = >

and Adml(t∗i , query∗) = ⊥ for some i ∈ [N], we have that Solve(π, ρ,~t∗, query∗, ρq, answer∗)
outputs sol for π and

AdvDA
Π,E↔R(λ) > negl(λ),

where ρ is the randomnesses to sample PP in the selective reduction.

Problem instance simulation: We can perfectly simulate a problem instance and randomness used to
generate PP in PSim if we have a master secret key of Σ. That is, there exists an efficient algorithm
MSKtoP such that for all (PP, MSK) ← PGen(1λ), π ← PSample0(1λ), all ρ ← RPSim, and
all~t∗ ∈ T N ,

(π′, ρ′, PP)
p
≈ (π, ρ, PP′),

where (π′, ρ′)← MSKtoP(1λ, MSK,~t∗), PP′ = PSim(π,~t∗; ρ), ρ′ is a randomness to simulate
PP via PSim, andRPSim is the randomness space of PSim. We can relax this condition to statistical
indistinguishability for uniformly random~t∗ (instead of all~t∗ ∈ T N).

4.5 Concrete Examples of canonical ABN Reductions

We present examples of cryptographic schemes that have canonical ABN reductions. We can achieve
canonical ABN reductions by using (weak) programmable hash functions [HK12, HJK11]. See Ap-
pendix A.4 for the detail of (weak) programmable hash functions (PHF). We can obtain the modified
Boneh-Boyen IBE scheme, which has a canonical all-but-N reduction by using a weak programmable
hash function.

Example 4.9 (ModifiedBoneh-Boyen). WeuseHw(X) := ∏n
i=0 HXi

i where the hash key is (H0, H1, . . . , HN)
instead of the Boneh-Boyen hash function HBB(X) := GX

1 H where the hash key is (G1, H). The hash
function ∏n

i=0 HXi

i is a weak (N, 1, 0, 1)-PHF (See Definition A.19 for the definition of (N, 1, 0, 1)-PHF).

Setup(1λ) :

• Generate params := (p, G, GT, e, G)← Gbmp(1λ).
• Choose x, y← Zp, (h0, . . . , hN)← ZN+1

p and set Hi := Ghi , G2 := Gy.
• Output MPK := (params, G, Gx, G2, H0, . . . , HN) and MSK := (MPK, x, y, h0, . . . , hN).

KeyGen(MSK, id) :

• For id ∈ Zp, choose r ← Zp and output SKid := (Gx
2 (∏

N
i=0 Hidi

i)r, Gr).

Enc(MPK, M) :

• For M ∈ GT, choose s← Zp and output CT := (e(Gx, G2)s ·M, Gs, (∏N
i=0 Hidi

i)s).

Dec(SKid, CT) :

• Parse SKid = (D1, D2) and CT = (C0, C1, C2), output C0 · e(C2, D2) · e(C1, D1)
−1.

The reduction algorithm R of BB IBE scheme consists of three algorithms (PSim, OSim, CSim).

PSim(π,~t∗): This algorithm is given a DBDH instance π = (G, Gx, Gy, Gz, T) and target identities
~t∗ = ~id∗ = (id∗1 , . . . , id∗N), and simulates MPK. It chooses id∗0 ← Zp and (β0, . . . , βN)← ZN+1

p ,
and computes (α0, . . . , αN) such that∑N

i=0 αi · ti = ∏N
i=0(t− id∗i) ∈ Zp[t]. Then, it sets G1 := Gx,

G2 := Gy, and Hi := Gαi
1 · Gβi , and outputs MPK := (G, Gx, G2, H0, . . . , HN). The randomness

ρ of this algorithm is ρ := (α0, {αi}i∈[N], β0, {βi}i∈[N]). It holds that ∏N
i=0 Hidi

i = Gα(id)
1 · Gβ(id)

where α(t) := ∑N
i=0 αiti and β(t) := ∑N

i=0 βiti by the definition.

24

OSim(π, ρ,~t∗, query): This algorithm simulates decryption keys for identity idi ∈ Zp such that idi /∈ ~id∗.
It parses query = (idi,⊥) and ρ = ({αi}i∈[N], {βi}i∈[N]), chooses r ← Zp and outputs
SKidi = (D1, D2) where

D1 := G
−β(idi)
α(idi)

2 (Gα(idi)
1 Gβ(idi))r, D2 := G

−1
α(idi)

2 Gr.

The randomness ρo of this algorithm is ρo = r.

CSim(π, ρ, t∗i , challengei, coin): This algorithms simulate a challenge ciphertext for identity id∗i ∈
~id∗ = ~t∗. It parses t∗i = id∗i , challengei = (M0, M1) and ρ = ({αi}i∈[N], {βi}i∈[N]), chooses
γi, δi ← Zp and outputs

CT∗i := (Mcoin · Tγi · e(Gx, Gy)δi , (Gz)γi · Gδi , ((Gz)γi · Gδi)β(id∗i))

for all i ∈ [N]. Note that si := zγi + δi plays the role of encryption randomness.

The auxiliaryABO reduction algorithms ofBB IBE scheme consists of three algorithms (Valid, Solve, MSKtoP).

Valid(MPK, query, ρq, answer): This algorithm parses MPK = (G, Gx, G2, H0, . . . , HN), query =
(id,⊥), ρq = ⊥, and answer = SKid = (D1, D2) and checks

e(G, D1) = e(Gx, G2) · e(
N

∏
i=0

Hidi

i , D2).

If it holds, then the algorithm outputs >. Otherwise, it outputs ⊥. The algorithm outputs > if and
only if answer← KeyGen(MSK, id). The proof is similar to that of Example 4.6, so we omit.

Solve(π, ρ, t∗i , query∗, ρq, answer∗): First, this algorithm parses t∗i = id∗i , query∗ = (id∗,⊥), ρ =
({αi}i∈[N], {βi}i∈[N]), and ρq = ⊥. It chooses M0, M1, coin ← {0, 1}, and γi, δi ← Zp and
computes

CT∗ := (Mcoin · Tγi · e(Gx, Gy)δi , (Gz)γi · Gδi , ((Gz)γi · Gδi)β(id∗i))

(this is the same as the output of CSim(π, ρ, t∗i , challengei, coin) for id∗i). Then, it decrypts CT∗
by using answer∗ = SKid∗i = (D∗1 , D∗2) (secret key for id∗i). If it obtains Mcoin, then outputs 0,
otherwise 1.

MSKtoP(1λ, MSK,~t∗): First, this algorithms parses MSK = (MPK, x, y, {hi}i∈[N]) and ~t∗ = ~id∗,
chooses z ← Zp, and computes αi such that ∑N

i=0 αi · ti = ∏N
i=0(t− id∗i) ∈ Zp[t] and βi :=

hi − xαi. Then, it outputs π := (G, Gx, Gy, Gz, e(G, G)xyz) and ρ′ := ({αi}i∈[N], {βi}i∈[N]).

Using the weak PHF instead of Boneh-Boyen hash, we have a few examples of canonical ABN
reduction, such as modified Kiltz tag-based encryption [Kil06]. In addition, we can show that the original
Boneh-Boyen IBE has a canonical ABN reduction by using a dynamic q-type assumption as Attrapadung,
Hanaoka, and Yamada [AHY15] proved. Regarding lattice-based cryptography, we can achieve a
canonical ABN reduction by using the fully key-homomorphic technique by Boneh et al. [BGG+14].
See Appendix D.2 for more examples.

We do not know how to achieve (canonical) ABN reductions for advanced cryptography beyond IBE,
that is, ABE, IPE, and PE. The issue is that associated values in key generation and encryption algorithms
are asymmetric in ABE, IPE, and PE. Those values in IBE are symmetric since they are identities, and the
predicate is equality.

25

5 Message-Less Watermarking via Canonical ABO-reductions

In this section, we present a message-less watermarking scheme from all-but-one reductions. We focus on
using canonical ABO reductions for the decisional case. It is easy to adapt that for the computational case,
so we omit it. Note that we use the general definition of canonical ABO reductions (for the decisional
case) in Definition 4.5.

First, we present our watermarking scheme WMΣ = (WMSetup, Mark, Extract) for Σ. Let MSK be
a master secret-key generated by the setup algorithm of Σ. WMΣ is a public mark and public extraction
scheme. Thus, we do not need watermarking secret-key wsk. Σ has the simulation algorithms defined
in Definition 4.5.

WMSetup(1λ):

• Choose t∗ ← T and output wpp := t∗.

Mark(wpp, MSK):

• Read MSK and generate (π′, ρ′)← MSKtoP(1λ, MSK, t∗).
• Generate a circuit f̃Σ[π

′, ρ′, t∗] described in Figure 3.

Extract(wpp, PP, C′):

• Choose P ← Qt and query ← SampQaux
(1λ; ρq) such that Adml(t∗, query) = > where

query := (P, query).
• Sample ρo ← Rmka and compute answer ← C′(query, ρo).

• Check Valid(PP, query, ρq, answer) ?
= >. If the equation holds, then output unmarked.

Otherwise, marked.

Marked master secret-key f̃Σ[π
′, ρ′, t∗]

Hardwired: π′, ρ′, t∗.
Input: An input query ∈ Q to MSKAlg and randomness ρo ∈ Rmka.
Procedure: Compute and output answer← OSim(π′, ρ′, t∗, query; ρo).

Figure 3: The description of f̃Σ

Remark 5.1. Even a useless circuit that outputs ⊥ for all inputs is marked in the watermarking scheme
above since Valid(PP, query, ρq,⊥) = ⊥ for any PP, query, and ρq. To prevent this trivial watermarking,
we need to check whether a circuit is similar to a master secret-key based algorithm whose corresponding
master public parameter is PP. Although we omit this checking procedure for simplicity here (our final
goal is achieving message-embedding schemes), we present test algorithms for this check in Section 6.

Theorem 5.2. Let Σ be amaster secret-key based scheme with (T ,Q,P ,Rmka) associated with sub-query
spaceQt, aux-query spaceQaux, challenge spaceH, challenge answer space I , and admissible condition
Adml. If Σ has a canonical all-but-one reduction to a hard problem Π, then there exists a message-less
watermarking scheme WMΣ for master secret-keys of Σ and WMΣ satisfies Definition 3.9 with parameter
ε = 1/poly(λ) under the assumption that Π is hard.

The intuition of security is that adversaries cannot recover the functionality of MSKAlg(MSK, ·) for
input t∗ from the oracle simulation algorithm OSim since OSim is punctured at t∗ as in Definition 4.5
(also explained in Section 1.3).

26

Proof of Theorem 5.2. From Lemmata 5.3 and 5.4, Theorem 5.2 holds.

Lemma 5.3 (Correctness). If Σ has a canonical all-but-one reduction to Π, thenWMΣ satisfies extraction
correctness, weak meaningfulness, and relaxed functionality-preserving properties.

Proof of Lemma 5.3. All properties hold due to the properties of canonical ABO reductions.

• By the answer checkability property of the canonical ABO reduction, the extraction correctness
holds. This is because a marked circuit described in Figure 3 is implemented by the oracle
simulation algorithm OSim of the canonical ABO reduction and OSim does not output a valid
answer for the target t∗ (this is the punctured point).

• By the answer checkability property of the canonical ABO reduction, the weak meaningfulness
holds since the original MSKAlg(MSK, ·) works for all query = (str, query) ∈ Qt ×Qaux and
Valid outputs >.

• By the answer checkability property, all-but-one oracle simulation of the ABO reduction, and
problem instance simulation properties, the relaxed functionality-preserving property holds.

Thus, the lemma follows.

Lemma 5.4 (Unremovability). If Π is a hard problem and Σ has a canonical all-but-one reduction to Π,
then WMΣ satisfies ε-unremovability for ε = 1/poly(λ).

Proof of Lemma 5.4. We construct an algorithm B that breaks the hardness of problem Π by using the
adversaryW of non-removability for WMΣ. B can use algorithms PSim, OSim, CSim, and Valid defined
in Section 4 since Σ has a canonical all-but-one reduction to Π. Below, we prove for the decisional case,
but it is easy to adapt it to the computational case. B proceeds as follows.

1. B is given a problem instance π ← PSampleb(1λ) (b ∈ {0, 1}).

2. B chooses t∗ ← T and set PS := {t∗}.

3. B computes PP ← PSim(π, t∗; ρ) and Ĉ := f̃Σ[π, ρ, t∗] by using OSim, sets wpp := t∗, and
sends (wpp, PP, Ĉ) toW . We explicitly write the randomness ρ of PSim since we use it below.
Although B does not have MSK, it can compute f̃Σ[π, ρ, t∗] since B has the problem instance π
and the randomness ρ.

4. B does not need to simulate the marking and extraction oracle since WMΣ is a public marking and
extraction scheme.

5. B simulates the master secret-key algorithm oracle OMSK(·) by using the oracle simulation
algorithm OSim. When the adversary sends query = (P′, query′) such that Adml(query, t∗) = ⊥
to OMSK, B outputs ⊥ since PS = {t∗} and it is allowed by the condition of the selective
ε-unremovability game.

6. At some point,W outputs a circuit C∗.

7. B choosesP∗ ← Qt, query ← SampQaux
(1λ; ρq) such thatAdml(t∗, query) = >where query∗ =

(P∗, query), and ρo ← Rmka, and computes answer∗ ← C∗((P∗, query), ρo).

8. If Valid(PP, query∗, ρq, answer∗) = > holds, then B computes sol ← Solve(π, ρ, t∗, (P∗, query),
ρq, answer∗) and outputs sol where ρq is the randomness used to sample query. Otherwise, B
aborts.

27

9. B outputs sol as a solution to π.

By the problem instance simulation property, the simulated PP is perfectly (or statistically) indistinguish-
able from the real one even if ρ is given toW . Note that t∗ is randomly chosen from T .

We define δ := Expunrmv-pub
W ,WMΣ

(λ). By the condition of ε-unremovability, Extract(wpp, PP, C∗)
outputs unmarked with probability δ. By the definition of the extraction algorithm, allW can do is thatW
makes a circuit that outputs a valid output for the input (P∗, query, ρo) such that P∗(t∗) = >. It means
that with probability δ, for answer∗ ← C∗(P∗, query, ρo), it holds Valid(PP, query∗, ρq, answer∗) = >.
By the attack substitution property of the canonical ABO reduction, the output sol by Solve is a correct
answer and it holds that AdvΠ

C↔B(λ) ≥ Expunrmv-pub
W ,WMΣ

(λ). Thus, if W break ε-unremovability with
probability δ, then we can solve the problem π with at least probability δ.

Before we complete the proof, we refer to the admissible condition. Even if C∗ does not work for
input (P′, query′) such that P′(t∗) = ⊥, the proof above works. The only requirement is that C∗ should
work for (P∗, query) such that P∗(t∗) = >. Thus, we can say that W is δ-admissible for P∗ such
that P∗(t∗) = >. This functionality does not come from ε-admissible condition but the advantage of
unremovability. This completes the proof.

6 Message-Embedding Watermarking via Canonical ABN-reductions

In this section, we present a message-embedding watermarking scheme from canonical all-but-N
reductions.

6.1 How to Test Circuit Similarity

Before we describe our message-embedding watermarking scheme, we present how to test a circuit is
similar to the original circuit to be watermarked.

Test circuits bymaster public parameters. We define test algorithmsTest andTest[m0, m1] described
in Figure 4 or Figure 5 to verify that a circuit C′ is close to a master secret-key based algorithm whose
master secret key is MSK that corresponds to a master public parameter PP. We have two versions of Test
since there are a few differences between one for signature/IBE/ABE/IPE/PE and one for TBE. We set
parameters 0 < ε1 < ε2 < 1/2 where ε2 − ε1 > 1/poly(λ). When we explicitly show the parameters,
we write Testε1,ε2 [m0, m1]. If m0 = m1 = ⊥ or we do not use (m0, m1), we omit them.

Inputs: A public parameter PP and a circuit C′.

Parameters: δ := (ε2 − ε1)/2, S := λ/δ2, ε := (ε1 + ε2)/2.

Set cnt := 0. For i = 1, . . . , S, do

1. Choose zi ← Q and ρi ← Rmka.

2. If Valid-Out(PP, zi, C′(zi, ρi)) = ⊥, then sets cnt := cnt + 1.

If cnt ≤ εS, then output >. Otherwise ⊥.

Figure 4: Test algorithm Test for IBE or signature

We prove the following.

28

Inputs: A public parameter PP and a circuit C′.

Hardwired: Two plaintexts m0, m1.

Parameters: δ := (ε2 − ε1)/2, S := λ/δ2, ε := (ε1 + ε2)/2.

Set cnt := 0. For i = 1, . . . , S, do

1. Choose ti ← TAG, b← {0, 1}

2. If m0 = ⊥ or m1 = ⊥, then choose m′0, m′1 ← PT and set mb := m′b for
b ∈ {0, 1}

3. Generate cti ← Enc(PP, ti, mb) ∈ Qaux.

4. If C′(cti, ti) 6= mb, then sets cnt := cnt + 1.

If cnt ≤ εS, then output >. Otherwise ⊥.

Figure 5: Test algorithm Test[m0, m1] for PKE

Theorem 6.1. Assume that 0 < ε1 < ε2 < 1/2 where ε2 − ε1 > 1/poly(λ). For all (PP, MSK) ←
PGen(1λ),

• For all C′(·, ·) ∼=ε1 MSKAlg(MSK, ·; ·), Pr[Test(PP, C′) = >] ≥ 1− negl(λ).

• For all C′(·, ·) 6∼=ε2 MSKAlg(MSK, ·; ·), Pr[Test(PP, C′) = >] ≤ negl(λ).

Proof. We prove by considering two cases.

Case of signature/IBE/ABE/IPE/PE. If C′(·, ·) ∼=ε1 MSKAlg(MSK, ·; ·), that is, we have

Pr
zi ,ρi

[Valid-Out(PP, zi, C′(zi, ρi)) = ⊥] ≤ ε1 = ε− δ,

then
Pr[cnt > εS] ≤ Pr[|cnt− (ε− δ)S| > δS] ≤ 2−Ω(δ2S) ≤ negl(λ)

by Hoeffding’s inequality. Therefore, Pr[Test(PP, C′) = >] ≥ 1− negl(λ).
If C′(·, ·) 6∼=ε2 MSKAlg(MSK, ·; ·), that is, we have

Pr
zi ,ρi

[Valid-Out(PP, zi, C′(zi, ρi)) = ⊥] > ε2 = ε + δ,

then
Pr[cnt ≤ εS] = Pr[|cnt− (ε + δ)S| ≥ δS] ≤ 2−Ω(δ2S) ≤ negl(λ)

by Hoeffding’s inequality. Therefore, Pr[Test(PP, C′) = >] ≤ negl(λ).

