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Abstract. Broadcast Encryption with optimal parameters was a long-
standing problem, whose first solution was provided in an elegant work
by Boneh, Waters and Zhandry [BWZ14]. However, this work relied on
multilinear maps of logarithmic degree, which is not considered a standard
assumption. Recently, Agrawal and Yamada [AY20] improved this state of
affairs by providing the first construction of optimal broadcast encryption
from Bilinear Maps and Learning With Errors (LWE). However, their
proof of security was in the generic bilinear group model. In this work, we
improve upon their result by providing a new construction and proof in
the standard model. In more detail, we rely on the Learning With Errors
(LWE) assumption and the Knowledge of OrthogonALity Assumption
(KOALA) [BW19] on bilinear groups.

Our construction combines three building blocks: a (computational)
nearly linear secret sharing scheme with compact shares which we
construct from LWE, an inner-product functional encryption scheme with
special properties which is constructed from the bilinear Matrix Decision
Diffie Hellman (MDDH) assumption, and a certain form of hyperplane
obfuscation, which is constructed using the KOALA assumption. While
similar to that of Agrawal and Yamada, our construction provides a
new understanding of how to decompose the construction into simpler,
modular building blocks with concrete and easy-to-understand security
requirements for each one. We believe this sheds new light on the
requirements for optimal broadcast encryption, which may lead to new
constructions in the future.

1 Introduction

Broadcast encryption [FN94] (BE) is a novel form of encryption that enables
a sender to transmit a single ciphertext over a broadcast channel so that only
an authorized subset S of total N users can decrypt and recover the message.
Security requires that no collusion of unauthorized users can learn anything
about the encrypted message with non-negligible advantage. Evidently, broadcast



encryption is implied by public key encryption if no restriction is placed on the
size of the ciphertext. However, the size of the ciphertext in broadcast encryption
is of paramount importance, and is quantified in terms of ciphertext overhead,
namely, the size of the ciphertext not counting the description of the recipient
set S. Thus, in an optimal solution, the ciphertext overhead would be of size
proportional to a symmetric encryption of the plaintext message (upto constant
factors), aside from the description of S which is provided in the clear.

In a celebrated work, Boneh, Gentry and Waters [BGW05] provided the first
construction of broadcast encryption which achieved both optimal (constant)
ciphertext overhead and short secret keys, but suffered from large public
parameters, namely, linear in the number of users N . A series of elegant
works provided improvements to this scheme [GW09, DPP07, Del07, SF, AL10,
HWL+16, BZ17] achieving many interesting new features such as anonymity,
adaptive security and such others, but failed to improve the size of the public
parameters. In 2014, Boneh, Waters and Zhandry [BWZ14] provided the first
solution to the long standing problem of BE with optimal parameters, but their
construction relied on the existence of multilinear maps of degree logN , which is
not considered a standard assumption. Recently, Agrawal and Yamada [AY20]
improved the state of affairs by achieving the same parameters from the learning
with errors assumption (LWE) along with assumptions on bilinear maps. However,
this construction [AY20] could only be proven secure in the generic bilinear group
model. Independently, Brakerski and Vaikuntanathan [BV20] also provided a
construction of BE with optimal parameters from new assumptions on lattices,
but they were unable to provide a proof of security for their scheme.

While encouraging, this state of affairs nevertheless leaves much to be desired.
It is evident that for a primitive as important as broadcast encryption, we would
like to have a proof from well-studied standard assumptions, and in the standard
model. However, so far such a construction has been elusive.

Our Results. In this work, we make further progress towards this goal and
provide the first construction for broadcast encryption with optimal parameters,
from Learning with Errors (LWE) [Reg09] and the Knowledge of OrthogonALity
Assumption (KOALA) [BW19] in the standard model. While similar to that of
Agrawal and Yamada, our construction provides a new understanding of how to
decompose the construction into simpler, modular building blocks with concrete
and easy-to-understand security requirements for each one. We believe this sheds
new light on the requirements for optimal broadcast encryption, which may lead
to new constructions in the future.

In more detail, as in [AY20], we provide a construction for ciphertext-policy
attribute based encryption (cpABE) for NC1 circuits, such that its ciphertext
size, secret key size, and public key size are all independent of the size of the
circuits supported by the scheme, and depend only on their input length and
depth. Recall that in a cpABE scheme, a ciphertext for a message m is associated
with a function (policy) f , and secret keys are associated with public attributes
x from the domain of f . Decryption succeeds to yield the hidden message m if
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and only if the attribute satisfies the policy, namely f(x) = 1. To see BE as a
special case of cpABE, note that the circuit embedded in the ciphertext (FS , say)
can check for membership of a given user index in a set of authorised recipients
S, and the attributes x may encode a user’s index in the set N . Thus, a user i
holds a secret key for attributes i and can decrypt a ciphertext associated with
S if and only if i is a member of S. As observed in [AY20], the depth and input
length of the circuit FS are logarithmic in N , so it suffices to construct cpABE
with parameters independent of the width of FS , which is linear in N .

Building upon the construction of [AY20], we provide a new cpABE for
NC1 from the Learning with Errors (LWE) [Reg09] and the Knowledge of
OrthogonALity Assumption (KOALA) [BW19]. The LWE assumption introduced
in the seminal work of Regev [Reg09] enjoys worst case to average case hardness
guarantees and is widely considered a standard assumption in the literature. The
KOALA assumption introduced by Beullens and Wee [BW19] (also implicitly
present in prior work such as [CRV10]) may be viewed as a decisional analogue of
the algebraic group model [FKL18], which posits that the only way an adversary
can compute a new group element is to take a linear combination of group
elements already provided. More specifically, the KOALA assumption asserts
that any adversary that can distinguish gMr from gv for some matrix M and
random vectors r,v, must know some nontrivial vector z 6= 0 such that z M = 0.
Beullens and Wee provided a proof of the KOALA assumption in the generic
group model. While KOALA is a “knowledge assumption” and therefore not
considered a standard assumption, we believe it is a significant improvement over
[AY20] to rely on the hardness of a specific assumption in the standard model,
than to rely on the the generic group model for the security of the entire scheme.

Technical Overview. We proceed to outline the main ideas of our construction.
As discussed above, we construct a ciphertext-policy attribute-based encryption
(cpABE) for NC1 circuits. The cpABE is compact, meaning that the size of
the ciphertexts and keys are all small, proportional only to the length of
the inputs and the depth of the supported circuits, but independent of the
circuit size. Our construction combines three building blocks: a (computational)
nearly linear secret sharing scheme with compact shares, which we construct
from Learning With Errors (LWE), a certain form of inner-product functional
encryption (IPFE) [ABCP15, ALS16, LV16, Lin17, LL20], constructed from the
bilinear Matrix Decision Diffie Hellman (MDDH) assumption, and a certain form
of hyperplane obfuscation [CRV10], constructed using the KOALA assumption.
Next, we describe each of these primitives individually and outline how they are
combined to construct our cpABE.

Nearly Linear Secret Sharing. Our main building block is a new type of secret
sharing scheme. Given a message µ ∈ {0, 1} and a circuit C with `-bit input,
the scheme outputs 2` shares {sharei,b}i∈[`],b∈{0,1}. Each sharei,b is a vector

over Zp. For any x ∈ {0, 1}`, let sharex = {sharei,xi}, which we think of as a
long vector produced by concatenating of all the component shares. If C(x) =
0 then sharex computationally hides the message µ, and moreover, sharex is
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even indistinguishable from a uniformly random vector. On the other hand, if
C(x) = 1 then there is an efficient method to reconstruct the message µ from
sharex. Moreover, this reconstruction procedure is “nearly linear” in the sense
that given C, x, one can efficiently determine some linear function f such that
f(sharex) = µ · dp/2e+ e, where |e| � p/2 is some small polynomially bounded
error.

We use LWE to construct this type of nearly linear secret sharing for all NC1

circuits, where the size of the shares only depends on the security parameter and
the depth of the circuit, but is independent of the circuit size. The construction
closely follows the ideas behind the ABE scheme of [BGG+14] and the laconic
function evaluation of [QWW18]. As in [AY20], we are restricted to NC1 because
we require the magnitude of the error e to be polynomially bounded. The
construction additionally relies on some uniformly random public parameters pp,
which we will ignore throughout the introduction.

Towards cpABE from Secret Sharing. In our cpABE construction, to encrypt a
message µ under a given policy specified by an NC1 circuit C, the encryptor
creates a “nearly linear secret sharing” of the message resulting in shares
{sharei,b}i∈[`],b∈{0,1}. At a high level, the encryptor then encrypts these shares
using some form of functional encryption (FE) and outputs the FE ciphertext. Let
us examine what kind of functional encryption would be helpful in this setting.

As a starting point, assume the shares are encrypted via an FE scheme such
that a decryptor with a secret key for x only learns the subset sharex = {sharei,xi}.
Such an FE scheme is easy to construct by encrypting each of the 2` shares under
a different public key of a standard public-key encryption scheme and giving the
decryptor the ` secret keys corresponding to the choice of x [SS10]. This would
already provide security in the non-colluding setting – if the adversary has a
secret key for a single value x such that C(x) = 0, then she cannot learn anything
about the message by getting sharex. However, if the adversary has secret keys
for even just two different values x0, x1, such that C(x0) = C(x1) = 0, all bets
are off; indeed, with our scheme, she could easily recover the message.

To fix the above problem, we rely on a more restricted form of FE where the
decryptor with a secret key for a value x would not learn sharex in full, but rather
only a hyperplane obfuscation of the vector sharex. A hyperplane obfuscation
[CRV10] of a vector ~v allows one to test whether various affine functions h evaluate
to h(~v) = 0, but should not reveal anything else about the obfuscated vector
beyond having black-box access to such tests. When C(x) = 1, a hyperplane
obfuscation of sharex is sufficient to decrypt the message µ, since we have a linear
function f such that f(sharex) = µ · dp/2e+ e and therefore, by testing whether
f(sharex)− e′ = 0 for all values e′ in the polynomial range that e comes from,
we can determine whether µ = 0 or µ = 1. For security, consider an adversary
has secret keys for some q inputs x(1), . . . , x(q) such that C(x(i)) = 0 and learns
the corresponding hyperplane obfuscations of the vectors sharex(i) . We know that
each of the vectors sharex(i) is individually computationally indistinguishable
from uniform, but mutually the vectors have non-trivial correlations and can
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be used to recover µ. We wish to conclude that the hyperplane obfuscations
of sharex(i) are mutually indistinguishable from obfuscations of random and
independent vectors. Indeed, this follows if we had a composable [CD08, BC10]
virtual-black-box (VBB) hyperplane obfuscator since, given black box access to
each of these vectors, an adversary will never be able to find an affine function
evaluates to 0 on any of them. To make this approach work, we therefore need to
instantiate an appropriate hyperplane obfuscator together with a matching FE
scheme that outputs a hyperplane obfuscations of sharex.

