
Info-Commit: Information-Theoretic Polynomial
Commitment and Verification

Saeid Sahraei1 and Salman Avestimehr2

1 Qualcomm Technologies, Inc., San Diego, CA 92121, USA,
2 University of Southern California, Los Angeles, CA 90089, USA.

Abstract. We introduce Info-Commit, a protocol for polynomial com-
mitment and verification. Info-Commit consists of two phases. An initial
commitment phase and an evaluation phase. During the commitment
phase, the verifier and the prover engage in a private two-party compu-
tation algorithm so that the verifier extracts a private verification key. In
the evaluation phase, the verifier is interested in learning the evaluations
of the polynomial at several input points. Info-Commit has four main fea-
tures. Firstly, the verifier is able to detect, with high probability, if the
prover has responded with evaluations of the same polynomial that he
has initially committed to. Secondly, Info-Commit provides rigorous pri-
vacy guarantees for the prover: upon observing the initial commitment
and the response provided by the prover to m evaluation requests, the
verifier only learns O(m2) symbols about the coefficients of the polyno-
mial. Thirdly, the verifiability guarantee is unconditional and without
the need for a trusted party, while “bounded storage” is the only as-
sumption underlying the privacy of the algorithm. In particular, both
properties hold regardless of the computation power of the two parties.
Lastly, Info-Commit is doubly-efficient in the sense that in the evaluation
phase, the verifier runs in O(

√
d) and the prover runs in O(d), where

d− 1 is the degree of the polynomial.

1 Introduction

Consider a server hosting a closed-source program that is intended to solve a
specific problem (say, an advanced optimization tool). As a customer, you wish to
delegate the task of running this program on your data to the server. Naturally,
your limited access to the software as well as your lack of trust in the server
concerns you about the validity of the returned results. How can you verify that
the server is indeed running the correct program on your data and providing you
with the desired outcome? To convince yourself that the server is in possession
of some program that solves the claimed problem you could probe the server at
random input values for which you know the outcome (say, through a different
commercial software to which you only have trial access). Nevertheless, the bigger
concern is whether the server continues to run the correct program on your data
once this initial trust has been established. From an economic perspective, the
server may have the incentive not to spend his computational resources on your

data, but rather provide you with random outputs. Worse yet, a malicious server
may intentionally provide you with false evaluations if he knows that you do not
check the correctness of the results.

The literature on verifiable computing [1–4] and functional commitment pro-
tocols [5, 6] allow the server (prover) to generate a proof of correctness of his
results which can be checked by the users (verifiers). However, verifying such
proofs is only possible if one has substantial knowledge about the underlying
function, or if a verification key has been generated by a trusted party. Further-
more, the soundness of these algorithms relies on heuristic hardness assumptions
that may be falsified at any time due to algorithmic breakthroughs or techno-
logical advancements.

In this paper, our goal is to design a commitment and verification algorithm
that overcomes these challenges. Namely, (i) the verifiability property must hold
regardless of the computation power of the prover, (ii) there must be no need
for a trusted party, and (iii) the verifier must not learn more than a constant
number of bits about the underlying function, regardless of his computation
power. In the example above, the prover should be able to keep his program
private from the verifier while at the same time provide him with verifiable re-
sults. This verification is performed against an initial commitment by the prover
which contains almost no information about the program itself. Once the verifier
receives the commitment to a specific function, the prover will only be able to
pass the verification process if he provides evaluations of the same function that
he has committed to. Our focus will be specifically on functions that can be
represented as polynomials. This encompasses a wide range of applications in-
cluding transaction verification in cryptocurrencies [7], verifiable secret sharing
[8, 6], and proof-of-storage [9, 10, 4].

1.1 Our contributions

We propose Info-Commit, a protocol for polynomial commitment and verifica-
tion. Specifically, Info-Commit consists of a commitment phase and and evalu-
ation phase. During the commitment phase, the prover and the verifier engage
in a private two-party computation algorithm in such a way that the verifier
learns a private commitment to the polynomial. In the evaluation phase, the
verifier is interested in learning the evaluations of the polynomial at many in-
put points with the help of the prover. Info-Commit is verifiable, doubly-efficient
and privacy-preserving. More specifically, Info-Commit has the following salient
features.