Case of TBE. Note that we use C′(·, ·) ∼=ε1 MSKAlg(MSK, ·; ·) to mean that C′ correctly decrypt
an honestly generated ciphertext under PP and a uniformly random tag in this part. (Not a random
element in CT .) Then, we just replace Przi ,ρi [Valid-Out(PP, zi, C′(zi, ρi)) = ⊥] with Pr[C′(cti, ti) 6=
mb | ti ← TAG, b ← {0, 1}, cti ← Enc(PP, mb, ti)]. (If m0 = ⊥ or m1 = ⊥, then we also choose
m0, m1 ← PT .) We can apply the same analysis as above.

29

Therefore, we can verify whether C′(·, ·) ∼=ε1 MSKAlg(MSK, ·; ·) or not if ε1 = 1/2− 1/poly(λ).
That is, if the adversary A in ε-unremovability game is ε-admissible where ε = 1/2 + 1/poly(λ) (or
ε′-good-decoder where ε′ = 1/poly(λ) in the TBE case), then the circuit C∗ output by A passes the
test. In the case of TBE, we apply Test[m0, m1] based on (m0, m1) output by the adversary when we
run the extraction algorithm for a target public parameter P̂P in the proof of Theorem 6.2. (We do not
explicitly write this fact in the proof.)

6.2 Message-Embedding Scheme

We present our message-embedding watermarking scheme msWMΣ = (WMSetup, Mark, Extract) for
Σ. We consider none of ABE, IPE, and PE for the message-embedding scheme since we do not have
(canonical) ABN reductions of them. Thus, T = Qt in the rest of this section. Note that we implicitly
assume that the master secret key MSK of Σ includes the corresponding public parameter PP. We use a
PRF (PRF.Gen, PRF.Eval) such that PRF.Eval(K, ·) : {0, 1}|PP| × [`]× {0, 1} → T T. We show only
for the decisional case, but it is easy to adapt to the computational case. Σ has simulation algorithms
defined in Definition 4.8.

WMSetup(1λ):

• Let T := λ.
• Generate K← PRF.Gen(1λ) and set wpp := ⊥ and wsk := K. We omit wpp hereafter since
it is ⊥.

Mark(wsk, MSK, ω):

• Compute ti = (t(1)i , . . . , t(T)i) ← PRF.Eval(K, (PP, i, ωi)) for i ∈ [`] and set tω :=
{ti}i∈[`].

• Read MSK and generate (π′, ρ′)← MSKtoP(1λ, MSK, tω).

• Generate a circuit f̃Σ[π
′, ρ′, tω] described in Figure 6.

Extract(wsk, PP, C′):

• Compute bPP ← Test(PP, C′). If bPP = ⊥, then output Invalid-Key and halt. Otherwise,
do the following steps.

• Compute t̃i,b = (t̃(1)i,b , . . . , t̃(T)i,b)← PRF.Eval(K, (PP, i, b)) for i ∈ [`] and b ∈ {0, 1}.

• For i ∈ [`], b ∈ {0, 1}, and j ∈ [T], choose ρo,j ← Rmka andquery(j)
i,b ← SampQaux

(1λ; ρ
(j)
q,i,b),

set query(j)
i,b := (t̃(j)

i,b , query(j)
i,b), compute answer(j)

i,b ← C′(query(j)
i,b , ρo,j). Let N̂i,b be the num-

ber of indices j ∈ [T] such that Valid(PP, query(j)
i,b , ρ

(j)
q,i,b, answer(j)

i,b) = ⊥.

– If there exists an index i ∈ [`] where N̂i,0, N̂i,1 < T or N̂i,0 = N̂i,1 = T, then output ⊥.
– Otherwise, for each i ∈ [`], let ω′i ∈ {0, 1} be the unique bit where N̂i,ω′i

= T ∧
N̂i,1−ω′i

< T and output ω′ := ω′1 . . . ω′`.

Theorem 6.2. Let Σ be a master secret-key based scheme with (T ,Q,P ,Rmka) associated with challenge
space H, challenge answer space I , and admissible condition Adml. If Σ has a canonical all-but-N
reduction to a hard problem Π and PRF is a PRF where N = `λ, then there exists a message-embedding
watermarking scheme msWMΣ for master secret keys of Σ and msWMΣ satisfies Definition 3.9 with
parameter ε = 1/2 + 1/poly(λ) under the assumption that Π is hard.

30

Marked master secret-key f̃Σ[π
′, ρ′, tω]

Hardwired: π′, ρ′, tω .
Input: An input query ∈ Q to MSKAlg and randomness ρo ∈ Rmka.
Procedure: Compute and output answer← OSim(π′, ρ′, tω , query; ρo).

Figure 6: The description of f̃Σ

Proof of Theorem 6.2. From Lemmata 6.3 and 6.4, Theorem 6.2 holds.

Lemma 6.3 (Correctness). If Σ has a canonical all-but-`λ reduction to Π, then msWMΣ satisfies
extraction correctness, strong meaningfulness, and relaxed functionality-preserving properties.

Proof of Lemma 6.3. All properties hold due to the properties of canonical ABN reductions.

• By the answer checkability property of the canonical ABN reduction, it is easy to see that the
extraction correctness holds since a marked circuit described in Figure 6 is implemented by the
oracle simulation algorithm OSim of the canonical ABN reduction. More precisely, for each i ∈ [`],
it holds that for all j ∈ [T]

Valid(PP, query(j)
i,ωi

, ρ
(j)
q,i,ωi

, answer(j)
i,ωi

) = ⊥

Valid(PP, query(j)
i,1−ωi

, ρ
(j)
q,i,1−ωi

, answer(j)
i,1−ωi

) = >

since each t(j)
i,ωi
∈ tω is a punctured point, but t(j)

i,1−ωi
/∈ tω for all i ∈ [`], j ∈ [T].

• By the answer checkability property of the canonical ABN reduction, it is easy to see that the
strong meaningfulness (and weak meaningfulness) holds since K← PRF.Gen(1λ), the original
MSKAlg(MSK, ·) works for all query = (str, query) ∈ T ×Qaux, and Valid outputs >.

• By the answer checkability property, all-but-N oracle simulation, and problem instance simulation
properties of the canonical ABN reduction, it is easy to see that the relaxed functionality-preserving
property holds.

Thus, the lemma follows.

Lemma6.4 (Unremovability). IfΠ is a hard problemandΣ has a canonical all-but-`T reduction toΠ and
PRF is a secure PRF, where T = λ, then msWMΣ satisfies ε-unremovability for ε = 1/2 + 1/poly(λ).

Proof of Lemma 6.4. We proceed via a sequence of hybrid games. Recall that T = Qt in this section.

Hyb0: This is the same game as the ε-unremovability game.

1. First, the challenger samples K← PRF.Gen(1λ) and sets wsk := K.
2. The adversary declares a target mark ω̂.

3. The challenger generates (P̂P, M̂SK) ← PGen(1λ), t̂i := PRF.Eval(K, (P̂P, i, ω̂i)) for all
i ∈ [`], t̂ω̂ := {t̂i}i∈[`], (π̂, ρ̂) ← MSKtoP(1λ, M̂SK, t̂ω̂), Ĉ ← f̃Σ[π̂, ρ̂, t̂ω̂], and sends
(P̂P, Ĉ) to the adversary. At this point, the challenger sets PS := {t̂i}i∈[`].

4. The challenger answer to the oracle queries by the adversary as follows:

31

• Master secret-key based oracle: On input query = (str, query′) ∈ Q, if str ∈
PS , then the challenger outputs ⊥. Otherwise, the challenger outputs answer ←
MSKAlg(MSK, query).

• Marking oracle: On input (MSK, ω), the challenger reads its corresponding master
public parameter PP from MSK. If PP = P̂P, then the challenger outputs⊥. Otherwise,
the challenger generates ti := PRF.Eval(K, (PP, i, ωi)), tω := {ti}i∈[`], (π′, ρ′) ←
MSKtoP(1λ, MSK, tω), and C′ ← f̃Σ[π

′, ρ′, tω], and sends (PP, C′).
• Extraction oracle: On input (C′, PP), the challenger computes bPP ← Test(PP, C′).
If bPP = ⊥, then output Invalid-Key and halt. Otherwise, the challenger does the
following steps.
– Compute ti,b = (t(1)i,b , . . . , t(T)i,b) ← PRF.Eval(K, (PP, i, b)) for i ∈ [`] and b ∈
{0, 1}.

– For i ∈ [`], b ∈ {0, 1}, and j ∈ [T], choose ρo,j ← Rmka and query(j)
i,b ←

SampQaux
(1λ; ρ

(j)
q,i,b), setquery(j)

i,b := (t(j)
i,b , query(j)

i,b), compute answer(j)
i,b ← C′(query(j)

i,b , ρo,j).

Let N̂i,b be the number of indices j ∈ [T]whereValid(PP, query(j)
i,b , ρ

(j)
q,i,b, answer(j)

i,b) =
⊥.

– If there exists an index i ∈ [`] such that N̂i,0, N̂i,1 < T or N̂i,0 = N̂i,1 = T, then
output ⊥.

– Otherwise, for each i ∈ [`], let ω′i ∈ {0, 1} be the unique bit where N̂i,ω′i
=

T ∧ N̂i,1−ω′i
< T and output ω′ := ω′1 . . . ω′`.

5. Lastly, the adversary outputs a circuit C∗ : Q×Rmka → P . The challenger treats it as an
extraction query with the master public parameter P̂P and proceeds accordingly. The output
of this experiment is ω′ ← XO(C∗, P̂P).

Hyb1: This is the same as Hyb0 except that the challenger samples a uniformly random function
fR : {0, 1}|PP| × [`] × {0, 1} → T T and use fR instead of K. More precisely, we sample
uniformly random elements in T T for each input (PP, i, b) and store the elements for (PP, i, b) if
it is the first time. Else if we already sampled for an input (PP, i, b), we use the stored elements.

Hyb2: This is the same as Hyb2 except the following difference. The challenger simulates the extraction
oracle as follows.

• Extraction oracle. On input a circuit C′, the challenger computes bP̂P := Test(P̂P, C′) and
outputs ω̂ if bP̂P = >. Otherwise, the challenger proceeds as in Hyb1.

Hybk
1: This is the same as Hyb1 except for the first k extraction queries, the challenger proceeds as in

Hyb2 while for the remaining extraction queries, the challenger proceeds as in Hyb1. Let q be the
total number of extraction oracle queries.

Apparently, Hyb0
1 = Hyb1 and Hybq

1 = Hyb2 hold by the definitions of the games.
We prove that Hyb0

c≈ Hyb1, Hybk−1
1

c≈ Hybk
1 for k ∈ [q], and Hyb2 ≤ negl(λ) in Lemmata 6.5, 6.6

and 6.8. Thus, if we complete the proofs of them, we complete the proof of Lemma 6.4.

Lemma 6.5. If PRF is a secure PRF, then it holds that Hyb0
c≈ Hyb1.

Proof of Lemma 6.5. We can easily construct a distinguisher for PRF if there exists a distinguisher for
these two games since the distinguisher for PRF has adaptive oracle access to PRF(K, ·) or fR(·). Thus,
the lemma follows.

32

Lemma 6.6. If Π is a hard problem and Σ has a canonical all-but-N reduction to Π where N = `T
and T = λ, then it holds that Hybk−1

1
c≈ Hybk

1 for all k ∈ [q] where q is the number of extraction oracle
queries.

Proof of Lemma 6.6. By the definition of Hybk−1
1 and Hybk

1, they are identical except that the answer for
the k-th extraction oracle query (Ck, PPk). First, we note the following facts:

1. Let bP̂P,k := Test(P̂P, Ck). If bP̂P,k = ⊥, two games Hybk−1
1 and Hybk

1 are completely the same.
Thus, we consider the case that bP̂P,k = >.

2. When the adversary sends a marking oracle query MSKi such that the corresponding master public
parameter is P̂P, the challenger outputs⊥ both in Hybk−1

1 and Hybk
1 by the condition of the selective

ε-unremovability game.

For the k-th extraction oracle query (Ck, PPk), the challenger behaves as follows in each game.

• In Hybk−1
1 , the challenger computes t̂i = (t̂(1)i,b , . . . , t̂(T)i,b)← fR(P̂P, i, b) for all i ∈ [`], b ∈ {0, 1}

(if there already exists, then it just reads from the memory). Next, the challenger computes the
followings for i ∈ [`]:

– The number N̂i,b of indices j ∈ [T] where Valid(P̂P, query(j)
i,b , ρ

(j)
q,i,b, answer(j)

i,b) = ⊥ where

query(j)
i,b = (t̂(j)

i,b , query(j)
i,b), answer(j)

i,b = Ck(query(j)
i,b , ρ

(j)
o,i,b), andquery(j)

i,b ← SampQaux
(1λ; ρ

(j)
q,i,b).

We argue that except with negligible probability, it holds that N̂i,ω̂i = T and N̂i,1−ω̂i < T.
The adversary’s view up to the point where it makes the k-th extraction query is independent
of fR(P̂P, i, 1− ω̂i) for all i ∈ [`]. This is because we can assume that the adversary does
not sends a marking oracle query such that the corresponding master public parameter is P̂P.
Thus, we can defer the sampling of fR(P̂P, i, 1 − ω̂i) until after the adversary sends the k-
th extraction query (Ck, PPk). That is, the challenger can sample t̂1−ω̂ = {t̂i,>}i∈[`] where
t̂i,> = (t̂(1)i,1−ω̂i

, . . . , t̂(T)i,1−ω̂i
) ← T T for all i ∈ [`] after the adversary sends the k-th extraction

oracle query. Since bP̂P,k = Test(P̂P, Ck) = >, by ε-admissibility, it holds that

Pr[N̂i,1−ω̂i = T | t̂i,> = (t̂(1)i,1−ω̂i
, . . . , t̂(T)i,1−ω̂i

)← T T] = (1− ε)T ≤ 2−λ ≤ negl(λ).

Next, if N̂i,ω̂i = T does not holds for some i ∈ [`], then it contradicts to the hardness of the problem
Π. We denote this event (N̂i,ω̂i = T does not hold for some i ∈ [`]) by Recoverk−1. This event
means that the adversary somehow fixed the functionality of Ĉ = f̃Σ[π̂, ρ̂, t̂ω̂] at a punctured point
in t̂ω̂. In Lemma 6.7, we prove that Recoverk−1 happens with negligible probability.
Using the union bound, it holds with overwhelming probability, for all i ∈ [`], N̂i,ω̂i = T and
N̂i,1−ω̂i < T. Thus, the challenger outputs ω̂ in Hybk−1

1 .

• In Hybk
1, the challenger outputs ω̂.

We see that the challenger outputs ω̂ for the k-th extraction query except negligible probability in both
Hybk−1

1 and Hybk
1 whenever bP̂P = >. If we prove Lemma 6.7, then the lemma follows.

Lemma 6.7. If Π is a hard problem and Σ has a canonical all-but-N reduction to Π where N = `T
where T = λ, then it holds that Pr[Recoverk] ≤ negl(λ) for all k ∈ [0, . . . , q− 1] where q is the number
of extraction oracle queries.

33

Proof of Lemma 6.7. We construct an algorithm B that breaks the hardness of problem Π by using the
adversaryW of unremovability for msWMΣ. B can use simulation algorithms in Definition 4.8 since Σ
has an all-but-N reduction to Π. B proceeds as follows.

1. B is given a problem instance π ← PSampleb(1λ) (b ∈ {0, 1}).

2. W declares ω̂ ∈ Mw, and sends it to B.

3. B samples t̂(j)
i,ω̂i
← T for i ∈ [`], j ∈ [T] and sets t̂i,ω̂i

:= (t̂(1)i,ω̂i
, . . . , t̂(T)i,ω̂i

) for all i ∈ [`],
t̂ω := {t̂i,ωi}i∈[`]. B also sets PS := {t̂i,ωi}i∈[`]

4. B computes P̂P ← PSim(π, t∗ω; ρ). Then, B computes Ĉ := f̃Σ[π, ρ, t∗ω] by using OSim and
sends (P̂P, Ĉ) toW as the public parameter of Σ and the challenge circuit. Note that B does not
have M̂SK, but it can compute f̃Σ[π, ρ, t∗ω] since B has the problem instance π.

5. B simulates the master secret-key algorithm oracle OMSK(·) by using the oracle simulation
algorithm OSim. Note that for query = (t′, query′) such that t′ ∈ PS , the challenger is allowed to
answer ⊥ due to the condition of the unremovability game.

6. B simulates the marking oracleMO by MSKtoP(1λ, ·, ·) and simulating a random function as in
Hybk

1. That is, when we need to compute an output of the random function, we sample a uniformly
random element in the range of the random function (if the same input comes, then we output
the same value). Note that we do not need any secret values except the random function for this
simulation.

7. B simulates the extraction oracle XO by Test(·, ·) and simulating a random function in the lazy
way as in Hybk

1. Note that we do not need any secret values except the random function for this
simulation.

8. At some point,W outputs a circuit C∗.

By the answer checkability and problem instance simulation properties of all-but-N reductions, B perfectly
simulates P̂P, ρ, andOMSK. B also perfectly (or statistically) simulates the marking and extraction oracles
since we do not need any secret values for them (we can use the random function instead of the PRF).
Therefore, B perfectly simulates Hybk

1. Note that t̂(j)
i,ω̂i
← T for i ∈ [`], j ∈ [T] are uniformly random.

Now, assume that N̂i,ω̂i = T does not holds for some i ∈ [`] for the k-th extraction query (Ck, PPk)

such that Test(P̂P, Ck) = >. That is, Recoverk happens and there exists i ∈ [`] and j ∈ [T]
such that it holds that Valid(P̂P, query(j)

i,ω̂i
, ρ

(j)
q,i,ω̂i

, answer(j)
i,ω̂i

) = > where query(j)
i,ω̂i

= (t̂(j)
i,ω̂i

, query(j)
i,ω̂i

),

answer(j)
i,ω̂i

= Ck(query(j)
i,ω̂i

, ρ
(j)
o,i,ω̂i

), and query(j)
i,ω̂i
← SampQaux

(1λ; ρ
(j)
q,i,b). Therefore, B can compute

sol ← Solve(π, ρ, t̂(j)
i,ω̂i

, query(j)
i,ω̂i

, ρ
(j)
q,i,ω̂i

, answer(j)
i,ω̂i

). By the attack substitution property of all-but-N
reductions, this solution sol is valid (sol = b) and B successfully solves π. This completes the proof.