Hyperplane Obfuscation. We rely on the extremely simple hyperplane obfuscator
of [CRV10]. Let G be a cyclic group of order p with a generator g. To obfuscate a
vector ~v ∈ Znp , we choose a random γ ← Zp and output gγ , gγ·~v. This allows one
to test if an affine function h evaluates to h(~v) = 0 by computing γ · h(~v) in the
exponent. The work of [CRV10] shows that this is a VBB hyperplane obfuscator
under a new assumption that they proposed, which can in retrospect be seen as a
variant of the KOALA assumption restricted to spaces of dimension 1. However,
they did not prove that the obfuscator is composable. In our work, we do not
directly prove that this obfuscator satisfies composable VBB security, but rather
prove that it satisfies a specialized property that suffices for us. Namely, we show
that under the KOALA assumption the following holds: for any set of vectors that
are individually indistinguishable from uniform but can be mutually correlated,
one cannot distinguish between being given the hyperplane obfuscations of all
the vectors in the set versus hyperplane obfuscations of uniformly random and
independent vectors.

Functional Encryption for Inner Products. As the last step, we need to provide an
appropriate (public-key) functional encryption (FE) scheme. Such an FE should
allow us to encrypt a set of shares {sharei,b}i∈[`],b∈{0,1}, and give out secret

keys for value x ∈ {0, 1}`, so that such a ciphertext/key pair (only) reveals a
fresh hyperplane obfuscation of sharex and nothing else. We can simplify this
problem by relying on a simpler “component” FE scheme and then combining
the component FEs to get what we need. The component FE should allow us to
encrypt a scalar s ∈ Zp and give out secret keys for values gγ , so that such a
ciphertext/key pair only reveals gγ·s and nothing else. We want to component FE
to satisfy unbounded-collusion simulation-based security. Given such a component
FE scheme, we can instantiate a separate copy of it for each i ∈ [`], b ∈ {0, 1} and
each position in the share vector. The encryptor then encrypts each position of
each share vector sharei,b under the appropriate copy of the component scheme.
To create a secret key for x ∈ {0, 1}` we choose a fresh random γ ← Zp and give
out a secret key for gγ for each of the component schemes in locations (i, xi).
This would ensure that, given an encryption of {sharei,b}i∈[`],b∈{0,1}, a secret key

for a value x ∈ {0, 1}` only allows one to recover the hyperplane obfuscation of
sharex given by (gγ , gγ·sharex).

The above almost works, up to one subtlety. When we instantiate the
component FE scheme, we do so using bilinear groups (G1,G2,GT ) of order p
with corresponding generators (g1, g2, gT ) and a bilinear map e : G1 ×G2 → GT .
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We can create an encryption of a scalar s ∈ Zp and give out a secret key for
gγ2 ∈ G2 so that the decryption of the ciphertext with the secret key reveals gγ·sT .
However, we can only guarantee simulation based security when the simulator is
given gγ·s2 . In other words, there is a discrepancy between correctness (where the
honest users decrypt the product in the exponent of gT ) and security (where the
simulator needs to know the product in the exponent of g2). It turns out that
this suffices for us. For correctness, the decryptor gets a hyperplane obfuscation
over GT , which suffices to recover the message. For security, we need to rely
on the hyerplane obfuscation being secure even when given over G2, which just
requires us to assume that KOALA holds over G2. We instantiate the above type
of component FE in a black-box way using the recent primitive of “Slotted Inner
Product Functional Encryption” [LV16, Lin17, LL20].4

2 Preliminaries

In this section, we define some notation and preliminaries that we require.

Notation. We use bold letters to denote vectors. We treat a vector as a row vector
by default. The notation [a, b] denotes the set of integers {k ∈ N | a ≤ k ≤ b}.
We use [n] to denote the set [1, n]. Throughout the paper, we use λ to denote
the security parameter. We say a function f(λ) is negligible if it is O(λ−c) for all
c > 0, and we use negl(λ) to denote a negligible function of λ. We say f(λ) is
polynomial if it is O(λc) for some constant c > 0, and we use poly(λ) to denote
a polynomial function of λ. Throughout the paper, we consider non-uniform
adversaries that are modeled as polynomial-size circuits A = {Aλ}λ indexed by
the security parameter. We often drop the subscript when it is clear from the
context.

2.1 Bilinear Map Preliminaries

Here, we introduce our notation for bilinear maps and the bilinear generic group
model following Baltico et al. [BCFG17], who specializes the framework by Barthe
[BFF+14] for defining generic k-linear groups to the bilinear group settings. The
definition closely follows that of Maurer [Mau05], which is equivalent to the
alternative formulation by Shoup [Sho97].

Notation on Bilinear Maps. A bilinear group generator GroupGen takes as
input 1λ and outputs a group description G = (p,G1,G2,GT , e, g1, g2), where p is
a prime of Θ(λ) bits, G1, G2, and GT are cyclic groups of order p, e : G1×G2 →
GT is a non-degenerate bilinear map, and g1 and g2 are generators of G1 and
G2, respectively. We require that the group operations in G1, G2, and GT as

4 In the technical sections we use IPFE directly rather than first showing that it
provides an FE scheme with the above discrepancy between correctness and security
and then relying on such an FE. This is purely to avoid proliferation of additional
definitions/abstractions.
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well as the bilinear map e can be efficiently computed. We employ the implicit
representation of group elements: for a matrix A over Zp, we define [A]1 := gA1 ,
[A]2 := gA2 , [A]T := gAT , where exponentiation is carried out component-wise.
We will use similar notation for vectors.

Generic Bilinear Group Model. Let G = (p,G1,G2,GT , e, g1, g2) be a
bilinear group setting, L1, L2, and LT be lists of group elements in G1, G2,
and GT respectively, and let D be a distribution over L1, L2, and LT . The
generic group model for a bilinear group setting G and a distribution D is
described in Fig. 1. In this model, the challenger first initializes the lists L1,
L2, and LT by sampling the group elements according to D, and the adversary
receives handles for the elements in the lists. For s ∈ {1, 2, T}, Ls[h] denotes
the h-th element in the list Ls. The handle to this element is simply the pair
(s, h). An adversary running in the generic bilinear group model can apply group
operations and bilinear maps to the elements in the lists. To do this, the adversary
has to call the appropriate oracle specifying handles for the input elements. The
challenger computes the result of a query, stores it in the corresponding list, and
returns to the adversary its (newly created) handle. Handles are not unique (i.e.,
the same group element may appear more than once in a list under different
handles).

We remark that we slightly simplify the generic group model of Baltico
et. al [BCFG17]. Whereas they allow the adversary to access the equality test
oracle, which is given two handles (s, h1) and (s, h2) and returns 1 if Ls[h1] =
Ls[h2] and 0 otherwise for all s ∈ {1, 2, T}, we replace this oracle with the
zero-test oracle, which is given a handle (s, h) and returns 1 if Ls[h] = 0 and 0
otherwise only for the case of s = T . We claim that even with this modification,
the model is equivalent to the original one. This is because we can perform the
equality test for (s, h1) and (s, h2) using our restricted oracles as follows. Let
us first consider the case of s = T . In this case, we can get the handle (T, h′)
corresponding to LT [h1]− LT [h2] by calling negT (see Figure 1). We then make
a zero-test query for (T, h′). Clearly, we get 1 if Ls[h1] = Ls[h2] and 0 otherwise.
We next consider the case of s ∈ {1, 2}. This case can be reduced to the case of
s = T by lifting the group elements corresponding to h1 and h2 to the group
elements in GT by taking bilinear maps with an arbitrary non-unit group element
in G3−s, which is possible by calling mape.

Symbolic Group Model. The symbolic group model for a bilinear group
setting G and a distribution DP gives to the adversary the same interface as the
corresponding generic group model, except that internally the challenger stores
lists of elements in the field Zp[X1, . . . , Xn] instead of lists of group elements.
The oracles adds, negs, map, and zt computes addition, negation, multiplication,
and equality in the field.

2.2 Slotted Inner Product Functional Encryption

We need slotted Inner Product Functional Encryption (IPFE) due to Lin and
Vaikuntanathan [LV16, Lin17, LL20]. Slotted IPFE is a hybrid between a secret-
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State: Lists L1, L2, LT over G1, G2, GT respectively.
Initializations: Lists L1, L2, LT sampled according to distribution D.
Oracles: The oracles provide black-box access to the group operations, the bilinear

map, and equalities.
• For all s ∈ {1, 2, T}: adds(h1, h2) appends Ls[h1] + Ls[h2] to Ls and

returns its handle (s, |Ls|).
• For all s ∈ {1, 2, T}: negs(h1, h2) appends Ls[h1]−Ls[h2] to Ls and returns

its handle (s, |Ls|).
• mape(h1, h2) appends e(L1[h1], L2[h2]) to LT and returns its handle

(T, |LT |).
• ztT (h) returns 1 if LT [h] = 0 and 0 otherwise.

All oracles return ⊥ when given invalid indices.

Fig. 1. Generic group model for bilinear group setting G = (p,G1,G2,GT , e, g1, g2)
and distribution D.

key function-hiding IPFE and a public-key IPFE. In this scheme, a vector u ∈ Znp
is divided into a public and private part respectively u = (upub,upriv) such that
given the master secret key, the encryption algorithm can encrypt any vector u
of its choice, but given only the public key, it can encrypt only to the public slot,
i.e. upriv = 0. Slotted IPFE can guarantee function hiding only with respect to
the private slot. We provide the definitions from [LL20].

Let GroupGen be a group generator that outputs bilinear group G =
(p,G1,G2,GT , e, [1]1, [1]2). A slotted inner-product functional encryption (IPFE)
scheme based on G consists of 5 efficient algorithms:

Setup(1λ, spub, spri)→ (mpk,msk): The setup algorithm takes as input two
disjoint index sets, the public slot spub and the private slot spri, and outputs a
pair of master public key and master secret key (mpk,msk). The whole index
set s is spub ∪ spri.