1. Verifiability. If the prover commits to a polynomial f in the commitment
phase, he must provide evaluations of the same polynomial f in the evalu-
ation phase. Otherwise, the verifier is able to detect the inconsistency with
overwhelming probability. On the other hand, if the prover is honest, the
verifier accepts the results with probability 1.

2. Double-efficiency. For each round of evaluation, the verifier runs in O(
√
d)

whereas the prover runs in O(d). Note that we measure the efficiency of Info-
Commit in the amortized model [2] where the initial commitment phase is

2

followed by many rounds of evaluations. As a result, the one-time cost of the
commitment phase can be neglected.

3. Privacy. The other facet of Info-Commit is its privacy-preserving property.
Upon observing the initial commitment and the response of the prover to m
rounds of evaluation, the verifier only learns O(m2) symbols over the field
about the coefficients of the polynomial.

4. Information-theoretic guarantees without relying on any trusted
party. Both the verifiability and the privacy of Info-Commit are information-
theoretic, meaning that the verifier and the prover can have unbounded
computation power and may arbitrarily deviate from the prescribed protocol.
Furthermore, Info-Commit does not rely on any trusted party, not even in
the initial commitment phase.

The only assumption that underlies the privacy of Info-Commit is the bounded
storage assumption which states that there exists an upper-bound N on the stor-
age size of the verifier. This upper bound must be publicly known and must not
exceed n2, where n is the minimum required storage for each party for the pro-
tocol to succeed. This assumption is used in the commitment phase where we
rely on oblivious transfer algorithms in the bounded storage model [11–14].

1.2 Related work

The closest works in the literature to the present paper are commitment pro-
tocols, including polynomial commitment [6, 15–17], vector commitment [18],
cryptographic accumulators [19], and more generally functional commitments
[5]. These protocols allow a prover to provide a cryptographic commitment to a
specific function which reveals little to no information about the underlying func-
tion. A verifier can then request the prover to “open” the commitment at specific
locations. The verifier should be able to detect if the opening is inconsistent with
the initial commitment. There are several factors that distinguish the model in
the current paper from the traditional notion of functional commitment.

The first difference is in the notion of privacy. The linear commitment model
in [5] requires the initial commitment to reveal no information about the func-
tion. However, it does not impose any requirement on how much information is
revealed upon observing the evaluations (opening) of the functions along with
the initial commitment. On the other hand, the polynomial commitment scheme
in [6] only requires the evaluations of the polynomial at unqueried points to
remain hidden from the verifier, which is a rather weaker privacy constraint. In
contrast, we impose rigorous information-theoretic constraints on how much in-
formation is revealed about the coefficients of the polynomial upon observing the
initial commitment and the evaluations at a constant number of input points.

Secondly, our model does not permit the assumption of a trusted party,
a component that is common in functional commitment protocols [6, 5]. This
trusted party is usually in charge of generating a public key (that is later used
for commitment, evaluation and verification) in a setup phase which is eliminated
in our model.

3

Thirdly, while the literature on functional commitment is more concerned
with the size of the commitment and the size of the opening, we are instead
focused on designing doubly-efficient algorithms, i.e., algorithms with efficient
provers and super-efficient verifiers. Furthermore, unlike the literature on func-
tional commitment, our verifiability is information-theoretic.

Another relevant concept is zero-knowledge verifiable computation [20] and
zero-knowledge arguments of knowledge [21–24]. Such algorithms enable a ver-
ifier and a prover to interact in order to compute f(v, u) where f is a publicly
known function, v is the input of the verifier and u is the private input of the
prover. The verifier will not learn anything about u except for what is implied
through f(v, u). Furthermore, the verifier will be convinced that there exists
some u known to the prover such that the computed value corresponds to f(v, u).
For instance, f could correspond to a Rank-1 Constraint System (R1CS) [23], v
a public input, and u a private witness such that (v, u) satisfies all the quadratic
constraints of the R1CS. In the context of polynomial evaluation, v could be
the input to the polynomial, u the coefficients of the polynomial, and f an op-
erator that maps (v, u) to the evaluation of the polynomial. Unfortunately, this
approach does not provide any binding guarantees, as the prover may change
his polynomial for every input.