Lemma 6.8. If Π is a hard problem and Σ has a canonical all-but-N reduction to Π where N = `T
where T = λ, then it holds that Hyb2 ≤ negl(λ).

Proof of Lemma 6.8. We construct an algorithm B that breaks the hardness of problem Π by using the
adversary W of non-removability for msWMΣ. B can use algorithms PSim, OSim, CSim, and Valid
since Σ has an all-but-N reduction to Π. B proceeds as follows.

1. B is given a problem instance π ← PSampleb(1λ) (b ∈ {0, 1}).

2. W declares ω̂ ∈ Mw, and sends it to B.

34

3. B samples t̂(j)
i,ω̂i
← T for i ∈ [`], j ∈ [T] and sets t̂i,ω̂i

:= (t̂(1)i,ω̂i
, . . . , t̂(T)i,ω̂i

) for all i ∈ [`],
t̂ω̂ := {t̂i,ω̂i}i∈[`]. B also sets PS := {t̂i,ω̂i}i∈[`]

4. B computes P̂P ← PSim(π, t̂ω; ρ). Then, B computes Ĉ := f̃Σ[π, ρ, t̂ω] by using OSim and
sends (P̂P, Ĉ) to W as the watermarking parameter, public parameter of Σ, and the challenge
circuit. Note that B does not have M̂SK, but it can compute f̃Σ[π, ρ, t̂ω̂] since B has the problem
instance π.

5. B simulates the master secret key algorithm oracle OMSK(·) by using the oracle simulation
algorithm OSim. Note that for query = (t′, query′) such that t′ ∈ PS , the challenger is allowed to
answer ⊥ due to the condition of the unremovability game.

6. B simulates the marking oracleMO by MSKtoP(1λ, ·, ·) and simulating a random function as in
Hyb2. That is, when we need to compute an output of the random function, we sample a uniformly
random element in the range of the random function (if the same input comes, then we output
the same value). Note that we do not need any secret values except the random function for this
simulation.

7. B simulates the extraction oracle XO by Test(·, ·) and simulating a random function in the lazy
way as in Hyb2. Note that we do not need any secret values except the random function for this
simulation.

8. At some point,W outputs a circuit C∗.

9. Recall that T := λ/ε. For i ∈ [`], b ∈ {0, 1}, and j ∈ [T], choose query(j)
i,b ← SampQaux

(1λ; ρ
(j)
q,i,b)

and ρ
(j)
o,i,b ∈ Rmka, set query(j)

i,b := (t̂(j)
i,b , query(j)

i,b), and compute answer(j)
i,b ← C∗(query(j)

i,b , ρ
(j)
o,i,b).

10. If there exists i∗ ∈ [`], j∗ ∈ [T], and b∗ ∈ {0, 1} such that

Valid(PP, query(j∗)
i∗,b∗ , ρ

(j∗)
q,i∗,b∗ , answer(j∗)

i∗,b∗) = >

Valid(PP, query(j∗)
i∗,1−b∗ , ρ

(j∗)
q,i∗,1−b∗ , answer(j∗)

i∗,1−b∗) = ⊥,

then B computes sol ← Solve(π, ρ, t̂i∗,b∗ , query(j∗)
i∗,b∗ , ρ

(j∗)
q,i∗,b∗ , answer(j∗)

i∗,b∗). If there is no such
(i∗ ∈ [`], j∗ ∈ [T]), then B aborts.

Assume that Extract(P̂P, C∗) outputs ω∗ such that ω∗ 6= ω̂ with probability δ. That is, there exists
i∗ ∈ [N] such that ω∗i∗ 6= ω̂i∗ . There are three cases

1. ω∗i∗ = ⊥ and N̂i∗,0 = N̂i∗,1 = T.

2. ω∗i∗ = ⊥ and N̂i∗,0, N̂i∗,1 < T.

3. ω∗i∗ = 1− ω̂i∗ .

The 1st case. We prove this happens with negligible probability due to the ε-admissibility. In this case,
for all b ∈ {0, 1}, j ∈ [T], it holds that

Valid(PP, query(j)
i∗,b, ρ

(j)
q,i∗,b, answer(j)

i∗,b) = ⊥

35

by the definition of N̂i,b. However, by the ε-admissibility, for each i ∈ [`], b = 1− ω̂i, j ∈ [T], it must
hold that

Pr[Valid(PP, query(j)
i,1−ω̂i

, ρ
(j)
q,i,1−ω̂i

, answer(j)
i,1−ω̂i

) = >] ≥ ε (2)

because all t̂(j)
i,1−ω̂i

are uniformly random. Note that these values were not used in f̃Σ[π, ρ, t̂ω]. In
addition, the adversary’s view up to the point where it has made the q-th extraction query is independent
of all t̂(j)

i,1−ω̂i
because B outputs ω̂ for extraction oracle queries such that bP̂P,k = Test(P̂P, Ck) = >.

Therefore, Equation (2) holds by the ε-admissibility. Note that answer(j)
i,1−ω̂i

is the output of C∗ for

query(j)
i,1−ω̂i

= (t̂(j)
i,1−ω̂i

, query(j)
i,1−ω̂i

).
Therefore, the probability that it holds that for all j ∈ [T],

Valid(PP, query(j)
i∗,1−ω̂i∗

, ρ
(j)
q,i∗,1−ω̂i∗

, answer(j)
i∗,1−ω̂i∗

) = ⊥

is bounded by (1− ε)T ≤ 2−λ ≤ negl(λ). Thus, the first case happens with negligible probability.

The 2nd and 3rd case. In the second case, there must exist j∗ such that

Valid(PP, query(j∗)
i∗,ω̂i∗

, ρ
(j∗)
q,i∗,ω̂i∗

, answer(j∗)
i∗,ω̂i∗

) = >.

since for both b = 0, 1, there exists some j ∈ [T] such that Valid outputs > by the definition of N̂i,b.
In the third case, there also exists j∗ such that

Valid(PP, query(j∗)
i∗,ω̂i∗

, ρ
(j∗)
q,i∗,ω̂i∗

, answer(j∗)
i∗,ω̂i∗

) = >.

since ω∗i∗ ∈ {0, 1} is the unique bit where N̂i∗,ω∗i∗
= T and N̂i∗,1−ω∗i∗

= N̂i∗,ω̂i∗ < T

Thus, in both cases, C∗ outputs a valid answer for a punctured point t̂(j∗)
i∗,ω̂i∗

and the indices i∗

and j∗ at the 10th step of B exist. By the attack substitution property of all-but-N reduction, sol
generated at the 10th step of B is a correct answer for the problem π (i.e., sol = b) and it holds that
AdvΠ

C↔B(λ) ≥ Expunrmv-pub
W ,WMΣ

(λ). Thus, ifW break ε-unremovability with probability δ, then we can
solve the problem π with at least probability δ. This completes the proof since we assume that the problem
π is hard.

Acknowledgments

The author would like to thank Fuyuki Kitagawa for valuable discussion and insightful comments on
watermarking. The author also thanks Shuichi Katsumata and Shota Yamada for answering questions about
lattices and programmable hash functions, and TCC 2020 reviewers for very constructive comments on the
presentation.

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard
model. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 553–572.
Springer, Heidelberg, May / June 2010. (Cited on page 3, 22, 48, 63.)

36

[ABV+12] Shweta Agrawal, Xavier Boyen, Vinod Vaikuntanathan, Panagiotis Voulgaris, and Hoeteck
Wee. Functional encryption for threshold functions (or fuzzy ibe) from lattices. In Marc
Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of
LNCS, pages 280–297. Springer, Heidelberg, May 2012. (Cited on page 20.)

[AFV11] Shweta Agrawal, DavidMandell Freeman, andVinodVaikuntanathan. Functional encryption
for inner product predicates from learning with errors. In Dong Hoon Lee and Xiaoyun
Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 21–40. Springer, Heidelberg,
December 2011. (Cited on page 3, 20, 65.)

[AHY15] Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada. New security proof for
the Boneh-Boyen IBE: Tight reduction in unbounded multi-challenge security. In Lucas
Chi Kwong Hui, S. H. Qing, Elaine Shi, and S. M. Yiu, editors, ICICS 14, volume 8958 of
LNCS, pages 176–190. Springer, Heidelberg, December 2015. (Cited on page 6, 8, 25, 65.)

[AL10] Nuttapong Attrapadung and Benoît Libert. Functional encryption for inner product:
Achieving constant-size ciphertexts with adaptive security or support for negation. In
Phong Q. Nguyen and David Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages
384–402. Springer, Heidelberg, May 2010. (Cited on page 20.)

[AV19] Prabhanjan Ananth andVinodVaikuntanathan. Optimal bounded-collusion secure functional
encryption. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I, volume 11891
of LNCS, pages 174–198. Springer, Heidelberg, December 2019. (Cited on page 8.)

[BB11] Dan Boneh and Xavier Boyen. Efficient selective identity-based encryption without random
oracles. Journal of Cryptology, 24(4):659–693, October 2011. (Cited on page 3, 4, 7, 8, 15,
20, 22.)

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic en-
cryption, arithmetic circuit ABE and compact garbled circuits. In Phong Q. Nguyen and
Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 533–556.
Springer, Heidelberg, May 2014. (Cited on page 3, 6, 8, 20, 25, 49, 67.)

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. Journal of the ACM,
59(2):6:1–6:48, 2012. (Cited on page 1.)

[BH08] Dan Boneh and Michael Hamburg. Generalized identity based and broadcast encryption
schemes. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages
455–470. Springer, Heidelberg, December 2008. (Cited on page 20, 63.)

[BK10] Zvika Brakerski and Yael TaumanKalai. A framework for efficient signatures, ring signatures
and identity based encryption in the standard model. Cryptology ePrint Archive, Report
2010/086, 2010. http://eprint.iacr.org/2010/086. (Cited on page 43.)

[BKS17] Foteini Baldimtsi, Aggelos Kiayias, and Katerina Samari. Watermarking public-key
cryptographic functionalities and implementations. In Phong Q. Nguyen and Jianying Zhou,
editors, ISC 2017, volume 10599 of LNCS, pages 173–191. Springer, Heidelberg, November
2017. (Cited on page 10.)

[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions privately.
In Serge Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages 494–524. Springer,
Heidelberg, March 2017. (Cited on page 1, 14.)

37

http://eprint.iacr.org/2010/086

[BMW05] Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen ciphertext security from
identity-based techniques. In Vijayalakshmi Atluri, Catherine Meadows, and Ari Juels,
editors, ACM CCS 2005, pages 320–329. ACM Press, November 2005. (Cited on page 8,
20, 22, 58.)

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 573–592. Springer, Heidelberg, May / June 2006. (Cited on page 9.)

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs from
standard lattice assumptions - or: How to secretly embed a circuit in your PRF. In Yevgeniy
Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages
1–30. Springer, Heidelberg, March 2015. (Cited on page 49.)

[BV16] Zvika Brakerski and Vinod Vaikuntanathan. Circuit-ABE from LWE: Unbounded attributes
and semi-adaptive security. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part III, volume 9816 of LNCS, pages 363–384. Springer, Heidelberg, August 2016. (Cited
on page 48.)

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Yvo Desmedt, editor,
CRYPTO’94, volume 839 of LNCS, pages 257–270. Springer, Heidelberg, August 1994.
(Cited on page 9.)

[CHKP12] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. Journal of Cryptology, 25(4):601–639, October 2012. (Cited on
page 20, 48.)

[CHN+15] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel Wichs.
Watermarking cryptographic capabilities. Cryptology ePrint Archive, Report 2015/1096,
2015. http://eprint.iacr.org/2015/1096. (Cited on page 10.)

[CHN+18] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel Wichs.
Watermarking cryptographic capabilities. SIAM Journal on Computing, 47(6):2157–2202,
2018. (Cited on page 1, 6, 9, 12, 13, 14.)

[CLL+14] Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee. Shorter identity-
based encryption via asymmetric pairings. Des. Codes Cryptogr., 73(3):911–947, 2014.
(Cited on page 7, 8.)

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, 1986. (Cited on page 43.)

[GKM+19] Rishab Goyal, Sam Kim, Nathan Manohar, Brent Waters, and David J. Wu. Watermarking
public-key cryptographic primitives. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 367–398. Springer,
Heidelberg, August 2019. (Cited on page 1, 2, 7, 9, 10, 11, 12, 13, 14, 50, 52.)

[GKW18] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant traitor tracing from
learning with errors. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors,
50th ACM STOC, pages 660–670. ACM Press, June 2018. (Cited on page 8.)

[GKW19] Rishab Goyal, Venkata Koppula, and Brent Waters. New approaches to traitor tracing with
embedded identities. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II,

38

http://eprint.iacr.org/2015/1096

volume 11892 of LNCS, pages 149–179. Springer, Heidelberg, December 2019. (Cited on
page 9.)

[GPSW06a] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption
for fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 89–98. ACM Press,
October / November 2006. Available as Cryptology ePrint Archive Report 2006/309. (Cited
on page 3, 20, 22.)

[GPSW06b] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. IACR Cryptology ePrint Archive, 2006:309,
2006. Version 20061007:061901. (Cited on page 46.)

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th
ACM STOC, pages 197–206. ACM Press, May 2008. (Cited on page 48.)

[GVW15a] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. Journal of the ACM, 62(6):45:1–45:33, 2015. (Cited on page 3, 20, 65.)

[GVW15b] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for
circuits from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part II, volume 9216 of LNCS, pages 503–523. Springer, Heidelberg, August 2015. (Cited
on page 3, 20, 49.)

[HJK11] Dennis Hofheinz, Tibor Jager, and Eike Kiltz. Short signatures from weaker assumptions.
In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS,
pages 647–666. Springer, Heidelberg, December 2011. (Cited on page 24, 47.)

[HK12] Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applications.
Journal of Cryptology, 25(3):484–527, July 2012. (Cited on page 6, 24, 47.)

[HMW07] Nicholas Hopper, David Molnar, and David Wagner. From weak to strong watermarking.
In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 362–382. Springer,
Heidelberg, February 2007. (Cited on page 1.)

[Kil06] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai Halevi and Tal
Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 581–600. Springer, Heidelberg,
March 2006. (Cited on page 3, 8, 20, 22, 25, 43, 44.)

[KNYY19a] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Designated
verifier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages
622–651. Springer, Heidelberg, May 2019. (Cited on page 2.)

[KNYY19b] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Exploring
constructions of compact NIZKs from various assumptions. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
639–669. Springer, Heidelberg, August 2019. (Cited on page 2, 62.)

[KNYY20] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Adaptively
secure inner product encryption from lwe. In Shiho Moriai and Huaxiong Wang, editors,
Advances in Cryptology - ASIACRYPT 2020 - 26th Annual International Conference on the

39

Theory and Applications of Cryptology and Information Security (to appear), Lecture Notes
in Computer Science. Springer, 2020. (Cited on page 49.)

[KP13] Kaoru Kurosawa and Le Trieu Phong. Leakage resilient IBE and IPE under the DLIN
assumption. In Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel, and
Reihaneh Safavi-Naini, editors, ACNS 13, volume 7954 of LNCS, pages 487–501. Springer,
Heidelberg, June 2013. (Cited on page 20.)

[KW17] Sam Kim and David J. Wu. Watermarking cryptographic functionalities from standard
lattice assumptions. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 503–536. Springer, Heidelberg, August 2017. (Cited on
page 1, 6, 9, 13, 14.)

[KW19] Sam Kim and David J. Wu. Watermarking PRFs from lattices: Stronger security via
extractable PRFs. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 335–366. Springer, Heidelberg, August 2019. (Cited
on page 1, 9.)

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 700–718. Springer, Heidelberg, April 2012. (Cited on page 48.)

[Nis13] Ryo Nishimaki. How to watermark cryptographic functions. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 111–125.
Springer, Heidelberg, May 2013. (Cited on page 1, 2.)

[Nis19] Ryo Nishimaki. How to watermark cryptographic functions by bilinear maps. IEICE
Transactions, 102-A(1):99–113, 2019. (Cited on page 1, 2.)

[NSS99] David Naccache, Adi Shamir, and Julien P. Stern. How to copyright a function? In Hideki
Imai and Yuliang Zheng, editors, PKC’99, volume 1560 of LNCS, pages 188–196. Springer,
Heidelberg, March 1999. (Cited on page 1.)

[NWZ16] Ryo Nishimaki, Daniel Wichs, and Mark Zhandry. Anonymous traitor tracing: How to
embed arbitrary information in a key. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 388–419. Springer, Heidelberg,
May 2016. (Cited on page 9.)

[QWZ18] Willy Quach, Daniel Wichs, and Giorgos Zirdelis. Watermarking PRFs under standard
assumptions: Public marking and security with extraction queries. In Amos Beimel and
Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS, pages 669–698.
Springer, Heidelberg, November 2018. (Cited on page 1, 6, 9.)

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM, 56(6):34:1–34:40, 2009. (Cited on page 48.)

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, January 1991. (Cited on page 7.)

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, May
2005. (Cited on page 3, 20.)

40

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM
Press, May / June 2014. (Cited on page 4.)

[Tsa19] Rotem Tsabary. Fully secure attribute-based encryption for t-CNF from LWE. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS,
pages 62–85. Springer, Heidelberg, August 2019. (Cited on page 49.)

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer,
Heidelberg, May 2005. (Cited on page 8.)

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and
provably secure realization. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio
Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 53–70. Springer, Heidelberg,
March 2011. (Cited on page 20.)

[YAL+19] Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu. Collusion resistant
watermarking schemes for cryptographic functionalities. In Steven D. Galbraith and Shiho
Moriai, editors, ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages 371–398. Springer,
Heidelberg, December 2019. (Cited on page 1.)

[Yam17] Shota Yamada. Asymptotically compact adaptively secure lattice IBEs and verifiable
random functions via generalized partitioning techniques. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages 161–193. Springer,
Heidelberg, August 2017. (Cited on page 47, 67, 68.)

[YF11] Maki Yoshida and Toru Fujiwara. Toward digital watermarking for cryptographic data.
IEICE Transactions, 94-A(1):270–272, 2011. (Cited on page 1.)

A More Preliminaries

A.1 Known Facts

We use the following well-known bound.