KeyGen(msk, [v]2)→ skv: The key generation algorithm takes as input the master
secret key and an encoding of a function vector [v]2, and outputs a secret
key skv for v ∈ Zs

p.

Enc(msk, [u]1)→ ctu: The encrypt algorithm takes input the master secret key
and an encoding of a message vector [u]1 and outputs a ciphertext ctu for
u ∈ Zs

p.

Dec(skv, ctu) → T ∨ ⊥: The decrypt algorithm takes as input a secret key skv
and a ciphertext ctu, and outputs an element T ∈ GT or ⊥.

SlotEnc(mpk, [upub]1)→ ctu: The slot encryption algorithm takes as input the

master public key and a vector upub ∈ Zspub
p , sets u = (upub,0) ∈ Zs

p and
outputs a ciphertext ctu.
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Correctness. We say the slotted inner-product functional encryption scheme
satisfies decryption correctness if for all λ ∈ N, all index sets s and all vectors
u,v ∈ Zs

p,

Pr

Dec(skv, ctu) = 〈u, v〉

∣∣∣∣∣∣∣
msk← Setup(spub, spri)

skv ← KeyGen(msk, [v]2)
ctu ← Enc(msk, [u]1)

 = 1 .

We say the slotted inner-product functional encryption scheme satisfies slot-
mode correctness if for all λ ∈ N, all disjoint index sets spub, spri and all vectors
u ∈ Zspub

p , the following two distributions should be identical:{
(mpk,msk, ct)

∣∣∣∣ (mpk,msk)← Setup(1λ, spub, spri)
ctu ← Enc(msk, [u‖0]1)

}
and {

(mpk,msk, ct)

∣∣∣∣∣ (mpk,msk)← Setup(1λ, spub, spri)
ctu ← SlotEnc(msk, [u]1)

}
Slotted IPFE generalizes both secret-key and public-key IPFEs: we may obtain
the former by setting s = spri and the latter by setting s = spub.

Next, we define the adaptive function hiding property.

Definition 2.1 (Function Hiding Slotted IPFE).
Let (Setup,KeyGen,Enc,Dec,SlotEnc) be a slotted IPFE scheme as defined above.
The scheme is function hiding if Exp0FH is indistinguishable from Exp1FH for all
efficient adversary A = {Aλ}λ where ExpbFH for b ∈ {0, 1} is defined as follows:

1. Setup: Run the adversary Aλ and obtain the disjoint index sets spub, spri

from Aλ. Let s = spub ∪ spri. Let (mpk,msk)← Setup(1λ, spub, spri) and return
mpk to Aλ.

2. Challenge: Repeat the following for arbitrarily many rounds determined by
Aλ: In each round, Aλ has 2 options:

– Aλ chooses v0
j ,v

1
j ∈ Zs

p and submits [v0
j ]2, [v

1
j ]2 for a secret key. Upon

receiving this, compute skj ← KeyGen(msk, [vbj ]2) and return this to Aλ.

– Aλ chooses u0
i ,u

1
i ∈ Zs

p and submits [u0
i ]1, [u

1
i ]1 for a ciphertext. Upon

receiving this, compute cti ← Enc(msk, [ubi ]1) and return this to Aλ.

3. Guess: Aλ outputs its guess b′.

The outcome of the experiment is defined as b′ if all the public components of
the key queries are equal, i.e. v0

j |spub
= v1

j |spub
for all j and 〈u0

i , v0
j 〉 = 〈u1

i , v1
j 〉

for all i, j.

We will also require the following lemma by [ALS16, Wee17, LV16, Lin17,
LL20]:
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Lemma 2.2. Let GroupGen be a group generator that outputs bilinear group
G = (p,G1,G2,GT , e, [1]1, [1]2) and k ≥ 1 an integer constant. If MDDHk holds
in both G1 and G2, then there is an (adaptively) function-hiding slotted IPFE
scheme on GroupGen.

Note that the MDDHk assumption on Gs (s ∈ {1, 2}) says that a random group

element [r]s is indistinguishable from [sA]s given [A], where A← Zk×(k+1)
p , r ∈

Zk+1
p , and s ∈ Zkp. The assumption is implied by the standard k-LIN assumption,

which becomes progressively weaker as k becomes larger.

2.3 Attribute Based Encryption

Let R = {Rλ : Aλ × Bλ → {0, 1}}λ be a relation where Aλ and Bλ denote
“ciphertext attribute” and “key attribute” spaces. An attribute-based encryption
(ABE) scheme for R is defined by the following PPT algorithms:

Setup(1λ)→ (mpk,msk): The setup algorithm takes as input the unary represen-
tation of the security parameter λ and outputs a master public key mpk and
a master secret key msk.

Enc(mpk, X, µ)→ ct: The encryption algorithm takes as input a master public
key mpk, a ciphertext attribute X ∈ Aλ, and a message bit µ. It outputs a
ciphertext ct.

KeyGen(mpk,msk, Y )→ skY : The key generation algorithm takes as input the
master public key mpk, the master secret key msk, and a key attribute Y ∈ Bλ.
It outputs a private key skY .

Dec(mpk, ct, X, skY , Y )→ µ or ⊥: The decryption algorithm takes as input the
master public key mpk, a ciphertext ct, ciphertext attribute X ∈ Aλ, a private
key skY , and private key attribute Y ∈ Bλ. It outputs the message µ or ⊥
which represents that the ciphertext is not in a valid form.

Definition 2.3 (Correctness).

An ABE scheme for relation family R is correct if for all λ ∈ N, X ∈ Aλ, Y ∈
Bλ such that R(X,Y ) = 1, and for all messages µ ∈M,

Pr


(mpk,msk)← Setup(1λ),
skY ← KeyGen(mpk,msk, Y ),
ct← Enc(mpk, X, µ) :

Dec
(
mpk, skY , Y, ct, X

)
6= µ

 = negl(λ)

where the probability is taken over the coins of Setup, KeyGen, and Enc.

Definition 2.4 (Sel-IND security for ABE). For an ABE scheme ABE =
{Setup,Enc,KeyGen,Dec} for a relation family R = {Rλ : Aλ × Bλ → {0, 1}}λ
and a message space {Mλ}λ∈N and an efficient adversary A = {Aλ}λ, let us
define Sel-IND security game as follows.
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1. Choosing the Target: At the beginning of the game, Aλ chooses its target
X? ∈ Aλ and sends to the challenger.

2. Setup phase: On input 1λ, the challenger samples (mpk,msk)← Setup(1λ)
and gives mpk to Aλ.

3. Query phase: During the game, Aλ adaptively makes the following queries,
in an arbitrary order. Aλ can make unbounded many key queries, but can
make only single challenge query.
(a) Key Queries: Aλ chooses an input Y ∈ Bλ. For each such query, the

challenger replies with skY ← KeyGen(mpk,msk, Y ).
(b) Challenge Query: At some point, Aλ submits a pair of equal length

messages (µ0, µ1) ∈ (M)2 to the challenger. The challenger samples a
random bit β ← {0, 1} and replies to Aλ with ct← Enc(mpk, X?, µβ).

We require that R(X?, Y ) = 0 holds for any Y such that Aλ makes a key
query for Y in order to avoid trivial attacks.

4. Output phase: Aλ outputs a guess bit β′ as the output of the experiment.

We define the advantage AdvSel-IND
ABE,A (1λ) of A in the above game as

AdvSel-IND
ABE,A (1λ) := |Pr[A outputs 1|β = 0]− Pr[A outputs 1|β = 1]| .

The ABE scheme ABE is said to satisfy Sel-IND security (or simply selective
security) if for any efficient and stateful adversary A = {Aλ}λ, there exists a
negligible function negl(·) such that AdvSel-IND

ABE,A (1λ) 6= negl(λ).

We can consider the following stronger version of the security where we require
the ciphertext to be pseudorandom.

Definition 2.5 (Sel-INDr security for ABE). We define Sel-INDr security
game similarly to Sel-IND security game except that the adversary A chooses
single message µ instead of (µ0, µ1) at the challenge phase and the challenger
returns ct ← Enc(mpk, X?, µ) if β = 0 and a random ciphertext ct ← CT from
a ciphertext space CT if β = 1. We define the advantage AdvSel-INDr

ABE,A (1λ) of the
adversary A accordingly and say that the scheme satisfies Sel-INDr security if the
quantity is negligible.

We also consider (weaker) version of the above notions, where A specifies the
set Y of attributes for which it makes key queries along with X? at the beginning
of the game.

Definition 2.6 (VerSel-IND security for ABE). We define VerSel-IND secu-
rity game as Sel-IND security game with the exception that the adversary A has
to choose the set Y ⊆ Bλ for which it makes key queries along with the challenge
ciphertext attribute X? before the setup phase but the choice of (µ0, µ1) can still
be adaptive. After that, Aλ can make key queries for Y1, Y2, . . . adaptively, but
we need Yi ∈ Y for all queries. We define the advantage AdvVerSel-IND

ABE,A (1λ) of the
adversary A accordingly and say that the scheme satisfies VerSel-IND security
(or simply very selective security) if the quantity is negligible.
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In the following, we define standard notions of ciphertext-policy attribute-
based encryption (CP-ABE) and broadcast encryption (BE) by specifying the
relation R.

CP-ABE for circuits. We define CP-ABE for circuit class {Cλ}λ by specifying
the relation. Here, Cλ is a set of circuits with input length `(λ) and binary output.
We define ACP

λ = Cλ and BCP
λ = {0, 1}`. Furthermore, we define the relation RCP

λ

as
RCP
λ (C, x) = C(x).

Namely, a ciphertext associated with a circuit C can be decrypted by a secret
key associated with x such that C(x) = 1.

BE. To define BE, we define ABE
λ = 2[N(λ)] and BBE

λ = [N(λ)], where N(λ) =
poly(λ) is the number of users in the system and 2[N(λ)] denotes all subsets of
[N ]. We also define RBE

λ : ABE
λ ×BBE

λ → {0, 1} as RBE
λ (S, i) = 1 when i ∈ S and

RBE
λ (S, i) = 0 otherwise. For BE, we typically require that the ciphertext size

should be o(N) · poly(λ), since otherwise we have a trivial construction from
plain public key encryption.