LemmaA.1 (Hoeffding’s inequality). If X1, . . . , XN are independent Bernoulli variables with parameter
p, then

Pr

[
∑

i
Xi ≥ (p + ε) · N

]
≤ e−2ε2 N

In particular, if N > λ
ε2 , then this probability is exponentially small in λ.

A.2 Hard Probmlems and Algebra

Bilinear Maps (a.k.a Pairings). We consider cyclic groups G1, G2, and GT of prime order p. A
bilinear map is an efficient mapping e : G1 ×G2 → GT satisfying the following properties.

Bilinearity: For every G ∈ G1, Ĝ ∈ G2 and a, b ∈ Zp, e(Ga, Ĝb) = e(G, Ĝ)ab.

Non-degeneracy: If G and Ĝ generate G1 and G2 respectively, then e(G, Ĝ) 6= 1.

41

For simplicity, consider symmetric pairings, that is, G1 := G2 := G, where G is a cyclic group of prime
order p and G is a generator of G. Let Gbmp be a standard parameter generation algorithm that takes as
input a security parameter λ and outputs parameters (p, G, GT, e, G).

DefinitionA.2 (ComputationalDiffie-HellmanAssumption). The computationalDiffie-Hellman (CDH)
problem is to compute Gab, given (Λ, Ga, Gb). We say that the CDH assumption holds relative to Gbmp
in groups G if for all PPT adversaries A,

Pr
[

Gαβ ← A(1λ, Λ, Gα, Gβ) | Λ := (p, G, GT, e, G)← Gbmp(1λ), α, β← Zp

]
≤ negl(λ).

DefinitionA.3 (DLINAssumption). TheDLINproblem is to guess β ∈ {0, 1}, given (Λ, Ga, Gb, Gax, Gby, Qβ)←
Gdlin

β (1λ), where

Gdlin
β (1λ) :

generates Λ := (p, G, GT, e, G)← Gbmp(1λ),
a, b, x, y← Zp,
Q0 := Gx+y, Q1 ← G,

returns I := (Λ, Ga, Gb, Gax, Gby, Qβ).

This advantage Advdlin
A (λ) is defined as follows.

Advdlin
A (λ) := |Pr

[
A(I) = 1 | I ← Gdlin

0 (1λ)
]
− Pr

[
A(I) = 1 | I ← Gdlin

1 (1λ)
]
|.

We say that the DLIN assumption holds if for all PPT adversaries A, Advdlin
A (λ) ≤ negl(λ).

Definition A.4 (Decisional Bilinear Diffie-Hellman Assumption). The DBDH problem is to guess
β ∈ {0, 1}, given (Λ, Ga, Gb, Gc, Qβ)← Gdbdh

β (1λ), where

Gdbdh
β (1λ) :

generates Λ := (p, G, GT, e, G)← Gbmp(1λ),
a, b, c← Zp,

Q0 := e(G, G)abc, Q1 ← GT,

returns I := (Λ, Ga, Gb, Gc, Qβ).

This advantage Advdbdh
A (λ) is defined as follows.

Advdbdh
A (λ) := |Pr

[
A(I) = 1 | I ← Gdbdh

0 (1λ)
]
− Pr

[
A(I) = 1 | I ← Gdbdh

1 (1λ)
]
|.

We say that the DBDH assumption holds if for all PPT adversaries A, Advdbdh
A (λ) ≤ negl(λ).

A.3 Basic Cryptographic Primitives

Definition A.5 (Pseudo-Random Function). Let {FK : {0, 1}`1 → {0, 1}`2 | K ∈ {0, 1}λ} be a family
of polynomially computable functions, where `1 and `2 are some polynomials of λ. We say that F is a
pseudo-random function (PRF) family if for any PPT distinguisher A, it holds that

Advprf
A (λ) := |Pr[AFK(·)(1λ) = 1 | K ← {0, 1}λ]− Pr[AR(·)(1λ) = 1 | R← U]| ≤ negl(λ),

where U is the set of all functions from {0, 1}`1 to {0, 1}`2 .

42

Theorem A.6 ([GGM86]). If one-way functions exist, then for all efficiently computable functions n(λ)
and m(λ), there exists a pseudorandom function that maps n(λ) bits to m(λ) bits (i.e., D := {0, 1}n(λ)

andR := {0, 1}m(λ)).

Definition A.7 (Chameleon Hash with Witness Sampling [BK10]). A chameleon hash function with
witness sampling consists of three algorithms CHash = (CHash.Gen, Hash, Hash−1).

• CHash.Gen(1λ) takes as input the security parameter and outputs a hash key hk and a trapdoor td.
Key hk defines input, randomness, and output spaces. That is, Hash(hk, ·; ·) : Xhk ×Rhk → Yhk.

• Hash(hk, X; R) takes as input hk and an input X ∈ Xhk, uses randomness R ∈ Rhk, and outputs
Y ∈ Yhk.

• Hash−1(td, X, Y, wit) takes as input td, values X, Y, and a witness wit, which is related to the way
that Y was generated, and outputs r ∈ Rhk.

Uniformity: For all X ∈ Xhk, (hk, td) ← CHash.Gen(1λ), R ← Rhk, and Y ← Yhk, it holds that
(hk, Hash(hk, X; R))

s≈ (hk, Y).

Witness relation: There exists a relationRela ⊆ Yhk×{0, 1}∗, and an efficient algorithmWSample(1λ)

that samples (Y, wit) ∈ Rela such that Y
s≈ Y′ where Y′ ← Yhk. We say that wit is a valid witness

for Y if (Y, wit) ∈ Rela.

Inversion uniformity: For all X′ ∈ Xhk, Y ∈ Yhk and a valid witness wit for Y, it holds that

{Hash−1(td, X′, Y, wit)} s≈ {R′ ← Rhk | Y = Hash(hk, X′; R′)}.

Collision-resistance: For any PPT adversary A, (hk, td) ← CHash.Gen(1λ), and (Y, wit) ←
WSample(1λ), it holds that

Pr[Hash(hk, X; R) = Y | (X, R)← A(1λ, hk, Y, wit)] < negl(λ).

Theorem A.8 ([BK10]). If the discrete logarithm assumption holds, then there exists a chameleon hash
function with witness sampling. In addition, if the SIS assumption holds, then there exists a chameleon
hash function with witness sampling where we do not need witness wit to run Hash−1 in Definition A.7.

Kiltz proposed the notion of tag-based encryption (TBE) [Kil06].

Definition A.9 (Tag-Based Encryption). Let PT and T AG be a plaintext and tag space. A tag-based
encryption scheme for (PT , T AG) is a tuple of algorithms (Gen, Enc, Dec) where:

• Gen(1λ) takes as input the security parameter and outputs a public key PK and decryption key DK.

• Enc(PK, m, t) takes as input PK, a message m ∈ PT , and a tag t ∈ TAG, and outputs a
ciphertext ct.

• Dec(DK, ct, t) takes as input DK, ct, and t, and outputs some m′ ∈ PT , or ⊥.

Correctness: For anym ∈ PT , t ∈ TAG and (PK, DK)← Gen(1λ), we have thatDec(DK, Enc(PK, m, t), t) =
m.

selective-tag weakly CCA security We define the experiment Expttbe
A (1λ, coin) between an adversary

A and challenger as follows.

43

1. A submits the target tag t∗ ∈ TAG to the challenger.
2. The challenger runs (PK, DK)← Gen(1λ), and gives PK to A.
3. A sends a decryption query (t, CT) to the challenger. If t ∈ TAG ∧ CT ∈ CT ∧ t 6= t∗,

then the challenger decrypts the ciphertext and answers m or ⊥. (A can send polynomially
many queries.)

4. At some point, A sends two messages m∗0 , m∗1 as the challenge messages to the challenger.
5. The challenger generates ciphertext CT∗ ← Enc(PK, m∗b , t∗) and sends CT∗ to A.
6. Again, A can send decryption queries (t, CT) except queries such that t = t∗.
7. A outputs a guess coin∗ for coin. The experiment outputs coin∗.

We say TBE is selective-tag weakly CCA-secure if, for any PPT adversary A, it holds that

Advtbe
A := |Pr[Expttbe

A (1λ, 0) = 1]− Pr[Expttbe
A (1λ, 1) = 1]| ≤ negl(λ).

Theorem A.10 (Kiltz [Kil06]). If there exists selective-tag weakly CCA-secure TBE and secure one-time
signature, then we can obtain CCA-secure PKE.

Definition A.11 (Signature). LetMSG be a message space. A signature scheme forMSG is a tuple of
algorithms (Gen, Sign, Vrfy) where:

• Gen(1λ)→ (VK, SK) takes as input the security parameter 1λ and outputs a verification key VK
and a signing key SK.

• Sign(SK, m) → σ takes as input a signing key SK and a message m ∈ MSG and outputs a
signature σ.

• Vrfy(VK, m, σ)→ > or ⊥ takes as input a verification key VK, a message m and a signature σ
and outputs > to indicate acceptance of the signature and ⊥ otherwise.

Correctness: For all λ ∈ N, m ∈ MSG, (VK, SK) ∈ Gen(1λ), and σ ∈ Sign(SK, m), we have
Vrfy(VK, m, σ) = >.

Selective Unforgeability: We define the experiment Expsel-sig
A (1λ) between an adversary A and chal-

lenger as follows.

1. A sends a target message m∗ ∈ MSG to the challenger.
2. The challenger runs (VK, SK)← Gen(1λ), and gives VK to A.
3. A sends a signing query m such that m 6= m∗ to the challenger. Then, the challenger answer

σ← Sign(SK, m). (A can send polynomially many queries.)
4. At some point, A sends a pair of message and signature (m∗, σ∗) as the challenge message-

signature pair to the challenger.
5. The experiment outputs 1 if Vrfy(VK, m∗, σ∗) = >.

We say SIG is selectively unforgeable if, for any PPT adversary A, it holds that

Advsel-sig
A (λ) := Pr[Expsel-sig

A (1λ) = 1] ≤ negl(λ).

If A does not declare m∗ at the begging of the game above and queried messages are different from
m∗ (denoted by Exptsig

A (1λ) and Advsig
A (λ)), then we say SIG is unforgeable.

44

Definition A.12 (Identity-Based Encryption). LetPT be a plaintext space and ID be an identity space.
An identity-based encryption scheme for PT and ID is a tuple of algorithms (Setup, KeyGen, Enc, Dec)
where:

• Setup(1λ) takes as input the security parameter and outputs a master secret key MSK and master
public key MPK.

• KeyGen(MSK, id) takes as input MSK and an identity id ∈ ID. It outputs a secret key skid for id.

• Enc(MPK, id, m) takes as input MPK, id ∈ ID, and a plaintext m ∈ PT , and outputs a ciphertext
ct.

• Dec(skid, ct) takes as input skid for id ∈ ID and ct, and outputs some m′ ∈ PT , or ⊥.

We require the following properties:

Correctness: For anym ∈ PT , any id ∈ ID, (MSK, MPK)← Setup(1λ), and skid ← KeyGen(MSK, id),
we have that Dec(skid, Enc(MPK, id, m)) = m.

Definition A.13 (Selectively-Secure Identity-Based Encryption). A tuple of algorithms IBE = (Setup,
KeyGen, Enc, Dec) is a selectively-secure identity-based encryption scheme for PT and ID if it satisfies
the following requirement, formalized from the experiment Expsel-ibe

A (1λ, coin) between an adversary A
and a challenger:

1. A submits the target identity id∗ ∈ ID.

2. The challenger generates (MSK, MPK)← Setup(1λ) and gives MPK to A.

3. A is allowed to query (polynomially many) identities id ∈ ID such that id 6= id∗. The challenger
gives skid ← KeyGen(1λ, MSK, id) to A.

4. At some point, A sends two messages m∗0 , m∗1 as the challenge messages to the challenger. The
challenger generates ciphertext ct∗ ← Enc(MPK, id∗, m∗b) and sends ct∗ to A.

5. Again, A is allowed to query (polynomially many) id ∈ ID such that id 6= id∗.

6. A outputs a guess coin∗ for coin. The experiment outputs coin∗.

We say the IBE is selectively-secure if, for any PPT A, it holds that

Advsel-ibe
A (λ) := |Pr[Expsel-ibe

A (1λ, 0) = 1]− Pr[Expsel-ibe
A (1λ, 1) = 1]| ≤ negl(λ).

A.4 Advanced Cryptographic Primitives

Definition A.14 (Monotone Span Program). A (monotone) span program for universe [n] is a pair
(M, ρ), where M is an `×m matrix over Zp and ρ : [`]→ [n]. Given x = (x1, . . . , xn) ∈ {0, 1}n, we
say that

x satisfies (M, ρ) iff 1 ∈ span〈Mx〉.

Here, 1 = (1, 0, . . . , 0) ∈ Z1×m
p is a row vector; Mx denotes the matrix obtained by removing the j-th

row of M for j such that xρ(j) = 0 and span〈〉 refers to Zp-linear span of row vectors.

45

That is, x satisfies M iff there exist coefficients {wj ∈ Zp}j∈[`] such that

∑
j:xρ(j)=1

wj M j = 1,

where M j denotes the j-th row vector of M. Observe that the coefficients {wi ∈ Zp}xρ(j)=1 can be
computed in time polynomial in the size of M via Gaussian elimination.

The following lemma is taken from [GPSW06b].

Lemma A.15 ([GPSW06b, Proposition 1]). If a vector x ∈ {0, 1}n does not satisfy a (monotone) span
program M ∈ Z`×m

p , then there exists an efficiently computable vector d = (d1, . . . , dm)> ∈ Zm
p such

that M−xd = 0 and d1 = −1, where M−x is the matrix obtained by removing the j-th row of M for j
such that xρ(j) = 1.

Definition A.16 ((Key-Policy) Attribute-Based Encryption). We consider key-policy (KP) ABE in this
study. Let PT , AT T , POL be a plaintext space, attribute space, and policy space. An attribute-based
encryption scheme for PT , AT T . POL is a tuple of algorithms (Setup, KeyGen, Enc, Dec) where:

• Setup(1λ) takes as input the security parameter and outputs a master secret key MSK and master
public key MPK.

• KeyGen(MSK, P) takes as input MSK and a policy P ∈ POL. It outputs a secret key skP for P.

• Enc(MPK, a, m) takes as input MPK, an attribute a ∈ AT T , and a plaintext m ∈ PT , and
outputs a ciphertext cta.

• Dec(skP, cta) takes as input skP for P ∈ POL and cta, and outputs some m′ ∈ PT , or ⊥.

We require the following properties:

Correctness: For any m ∈ PT , P ∈ POL, a ∈ AT T such that P(a) = >, (MSK, MPK) ←
Setup(1λ), and skP ← KeyGen(MSK, P), we have that Dec(skP, Enc(MPK, a, m)) = m.

Definition A.17 (Selectively-Secure Attribute-Based Encryption). A tuple of algorithms ABE =
(Setup, KeyGen, Enc, Dec) is a selectively-secure attribute-based encryption scheme for PT , POL,
AT T if it satisfies the following requirement, formalized from the experiment Expsel-abe

A (1λcoin) between
an adversary A and a challenger:

1. A submits the target attribute a∗ ∈ AT T .

2. The challenger generates (MSK, MPK)← Setup(1λ) and gives MPK to A.

3. A is allowed to query (polynomially many) policies P ∈ POL such that P(a∗) = ⊥. The
challenger gives skP ← KeyGen(1λ, MSK, P) to A.

4. At some point, A sends two messages m∗0 , m∗1 as the challenge messages to the challenger. The
challenger generates ciphertext ct∗ ← Enc(MPK, a∗, m∗b) and sends ct∗ to A.

5. Again, A is allowed to query (polynomially many) P ∈ POL such that P(a∗) = ⊥.

6. A outputs a guess coin∗ for coin. The experiment outputs coin∗.

We say the ABE is selectively-secure if, for any PPT A, it holds that

Advsel-abe
A := |Pr[Expsel-abe

A (1λ, 0) = 1]− Pr[Expsel-abe
A (1λ, 1) = 1]| ≤ negl(λ).

46

Definition A.18 (Group Hash Function [HK12]). A group hash function H over G with input length
n = n(λ) consists of two algorithms (PHF.Gen, PHF.Eval).

Key Generation: PHF.Gen(1λ) takes as input the security parameter λ and outputs a hash key hk.

Evaluation: A deterministic algorithm PHF.Eval(hk, X) takes as input hk and an input X ∈ {0, 1}n

and outputs a group element in G.

Definition A.19 (Weak Programmable Hash Function [HJK11]). A group hash function H =
(PHF.Gen, PHF.Eval) is (qX, qZ, γ1, γ2)-programmable if there exists two efficient algorithms (PHF.TrapGen,
PHF.TrapEval) satisfying the following properties.

Trapdoor Generation: PHF.TrapGen(1λ, ĝ, ĥ, X1, . . . , XqX) takes as input the security parameter, two
group elements ĝ, ĥ ∈ G and X1, . . . , XqX ∈ {0, 1}` and generates a hash key hk and a trapdoor
tk.

Key Simulation: For all generators ĝ, ĥ ∈ G, it holds that ∆s(hk, ĥk) = γ1 where hk← PHF.Gen(1λ)

and ĥk← PHF.TrapGen(1λ, ĝ, ĥ).

Trapdoor Evaluation: A deterministic algorithm PHF.TrapEval(ĥk, X) takes as input ĥk and X ∈
{0, 1}` and generates (aX, bX) such that for all X ∈ {0, 1}`, PHF.Eval(hk, X) = ĝaX ĥbX .

Programmability: For all ĝ, ĥ ∈ G, all hk← PHF.TrapGen(1λ, ĝ, ĥ), and all X1, . . . , XqX ∈ {0, 1}`
and Z1, . . . , ZqZ ∈ {0, 1}` such that Xi 6= Zi for all i, j, it holds that

Pr
(ĥk,tk)←PHF.TrapGen(1λ,ĝ,ĥ)

[aX1 = · · · = aXqX
∧ aZ1 , . . . , aZqZ

6= 0] ≥ γ2,

where (aXi , bXi) = PHF.TrapEval(ĥk, Xi) and (aZj , bZj) = PHF.TrapEval(ĥk, Zj).

If γ1 is negligible and γ2 is noticeable, then we simply say H is (qX, qZ)-programmable for short.

Hofheinz, Jager, and Kiltz [HJK11] proposed a weak (qX, 1, 0, 1)-programmable hash function
Hw = (PHF.Gen, PHF.Eval, PHF.TrapGen, PHF.TrapEval) explained below.