Remark 2.7. We note that very selective security and selective security are in
fact equivalent in the case of BE since one can convert selective adversary into
very selective adversary as follows. Namely, if the selective adversary chooses
its target S ⊆ [N ], the very selective adversary chooses the same target S and
specifies the set of user indices for which it makes key queries as [N ]\S. Then,
the very selective adversary can simulate the game for the selective adversary
using the secret keys given by the challenger.

3 Computational Secret Sharing Scheme with Short
Shares

We will use secret sharing scheme with special properties that we are going to
define here. Let C = {Cλ}λ be a circuit class. A secret sharing scheme for the
circuit class C is defined by the following PPT algorithms:

SS.Setup(1λ, p)→ pp: The setup algorithm takes as input the unary represen-
tation of the security parameter λ and the modulus p and outputs public
parameter pp.

SS.Share(pp, C, µ): The sharing algorithm takes as input the public parameter
pp, a circuit C ∈ Cλ that specifies access policy, and a message µ ∈ {0, 1} to
be shared and outputs a set of shares {sharei,b ∈ Zmp }i∈[`],b∈{0,1}, where ` is
the input length of C and m is a parameter specified by λ and p.

SS.Recon(pp, C, x, {sharei,xi}i∈[`])→ µ or ⊥: The reconstruction algorithm takes

as input the public parameter pp, a circuit C, an input x ∈ {0, 1}` to the
circuit, and shares {sharei,xi}i∈[`] and outputs message µ or ⊥.

We require correctness and security for the secret sharing scheme as defined
in the following.
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Definition 3.1 (Correctness). We say that a secret sharing scheme SS =
(SS.Setup,SS.Share,SS.Recon) for circuit class C has correctness if there exists a
function p0(λ) specified by the circuit class C such that for any p > p0(λ), C ∈ C
with input length `, x ∈ {0, 1}` satisfying C(x) = 1, and µ ∈ {0, 1}, we have

Pr

pp← SS.Setup(1λ, p),
{sharei,b}i∈[`],b∈{0,1} ← SS.Share(pp, C, µ),

SS.Recon
(
pp, {sharei,xi}i∈[`]

)
= µ

 = 1

Definition 3.2 (Security). We say that a secret sharing scheme SS =
(SS.Setup,SS.Share,SS.Recon) for circuit class C = {Cλ}λ is secure if for any
C ∈ Cλ with input length ` = `(λ), x ∈ {0, 1}` satisfying C(x) = 0, µ ∈ {0, 1},
p ∈ N, and for any efficient adversary A = {Aλ}, we have∣∣∣∣Pr

[
Aλ
(
pp, C, x,
{sharei,xi}i∈[`]

)
→ 1

]
− Pr

[
Aλ
(
pp, C, x,
{vi}i∈[`]

)
→ 1

]∣∣∣∣ = negl(λ)

where the probability is taken over the choice of pp ← SS.Setup(1λ, p),
{sharei,b}i,b ← SS.Share(pp, C, µ), vi ← Zmp for i ∈ [`], and the internal coin of
Aλ.

We note that in the above, we not only require that the shares do not reveal µ if
C(x) = 0, but also require that they look random.

We furthermore require following structural properties for the construction.
First, we require that pp is a random string.

Definition 3.3 (Random Public Parameters). We require that pp output
by SS.Setup(1λ, p) is statistically close to uniformly random, where the length of
the string is deterministically determined by p.

Looking ahead, the above property is crucial when we prove the security of
our ABE scheme. If the public parameter of the secret sharing scheme was
chosen from a structured distribution, we would have to rely on the bilinear
KOALA assumption (Definition 4.1) with auxiliary input chosen from the same
distribution. However, we cannot hope the assumption to hold for auxiliary input
with general distribution as we will discuss in Remark 4.3.

We also require that the reconstruction algorithm is structured as two steps:
a function evaluation step that computes the circuit on the shares to yield the
message along with noise, followed by a rounding step that removes the noise. We
require that the first step is linear. We refer to such a reconstruction algorithm
as being “almost linear”, and define it formally next.

Definition 3.4 (Almost Linear Reconstruction). We say that a secret shar-
ing scheme SS = (SS.Setup,SS.Share,SS.Recon) has almost linear reconstruction
if the reconstruction algorithm is divided into two steps:

– Step 1 takes as input the public parameter pp, the circuit C, and the input x.
It outputs a set of coefficients {ai,j ∈ Zp}i∈[`],j∈[m]. We denote this step as
an algorithm SS.FindCoef(pp, C, x).
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– Step 2 takes as input the set of shares {sharei,xi}i∈[`] that corresponds to x
and a set of linear coefficients {ai,j}i∈[`],j∈[m] and computes

d :=
∑

i∈[`],j∈[m]

ai,jsharei,xi,j mod p

where sharei,xi,j ∈ Zp is the j-th entry of the vector sharei,xi . It then outputs
1 if d is closer to p/2 and 0 otherwise.

We require the following property, which implies the correctness: For any
x ∈ {0, 1}` and C ∈ C satisfying C(x) = 1 and p > p0, if we have:

pp← SS.Setup(1λ, p), {sharei,b}i∈[`] ← SS.Share(pp, C, µ),

{ai,j}i,j ← SS.FindCoef(pp, C, x),

where i ∈ [`], j ∈ [m], then there exists e ∈ [−B,B] such that∑
i∈[`],j∈[m]

ai,jsharei,xi,j = µ · dp/2e+ e mod p

where B(λ) is an integer specified by C.

The following theorem asserts that we can construct a secret sharing scheme
with the desired properties under the LWE assumption.

Theorem 3.5. For circuit class C`,d = {Cλ,`(λ),d(λ)}λ∈N consisting of circuits
whose input length is `(λ) = poly(λ) and depth d(λ) = O(log λ), we have secret
sharing scheme that satisfies almost linear reconstruction (Definition 3.4) for
p0 = poly(λ, 2d, `) and has random public parameters (Definition 3.3). We can
prove the security of the scheme (Definition 3.2) under the LWE assumption with
approximation factor pε · poly(λ) for some constant ε < 1. Furthermore, the size
of the parameters in the construction is as follows:

|pp|, |sharei,b| ≤ poly(λ, d, `), B(λ) ≤ poly(λ, 2d). (3.1)

In particular, B(λ) is bounded by a polynomial in λ since d = O(log λ).

Proof. The construction is based on the ABE scheme for circuit class {C`,d} by
[GV15]. Here, we first show a construction that almost works but has a problem.
We then fix the problem by slightly modifying the construction. In our first
construction, we put the master public key and a secret key for circuit C of the
ABE scheme into pp, where the former consists of set of random matrices A and
{Bi,b}i,b along with a random vector u. To generate {sharei,b}i,b, we generate
LWE samples using corresponding matrices in {Bi,b}i,b with respect to the same
secret, so that {sharei,xi}i constitutes a valid ABE ciphertext for attribute x
and message µ to be shared.5 Most of the properties we require for the secret

5 In fact, the ABE ciphertext also has to include the LWE samples with respect to
the matrix A and the vector u, where the latter will be used to mask the message.
These LWE samples are put into both of share1,0 and share1,1.
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sharing scheme are directly implied by the corresponding properties of the ABE
scheme. The correctness (Definition 3.1) and the security (Definition 3.2) of the
secret sharing scheme are implied by the corresponding properties of the ABE
scheme, where for the latter we use Sel-INDr security of the ABE scheme. The
size requirements for the parameters (Eq. (3.1)) are satisfied by the efficiency of
the ABE scheme. The almost linear reconstruction property (Definition 3.4) is
also satisfied by the structure of the decryption algorithm of the ABE scheme.

However, the above construction does not have the property of random public
parameters (Definition 3.3) and we have to change it slightly. In particular, in the
above, pp is chosen as follows: We first sample random matrices A and {Bi,b}i,b
and a random vector u, where A is chosen along with a trapdoor. We then
compute a matrix BC corresponding to the circuit C from the matrices {Bi,b}i,b
and then generate a vector r from a Gaussian distribution over the integer lattice
with the restriction

[A|BC ]r = u mod q

using the trapdoor. We then set pp = (A,B,u, r). Because of the above relation
between r and u, pp is not random.

To address this issue, we first remove u from pp. We now have that the
distribution of r is statistically close to the Gaussian distribution over the integer
lattice (without the restriction), since for a vector r chosen from (sufficiently wide)
Gaussian distribution over the integer lattice, u defined as u = [A|BC ]r mod q
is statistically close to uniform. Now, such r can be chosen from randomness
of fixed polynomial length, in particular, without a trapdoor. We then put the
randomness R used for sampling r into pp instead of r itself. We now have that
pp is statistically close to random as desired.

It is easy to see that this change does not affect the properties that we want
from the secret sharing scheme. In particular, the correctness is not lost since u
can be recovered from r. We note that for the security to be preserved, we need
an efficient reverse sampling algorithm that is given r and samples randomness
R conditioned that the Gaussian sampler outputs r on input R. The reason
why we need this property is that the reduction algorithm that breaks the ABE
scheme using the adversary against the secret sharing scheme should simulate
the randomness R for sampling r only given r, which is the secret key of the
ABE scheme.

This property is satisfied by efficient Gaussian samplers such as [GPV08]. To
see this, let us recall the procedure of sampling Gaussian on integer lattice in
[GPV08] (See Lemma 4.3 in the paper). Without loss of generality, we can consider
one-dimensional case since multi-dimensional case can be handled by running
the algorithm for one-dimensional case in parallel. The sampling algorithm by
[GPV08] was based on rejection sampling. The algorithm first samples a candidate
for the output uniformly at random and outputs it with certain probability. This
step is repeated until it outputs something or the number of times it repeats
the procedure exceeds predetermined number. The idea for the reverse sampling
is to first run the algorithm until it outputs something and then replace the
randomness that was used for the output with that which leads to the intended
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output. The former step can be done straightforwardly since it is exactly the
same as the original sampling algorithm. The purpose of performing this step
is to simulate the failure. The latter step can be performed efficiently as well,
since the randomness that leads to the output consists of the output value itself
along with the randomness that allows the sampler to accept and output the
value (rather than to reject). It is easy to see that this algorithm indeed works.
This completes the proof of Theorem 3.5.

For concreteness, we provide the complete description of the secret sharing
scheme in Appendix A.2.

4 Our Security Assumptions

In this section, we will introduce the bilinear knowledge of orthogonality
(KOALA) assumption, which is an analogue of the KOALA assumption introduced
in [BW19]. Looking ahead, the assumption will be used to prove the security
of our ABE scheme in Sec. 5.1. We then introduce weak KOALA assumption
(wKOALA) and show that it is implied by the bilinear KOALA assumption. While
the former assumption is implied by the latter, the former is handier to use and
would be of independent interest.

4.1 Bilinear KOALA Assumption

Here, we introduce bilinear KOALA assumption, which is an analogue of the
KOALA assumption introduced in [BW19].

Definition 4.1 (Bilinear KOALA Assumption). Let Samp = {Sampλ}λ be
an efficient sampling algorithm that takes as input an integer p and a string
aux and outputs a matrix V ∈ Z`1×`2p with `1 < `2. For an efficient adversary
A = {Aλ}, let us define

AdvBKOALA,dist
A,G,Samp (λ) := |Pr[Aλ(G, aux, [sV]2)→ 1]− Pr[Aλ(G, aux, [r]2)→ 1]|.

where the probabilities are taken over the choice of uniformly random aux, G =
(p,G1,G2,GT , e, [1]1, [1]2) ← GroupGen(1λ), V ← Samp(p, aux), s ← Z`1p , r ←
Z`2p , and the coin of Aλ.

Furthermore, for an efficient adversary B = {Bλ}λ, we also define

AdvBKOALA,find
B,G,Samp (λ) := Pr[Bλ(G, aux)→ x ∧ xV> = 0 ∧ x 6= 0]

where the probability is taken over the choice of uniformly random aux, G =
(p,G1,G2,GT , e, [1]1, [1]2) ← GroupGen(1λ), V ← Sampλ(p, aux), and the coin
of Bλ.

We say that the bilinear KOALA assumption holds with respect to GroupGen
if for any efficient adversary A and efficient sampler Samp, there exists another
efficient adversary B and a polynomial function Q(λ) such that

AdvBKOALA,find
B,G,Samp (λ) ≥ AdvBKOALA,dist

A,G,Samp (λ)/Q(λ)− negl(λ).
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Remark 4.2. Our definition of the bilinear KOALA assumption differs from the
original KOALA assumption defined by Beullens and Wee [BW19] in several
points. First, we consider the assumption in groups equipped with bilinear maps
whereas they consider the assumption in groups without bilinear maps.

Second, in our assumption, the adversary is given an auxiliary input aux
and V is chosen from a distribution specified by Samp whereas there is no any
auxiliary information and V is fixed in [BW19]. This change is necessary to prove
the security of our ABE scheme in Section 5, since we will use an adversary B
that is obtained from A to break a computational assumption, where we put the
problem instance of the assumption into aux.

Remark 4.3. One could consider simpler and stronger variant of the above
assumption where Samp chooses aux along with V instead of letting aux to
be a random string that is not controlled by Samp. However, we cannot hope
this variant of the assumption to hold for all efficient samplers. For example, let
us consider a sampler that outputs random V along with auxiliary information
aux = O(CV), which is an obfuscation of circuit CV that takes as input group
description G and elements [v]2 and returns whether v is in the space spanned
by the rows of V or not. Using O(CV), one can easily distinguish [sV]2 from [r]2
with high probability. However, an efficient adversary may not be able to find
a vector x 6= 0 that satisfies xV = 0 even given O(CV), if we use sufficiently
strong obfuscator to obfuscate the circuit CV. Our assumption above excludes
this kind of attack by making aux to be public randomness that is not touched
by the sampler. Our definition is inspired by that of public coin differing input
obfuscation [IPS15], where the authors exclude similar kind of attacks [GGHW14]
in the context of differing input obfuscations by restricting the distribution of
auxiliary input to be random.

The following theorem justifies the bilinear KOALA assumption on the bilinear
generic group model. The proof is almost the same as that for the KOALA
assumption in [BW19], but we have to adjust it into the setting where the groups
are equipped with bilinear maps and the adversary is given auxiliary input.

Theorem 4.4. The bilinear KOALA assumption holds under the bilinear generic
group model, where A has access to the generic group oracles but Samp does not.

Proof. Let us fix PPT sampler Samp and an adversary A. We also let Qzt(λ)
be the upper bound on the number of zero test queries that A makes. To prove
the theorem, we consider following sequence of games. Let us denote the event
that A outputs 1 at the end of Gamex as Ex.

Game1: In this game, Samp takes as input the order of groups p and a random
string aux and outputs V ∈ Z`1×`2p . By assumption, Samp does not have access
to the generic group oracles. Then, the adversary A is given aux, handles
corresponding to the group elements [r]2, where r = (r1, . . . , r`2)← Z`2p , and
access to the oracles in generic group model and outputs a bit at the end of
the game.
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Game2: In this game, we switch to symbolic group model and replace
r1, . . . , r`2 ∈ Zp with formal variables R1, . . . , R`2 . Note that all handles
given to A during the game refer to a group element that is represented as

x0 +
∑
j∈[`2]

xjRj ∈ Zp[R1, . . . , R`2 ]

where the challenger computes coefficients {xj ∈ Zp}j∈[0,`2] by keeping track
of the group operations performed by A.
We observe that this game differs from the previous game only when A

makes a zero test query for x0 +
∑
j∈[`2] xjRj such that x0 +

∑
j∈[`2] xjRj 6= 0

but x0 +
∑
j∈[`2] xjrj . However, this occurs with probability at most 1/p since

r is chosen uniformly at random independently from anything else. Therefore,
we have

|Pr[E2]− Pr[E1]| = negl(λ).

Game3: In this game, we replace the formal variable Rj with∑
i∈[`1]

vi,jSi

for all j ∈ [`2], where vi,j is the (i, j)-th entry of V and S1, . . . , S`1 are set of
formal variables.

Game4: In this game, we switch back to the generic group model (rather than
the symbolic group model) and provide the adversary with handles for [sV]2
as input.

By the same reason as the game hop from Game1 to Game2, we have

|Pr[E4]− Pr[E3]| = negl(λ).

By the definition of the games, we have |Pr[E4] − Pr[E1]| = AdvBKOALA,dist
A,G,Samp (λ).

Let us define ε := |Pr[E2]− Pr[E3]|. By triangular inequality, we have

ε ≥ |Pr[E4]− Pr[E1]| − |Pr[E1]− Pr[E2]| − |Pr[E3]− Pr[E4]|
≥ AdvBKOALA,dist

A,G,Samp (λ)− negl(λ).

Therefore, it suffices to prove the following lemma to finish the proof of
Theorem 4.4.

Lemma 4.5. There exists an efficient adversary B that has access to the bilinear
generic group oracles and AdvBKOALA,find

B,G,Samp (λ) ≥ ε/Qzt.

Proof. We first observe that the oracle response to A in Game2 and Game3

differs only when A makes a zero-test query for a handle that corresponds to
x0 +

∑
j∈[`2] xjRj such that x0 +

∑
j∈[`2] xjRj 6= 0 over Zp[R1, . . . , R`2 ] and

x0 +
∑
j∈[`2]

xj

∑
i∈[`1]

vi,jSi

 = x0 +
∑
i∈[`1]

∑
j∈[`2]

xjvi,j

Si = 0

18



over Zp[S1, . . . , S`1 ]. We call such a query bad query. We can see that A makes
a bad query with probability at least ε in Game2. We observe that for a bad
query, we have x0 = 0, xV> = 0, and x 6= 0 for x = (x1, . . . , x`2).

To prove the theorem, we further consider the following sequence of games.
In the following, let us denote Fx the event that A makes a bad query and the
challenger does not output ⊥ in Game2,x.

Game2,1: This is the same as Game2. Without loss of generality, we assume
that the challenger simulates the generic group oracles for A. By definition,
we have

Pr[F1] ≥ ε.

Game2,2: In this game, we change the previous game so that the challenger picks
a random guess k∗ for the first bad query as k∗ ← [Qzt] at the beginning of
the game. Furthermore, we change the game so that the challenger outputs ⊥
at the end of the game if the k∗-th zero-test query is not the first bad query.
Since k∗ is chosen uniformly at random and independent from the view of A,
the guess is correct with probability 1/Qzt conditioned on F1. Therefore, we
have

Pr[F2] ≥ Pr[F1]/Qzt.

Game2.3: This game is the same as the previous game except that the challenger
aborts the game and outputs ⊥ immediately after A makes the k∗-th zero-test
query. Since whether F2 occurs or not is irrelevant to how the game proceeds
after the k∗-th zero-test query is made by A, we clearly have

Pr[F3] = Pr[F2].

We then construct B, which acts as the challenger in Game2,3 for A as follows.

B takes aux as input and then chooses random k∗ ← [Qzt]. It then runs A on
input aux and handles for symbols R1, . . . , R`2 . B then answers generic oracle
queries made by A honestly until the k∗-th zero test query. When A makes the
k∗-th zero test query, B extracts (x0, x1, . . . , x`2) such that the query corresponds
to the handle of x0 +

∑
j∈[`2] xjRj . This is possible by keeping track of A’s group

operations while simulating the generic group oracles. If x0 6= 0, B aborts and
outputs ⊥. Otherwise, it outputs the vector x = (x1, . . . , x`2).

Since B perfectly simulates Game2,3 and thus the probability that B outputs
x such that xV> = 0 and x 6= 0 is Pr[F3] = ε/Qzt. This completes the proof of
Lemma 4.5.

This completes the proof of Theorem 4.4.

4.2 Our New Assumption wKOALA

Here, we introduce our new assumption that we call wKOALA (for “weak”
KOALA) that will be used to prove the security of our ABE scheme in Section 5.
The assumption essentially says that for a sampler that outputs a set of vectors
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such that the vectors are individually pseudorandom but mutually correlated, it
holds that the vectors appear mutually pseudorandom when they are lifted to
the exponent and randomized by vector-wise randomness. We require that this
hold even in the presence of random auxiliary input as is assumed for the case of
the bilinear KOALA assumption.