PHF.Gen(1λ): Sample (H0, H1, . . . , HqX)← GqX+1 and set hk := (H0, H1, . . . , HqX).

PHF.Eval(hk, X): Output ∏
qX
i=0 HXi

i .

PHF.TrapGen(1λ, ĝ, ĥ, X1, . . . , XqX): β0, . . . , βqX ← Zp and X0 ← {0, 1}`. Then, it computes
coefficient (α0, . . . , αqX) of the polynomial

α(t) :=
qX

∑
i=0

αiti =
qX

∏
i=0

(t− Xi) ∈ Z[t].

The algorithm sets tk := (α0, . . . , αqX , β0, . . . , βqX) and hk := (h0, . . . , hqX), where hi := ĝαi ĥβi .

PHF.TrapEval(tk, X): returns (aX, bX), where aX = α(X) = ∑
qX
i=0 αiXi and bX = β(X) = ∑

qX
i=0 βiXi.

A.5 Preliminaries on Lattices

In this subsection, we present standard tools in lattice-based cryptography. We follow the presentation by
Yamada [Yam17].

47

Gaussian Distributions. For an integer m > 0, let DZm,σ be the discrete Gaussian distribution over
Zm with parameter σ > 0.

Lemma A.20 ([Reg09]). It holds that Pr[‖e‖ > σ
√

m | e← DZm,σ] ≤ 2−2m.

Definition A.21 (SIS problem and assumption). Let n = n(λ) and m = m(λ) be integers, q =
q(n) > 2 be a prime integer. We say the SISn,q,B,m assumption holds if for any PPT adversary A, its
advantage

AdvSISn,q,B,m
A (λ) = Pr[‖r‖∞ ≤ B ∧ Ar = 0 | A← Zn×m

q , r ← A(1λ, A)] ≤ negl(λ).

Definition A.22 (LWE problem and assumption). For n = n(λ), m = m(λ), q = q(n) > 2, a real
number α ∈ (0, 1), a vector s ∈ Zn

q and the Gaussian distribution DZm,αq, let

• O(s, DZm,αq) be a distribution over Zn
q ×Zq defined by taking samples a← Zn

q and e← DZm,αq,
and outputting (a, 〈a, s〉+ e),

• O(s, U(Zq)) = U(Zn
q ×Zq) for any s ∈ Zn

q .

For an integer q = q(n), and the distribution DZm,αq, the learning with errors problem, LWEn,m,q,α, is dis-
tinguishing oracle O(s, DZm,αq) from oracle O(s, U(Zq)), where s← Zn

q . We say the LWE(n, m, q, α)
assumption holds if for any PPT adversary A, its advantage

AdvLWEn,m,q,α
A (n) := |Pr

[
AO(s,DZm ,αq)(1λ) = 1 | s← Zn

q

]
− Pr

[
AO(s,U(Zq))(1λ) = 1 | s← Zn

q

]
| ≤ negl(λ).

Gadget Matrix. Let g := (1, 2, 4, . . . , 2dlog qe−1) ∈ Z
dlog qe
q and m > n dlog qe. The gadget matrix is

a fixed full-rank matrix G := g ⊗ In ∈ Zn×m
q . There exists a deterministic polynomial-time algorithm

G−1 that takes the input A ∈ Zn×m
q and outputs B = G−1(A) such that B ∈ {0, 1}m×m and GB = A.

Note that G−1 is not the inverse matrix of G.

Trapdoors. For lattice trapdoors, we follow the presentation by Brakerski and Vaikuntanathan [BV16].
For all V ∈ Zn×m′

q , we let A−1
σ (V) be a distribution that is a Gaussian (DZm,σ)

m′ conditioned on
A · A−1

σ (V) = V . A σ-trapdoor for A enables us to sample from the distribution A−1
σ (V) in polynomial-

time of (n, m, m′, log q), for any V ∈ Zm×m′
q . We abuse the notation and let A−1

σ denote a σ-trapdoor
for A.

Lemma A.23 (Lattice trapdoors and extensions). Lattices trapdoors have the following properties.

• There exists a polynomial-time algorithm L.TrapGen(1n, 1m, q) that outputs (A, A−1
σ) where A ∈

Zn×m
q for somem = O(n log q) and is 2n-close to uniform, whereσ0 = ω(

√
n log q log m) [GPV08,

MP12].

• Given A−1
σ , we can obtain [A‖B]−1

σ for any B [CHKP12, ABB10].

• Given B−1
σ and R, we can obtain [A‖(AR + B)]−1

σ for any A [ABB10].

• For all A ∈ Zn×m
q and R ∈ Zm×m where m ≤ n dlog qe, we can obtain [A‖AR + G]−1

σ for
σ = m · ‖R‖∞ ·ω(

√
log m) [MP12].

• Given (A, A−1
σ) and B ∈ Zn×m′

q such that A = BS mod q where S ∈ Zm′×m with largest
singular value s1(S), we can sample from B−1

σ′ for any σ′ ≥ σ · s1(S) by using (A−1
σ , S) [MP12].

48

Homomorphic Evaluation. The fully key homomorphic technique consists of the evalauation algo-
rithms developed in a series of works [BGG+14, BV15, GVW15b].

Theorem A.24 (Homomorphic Evaluation [Tsa19, KNYY20]). There exists efficient deterministic
algorithms EvalF and EvalFX that satisfy the following properties: For all n, q, ` ∈ N and m ≥
n dlog qe, and for any matrices ~B := (B0, B1, . . . , B`) ∈ Z

n×m(`+1)
q , for any depth d boolean circuit

f : {0, 1}` → {0, 1}k and for any x = (x1, . . . , x`) ∈ {0, 1}`,

• H f = EvalF(f ,~B) and H f ,x = EvalFX(f , x,~B) are in Zm(`+1)×m(k+1).

• It holds that
(~B− (1, x)⊗G) · H f ,x = ~B · H f − (1, f (x))G mod q

and
∥∥H f

∥∥
∞ ,
∥∥H f ,x

∥∥
∞ ≤ (2m)d.

Remark A.25. The original statment by Tsabary does not incorporate the constant term 1. However, it was
found that the modification is necessary to perform an addition or subtraction by a constant term in an
evaluation [KNYY20].

B More Definitions of Watermarking for Cryptographic Primitives

In this section, we present the definitions of watermarking for TBE and signature. They are essentially the
same as Definition 3.7 and the differences are syntax and interfaces.

B.1 TBE Case

Definition B.1 (Correctness (TBE)). Let WMΣ = (WMSetup, Mark, Extract) be a watermarking
scheme for TBE scheme Σ = (Gen, Enc, Dec) with spaces (T ,Q,P ,Rmka). In this case, T = T AG,
Q = T AG × CT , P = PT , and MSKAlg(MSK, ·) = Dec(DK, ·). We say that WMΣ is correct if it
satisfies the following.

Extraction correctness: For all (wpp, wsk)← WMSetup(1λ), all marks ω ∈ Mw,

Pr[Extract(wpp, wsk, pk, Mark(wpp, wsk, DK, ω)) 6= ω | (PK, DK)← Gen(1λ)] ≤ negl(λ).

Meaningfulness: For all fixed circuits C : T AG × CT ×Rmka → PT ,

Pr
[
Extract(wpp, wsk, PK, C) 6= unmarked

∣∣∣∣ (wpp, wsk)← WMSetup(1λ)
(PK, DK)← Gen(1λ)

]
≤ negl(λ),

and for all (wpp, wsk)← WMSetup(1λ),

Pr[Extract(wpp, wsk, PK, Dec(DK, ·, ·)) 6= unmarked | (PK, DK)← Gen(1λ)] ≤ negl(λ).

We call the latter weak meaningfulness.

Functionality-preserving: For all (wpp, wsk) ← WMSetup(1λ), for all (PK, DK) ← Gen(1λ), all
marks ω ∈ Mw, there exists PS ⊂ TAG such that N := |PS| ≤ poly(λ), all ρmka ∈ Rmka,
all plaintexts m ∈ PT , all tags t ∈ TAG \ PS and all ct ∈ CT , we have that

Pr[C̃(ct, t) = Dec(DK, ct, t; ρmka) | C̃ ← Mark(wpp, wsk, DK, ω)] > 1− negl(λ).

49

Definition B.2 (Selective-Mark ε-Unremovability for TBE). For every PPT A, we have

Pr[Expurmv-tbe
A,WMΣ

(λ, ε) = 1] ≤ negl(λ),

where ε is a parameter of the scheme called the approximation factor and Expurmv-tbe
A,WMΣ

(λ, ε) is the game
defined as follows.

1. The adversary A declares a target mark ω∗ ∈ Mw.

2. The challenger generates (PK, DK) ← Gen(1λ), (wpp, wsk) ← WMSetup(1λ), and C̃ ←
Mark(wpp, wsk, DK, ω∗), and gives (PK, wpp, C̃) to A. At this point, a set PS ⊂ T such that
|PS| = poly(λ) is uniquely determined by (wpp, wsk, PK, ω∗).

3. A has oracle access to the decryption oracle DO. If DO is queried with a tag t ∈ TAG \ PS
and a ciphertext CT ∈ CT , then DO answers with Dec(DK, (CT, t)). Otherwise, it answers ⊥.
Note that T = T AG in this case.

4. A has oracle access to the marking oracle MO. If MO is queried with a decryption key
DK′ ∈ MSK and a mark ω′ ∈ Mw, then does the following. If the corresponding public key
PK′ is equal to PK, then outputs ⊥. Otherwise, answers with Mark(wpp, wsk, DK′, ω′).

5. A has oracle access to the extraction oracle XO. If XO is queried with a PK′ and circuit C′,
then XO answers with Extract(wpp, wsk, PK′, C′).

6. Finally, A outputs a circuit D∗ and (m0, m1) ∈ PT . If D∗ is an ε′-good decoder with respect
to PK and (m0, m1) (defined below) and Extract(wpp, wsk, PK,D∗) 6= ω∗ then the experiment
outputs 1, otherwise 0.

We say that a circuit D∗ is an ε′-good decoder with respect to PK and message pair (m0, m1) if D∗
output by A in the experiment above satisfies

Pr[D∗(ct, t) = mb | b← {0, 1}, t← TAG, ct← Enc(PK, t, mb)] ≥ ε =
1
2
+ ε′.

The ε′-good decoder requires the adversary to output D∗ that can decrypt the target ciphertext with
higher probability than a random guess. This formalizes that D∗ should be similar to the original circuit
Dec(DK, ·).

Remark B.3. Our definition is the same as that of Goyal et al. [GKM+19] except for that

1. A must declare the target mark ω at the beginning of the game.

2. we do not consider collusion-resistance w.r.t. watermarking. That is, A is given only one target
circuit C̃.

3. we consider the oracles DO in the unremovability game while Goyal et al. do not.

B.2 Signature Case

Definition B.4 (Correctness (Signature)). Let WMΣ = (WMSetup, Mark, Extract) be a watermarking
scheme for signature scheme Σ = (Gen, Sign, Vrfy) with spaces (T ,Q,P ,Rmka). In this case,
T = Q =MSG, P = SIG, and MSKAlg(MSK, ·) = Sign(SK, ·). We say that WMΣ is correct if it
satisfies the following.

50

Extraction correctness: For all (wpp, wsk)← WMSetup(1λ), all marks ω ∈ Mw,

Pr[Extract(wpp, wsk, VK, Mark(wpp, wsk, SK, ω)) 6= ω | (VK, SK)← Gen(1λ)] ≤ negl(λ).

Meaningfulness: For all fixed circuits C :MSG ×Rmka → SIG,

Pr
[
Extract(wpp, wsk, VK, C) 6= unmarked

∣∣∣∣ (wpp, wsk)← WMSetup(1λ)
(VK, SK)← Gen(1λ)

]
≤ negl(λ),

and for all (wpp, wsk)← WMSetup(1λ),

Pr[Extract(wpp, wsk, VK, Sign(SK, ·)) 6= unmarked | (VK, SK)← Gen(1λ)] ≤ negl(λ).

We call the latter weak meaningfulness.

Functionality-preserving: For all (wpp, wsk)← WMSetup(1λ), all (VK, SK)← Gen(1λ), all marks
ω ∈ Mw, there exists PS ⊂ MSG such that N := |PS| ≤ poly(λ), all ρmka ∈ Rmka, all
messages m ∈ MSG \ PS , we have that

Pr[C̃(m, ρmka)
p
≈ Sign(SK, m) | C̃ ← Mark(wpp, wsk, SK, ω)] > 1− negl(λ).

Here, PS stands for a “punctured set” since C̃ does not work for messages in PS .

Definition B.5 (Selective-Mark ε-Unremovability for Signature). For every PPT A, we have

Pr[Expurmv-sig
A,WMΣ

(λ, ε) = 1] ≤ negl(λ),

where ε is a parameter of the scheme called the approximation factor and Expurmv-sig
A,WMΣ

(λ, ε) is the game
defined as follows.

1. The adversary A declares a target mark ω∗ ∈ Mw.

2. The challenger generates (VK, SK) ← Gen(1λ), (wpp, wsk) ← WMSetup(1λ), and C̃ ←
Mark(wpp, wsk, SK, ω∗), and gives (VK, wpp, C̃) to A. At this point, a set PS ⊂ MSG such
that |PS| = poly(λ) is uniquely determined by (wpp, wsk, VK, ω∗).

3. A has oracle access to the signing oracle SO. If SO is queried with a message m ∈ MSG \ PS ,
then SO answers with Sign(SK, m). If m ∈ PS , then SO outputs ⊥.

4. A has oracle access to the marking oracleMO. IfMO is queried with a signing key SK′ ∈ MSK
and a mark ω′ ∈ Mw, thenMO does the following. If the corresponding verification key VK′ is
equal to VK, then outputs ⊥. Otherwise, answers with Mark(wpp, wsk, SK′, ω′).

5. A has oracle access to the extraction oracle XO. If XO is queried with a VK′ and circuit C′,
then XO answers with Extract(wpp, wsk, VK′, C′).

6. Finally,A outputs a circuitC∗. IfA is admissible (defined below) andExtract(wpp, wsk, VK, C∗) 6=
ω∗ then the experiment outputs 1, otherwise 0.

We say that A is ε-admissible if C∗ output by A in the experiment above satisfies

Pr
[
Valid-Out(VK, m, C∗(m, ρmka)) = >

∣∣∣∣ m←MSG
ρmka ← Rmka

]
≥ ε.

51

The admissibility requires the adversary to output C∗ that agrees on an ε fraction of inputs with C.
This notion formalizes that C∗ should be similar to the original circuit C. In the message-less setting, A
does not declare a mark (this is also the same for the encryption case below).

Remark B.6. Our definition is the same as that of Goyal et al. [GKM+19] except that

1. A must declare the target mark ω at the beginning of the game.

2. A does not receives answers for messages in PS from the signing oracle.

3. we do not consider collusion-resistance w.r.t. watermarking. That is, A is given only one target
circuit C̃.

C All-But-One Reductions for Computational Case

In this section, we formalize a class of security reductions, called canonical all-but-one (ABO) reductions
for the computational case.

C.1 Computational Assumptions and Security Games

Definition C.1 (Computational assumption). A computational assumption CA for problem Π is formal-
ized by a game between the challenger E and the adversary A. The problem Π consists of an efficient
problem sampling algorithm PSample and a (possibly inefficient) relation Rela. The game ExptCA

Π,E↔A(λ)
is formalized as follows.

• On input security parameter λ, E samples a problem instance π ← PSample(1λ).

• E sends π to A and may interact with A(1λ, π).

• At some point A outputs sol.

• If Rela(π, sol) = 1, the game outputs 1. Otherwise, outputs 0.

We say a computational assumption holds (or problem Π is hard) if it holds

AdvCA
Π,E↔A(λ) := Pr[ExptCA

Π,E↔A(λ) = 1] ≤ negl(λ).

This captures the well-known discrete logarithm, computational DH, (strong) RSA, factoring, SIS,
computational q-type assumptions (and more).

Definition C.2 (Computational Security Game).We define (selective) computational security games
between a challenger C and an adversary A for a master secret-key based scheme Σ with spaces
(T ,Q,P ,Rmka) associated with challenge spaceH, challenge answer space I , and admissible condition
Adml. (See Table 5 for concrete examples.) The admissible condition Adml outputs > or ⊥ depending
on whether a query is allowed or not.

We define the experiment Expc-goal-atk
A,Σ (λ) between an adversary A and challenger as follows.

1. A submits a target t∗ ∈ T to the challenger.

2. The challenger runs (PP, MSK)← PGen(1λ), and gives PP to A.

3. A sends a query query = (t, query′) ∈ Q such that Adml(t∗, query) = > to the challenger. Then,
the challenger sends an answer answer← MSKAlg(MSK, query) to A. If Adml(t∗, query) = ⊥,
the challenger outputs ⊥. (A can send polynomially many queries.)

52

4. At some point, A sends a challenge challenge ∈ H to the challenger.

5. The experiment outputs 1 if challenge is a valid challenge.

We say that Σ is secure if for all A, it holds that

Advc-goal-atk
A,Σ (λ) := Pr[Expc-goal-atk

A,Σ (λ) = 1] ≤ negl(λ).

More concretely, a valid challenge means a valid signature for the target t∗ in the case of signature.
We say an adversary is successful if the advantage is non-negligible. We can consider the multi-

challenge case, that is, the targets are~t∗ ∈ T N instead of the single t∗.

A concrete example of Adml(t∗, query) is Adml(t∗, query) = > if and only if t∗ 6= t where
query = (t,⊥) in the signature case.

Although we can consider a stronger variant, called adaptive security games, we consider only selective
security games since ABO reductions are basically applicable in the selective setting.

C.2 Abstraction of All-But-One Reductions for Computational Case

Now, we are ready to define canonical ABO reductions for the computational case. The main differences
from that for the decisional case is that we need the solution extraction property instead of the challenge
simulation property in Definition 4.5 and we use computational assumptions and security games.

Definition C.3 (Canonical All-But-One Reduction for Computational Case). Let Σ be a master secret-
key based scheme with (T ,Q,P ,Rmka) associated with sub-query space Qt, aux-query space Qaux,
challenge spaceH, challenge answer space I , and admissible condition Adml. (See Table 5 for concrete
examples.) A security reduction algorithm R from Σ to a hard problem Π is a canonical all-but-one
reduction (or Σ has a canonical all-but-one reduction to Π) if it satisfies the following properties.

Oracle access: A has oracle access to OMSK : Qt ×Qaux → P in the security game Expc-goal-atk
A,Σ . We

also set Q := Qt ×Qaux. In some security games, we possibly set Qaux := ∅ or Qt := ∅.

Selective reduction: R simulates the security game Expc-goal-atk
A,Σ of Σ between the challenger C and

the adversary A to win the game ExptCA
Π,E↔R. That is, R plays the role of the challenger C in

Expc-goal-atk
A,Σ and that of the adversary in ExptCA

Π,E↔R.

1. A declares an arbitrary string t∗ ∈ T at the very begging of the game and send t∗ to R.
2. R is given a problem instance π of the hard problem Π.
3. R simulates public parameters PP of Σ by using π and t∗ and sends PP to A.
4. R simulates an oracle OMSK of the security game of Σ when A sends oracle queries.

That is, when A sends a query query ∈ Q, R simulates the value OMSK(query) and
returns a simulated value answer ∈ P to A. If Adml(t∗, query) = ⊥, then R outputs ⊥.
At the oracle simulation phase, R never interact with E .

5. At some point, A sends a challenge query challenge ∈ H to R.
6. Finally, R outputs a solution sol of π by using challenge.

R consists of three algorithms (PSim, OSim, SolExt) introduced below.

All-but-one oracle simulation: R can perfectly simulate the public parameter of Σ and the oracle
OMSK. That is, there exist parameter and oracle simulation algorithms PSim and OSim such

53

that for all (PP, MSK) ← PGen(1λ), π ← PSample(1λ), t∗ ∈ T , and query ∈ Q where
Adml(t∗, query) = >, it holds that

PSim(π, t∗; ρ)
p
≈ PP,

OSim(π, ρ, t∗, query)
p
≈ OMSK(query),

where ρ is the randomness of PSim. Note that a query query = (str, query′) such that
Adml(t∗, query) = ⊥ is not allowed in the selective security game of Σ. In particular, OSim

• is described as a stateless randomized algorithm.
• does not have any oracle access.

Solution extraction: R in the selective reduction above and can efficiently extract a solution to π by
using the challenge query challenge fromA. That is, there exists an efficient algorithm SolExt such
that in the selective reduction above, sol← SolExt(π, t∗, ρ, challenge) and it holds that

AdvCA
Π,E↔R(λ) ≥ Advc-goal-atk

A,Σ (λ).

Answer checkability: First, there exists an efficient sampling algorithm SampQaux
(1λ; ρq) that samples

an element in Qaux ⊂ Qaux. Next, there exists an efficient validity check algorithm Valid for
Qaux such that for all (PP, MSK) ← PGen(1λ), query = (str, query) where str ← Qt and
query← SampQaux

(1λ; ρq), answer← OMSK(query),

Pr[Valid(PP, query, ρq, answer) = >] = 1− negl(λ).

On the other hand, for all π ← PSample(1λ), t∗ ∈ T , PP ← PSim(π, t∗; ρ), query =
(str, query) such that Adml(t∗, query) = ⊥ where query← SampQaux

(1λ; ρq),

Pr[Valid(PP, query, ρq, OSim(π, ρ, t∗, query)) = >] ≤ negl(λ).

Attack substitution: R can solve a problem π if we have a valid answer answer∗ ∈ P for query∗ =
(str∗, query) ∈ Qt ×Qaux such that Adml(t∗, query∗) = ⊥ (i.e., inadmissible query) instead of
a successful adversary A in the selective reduction. That is, there exists an efficient algorithm
Solve such that for all π ← PSample(1λ), t∗ ∈ T , query∗ = (str∗, query) ∈ Qt ×Qaux where
query ← SampQaux

(1λ; ρq), answer∗ ∈ P such that Valid(PP, query∗, ρq, answer∗) = > and
Adml(t∗, query∗) = ⊥, we have that Solve(π, ρ, t∗, query∗, ρq, answer∗) outputs sol for π and

AdvCA
Π,E↔R(λ) > negl(λ),

where ρ is the randomnesses to sample PP in the selective reduction.

Problem instance simulation: We can perfectly simulate a problem instance and randomness used to
generate PP in PSim if we have a master secret key of Σ. That is, there exists an efficient algorithm
MSKtoP such that for all (PP, MSK)← PGen(1λ), π ← PSample(1λ), all ρ← RPSim, and all
t∗ ∈ T ,

(π′, ρ′, PP)
p
≈ (π, ρ, PP′),

where (π′, ρ′)← MSKtoP(1λ, MSK, t∗), PP′ = PSim(π, t∗; ρ), ρ′ is a randomness to simulate
PP via PSim, andRPSim is the randomness space of PSim. We can relax this condition to statistical
indistinguishability for uniformly random t∗ (instead of all t∗ ∈ T).

Table 5 shows concrete example of spaces and oracles for signature.

54

Table 5: Concrete sets, oracle, and admissible
condition of ABO reductions for signature.

ABO reduction SIG

T message spaceMSG
Qt message spaceMSG
Qaux ∅
Qaux ∅
P signature space SIG
H SIG
I ∅
OMSK signing oracle Sign(SK, ·)
Adml(·, ·) = > t∗ 6= m

C.3 All-But-N Reductions for Computational Case

We can extend canonical ABO reductions for the computational case to ABN reductions for the
computational case. Here, N is an a-priori bounded/unbounded polynomial of the security parameter.
Roughly speaking, an ABN reduction punctures N points~t∗ = (t∗1 , . . . , t∗N) ∈ T N in a master secret-key
based algorithm MSKAlg instead of a single point t∗.

Definition C.4 (Canonical All-But-N Reduction fro Computational Case). Let Σ be a master secret-
key based scheme for (T ,Q,P ,Rmka) associated with a sub-query space Qt, aux-query space Qaux,
challenge spaceH, challenge answer space I , and admissible condition Adml. (See Table 5 for concrete
examples.) A security reduction algorithm R from Σ to a hard problem Π is a canonical all-but-N
reduction (or Σ has a canonical all-but-N reduction to Π) if it satisfies the following properties.

Oracle access: A has oracle access to OMSK : Qt ×Qaux → P in the security game Expc-goal-atk
A,Σ . We

also set Q := Qt ×Qaux. In some security games, we possibly set Qaux := ∅ or Qt := ∅.

Selective reduction: R simulates the security game Expc-goal-atk
A,Σ of Σ between the challenger C and

the adversary A to win the game ExptCA
Π,E↔R. That is, R plays the role of the challenger C in

Expc-goal-atk
A,Σ and that of the adversary in ExptCA

Π,E↔R.

1. A declares arbitrary strings~t∗ ∈ T N at the very begging of the game and send~t∗ to R. (We
can allow R to determine~t∗ in some security games.)

2. R is given a problem instance π of the hard problem Π.
3. R simulates public parameters PP of Σ by using π and~t∗ and sends PP to A.
4. R simulates an oracle O of the security game of Σ when A sends oracle queries. That is,

when A sends a query query ∈ Q, R simulates the value O(query) and returns a simulated
value answer ∈ P to A. If Adml(t∗i , query) = ⊥ for some i ∈ [N], then R outputs ⊥.
At the oracle simulation phase, R never interacts with E .

5. At some point, A sends a challenge query ~challenge ∈ HN to R. (In the signature case, N
could be 1.)

6. Finally, R outputs a solution sol of π by using ~challenge.

R consists of three algorithms (PSim, OSim, SolExt) introduced below.

All-but-N oracle simulation: R can perfectly simulate the public parameter of Σ and the oracle
OMSK. That is, there exists parameter and oracle simulation algorithms PSim and OSim such

55

that for all (PP, MSK) ← PGen(1λ), π ← PSample(1λ), ~t∗ ∈ T N , and query ∈ Q where
Adml(t∗i , query) = > for all i ∈ [N],

PSim(π,~t∗; ρ)
p
≈ PP,

OSim(π, ρ,~t∗, query)
p
≈ OMSK(query),

where ρ is the randomness of PSim. Note that a query query = (str, query′) such that
Adml(t∗i , query) = ⊥ for some i ∈ [N] is not allowed in the selective security game of Σ.
In particular, OSim

• is described as a stateless randomized algorithm.
• does not have any oracle access.

Solution extraction: R in the selective reduction above and can efficiently extract a solution to π by
using the challenge query ~challenge fromA. That is, there exists an efficient algorithm SolExt such
that in the selective reduction above, sol← SolExt(π,~t∗, ρ, ~challenge) and

AdvCA
Π,E↔R(λ) ≥ Advc-goal-atk

A,Σ (λ).

Answer checkability: First, there exists an efficient sampling algorithm SampQaux
(1λ; ρq) that samples

an element in Qaux ⊂ Qaux. Next, there exists an efficient validity check algorithm Valid for
Qaux such that for all (PP, MSK) ← PGen(1λ), query = (str, query) where str ← Qt and
query← SampQaux

(1λ; ρq), answer← OMSK(query),

Pr[Valid(PP, query, ρq, answer) = >] = 1− negl(λ).

On the other hand, for all π ← PSample(1λ), ~t∗ ∈ T N , PP ← PSim(π,~t∗; ρ), query =
(str, query) such that Adml(t∗i , query) = ⊥ for some i ∈ [N] where query← SampQaux

(1λ; ρq),

Pr[Valid(PP, query, ρq, OSim(π, ρ,~t∗, query)) = >] ≤ negl(λ).

Attack substitution: R can solve a problem π if we have a valid answer answer∗ ∈ P for query∗ =
(str∗, query) ∈ Qt ×Qaux such that Adml(t∗, query∗) = ⊥ (i.e., inadmissible query) instead of
a successful adversary A in the selective reduction. That is, there exists an efficient algorithm
Solve such that for all π ← PSample(1λ),~t∗ ∈ T N , query∗ = (str∗, query) ∈ Qt×Qaux where
query ← SampQaux

(1λ; ρq), answer∗ ∈ P such that Valid(PP, query∗, ρq, answer∗) = > and
Adml(t∗i , query∗) = ⊥ for some i ∈ [N], we have that Solve(π, ρ,~t∗, query∗, ρq, answer∗) outputs
sol for π and

AdvCA
Π,E↔R(λ) > negl(λ),

where ρ is the randomnesses to sample PP in the selective reduction.

Problem instance simulation: We can perfectly simulate a problem instance and randomness used to
generate PP in PSim if we have a master secret key of Σ. That is, there exists an efficient algorithm
MSKtoP such that for all (PP, MSK)← PGen(1λ), π ← PSample(1λ), all ρ← RPSim, and all
~t∗ ∈ T N ,

(π′, ρ′, PP)
p
≈ (π, ρ, PP′),

where (π′, ρ′)← MSKtoP(1λ, MSK,~t∗), PP′ = PSim(π,~t∗; ρ), ρ′ is a randomness to simulate
PP via PSim, andRPSim is the randomness space of PSim. We can relax this condition to statistical
indistinguishability for uniformly random~t∗ (instead of all~t∗ ∈ T N).

56

D More Examples of Canonical ABO and ABN Reductions

D.1 More Examples of Canonical ABO Reductions

Pairing-based schemes.

Example D.1 (Signature from Boneh-Boyen IBE). The signature scheme from Boneh-Boyen IBE consists
of the following algorithms.

Gen(1λ) :

• Generate params := (p, G, GT, e, G)← Gbmp(1λ).
• Choose x, y← Zp and h← Zp and set G1 := Gx, G2 := Gy, H := Gh.
• Output VK := (params, G, G1, G2, H) and SK := (VK, x, y, h).

Sign(SK, m) :

• For m ∈ Zp, choose r ← Zp and output σ := (Gx
2 (G

m
1 · H)r, Gr).

Vrfy(VK, m, σ) :

• Parse σ = (S1, S2), output > if e(G, S1) = e(G1, G2) · e(Gm
1 H, S2) holds. Otherwise,

output ⊥.

The reduction algorithm R of the signature scheme consists of three algorithms (PSim, OSim, CSim).
Below, we let π := (G, Gx, Gy), t∗ := m∗, query := mi, query := ⊥, ρq := ⊥, be a CDH instance, the
target message, a query to the signing oracle, a sub-query, the randomness to sample query ∈ Qaux,
respectively.

PSim(π, t∗): This algorithm is given a CDH instance π and a target identity t∗ = m∗ and simulate
VK. It chooses β ← Zp, sets G1 := Gx, G2 := Gy, and H := G−m∗

1 · Gβ, and outputs
VK := (params, G, G1, G2, H). The randomness ρ of this algorithm is ρ := β

OSim(π, ρ, t∗, query): This algorithms simulate signatures for message query = mi ∈ Zp such that
mi 6= m∗ = t∗. It parses ρ = β, chooses r ← Zp and outputs σi = (S1, S2) where

S1 := G
−β

mi−m∗

2 (Gmi
1 H)r, S2 := G

−1
mi−m∗

2 Gr.

The randomness ρo of this algorithm is ρo = r.

SolExt(π, t∗, ρ, challenge): This algorithms extracts a solution for the problem π from the signature σ∗

for m∗ output by the adversary. It parses ρ = β, t∗ = m∗, and challenge = σ∗ = (S∗1 , S∗2) and
outputs

sol := S∗1 · (S∗2)−β.

Here, sol = Gxy since e(G, S∗1) = e(G1, G2) · e(Gm∗
1 H, S∗2) and Gm∗

1 H = Gβ.

The auxiliary ABO reduction algorithms of the signature scheme consists of three algorithms
(Valid, Solve, MSKtoP).

Valid(VK, query, ρq, answer): This algorithm is the same asVrfy. It parsesVK = (params, G, G1, G2, H),
query = (m,⊥), ρq = ⊥, and answer = (S1, S2) (this is a signature σ for message m) and checks

e(G, S1) = e(G1, G2) · e(Gm
1 H, S2). (3)

If it holds, then output >. Otherwise, outputs ⊥. This algorithm outputs > if and only if
answer← Sign(MSK, m). The proof is the same as in Example 4.6.

57

Solve(π, ρ, t∗, query∗, ρq, answer∗): First, this algorithm parses m∗ = t∗, query∗ = (m∗,⊥), ρ = β,
ρq = ⊥, and answer∗ = (S∗1 , S∗2). It computes computes

S∗1(S
∗
2)
−β

(this is the same as the output of SolExt(π, t∗, ρ, challenge)).

MSKtoP(1λ, SK, t∗): First, this algorithms parses SK = (VK, x, y, h), and computes β := x ·m∗ + h.
Then, it outputs π := (G, Gx, Gy) and ρ′ := β = x ·m∗ + h.

Example D.2 (Boyen-Mei-Waters KEM). Boyen, Mei, and Waters proposed a CCA-secure KEM scheme
based on the DBDH assumption [BMW05]. Here, we slightly modify the scheme by using a chameleon
hash function with witness sampling CHash = (CHash.Gen, Hash, Hash−1) in Definition A.7 instead of
standard collision-resistant hash functions.

Below, we letπ := (G, Gx, Gy, Gz, T), query := ⊥, query := CTi = (CTi,1, CTi,2), ρq := si ← Zp,
challenge := (M0, M1), be a DBDH instance, a query to the decryption oracle, a sub-query, the
randomness to sample query, the challenge messages respectively. Note that, in the setting of PKE, there
is no selective target by the adversary and the simulator (i.e., the challenge of CCA-security game) can set
selective value by setting w∗ := Hash(hk, C∗1 ; r∗) where C∗1 is the first element of the simulated target
ciphertext.

Gen(1λ) :

• Generate params := (p, G, GT, e, G)← Gbmp(1λ).
• Generate (hk, td)← CHash.Gen(1λ).
• Choose x, y← Zp and h← Zp and set G1 := Gx, G2 := Gy, H := Gh.
• Output PK := (params, G, G1, G2, H, hk) and DK := (MPK, x, y, h).

Enc(PK) :

• Choose s← Zp and r ← Rhk, and compute C1 := Gs and w := Hash(hk, C1; r).
• Output CT := (C1, C2, C3) := (Gs, (Gw

1 · H)s, r) and K := e(G1, G2)s.

Dec(DK, CT) :

• Parse DK = (PK, x, y, h) and CT = (C1, C2, C3), computes w := Hash(hk, C1; C3).
• If e(C2, G) = e(C1, Gw

1 · H) does not hold, then output ⊥.
• Otherwise, output K := e(C1, Gxy).

The simulation algorithmSim ofBMWKEMscheme consists of three algorithms (PSim, OSim, CSim).

PSim(π, t∗): This algorithm is given a DBDH instance and simulate MPK. First, it generates (hk, td)←
CHash.Gen(1λ), and computes r∗ ← Hash−1(td, Gz, t∗, wit) (See Remark D.3) such that t∗ =
Hash(hk, Gz; r∗). Then, it chooses β ← Zp, sets G1 := Gx, G2 := Gy, and H := G−w∗

1 · Gβ,
and outputs PK := (G, G1, G2, H, hk). We set w∗ := t∗. The randomness ρ of this algorithm is
ρ := (β, r∗).

OSim(π, ρ, t∗, query): This algorithms simulate the decryption oracle for ciphertext query = CTi =
(Ci,1, Ci,2, Ci,3) such that w∗ 6= wi := Hash(hk, Ci,1; Ci,3). If w∗ = wi or e(Ci,1, G) 6=
e(Ci,2, Gwi

1 · H) holds, then it outputs ⊥. Otherwise, it parses ρ = β, and outputs

Ki :=
e(Ci,1, (Gy)

−β
wi−w∗ Gwi

1 · H)

e(Ci,2, (Gy)
−1

wi−w∗ · G)
.

The randomness ρo of this algorithm is ρo = ∅.

58

CSim(π, ρ, t∗, challenge, coin): This algorithms simulate a challenge ciphertext. It computes

CT∗ := (Gz, (Gz)β, r∗), K∗ := T,

and outputs (CT∗, K∗).

The auxiliary ABO reduction algorithms of BMW KEM scheme consists of three algorithms
(Valid, Solve, MSKtoP).

Valid(PK, (Gs, (Gw
1 · H)s, r), ρq, answer): This algorithm parses PK = (G, G1, G2, H, hk) and ρq = s.

It verify whether
answer = e(G1, G2)

s

holds or not. If it holds, then it outputs >, otherwise ⊥.

Solve(π, ρ, t∗, query, answer∗): It parsesπ = (G, Gx, Gy, Gz, T), query = (C∗1 , C∗2 , C∗3) = (Gz, (Gz)β, r∗),
ρ = (β, r∗), and answer∗ = Dec(DK, (C∗1 , C∗2 , C∗3)). Note that we do not need ρq for this algorithm
as below. It verifies whether

T = answer∗

holds or not. If it holds, then outputs 0, otherwise 1.