Definition 4.6. Let Samp = {Sampλ}λ be an efficient sampling algorithm that
takes as input an integer p and a string aux and outputs a set of vectors {u(j) ∈
Zmp }j∈[t]. For an efficient adversary A = {Aλ}λ and i := i(λ) ∈ N, let us define

AdvwKOALA,single
A,G,Samp,i (λ) := |Pr[Aλ(G, aux,u(i))→ 1]− Pr[Aλ(G, aux,v)→ 1]|,

(4.1)

where the probabilities are taken over the choice of uniformly random aux, G =
(p,G1,G2,GT , e, [1]1, [1]2) ← GroupGen(1λ), {u(j)}j∈[t] ← Sampλ(p, aux), v ←
Zmp , and the coin of Aλ. In the above, we set u(i) := v if i > t. Furthermore, for
an efficient adversary B = {Bλ}, we define

AdvwKOALA,multi
B,G,Samp (λ) :=∣∣∣∣Pr

[
Bλ
( G, aux,{

[γ(j)]2, [γ
(j)u(j)]2

}
j∈[t]

)
→ 1

]
− Pr

[
Bλ
( G, aux,{

[γ(j)]2, [v
(j)]2

}
j∈[t]

)
→ 1

]∣∣∣∣ ,
(4.2)

where the probabilities are taken over the choice of uniformly random aux, G,
{u(j)}j∈[t] ← Sampλ(p, aux), γ(j) ← Zp, v(j) ← Zmp for j ∈ [t], and the coin of
Bλ. We say that wKOALA holds with respect to GroupGen if for any efficient
sampler Samp such that AdvwKOALA,single

A,G,Samp,i (λ) is negligible for any efficient adversary

A and i(λ), AdvwKOALA,multi
B,G,Samp (λ) is also negligible for any efficient adversary B.

The following theorem shows that wKOALA is in fact implied by the bilinear
KOALA assumption.

Theorem 4.7. If the bilinear KOALA assumption holds with respect to GroupGen,
so does wKOALA.

Proof. For the sake of contradiction, let us assume that wKOALA does not
hold with respect to GroupGen, but the bilinear KOALA assumption holds
with respect to GroupGen. The former assumption implies that there exists an
efficient sampler Samp such that AdvwKOALA,single

A,G,Samp,i (λ) is negligible for any efficient
adversary A and i = i(λ), but there exists an efficient adversary B such that

ε(λ) := AdvwKOALA,multi
B,G,Samp (λ) is non-negligible.

We then consider another sampler Samp′ that takes as input p and aux and
outputs matrix V defined as

V =


1 u(1)

1 u(2)

. . .

1 u(t)

 ∈ Zt×(1+m)t
p ,
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where {u(j)}j∈[t] ← Samp(p, aux). For this sampler Samp′, we have

AdvBKOALA,dist
B,G,Samp′ (λ) = AdvwKOALA,multi

B,G,Samp (λ) = ε(λ),

which follows from the definition of AdvBKOALA,dist
B,G,Samp′ (λ) (See Definition 4.1). This

further implies that there exists another adversary B′ and polynomial function
Q(λ) such that

AdvBKOALA,find
B′,G,Samp′ (λ) ≥ ε(λ)/Q(λ)− negl(λ)

from the bilinear KOALA assumption. By the definition, B′ takes as input aux

and G and outputs a vector x ∈ Z(1+m)t
p such that xV> = 0 and x 6= 0 with

probability ε′(λ); = ε(λ)/Q(λ)− negl(λ). Let us denote

x = (x(1),x(1), x(2),x(2), . . . , x(t),x(t))

where x(i) ∈ Zp and x(i) ∈ Zmp for i ∈ [t]. Then, for such vector x, we have

x(i) + 〈x(i),u(i)〉 = 0 mod p and (x(i),x(i)) 6= 0 mod p

for some i ∈ [t] by the structure of V. This further implies that there exists
fixed i∗ = i∗(λ) such that x(i

∗) + 〈x(i∗),u(i∗)〉 = 0 mod p and (x(i
∗),x(i∗)) 6= 0

mod p hold with probability at least ε′/t.

We then use B′ to construct an adversary A such that AdvwKOALA,single
A,G,Samp,i∗ (λ) is

non-negliglble, which contradicts our assumption. A takes as input the group
description G, auxiliary information aux and a vector v, which is either v← Zmp
or v = u(i∗) with {u(j)}j∈[t] ← Samp(p, aux). Then, A runs B′ on input aux and
G. If B′ outputs something outside of Zmp , A outputs 0. Otherwise, let x ∈ Zmp be

the output by B′. If (x(i
∗),x(i∗)) = 0, A outputs 0. Otherwise, A checks whether

x(i
∗) + 〈x(i∗),v〉 ?

= 0. (4.3)

It outputs 1 if it holds and 0 otherwise.

We evaluate the probability that A outputs 1. There are two cases to consider.

– If v = u(i∗), B′ outputs non-zero vector (x(i
∗),x(i∗)) satisfying Eq. (4.3) with

probability at least ε′/t. A outputs 1 with the same probability.
– If v is chosen uniformly at random from Zmp , Eq. (4.3) holds for (x(i

∗),x(i∗))

output by B′ with probability at most 1/p unless (x(i
∗),x(i∗)) = 0 mod p,

since v is information theoretically hidden from B′. Since A outputs 1 only
when (x(i

∗),x(i∗)) 6= 0 and Eq. (4.3) holds, the probability that A outputs 1
is at most 1/p.

We finally observe that

AdvwKOALA,single
A,G,Samp,i∗ (λ) = |Pr[A(G, aux,u(i∗))→ 1]− Pr[A(G, aux,v)→ 1]|

≥ ε′/t− 1/p

≥ ε/tQ− negl,
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where the probabilities are taken over the choice of G← GroupGen(1λ), v← Znp ,

random aux, {u(j)}j∈[t] ← Samp(p, aux) and the internal coin of A. Since ε/tQ−
negl is non-negligible, this contradicts our initial assumption. This completes the
proof of Theorem 4.2.

5 Our CP-ABE Scheme

In this section, we provide our construction of CP-ABE scheme for NC1 whose
sizes of the parameters are independent from the size of the circuits supported
by the scheme and only dependent on the input length and depth of the circuits.
This efficiency property is not satisfied by most of the existing schemes except
for [AY20, BV20]. Unlike [AY20, BV20], we provide the security proof in the
standard model. We then show that the CP-ABE scheme can be used to construct
BE with optimal efficiency. This provides the first optimal BE scheme whose
security is proven in the standard model.

5.1 Construction

Here, we provide our construction of CP-ABE scheme that supports the circuit
class C`,d = {Cλ,`(λ),d(λ)}λ, which is a set of all circuits with input length `(λ)
and depth at most d(λ) with arbitrary `(λ) = poly(λ) and d(λ) = O(log λ).
For our construction, we will use public key slotted IPFE scheme IPFE =
(IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.SlotEnc, IPFE.Dec), which is proposed
by Lin and Luo [LL20], which is secure under the MDDH assumption, and a
secret sharing scheme SS = (SS.Setup,SS.Share,SS.Recon) for C`(λ),d(λ) that is
provided in Section 3.

ABE.Setup(1λ): On input 1λ, the setup algorithm proceeds as follows.

1. Run G = (p,G1,G2,GT , e, [1]1, [1]2)← GroupGen(1λ). Note that p and λ
specify the parameter m := m(λ) (See syntax of secret sharing scheme in
Section 3).

2. Run pp← SS.Setup(1λ, p).

3. Run (IPFE.mpki,b,j , IPFE.mski,b,j)← IPFE.Setup(1λ, {1}, {2}) for i ∈ [`],
b ∈ {0, 1}, and j ∈ [m]. Note that here we generate slotted IPFE instances
whose the first entry is for public slot and the second entry is for private
slot.

4. Output ABE.mpk = (G, pp, {IPFE.mpki,b,j}i∈[`],b∈{0,1},j∈[m]) and ABE.msk =
{IPFE.mski,b,j}i∈[`],b∈{0,1},j∈[m].

ABE.KeyGen(ABE.mpk,ABE.msk, x): The key generation algorithm takes as
input the master public key ABE.mpk, the master secret key ABE.msk, and
an attribute x ∈ {0, 1}` and proceeds as follows.

1. Let x1 · · ·x` ∈ {0, 1}` be the binary representation of x ∈ {0, 1}`.
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2. Pick γ ← Zp and compute [γ]T .

3. Sample IPFE.ski,xi,j ← IPFE.KeyGen(IPFE.mski,xi,j , [(γ, 0)]2) for all i ∈
[`] and j ∈ [m].

4. Output ABE.sk = ([γ]T , {IPFE.ski,xi,j}i∈[`],j∈[m]).

ABE.Enc(ABE.mpk, C, µ): The encryption algorithm takes as input the master
public key ABE.mpk, a circuit C, and the message µ and proceeds as follows.

1. Run {sharei,b}i∈[`],b∈{0,1} ← SS.Share(pp, C, µ).

2. Parse each sharei,b as sharei,b = {sharei,b,j ∈ Zp}j∈[m].

3. Run IPFE.cti,b,j ← IPFE.SlotEnc(IPFE.mpki,b,j , [sharei,b,j ]1) for i ∈ [`],
b ∈ {0, 1}, j ∈ [m].

4. Output ABE.ct = {IPFE.cti,b,j}i∈[`],b∈{0,1},j∈[m].

ABE.Dec(ABE.mpk,ABE.sk, x,ABE.ct, C): The decryption algorithm takes as
input the master public key ABE.mpk, the secret key ABE.sk along with x,
the ciphertext ABE.ct along with C and does the following:

1. Parse the ciphertext as ABE.ct→ {IPFE.cti,b,j}i∈[`],b∈{0,1},j∈[m] and the
secret key as ABE.sk→ ([γ]T , {IPFE.ski,xi,j}i∈[`],j∈[m]).

2. Run IPFE.Dec(IPFE.ski,xi,j , IPFE.cti,xi,j)→ [di,j ]T for i ∈ [`] and j ∈ [m].

3. Run SS.FindCoef(pp, C, x)→ {ai,j ∈ Zp}i∈[`],j∈[m].

4. Compute [d′]T = [
∑
i∈[`],j∈[m] ai,jdi,j ]T from {[di,j ]T }i,j and {ai,j}i,j .

5. Find e ∈ [−B,B] and µ ∈ {0, 1} such that [d′]T = [γ(µdp/2e+ e)]T by
Brute-force search using [γ]T . If such a pair does not exist, output ⊥.
Otherwise, output µ.