MSKtoP(1λ, MSK, t∗): First, this algorithms parses MSK = (MPK, x, y, h), chooses z ← Zp and
r ← Rhk, and computes w∗ := Hash(hk, Gz; r∗) and β := x · w∗ + h. Then, it outputs
π := (G, Gx, Gy, Gz, e(G, G)xyz) and ρ′ := β = x · w∗ + h.

Remark D.3. When we use the ABN reduction of Boyen-Mei-Waters (described in Example D.13)
in Section 6, the target points ~t∗ are determined by PRFs. Thus, witness wit for chameleon hash functions
might not be available. However, if we use an instantiation by the SIS assumption, we do not need wit to
run Hash−1, as we see in Theorem A.8. In addition, if we use an instantiation by the discrete logarithm
assumption, then Yhk = G and wit for Y ∈ G is log Y. That is, if we use PRFs whose range is Zp and
set t∗ := Gt where t is an output of PRFs, then t∗ is still pseudorandom and witness wit of chameleon
hash functions is available for the reduction.

Example D.4 (Kiltz TBE). Kiltz presented a selective-tag weakly CCA secure tag-based PKE scheme
based on the DLIN assumption.

Gen(1λ) :

• Generate params := (p, G, GT, e, G)← Gbmp(1λ).
• Choose G1 ← G, x1, x2, y1, y2 ← Zp, and G2, Z ∈ G such that Gx1

1 = Gx2
2 = Z, and set

U1 := Gy1
1 , U2 := Gy2

2 .
• Output PK := (params, G, G1, G2, Z, U1, U2) and DK := (PK, x1, x2, y1, y2).

Enc(PK, M, t) :

• For M ∈ G, choose r1, r2 ← Zp, set C1 := Gr1
1 , C2 := Gr2

2 , D1 := Ztr1Ur1
1 , D2 :=

Ztr2Ur2
2 , K := Zr1+r2 , E := K ·M, and output CT := (C1, C2, D1, D2, K, E) ∈ G6.

Dec(DK, CT, t) :

• Parse DK = (PK, x1, x2, y1, y2) and CT = (C1, C2, D1, D2, K, E).

• If Ctx1+y1
1 6= D1 or Ctx2+y2

2 6= D2, then K ← G.
• Else, set K := Cx1

1 · C
x2
2 .

59

• Output M := E · K−1

The simulation algorithm Sim of Kiltz TBE scheme consists of three algorithms (PSim, OSim, CSim).
Let π := (G, G1, G2, Z, Gr1

1 , Gr2
2 , T), t∗, query := ti, query := Enc(PK, Mi; (ri,1, ri2)), ρq :=

(Mi, ri,1, ri,2), challenge = (M0, M1) be a DLIN instance, the target tag, a query to the decryp-
tion oracle, a sub-query (honest ciphertext), the randomness to sample an honest ciphertext, the challenge
messages, respectively.

PSim(π, t∗): This algorithm is given a DLIN instance and a target tag and simulate PK. It chooses
β1, β2 ← Zp, setsU1 := Z−t∗ ·Gβ1

1 ,U2 := Z−t∗ ·Gβ2
2 , and outputsPK := (G, G1, G2, Z, U1, U2).

The randomness ρ of this algorithm is ρ := (β1, β2).

OSim(π, ρ, t∗, query): This algorithms simulate decryption results for tag ti ∈ Zp such that ti 6= t∗.
It parses query = (ti, (C1, C2, D1, D2, K, E)) and ρ = (β1, β2), if it holds that e(Cb, Zti Ub) =
e(Gb, Db) for both b ∈ {1, 2}, then computes

K :=

(
D1 · D2

Cβ1
1 · C

β2
2

)1/(ti−t)

and outputs E · K−1. If the condition is not satisfied, then outputs a random K′ ← G. The
randomness ρo of this algorithm is ρo = K′.

CSim(π, ρ, t∗, challenge, coin): This algorithms simulate a challenge ciphertext for challenge = (M0, M1)
under tag t∗. It outputs

CT∗ := (C∗1 := Gr1
1 , C∗2 := Gr2

2 , D∗1 := (Gr1
1)β1 , D∗2 := (Gr2

2)β2 , E∗ := Mcoin · T).

The auxiliary ABO reduction algorithms of Kiltz TBE scheme consists of three algorithms
(Valid, Solve, MSKtoP).

Valid(PK, query, ρq, answer): This algorithm parsesPK = (params, G, G1, G2, Z, U1, U2) and query =
Enc(pk, M, t; r1, r2) = (C1, C2, D1, D2, K, E), and for answer← DO((C1, C2, D1, D2, K, E), t),
checks

answer = M.

If it holds, then output >. Otherwise, outputs ⊥.

Solve(π, ρ, t∗, query∗, ρq, answer∗): First, we can assume that this algorithm chooses M0, M1 ∈ G and
coin← {0, 1} and computes

CT∗ := (C∗1 := Gr1
1 , C∗2 := Gr2

2 , D∗1 := (Gr1
1)β1 , D∗2 := (Gr2

2)β2 , E∗ := Mcoin · T)

in the selective reduction. This CT∗ is the same as the output of CSim(π, ρ, t∗, challenge, coin).
That is, we can parse query∗ = (t∗, CT∗), ρ = (β1, β2), ρq = (coin, M0, M1). (We do not need
encryption randomness here.) Then, it decrypts (t∗, CT∗) by using the oracle DO(CT∗, t∗) and
obtains answer∗. If it obtains Mcoin, then outputs 0, otherwise 1.

MSKtoP(1λ, DK, t∗): First, this algorithms parsesDK = (PK, x1, x2, y1, y2) andPK = (params, G, G1,
G2, Z, U1, U2), and chooses r1, r2 ← Zp. Then, it outputs π := (G, G1, G2, Z, U1, U2, Zr1+r2)
and ρ′ := (β1 := t∗x1 + y1, β2 := t∗x2 + y2).

60

Example D.5 (GPSW ABE). For a group element g ∈ G and vectors v = (v1, . . . , vm)> and w =
(w1, . . . , wm)>, [v] denotes a vector of group elements (Gv1 , . . . , Gvm)> and v�w denotes a vector
(v1w1, . . . , vmwm)>. Given [v] and w, one can efficiently compute [v�w] and [v>w]. Similarly,
given [v] and [w], one can efficiently compute [v�w]T and [v + w] = [v] · [w], where “·" denotes
component-wise multiplication in G. One can also efficiently compute [Mv] given [v] and M ∈ Zn×m

p .

Setup(1λ) :

• Generate params := (p, G, GT, e, G)← Gbmp(1λ).
• Output MPK := (G, Gu, e(G, G)γ) and MSK := (MPK, γ, u)

KeyGen(MSK, P) :

• Parse MSK = (γ, u) and P = (M, ρ) where (M, ρ) is a span program (see Definition A.14).
• Choose s← Zm−1

p and t ← Zn
p.

• Set γj := M j (
γ
s) for j ∈ [`].

• Output
~K :=

(
~K1 := {Gγi+tiuρ(i)}i∈[n], ~K2 := Gt

)
∈ Gn ×Gn.

Enc(MPK, a, M) :

• Parse a = (a1, . . . , an).
• Choose r ← Zp.
• Output

~C :=
(

C1 := Gr, ~C2 := {(Gui)r}i:ai=1, ~C3 := e(G, G)γr ·M
)
∈ G1+n′ ×GT,

where n′ is the number of i such that xi = 1.

Dec(SKP, CTa) :

• Parse SKP = (~K1, ~K2) and CTa = (C1, ~C2, C3).
• If a satisfies (M, ρ), computes w1, . . . , w` ∈ Zp such that ∑j:aρ(j)=1 wj M j = 1.
• Output

C3 ∏
j:xρ(j)=1

(
e(C2,ρ(j), K2,j)

e(C1, K1,j)

)wj

.

The simulation algorithm Sim of ABE ABE scheme consists of three algorithms (PSim, OSim, CSim).
Let π := (G, Gx, Gy, Gz, T).

PSim(π, t∗): This algorithm is given a DBDH instance and a target attribute t∗ = a∗ and simulate MPK.
It chooses ũi ← Zp for i ∈ [n], sets

Gui :=

{
Gũi (a∗i = 0)
Gũi(Gy) (a∗i = 1)

,

and outputs MPK := (G, Gu, e(Gy, Gz)). The randomness of this algorithm is ρ := {ũi}i∈[n].

61

OSim(π, ρ, t∗, query): This algorithms parses t∗ = a∗, query = (Pi,⊥), and ρ = {ũi}i∈[n]. It
simulates decryption keys for policy Pi = (M i, ρi) such that Pi(a∗) = ⊥. That is, by Lemma A.15,
there exists an efficiently computable vector d = (d1, . . . , dm)> ∈ Zm

p such that M−ad = 0
and d1 = −1. It chooses r̃ ← Z`

p, s̃ ← Z`′−1
p , sets s̃0 := (0, s̃), implicitly sets γ := yz and

(γ, s) := s̃0 − γd, and outputs

K1,i :=

{
GM i s̃0+r̃i ũρ(i) (a∗ρ(i) = 0)

GM i s̃0+r̃i ũρ(i) · (Gy)r̃i · (Gz)ũρ(i)(Mid) (a∗ρ(i) = 1)
,

K2,i := Gr̃i(Gz)M id.

This is the right distribution since

Gγi+riuρ(i) = GM i(s̃0−γd)+(r̃i+(M id)z)uρ(i)

=

{
GMi s̃0+r̃i ũρ(i) (a∗ρ(i) = 0, i.e., M id = 0)

GMi s̃0−yz(M id)+(r̃i+(M id)z)(ũρ(i)+y) (a∗ρ(i) = 1).

The randomness of this algorithm is ρo := (r̃, s̃).

CSim(π, ρ, t∗, challenge, coin): This algorithms simulate a challenge ciphertext for attribute t∗ = a∗

and the challenge challenge = (M0, M1) by using ρ = {ũi}i∈[n]. It outputs

CT∗ := (Gx, {(Gx)ũi}i:a∗i =1, Mcoin · T).

The auxiliary ABO reduction algorithms of GPSW ABE scheme consists of three algorithms
(Valid, Solve, MSKtoP). The validity check algorithm was explicitly proposed by Katsumata et
al. [KNYY19b]. See the paper cite for the validity of this algorithm.

Valid(MPK, query, ρq, answer): This algorithm parses MPK = (params, G, Gu, e(G, G)γ), query =

(P = (M, ρ),⊥), ρq = ⊥, and answer = SKP = (~K1 = Gk, ~K2 = Gt) ∈ Gn × Gn and
computes

e(G, G)k̃i := e(G, G)ki · e(G, G)−ti ·uρ(i) · e(G, G)−Mi(
γ
0).

Next, let M−1 ∈ Z
`×(m−1)
p be the matrix obtained by removing the first column of M. If the

columns of M−1 spans Z`
p, it outputs >. Otherwise, it computes M⊥−1 ∈ Z`×n′

p such that the
columns of M⊥−1 span the space {v ∈ Z`

p : v>M−1 = 0}. It then checks

e(G, G)(M⊥−1)
> k̃ = e(G, G)0

and outputs > if it holds. Otherwise, it outputs ⊥.
Katsumata et al. [KNYY19b] prove that this algorithm outputs > if and only if answer ←
KeyGen(MSK, P). See the reference for the detail.

Solve(π, ρ, t∗, query∗, ρq, answer∗): First, this algorithm parses t∗ = a∗, query∗ = (P∗,⊥), ρ =
{ũi}i∈[n], and ρq = ⊥. It chooses M0, M1 and coin← {0, 1} and computes

CT∗ := (Gx, {(Gx)ũi}i:a∗i =1, Mcoin · T)

(this is the same as the output of CSim(π, ρ, t∗, challenge, coin)). Then, it parses answer∗ =
(~K∗1 , ~K∗2) and decrypts CT∗ by using (~K∗1 , ~K∗2). If it obtains Mcoin, then outputs 0, otherwise 1.

62

MSKtoP(1λ, MSK, t∗): First, this algorithms parses MSK = (MPK, γ, u) and t∗ = a∗, chooses
x, z← Zp, and computes y := γ · z−1 and

ũi :=

{
ui (a∗i = 0)
ui − y (a∗i = 1)

.

Then, it outputs π := (G, Gx, Gy, Gz, e(G, G)xyz) and ρ′ := {ũi}i∈[n].

Example D.6 (Boneh-Hamburg spatial encryption). Boneh and Hamburg presented a selectively secure
spatial encryption scheme based on the BDDHE assumption [BH08]. We can easily observe that the
scheme has an ABO reduction to the BDDHE problem. See the reference for the detail.

Lattice-based schemes. We give examples of lattice-based scheme. We need care for lattice-based
schemes since simulated master public parameters are statistically indistinguishable from real ones in
ABO reductions of lattice-based schemes in general. We can overcome this issue by slightly modifying
setup algorithms in the real world. This change does not affect the security of origirnal schemes. In
addition, in the setting of watermarking, target points t∗ (i.e., holes) can be uniformly (or pseudo-)
random as we see in the watermarking constructons in Sections 5 and 6.2. Thus, lattice-based canonical
ABO/ABN reductions also work for achieving watermarking.

Example D.7 (Agrawal-Boneh-Boyen IBE). Agrawal, Boneh, and Boyen presented a selectively secure
IBE scheme based on the LWE assumption [ABB10].

Agrawal et al. introduced an encoding function H : Zn
q → Zn×n

q that satisfies the following.

• For all distinct u, v ∈ Zn
q , H(u)−H(v) ∈ Zn×n

q is a full rank matrix.

• The function H is a polynomial-time algorithm.

See [ABB10] for the detail of this function. We present a slightly modified version of the IBE scheme.

Gen(1λ) :

• Set parameters q, n, m, σ, α as Agrawal et al. [ABB10].
• Generate (A0, A−1

0,σ0
)← L.TrapGen(q, n)

• Choose R0 ← {−1, 1}m×m, id0 ← Zn
q , B ← Zn×m

q , and u ← Zn
q and set A1 :=

AR0 −H(id0)B.
• Output MPK := (A0, A1, B, u) and MSK := (MPK, A−1

0,σ0
∈ Zm×m).

KeyGen(MSK, id) :

• For id ∈ Zn
q , sample r ← [A0‖A1 + H(id)B]−1(u).

• Output SKid := r ∈ Z2m.

Enc(MPK, m) :

• Set F id := [A0‖A1 + H(id) · B] ∈ Zn×2m
q .

• Choose s← Zn
q and R← {−1, 1}m×m.

• Choose e0 ← χ and e1 ← χm, and set e2 := R>e1 ∈ Zm
q .

• Set c0 := u>s + e0 + m
⌊ q

2

⌋
∈ Zq and c1 := F>ids + (e1

e2).
• Output CT := (c0, c1) ∈ Zq ×Z2m

q .

63

Dec(SKid, CT) :

• Parse SKid = r.
• Compute w := c0 − r>c1 ∈ Zq.
• If |w−

⌊ q
2

⌋
| <

⌊ q
4

⌋
, then output 1. Otherwise, output 0.

Remark D.8. In the original scheme, we choose A1 ← Zn×m
q instead of setting A1 := AR0 −H(id0)B.

This difference is not essential for IBE and does not harm the IBE security, but it is needed for watermarking.

The simulation algorithm Sim of ABB IBE scheme consists of three algorithms (PSim, OSim, CSim).
Let π := ((u | A0), v) ∈ Z

n×(m+1)
q × Zm+1

q , t∗ := id∗, query := idi, query := ⊥, ρq := ⊥,
challenge := (m0, m1), be an LWE instance, the target identity, a query to the key generation oracle, a
sub-query, the randomness to sample query, the challenge messages, respectively.

PSim(π, t∗): This algorithm is given anLWE instance and a target identity and simulateMPK. It generates
(B, B−1

σB
) ← L.TrapGen(q, n) and chooses R∗ ← {−1, 1}m×m. It sets A1 := A0R∗ −H(id∗)B.

It outputs MPK := (A0, A1, B, u). The randomness of this algorithm is ρ := (B−1
σB

, R∗). Note
that if id∗ ← Zn

q , the MPK is perfectly indistinguishable from the real distribution.

OSim(π, ρ, t∗, query): This algorithm simulates decryption keys for identity idi ∈ Zn
q such that

idi 6= id∗. It parses ρ = (B−1
σB

, R∗) and samples ri ← [A0‖AR∗ + (H(idi)− H(id∗))B]−1(u)
by Lemma A.23. (H(idi) 6= H(id∗) since idi 6= id∗.) It outputs SKidi := ri. The randomness ρo of
this algorithm is the randomness of the sampling algorithm.

CSim(π, ρ, t∗, challenge, coin): This algorithms simulate a challenge ciphertext for coin under identity
id∗. It parses v = (v0, v1, . . . , vm)>, challenge = (m0, m1), and ρ = (B−1

σB
, R∗), and sets

v∗ := (v1, . . . , vm)>, c∗0 := v0 + coin
⌊ q

2

⌉
∈ Zq, and c∗1 := (v∗, (R∗)>v∗)> ∈ Z2m

q .

The auxiliaryABO reduction algorithms ofABB IBE scheme consists of three algorithms (Valid, Solve,
MSKtoP).

Valid(MPK, query, ρq, answer): This algorithm parses MPK = (A0, A1, B, u), query = (id,⊥), ρq =
⊥, and answer = SKid = r. If F idr = u where F id = [A0‖A1 + H(id)B], then outputs >.
Otherwise, outputs ⊥.

Solve(π, ρ, t∗, query∗, ρq, answer∗): First, this algorithm parses query∗ = (id∗,⊥), ρ := (B−1
σB

, R∗),
and ρq = ⊥, chooses coin ← {0, 1} and computes CT∗ := (v0 + coin

⌊ q
2

⌉
, (v∗, (R∗)>v∗)>)

(this is the same as the output of CSim). Then, it decrypts CT∗ by using answer∗ = SKid∗ = rid∗ .
If it obtains coin, then outputs 0, otherwise 1.

MSKtoP(1λ, MSK, t∗): This algorithms parses MSK = (MPK, A−1
0,σ0

). It samples R∗ ← A−1
0,σ0

(A1 +

H(id∗)B). It samples s ← Zn
q , e0 ← χ, e1 ← χm. It outputs π := ((u, A0), (u>s + e0, A>0 s +

e1)). Here, it holds that A1 = A0R∗ −H(id∗)B. If id∗ ← Zn
q , A1 is statistically indistinguishable

from the real distribution even if R∗ is given.