Correctness. To show correctness of the scheme, we first observe that
di,j = γ · sharei,xi,j by the correctness of IPFE. We then observe that d′ =∑
i∈[`],j∈[m] γai,jsharei,xi,j = γ(µ · dp/2e+ e) for some e ∈ [−B,B] by the almost

linear reconstruction property (Definition 3.4) of ABE. Since B is polynomially
bounded by Theorem 3.5, the last step in the decryption algorithm works in
polynomial time and recovers the message µ.

Efficiency. The master public key of the ABE consists of O(`m) master public
keys of the IPFE and the public parameter pp of the secret sharing scheme.
The ciphertext and secret key of the ABE contain O(`m) ciphertexts and secret
keys of the IPFE, respectively. By the efficiency of the secret sharing scheme,
m and the size of pp are bounded by poly(λ). Furthermore, each instance of
IPFE only deals with constant dimension of vectors, which means that sizes of
all the parameters of each instance of the IPFE scheme are bounded by poly(λ).
Therefore, we can see that sizes of all the parameters in the ABE scheme are
bounded by poly(λ, `).
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5.2 Security Proof

Here, we prove the security of our ABE scheme in Sec. 5.1. Before doing so, we
prove the following lemma.

Lemma 5.1. Let C ∈ Cλ,`(λ),d(λ) be a circuit and X ⊆ {0, 1}`(λ) be a set of
strings that satisfies C(x) = 0 for all x ∈ X, and SS = (SS.Setup,SS.Share,SS.Recon)
be a secure secret sharing scheme for this circuit class as per Definition 3.2. Then,
for any efficient adversary A = {Aλ}, we have

Pr

[
Aλ
(

G, pp,{
[γ(x)]2, {[γ(x)sharei,xi ]2}i∈[`]

}
x∈X

)
→ 1

]
− Pr

[
Aλ

(
G, pp,{

[γ(x)]2, {[γ(x)w(x)
i ]2}i∈[`]

}
x∈X

)
→ 1

]
= negl(λ), (5.1)

under the bilinear KOALA assumption, where the probabilities are taken over
the choice of G = (p,G1,G2,GT , e, [1]1, [1]2) ← GroupGen(1λ), γ(x) ← Zp and

w
(x)
i ← Zmp for x ∈ X, pp ← SS.Setup(1λ, p), and {sharei,b}i∈[`],b∈{0,1} ←

SS.Share(pp, C, µ).

Proof. To prove the theorem, we set Samp to be an algorithm that takes as input
an integer p and a random string aux, sets pp := aux, runs {sharei,b}i∈[`],b∈{0,1} ←
SS.Share(pp, C, µ), and outputs{

{sharei,xi}i∈[`]
}
x∈X .

Then, we argue that AdvwKOALA,single
A,G,Samp,i (λ) defined in Eq. (4.1) is negligible for any i

and any efficient adversary A. To show this, we first fix i and A and observe that
the quantity is negligible if we replace aux that is input to A with pp output by
SS.Setup(1λ, p), which follows from the security of SS (Definition 3.2) and from the
fact that C(x) = 0 holds for all x ∈ X. We then observe that the adversary will not
notice even if we replace pp with aux since the distributions of them are statistically
close by the random public parameter property (Definition 3.3) of SS. We therefore

have AdvwKOALA,single
A,G,Samp,i (λ) = negl(λ). This implies that AdvwKOALA,multi

B,G,Samp (λ) defined
in Eq. (4.2) is negligible for any efficient adversary B by wKOALA, which is
implied by the bilinear KOALA assumption. Finally, by replacing aux with pp
output by SS.Setup(1λ, p) in Eq. (4.2), we have that Eq. (5.1) is negligible for
any efficient adversary as desired.

The next theorem establishes the security of our ABE scheme.

Theorem 5.2. Our ABE scheme satisfies very selective security under the
MDDH assumption, the bilinear KOALA assumption, and the LWE assumption.

Proof. To prove the theorem, we fix a PPT adversary A = {Aλ}. Without loss
of generality, we make some simplifying assumptions on A. First, we assume
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that A always chooses (µ0, µ1) = (0, 1) as its target message at the challenge
phase. This can be assumed without loss of generality since our scheme is a
single-bit scheme. Second, we assume that the adversary does not make key
queries for the same attribute x twice. The adversary that makes key queries
for the same attribute more than once can be dealt with by making the key
generation algorithm deterministic by changing the scheme so that it derives
randomness using a PRF, which can be instantiated from any one-way functions.
Third, we assume that the adversary chooses fixed challenge attribute C = {Cλ}
and key queries X = {Xλ}. This can be assumed without loss of generality
because they are chosen by the adversary at the beginning of the game only
depending on the security parameter and we can derandomize A by choosing the
best randomness that maximizes the advantage of A.

In order to prove the security, we consider following sequence of games. Let
us denote the event that A outputs correct guess for b at the end of Gamex as
Ex.

Game1: This is the real very selective security game. To fix the notation and
for the sake of concreteness, we briefly describe the game here. At the
beginning of the game, the adversary chooses C and X ⊆ {0, 1}`. Then,
the challenger first chooses the master public key ABE.mpk and the master
secret key ABE.msk of the ABE scheme. It then generates the challenge
ciphertext as follows. It first chooses the message β ← {0, 1} and runs
{sharei,b}i∈[`],b∈{0,1} ← SS.Share(pp, C, β). It then runs

IPFE.cti,b,j ← IPFE.SlotEnc(IPFE.mpki,b,j , [sharei,b,j ]1)

for i ∈ [`], b ∈ {0, 1}, j ∈ [m] and sets the challenge ciphertext to be
ABE.ct = {IPFE.cti,b,j}i∈[`],b∈{0,1},j∈[m]. It also generates secret key ABE.skx
for all x ∈ X as follows. It first generates γ(x) ← Zp and

IPFE.ski,xi,j ← IPFE.KeyGen(IPFE.mski,xi,j , [(γ
(x), 0)]2)

for all i ∈ [`] and j ∈ [m]. It then sets ABE.skx = ([γ]T , {IPFE.ski,xi,j}i∈[`],j∈[m]).
Finally, the challenger returns ABE.mpk, ABE.ct, and {ABE.skx}x∈X to A,

which then outputs a bit β̂ as a guess for β. By definition, the advantage of
A against the scheme is ∣∣∣∣Pr[E1]− 1

2

∣∣∣∣ .
Game2: In this game, we change the game so that the challenger generates the

challenge ciphertext as follows. It first chooses the message β ← {0, 1} and
runs {sharei,b}i∈[`],b∈{0,1} ← SS.Share(pp, C, β). It then generates

IPFE.cti,b,j ← IPFE.Enc(IPFE.mski,b,j , [(sharei,b,j , 0)]1)

for i ∈ [`], b ∈ {0, 1}, j ∈ [m] and sets the challenge ciphertext to be
ABE.ct = {IPFE.cti,b,j}i∈[`],b∈{0,1},j∈[m]. By the slot-mode correctness of the
IPFE, we have

Pr[E1] = Pr[E2].
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Game3: In this game, we change the way the challenge ciphertext and the secret
keys are generated. In this game, the challenger generates the challenge
ciphertext as follows. It first chooses the message β ← {0, 1} and runs
{sharei,b}i∈[`],b∈{0,1} ← SS.Share(pp, C, β). However, it ignores theses values
and generates

IPFE.cti,b,j ← IPFE.Enc(IPFE.mski,b,j , [(0, 1)]1)

for i ∈ [`], b ∈ {0, 1}, j ∈ [m] and sets the challenge ciphertext to
be ABE.ct = {IPFE.cti,b,j}i∈[`],b∈{0,1},j∈[m]. We also change the way the
challenger generates the secret keys as follows. For x ∈ X, it first generates
γ(x) ← Zp and

IPFE.ski,xi,j ← IPFE.KeyGen(IPFE.mski,xi,j , [(γ
(x), γ(x)sharei,xi,j)]2)

for all i ∈ [`] and j ∈ [m], where we use sharei,xi,j that is gener-
ated when creating the challenge ciphertext. It then sets ABE.skx =
([γ(x)]T , {IPFE.ski,xi,j}i∈[`],j∈[m]).

We can observe that for each instance of IPFE, the inner products between
the vector that is encoded in the ciphertext and the vectors encoded in the
secret keys are unchanged. Furthermore, the values in the public slots of the
vectors encoded in the secret keys are unchanged. Therefore, this game is
indistinguishable from the previous game for A by the security of the IPFE,
which follows from the MDDH assumption. We therefore have

|Pr[E2]− Pr[E3]| = negl(λ).

Game4: In this game, we further change the way the secret keys are generated

as follows. The challenger first generates γ(x) ← Zp and chooses w
(x)
i ← Zmp

for i ∈ [`]. It then generates

IPFE.ski,xi,j ← IPFE.KeyGen(IPFE.mski,xi,j , [(γ
(x), w

(x)
i,j )]2)

for all i ∈ [`] and j ∈ [m], where w
(x)
i,j is the j-th entry of the vector w

(x)
i ,

and sets ABE.skx = ([γ]T , {IPFE.ski,xi,j}i∈[`],j∈[m]).

We claim that this game is indistinguishable from the above game. To
see this, let us assume that A distinguishes the games with non-negligible
advantage for the sake of contradiction. Then, for C = {Cλ} and X = {Xλ}
chosen by A, we can construct another adversary B = {Bλ} that distinguishes
two distributions in Eq. (5.1) with non-negligible advantage as follows.

B takes as input G, pp,
{

[γ(x)]2, {[w(x)
i ]2}i∈[`]

}
x∈X

, where w
(x)
i is either

random or w
(x)
i = γ(x)sharei,xi . It chooses (IPFE.mpki,b,j , IPFE.mski,b,j) ←

IPFE.Setup(1λ, {1}, {2}) for all i, b, and j and sets the ABE.mpk and ABE.msk
accordingly. It generates the challenge ciphertext using ABE.msk. It also

generates a secret key for x using [γ(x)]2, {[w(x)
i ]2}i∈[`] and ABE.msk. In
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particular, the syntax of the slotted IPFE allows us to generate the secret

key for the vector [(γ(x), w
(x)
i,j )]2 without knowing the corresponding discrete

logarithm, which B does not know. B then inputs ABE.mpk, ABE.ct, and
{ABE.skx} to A and outputs what A outputs.