Example D.9 (Signature from ABB IBE). We can easily obtain a selectively secure signature scheme
from the ABB IBE in Example D.7. Although, we do not give the detail of it, the signature has an ABO
reduction to the SIS problem.

We have more examples of lattice-based advanced cryptographic primitives that have ABO reductions.
Although we do not give details of them, we list a few schemes below. Note that we need to slightly
modify the public parameter generation algorithms of the schemes as we observed in Example D.7.

64

ExampleD.10 (Agrawal-Freeman-Vaikuntanathan IPE). Agrawal, Freeman, and Vaikuntanathan presented
a selectively secure IPE scheme based on the LWE assumption [AFV11]. We can easily observe that the
scheme has an ABO reduction to the LWE problem.

Example D.11 (Gorbunov-Vaikuntanathan-Wee ABE for circuits). Gorbunov, Vaikuntanathan and Wee
presented a selectively secure ABE scheme for circuits from the LWE assumption [GVW15a]. We can
easily observe that the scheme has an ABO reduction to the LWE problem.

Example D.12 (Gorbunov-Vaikuntanathan-Wee PE). Gorbunov, Vaikuntanathan and Wee presented a
selectively secure (partially-hiding) PE scheme from the LWE assumption [GVW15a]. We can easily
observe that the scheme has an ABO reduction to the LWE problem.

D.2 More Examples of Canonical ABN Reductions

Example D.13 (Modified Boyen-Mei-Waters KEM). We use Hw(X) := ∏n
i=0 HXi

i where the hash key is
(H0, H1, . . . , HN) instead of the Boneh-Boyen hash function HBB(X) := GX

1 H where the hash key is
(G1, H). It is easy to see that this works in a similar way as that of modified Boneh-Boyen in Example 4.9.
Note that we use random self-reducibility of the DBDH problem for CSim as in Example 4.9.

ExampleD.14 (Modified Kiltz TBE). We replace the Boneh-Boyen hash with the weak programmable hash.
That is, we use ∏N

i=0(Hti

i) and ∏N
i=0(Fti

i) where Hi = Ghi , Fi = G fi and hi, fi ∈ Zp for i ∈ {0, . . . , N}
instead of (ZtU1) and (ZtU2) in Example D.4. It is easy to see that this works in a similar way as that of
modified Boneh-Boyen in Example 4.9. Note that we use random self-reducibility of the DLIN problem
for CSim as in Example 4.9.

Example D.15 (Boneh-Boyen from q-type assumption). Attrapadung, Hanaoka, and Yamada prove that
Boneh-Boyen IBE is tightly secure multi-challenge IBE under a dynamic q-type assumption [AHY15].
This is an example of ABN reductions. First, we present assumptions that Attrapadung et al. introduced.

Definition D.16 (Truncated q-RW Assumption). Let y, b1, . . . , bq ← Zp and G ← G∗ and

Ψ′ := (G, {Gxzbi , Gy/b2
i , Gbi}i∈[q], {G

xyzbi/b2
j , Gybi/b2

j }(i,j)∈[q]2∧i 6=j).

We say that A (t, q̂, ε)-breaks the truncated q-RW assumption on (G, GT) if it runs in time t and
|Pr[A(Ψ, T = e(G, G)xyz) = 0]− Pr[A(Ψ, T ← GT) = 0]| ≥ 2ε. We say that the truncated q-RW
assumption holds if there is no algorithm that (t, ε)-breaks the truncated q-RW assumption with t is some
polynomial of λ and ε is non-negligible.

Definition D.17 (Oracle Truncated q-RW Assumption). Let y, b1, . . . , bq ← Zp and G ← G∗ and

Ψ′ := (G, {Gy/b2
i , Gbi}i∈[q], {G

ybi/b2
j }(i,j)∈[q]2∧i 6=j).

We say that A (t, q̂, ε)-breaks the oracle truncated q-RW assumption on (G, GT) if it runs in time t,
|Pr[AO0(Ψ′) = 0]− Pr[AO1(Ψ′) = 0]| ≥ 2ε, and A queries the oracle at most q̂ times. The oracle
Ob for b ∈ {0, 1} takes as input index j∗ ∈ [q] and returns (Gs, {Gsy/b2

j }j∈[q]\{j∗}, T′ = R′b) to A,
where s← Zp, R′0 = e(G, G)sy/bj∗ , and R′1 ← GT. Note that s and R′1 are freshly sampled every time
A sends a query. We say that the oracle truncated q-RW assumption holds if there is no algorithm that
(t, q̂, ε)-breaks the oracle truncated q-RW assumption with t and q̂ are some polynomials of λ and ε is
non-negligible.

Theorem D.18 ([AHY15]). If there exists A that (t, q̂, ε)-breaks the oracle truncated q-RW assumption,
then there exists B that (t′, ε′)-breaks the truncated q-RW assumption where t′ = t + O(qq̂texp,G) +
O(q̂(texp,GT + tpair)) and ε′ = ε− 1/p. Here, texp,G, texp,GT , and tpair are the times needed for one
exponentiation in G and GT and for pairing computation, respectively.

65

The scheme description is the same as that of Boneh-Boyen presented in Example 4.6. The alternative
simulation algorithm Simq of BB IBE scheme under the oracle truncated q-RW assumption consists of
three algorithms (PSimq, OSimq, CSimq).

PSimq(π,~t∗): This algorithm is given an oracle truncated q-RW instance π = Ψ′ and a target identity
vector ~t∗ = ~id∗ and simulate MPK. It chooses ũ, ṽ, α̃← Zp, sets

G1 := Gũ ∏
i∈[q]

Gy/b2
i ,

H := Gṽ ∏
i∈[q]

(Gy/b2
i)−id∗i ,

e(G, G)α := e(G, G)α̃ ∏
i∈[q]

e(Gbi , Gy/b2
i),

and outputs MPK := (G, G1, H, e(G, G)α). The randomness ρ of this algorithm is ρ := (ũ, ṽ, α̃).

OSimq(π, ρ,~t∗, query): This algorithm simulates decryption keys for identity id ∈ Zp such that id 6= id∗i
for all i ∈ [q] where ~t∗ = ~id∗. It parses π = Ψ′, query = (id,⊥), and ρ = (ũ, ṽ, α̃), chooses
r̃ ← Zp and outputs

D1 := Gα̃ · Dũid+ṽ
2 · ∏

i∈[q]
(Gy/b2

i)r̃(id−id∗i) ∏
(i,j)∈[q]2∧i 6=j

(Gybj/b2
I)−(id−id∗i)/(id−id∗j),

D2 := Gr̃ · ∏
i∈[q]

(Gbi)−1/(id−id∗i).

The randomness ρo of this algorithm is ρo = r̃. Note that this algorithm does not need the oracle
access to Ob of the oracle truncated q-RW assumption.

CSimOβ
q (π, ρ,~t∗, challenge, coin): This algorithm parses π = Ψ′, ~t∗ = ~id∗, challenge = (M0, M1),
and ρ = (ũ, ṽ, α̃) and simulates challenge ciphertexts for identity ~id∗. It sends j∗ to its oracle Oβ

to receive (Gs, {Gsy/b2
j }j∈[q]\{j∗}, T′ = R′β). Then, this algorithm outputs CT∗ := (C∗0 , C∗1 , C∗2)

where

CT∗1 := Gs,

CT∗2 := (C∗1)
ũid∗j∗+ṽ · ∏

i∈[q]\{j∗}
(Gsy/b2

i)id∗j∗−id∗i ,

CT∗0 := e(Gs, G)α̃ · ∏
i∈[q]\{j∗}

e(Gbi , Gsy/b2
i) · T′ ·Mcoin.

The auxiliary ABN reduction algorithms of BB IBE scheme consists of the three algorithms
(Valid, Solve, MSKtoP).

Valid(MPK, query, ρq, answer): This algorithm is completely the same as one in the description of BB
IBE Example 4.6.

Solve(π, ρ,~t∗, query∗, ρq, answer∗): Weparse query∗ = (id∗,⊥), ρ = (ũ, ṽ, α̃), and ρq = ⊥. This algo-
rithms chooses coin← {0, 1} and M0, M1, sends j∗ to its oracleOβ to receive (Gs, {Gsy/b2

j }j∈[q]\{j∗},

66

T′ = R′β), and computes CT∗ := (C∗0 , C∗1 , C∗2) where

CT∗1 := Gs,

CT∗2 := (C∗1)
ũid∗j∗+ṽ · ∏

i∈[q]\{j∗}
(Gsy/b2

i)id∗j∗−id∗i ,

CT∗0 := e(Gs, G)α̃ · ∏
i∈[q]\{j∗}

e(Gbi , Gsy/b2
i) · T′ ·Mcoin

in the selective reduction. This CT∗ is the same as the output of CSim. Then, it decrypts CT∗ by
using answer∗ = (Gx

2 (G
id∗
1 H)r, Gr). If it obtains Mcoin, then outputs 0, otherwise 1.

MSKtoP(1λ, MSK,~t∗): First, it parses MSK = (MPK, x, y, h) and chooses y′, b1, . . . , bq ← Zp. It sets
ũ := x−∑

q
i=1 y′/b2

i , ṽ := h−∑
q
i=1(−id∗i)y′/b2

i , and α̃ := xy−∑
q
i=1 y′/bi. Then, it outputs

π := (G, {Gy′/b2
i , Gbi}i∈[q], {G

y′bi/b2
j }(i,j)∈[q]2∧i 6=j) and ρ′ := (ũ, ṽ, α̃).

Example D.19 (Modified BGG+14 IBE). We can construct an IBE scheme that has an ABN reduction by
using the fully key-homomorphic technique by Boneh et al. [BGG+14]. See Theorem A.24 for evaluation
algorithms EvalF and EvalFX. We define a special policy function Pidi associated with an identity idi as
follows.

Pidi(~id
∗) :=

{
1 (idi /∈ ~id∗)
0 (idi ∈ ~id∗)

.

Therefore, the output length k = 1 in Theorem A.24.

Setup(1λ) :

• Set parameters q, n, m, σ, α, α′ as Yamada [Yam17], and `′ := ` · N.
• Generate (A, A−1

σ)← L.TrapGen(q, n)

• Choose Ri ← {−1, 1}m for i ∈ {0} ∪ [`′], id′ ← {0, 1}`′ , and u← Zn
q and set id′[0] := 1,

Bi := ARi + id′[i] ·G for i ∈ {0} ∪ [`′], and ~B := (B0, B1, . . . , B`′) ∈ Z
n×m(`′+1)
q .

• Output MPK := (A,~B, u) and MSK := (MPK, A−1
σ ∈ Zm×m).

KeyGen(MSK, id) :

• For id ∈ {0, 1}`, compute H id := EvalF(Pid,~B) and [B′‖Bid] := ~BH id ∈ Zn×2m
q . We do

not use B′ in the following.
• Compute [A‖Bid]

−1 by using A−1
σ and sample r ← [A‖Bid]

−1(u).
• Output SKid := r ∈ Z2m.

Enc(MPK, id, m) :

• Compute H id := EvalF(Pid,~B) and [B′‖Bid] := ~BH id ∈ Zn×2m
q . We do not use B′ in the

following.
• Choose s← Zn

q , e0 ← DZ,αq, e1 ← DZ2m,α′q.

• Compute c0 := s>u + e0 + m
⌈ q

2

⌉
∈ Zq and c1 := s>[A‖Bid] + e1 ∈ Z2m

q .

• Output CT := (c0, c1) ∈ Zq ×Z2m
q .

Dec(SKid, CT) :

67

• Parse SKid = r.
• Compute w := c0 − c1r ∈ Zq.
• If |w−

⌈ q
2

⌉
| <

⌈ q
4

⌉
, then output 1. Otherwise, output 0.

Remark D.20. In the original scheme, we choose Bi ← Zn×m
q . This difference is not essential for IBE

and does not harm IBE security, but it is needed for watermarking.

The simulation algorithm Sim of the modified BGG+14 IBE scheme consists of three algorithms
(PSim, OSim, CSim). Let π := ((u‖A), v1, . . . , vN) where u ∈ Zn

q , A ∈ Zn×m
q and vi ∈ Zm+1

q for all
i ∈ [N].

PSim(π,~t∗): This algorithm is given an LWE instance and target identities ~t∗ = (id∗1 , . . . , id∗N) and
simulate MPK. It samples Ri ← {−1, 1}m for i ∈ {0} ∪ [`′]. It sets Bi := ARi + ~id∗[i] · G
where ~id∗[i] is the i-th bit of ~id∗ := id∗1‖id∗2‖ · · · ‖id∗N ∈ {0, 1}`N for all i ∈ [`′], B0 := AR0 + G,
and ~B := A~R~id∗ +

~id∗ ⊗G where ~R~id∗ := R0‖R1‖ · · · ‖R`′ . It outputs MPK := (A,~B, u). The
randomness of this algorithm is ρ := (R0, {Ri}i∈[`′]). Note that if ~id∗ ← {0, 1}`N , the MPK is
perfectly indistinguishable from the real distribution.

OSim(π, ρ,~t∗, query): This algorithm simulates decryption keys for identity idi ∈ {0, 1}` such that
idi /∈ ~id∗. It parses ~t∗ = (id∗1 , . . . , id∗N), query = (idi,⊥), and ρ = (R0, {Ri}i∈[`′]) and computes
HPidi ,

~id∗ := EvalFX(Pidi ,~id
∗,~B). Here, by Theorem A.24, it holds that

[A‖([B′‖Bidi]− (1, Pidi(~id
∗)) ·G)] = [A‖[~B− (1,~id∗)⊗G] · HPidi ,

~id∗]

= [A‖A~R~id∗ · HPidi ,
~id∗].

Therefore, [A‖Bidi − G] = [A‖A~R~id∗HPidi ,
~id∗] ·

(
0m
Im

)
] since Pidi(~id

∗) = 1. It samples r ←

[A‖Bidi]
−1(u) = [A‖A~R~id∗HPidi ,

~id∗
(

0m
Im

)
+G]−1(u) by using (A,~Rid, HPidi ,

~id∗
(

0m
Im

)
) (LemmaA.23)

and outputs SKid := r. The randomness ρo of this algorithm is the randomness of the sampling
algorithm.

CSim(π, ρ, t∗i , challenge, b): This algorithms simulate a challenge ciphertext for identity t∗i = id∗i for
all i ∈ [N]. It parses challenge = (m0, m1) and ρ = (R0, {Ri}i∈[`′]). It sets vi,0 := vi[0] and
vi,⊥ := (vi[1], . . . , vi[m])>. It chooses b← {0, 1} and sets c∗i,0 := vi,0 +mb

⌊ q
2

⌉
∈ Zq and c∗i,1 :=

reRand(vi,⊥, v>i,⊥(Im‖~R~id∗HPidi ,
~id∗)

(
0m
Im

)
) where reRand is a algorithm for re-randomization that

is commonly used in lattice-based encryption (also known as noise-flooding/smudging techniques).
See the reference for the detail [Yam17].

The auxiliaryABO reduction algorithms ofABB IBE scheme consists of three algorithms (Valid, Solve,
MSKtoP).

Valid(MPK, SK, id): This algorithm parses MPK = (A,~B, u) and SK = r. If [A‖Bid]r = u where
[B′‖Bid] = ~BH id and H id = EvalF(Pid,~B), then outputs >. Otherwise, outputs ⊥.

Solve(π, ρ, t∗i , query∗, ρq, answer∗): This algorithms compute a challenge ciphertext for identity id∗i
for some i ∈ [N]. It parses t∗i = id∗i , query = (id∗i ,⊥), ρ = (R0, {Ri}i∈[`′]), ρq = ⊥, and
answer∗ = SKid∗i = r∗i . It sets vi,0 := vi[0] and vi,⊥ := (vi[1], . . . , vi[m])>. It chooses b ←
{0, 1} and sets c∗i,0 := vi,0 +mb

⌊ q
2

⌉
∈ Zq and c∗i,1 := reRand(vi,⊥, v>i,⊥(Im‖~R~id∗HPidi ,

~id∗
(

0m
Im

)
))

(this is the same as the output of CSim). Then, it decrypts CT∗i = (c∗i,0, c∗i,1) by using SKid∗i = r∗i .
If it obtains mb, then outputs 0, otherwise 1.

68

MSKtoP(1λ, MSK,~t∗): This algorithms parsesMSK = (MPK = (A,~B, u), A−1
σ) and~t∗ = (id∗1 , . . . , id∗N).

It samples Ri ← A−1
σ (Bi − ~id∗[i]G) for i ∈ [`′] and R0 ← A−1

σ (B0 −G). It samples si ← Zn
q ,

ei,0 ← DZm,αq, ei,1 ← DZ2m,α′q for i ∈ [N]. It outputs π := ((u, A), {(s>i u + ei,0, s>i A +

ei,1)}i∈[N]) and ρ′ := (R0, {Ri}i∈[`′]). If ~id∗ ← {0, 1}`N , Bi is statistically indistinguishable
from the real distribution even if Ri is given.

Example D.21 (Modified BGG+14 SIG). We can easily obtain a selectively secure signature scheme from
the modified BGG+14 IBE in Example D.19. Although, we do not give the detail of it, the signature has
an ABN reduction to the SIS problem.

69

	Introduction
	Background
	Our Contribution
	Technical Overview
	Comparison and Related Work

	Preliminaries
	Definitions of Watermarking for Cryptographic Primitives
	All-But-One Reductions
	Assumptions and Security Games
	Abstraction of All-But-One Reductions for Decisional Case
	Concrete Examples
	All-But-N Reductions
	Concrete Examples of canonical ABN Reductions

	Message-Less Watermarking via Canonical ABO-reductions
	Message-Embedding Watermarking via Canonical ABN-reductions
	How to Test Circuit Similarity
	Message-Embedding Scheme

	More Preliminaries
	Known Facts
	Hard Probmlems and Algebra
	Basic Cryptographic Primitives
	Advanced Cryptographic Primitives
	Preliminaries on Lattices

	More Definitions of Watermarking for Cryptographic Primitives
	TBE Case
	Signature Case

	All-But-One Reductions for Computational Case
	Computational Assumptions and Security Games
	Abstraction of All-But-One Reductions for Computational Case
	All-But-N Reductions for Computational Case

	More Examples of Canonical ABO and ABN Reductions
	More Examples of Canonical ABO Reductions
	More Examples of Canonical ABN Reductions