Clearly, B simulates Game3 for A if w
(x)
i = γ(x)sharei,xi and Game4 if

w
(x)
i is random. Thus, B can distinguish the two distributions with the same

advantage as A. This contradicts the bilinear KOALA assumption and the
security of the secret sharing scheme by Lemma 5.1, where the latter follows
from the LWE assumption by Theorem 3.5. Therefore, we have

|Pr[E3]− Pr[E4]| = negl(λ).

We can easily observe that the view of A in Game4 is independent from β and
Pr[E4] = 1/2. Therefore, we have∣∣∣∣Pr[E1]− 1

2

∣∣∣∣ ≤∑
i∈[3]

|Pr[Ei]− Pr[Ei+1]|+
∣∣∣∣Pr[E4]− 1

2

∣∣∣∣ ≤ negl(λ)

as desired. This completes the proof of Theorem 5.2.

5.3 Implication to Broadcast Encryption

Here, we show that our CP-ABE scheme implies BE by restricting the circuit
class of the scheme to be some specific one as was observed in [AY20, BV20]. Let
us consider the following circuit class FBE:

FBE =
{
FS : {0, 1}dlogNe → {0, 1}

}
S⊆[N ]

where FS(i) =

{
1 if i ∈ S
0 if i 6∈ S

.

Here, we identify a user index i ∈ [N ] and elements in S with binary strings in
{0, 1}dlogNe by a natural bijection map between {0, 1}dlogNe and [2dlogNe] ⊇ [N ].
Since the depth of FS affects the efficiency of the DBE scheme, we want FS to
be as shallow as possible. For this purpose, we compute FS by first computing

bj := (i
?
= j) for all j ∈ S in parallel and then computing ∨j∈Sbj . The first

step can be implemented with depth O(log logN) and the second step with
O(logN). This allows us to implement FS with depth O(log |S|) ≤ O(logN).
Therefore, our CP-ABE scheme indeed supports this circuit class. Furthermore,
by the definition of FS , one can see that this CP-ABE scheme implements the
functionality of BE. The obtained BE scheme has optimal efficiency in the sense
that the size of the master public key, secret key, and the ciphertext is bounded
by poly(λ, `, d) = poly(logN,λ) = poly(λ), which is independent of the number
of users N in the system. The scheme satisfies very selective security since so
is the underlying CP-ABE. We note that our scheme indeed satisfies selective
security since very selective security is equivalent to selective security in the
setting of BE (See Remark 2.7).
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A The Secret Sharing Scheme

In thise section, we provide details of the secret sharing scheme described in the
proof of Theorem 3.5.

A.1 Lattice Preliminaries

Here, we recall some facts on lattices that are needed for the exposition of
our construction. We follow the presentation by Agrawal and Yamada [AY20].
Throughout this section, n = n(λ), m = m(λ), and p = p(λ) are integers such
that n = poly(λ) and m ≥ ndlog pe. In the following, let SampZ(γ) be a sampling
algorithm for the truncated discrete Gaussian distribution over Z with parameter
γ > 0 whose support is restricted to z ∈ Z such that |z| ≤

√
nγ.

Learning with Errors. We then introduce the learning with errors (LWE)
problem.

Definition A.1 (The LWE Assumption). Let n = n(λ), m = m(λ), and
p = p(λ) > 2 be integers and χ = χ(λ) be a distribution over Zp. We say
that the LWE(n,m, p, χ) hardness assumption holds if for any efficient adversary
A = {Aλ}λ we have

|Pr[Aλ(A, sA + x)→ 1]− Pr[Aλ(A,v)→ 1]| ≤ negl(λ)

where the probabilities are taken over the choice of the random coins by the
adversary Aλ and A← Zn×mp , s← Znp , x← χm, and v← Zmp .

As shown by previous works [Reg09, BLP+13], if we set χ = SampZ(γ), the
LWE(n,m, p, χ) problem is as hard as solving worst case lattice problems such as
gapSVP and SIVP with approximation factor poly(n) · (p/γ) for some poly(n).
Since the best known algorithms for 2k-approximation of gapSVP and SIVP run
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in time 2Õ(n/k), it follows that the above LWE(n,m, p, χ) with noise-to-modulus
ratio 2−n

ε

is likely to be (subexponentially) hard for some constant ε.

Lattice Evaluation. The following is an abstraction of the evaluation procedure
in previous LWE based FHE and ABE schemes.

Lemma A.2 (Fully Homomorphic Computation [GV15]). There exists a
pair of deterministic algorithms (EvalF,EvalFX) with the following properties.

– EvalF(B, F ) → HF . Here, B ∈ Zn×m`p and F : {0, 1}` → {0, 1} is a circuit.

– EvalFX(F, x,B) → ĤF,x. Here, x ∈ {0, 1}` with x1 = 16 and F : {0, 1}` →
{0, 1} is a circuit with depth d. We have

[B− x⊗G]ĤF,x = BHF − F (x)G mod p,

where we denote [x1G‖ · · · ‖xkG] by x⊗G. Furthermore, we have

‖HF ‖∞ ≤ m · 2O(d), ‖ĤF,x‖∞ ≤ m · 2O(d).

– The running time of (EvalF,EvalFX) is bounded by poly(n,m, log p, 2d).

In particular, when d = O(log λ), EvalF and EvalFX run in polynomial time and

‖HF ‖∞ and ‖ĤF,x‖∞ are polynomially bounded.

A.2 The Construction

Here, we provide details of the secret sharing scheme described in the proof of
Theorem 3.5. The scheme can deal with the circuit class C`,d = {Cλ,`(λ),d(λ)}λ∈N
with arbitrary `(λ) = poly(λ) and d(λ) = O(log(λ)) and is based on the ABE
scheme by Gorbunov and Vinayagamurthy [GV15], which improves the parameters
of the scheme by Boneh et al. [BGG+14] when the circuit class is limited to NC1.

Rigorously speaking, the following scheme does not satisfy the syntax of the
secret sharing scheme defined in Section 3 in several points. First, in the following
scheme, the message µ shared with respect to circuit C is recovered iff one has
shares {sharei,xi} for x satisfying C(x) = 0, instead of C(x) = 1. This discrepancy
can be fixed by using ¬C, which is the negation of the circuit C, when running
the sharing algorithm. Second, we require the input x to C to satisfy x1 = 1.
This restriction is required to apply Lemma A.2. We can remove the condition by
increasing the dimension of x by 1 and considering function C that ignores the
first bit. Third, the lengths of the shares output by SS.Share are not the same.
In particular, share1,0 and share1,1 are longer than other shares. This problem is
fixed by padding other shares with random strings with appropriate length.

SS.Setup(1λ, p): On input 1λ, the setup algorithm defines the parameters n =
n(λ), m = m(λ), noise distribution χ = χ(λ) over Z, τ = τ(λ), L = L(λ),
and B = B(λ) as specified later. It then proceeds as follows.

6 This condition may be necessary for the lemma to hold for arbitrary F .
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1. Sample A← Zn×mp .

2. Sample random matrix B = (B1, . . . ,B`)← (Zn×mp )`.

3. Choose random Ri ← {0, 1}L for i ∈ [2m] and set R = {Ri}i∈[2m].

4. Output the public parameter pp = (A,B, R).

SS.Share(pp, C, µ): The sharing algorithm takes as input the public parameter
pp, a circuit C that specifies the policy, and a message µ ∈ {0, 1} to be shared
and proceeds as follows.

1. Sample s ← Znp , e1 ← χ, e2 ← χm, and Si,b ← {−1, 1}m×m for i ∈ [`]
and b ∈ {0, 1}. Then, set ei,b := e2Si,b for i ∈ [`] and b ∈ {0, 1}.

2. Run SampZ(τ) on randomness Ri to obtain ri for i ∈ [2m] and form
r = (r1, . . . , r2m).

3. Compute HC := EvalF(B, C), BC := BHC , and u> := [A‖BC ]r>.

4. Compute

ψ1 := su> + e1 + µdp/2e ∈ Zp, ψ2 := sA + e2 ∈ Zmp ,
ψi,b := s(Bi − bG) + ei,b ∈ Zmp for all i ∈ [`] and b ∈ {0, 1}.

5. Set share1,b = {ψ1, ψ2, ψ1,b} for b ∈ {0, 1} and sharei,b = ψi,b for i ∈ [2, `]
and b ∈ {0, 1} and output share = {sharei,b}i∈[`],b∈{0,1}.

SS.Recon(pp, C, x, {sharei,xi}i∈[`]): The reconstruction algorithm takes as input
the public parameter pp, a circuit C, and shares {sharei,xi}i∈[`] for x with
x1 = 1 that satisfies C(x) = 0 and proceeds as follows.

1. Parse share1,x1 → {ψ1 ∈ Zp, ψ2 ∈ Zp, ψ1,x1 ∈ Zmp } and sharei,xi = ψi,xi ∈
Zmp for i ∈ [2, `]. If any of the component is not in the corresponding
domain or C(x) = 1, output ⊥.

2. Concatenate {ψi,xi}i∈[`] to form ψ3 = (ψ1,x1
, . . . , ψ`,x`).

3. Compute ĤC,x = EvalF(C, x,B).

4. Run SampZ(τ) on randomness Ri to obtain ri for i ∈ [2m] and form
r = (r1, . . . , r2m).

5. Compute

ψ′ := ψ1 − [ψ2‖ψ3ĤC,x]r>.

6. Output 0 if ψ′ ∈ [−B,B] and 1 if [−B + dp/2e, B + dp/2e].

From the above description, it is easy to see that we can divide the reconstruction
algorithm into two steps as described in Definition 3.4, even though we do not
explicitly do so in order to avoid messy notations.
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Parameters and Security. Here, we provide sample parameters for the scheme to
work. The choice of the parameters is essentially the same as that for the ABE
scheme in [AY20].

m = n1.1 log p, τ = m3.1` · 2O(d) χ = SampZ(3
√
n),

L = poly(λ, log τ), B = n2m2τ · 2O(d), p0 = 5B.

We need to take L sufficiently long so that we can run SampZ(γ) using randomness
of length L. We choose the parameter n to be n = λc for some constant c >
1. When we set p = 2Θ(λ), which is the case for our main construction, the
security of the scheme will be based on the LWE assumption with subexponential

approximation factor Õ(2n
1/c

).
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