Other related notions in the literature are oblivious polynomial evaluation
[25–27] which guarantees the privacy of both parties in a semi-honest setting,
and verifiable computation [2, 4, 28] which guarantees efficient verifiability but
generally ignores the privacy of the prover.

2 Polynomial Commitment and Verification

Suppose a prover is in possession of a private polynomial f(x) = a0 + a1x +
· · · + ad−1x

d−1 selected uniformly at random among all polynomials of degree
d−1 over Fq. A verifier, who only knows the degree of the polynomial, wishes to
delegate the evaluation of this polynomial at several input points x ∈ Fq to the
prover and verify the correctness of the results in sublinear time in d. Before this
evaluation phase, the prover commits to the polynomial f during an initialization
phase. Once this commitment is done, the prover is expected to evaluate the same
polynomial f for every input x that is provided by the verifier. The verifier should
be able to detect, efficiently and with high probability, if for any input x ∈ Fq
the prover instead returns y 6= f(x). We assume that the verifier is interested
in evaluating the polynomial f at many input points, so that the complexity
of the commitment phase amortizes over many rounds of the evaluation phase
[2]. Therefore, efficiency is only measured with respect to the evaluation phase.
Additionally, during the entire commitment and evaluation phase, the verifier
should learn close to nothing about the coefficients of the polynomial f . Note
that revealing a constant number of symbols over Fq about the coefficients of
f to the verifier is inevitable, since such amounts of information can be learned
by investigating a single pair (x, f(x)). Formally, a polynomial commitment and
verification protocol consists of the following algorithms.

4

– Commit(a0, · · · , ad−1,Kv,Kp). In the commitment phase the verifier and
the prover engage in a secure two-party computation algorithm commit(a0,
· · · , ad−1,Kv,Kp) to help the verifier learn a secret verification key VK
which depends on his secret key, Kv, the prover’s secret key, Kp, and the
polynomial coefficients a0, · · · , ad−1.

– Eval(x, a0, · · · , ad−1,Kp). The verifier reveals a desired input x to the prover.
The prover will then provide val =Eval(x, a0, · · · , ad−1,Kp) to help the ver-
ifier evaluate f(x).

– Verify(x, val,VK,Kv). The verifier checks the correctness of val based on
his secret key, Kv, and the output of the commitment phase, VK. If val
is incompatible with the initial commitment, he will reject the evaluation.
Otherwise he will proceed to recovering f(x).

– Recovery(x, val). If the verification process passes, the verifier will proceed
to recover the evaluation f(x) via an algorithm Recovery(x, val).

The only assumption that underlies the privacy of Info-Commit is the bounded
storage assumption stated as follows.

Definition 1 (The bounded storage assumption [13, 14]). This assump-
tion states that there exists an upper-bound N on the storage size of the verifier.
Furthermore, the storage size of both the verifier and the prover is at least N

1
2+ε.

The upper-bound N is publicly known.

We are interested in polynomial commitment and verification protocols that are
private (in the bounded storage model) and verifiable as defined below.

Definition 2. A polynomial commitment and verification protocol is information-
theoretically private and verifiable if it satisfies the following properties.

– Correctness. If the prover follows the Commit and Eval algorithms for the
same polynomial f , then the Verify algorithm must return 1 with probability
1.

– (Information-theoretic) Soundness. If the prover commits to a polyno-
mial with coefficients a0, · · · , ad−1, then the probability that he can pass the
verification test with ˆval 6= Eval(x, a0, · · · , ad−1,Kp) should be negligible,
regardless of his computation power.

P(Verify(x, ˆval,VK,Kv,Kp) = 1, ˆval 6= Eval(x, a0, · · · , ad−1,Kp)) ≈ 0.
(1)

– Efficient verification. The two functions Verify and Recovery must run
in sublinear time in d.

– Efficient evaluation. The running time of Eval must be comparable to the
time required for evaluating the polynomial f , i.e., linear in d.

– (Information-theoretic) Privacy. After running Commit and Eval for
m different inputs x1, · · · , xm, the verifier should only learn ρ = O(poly(m))
symbols over the field about the coefficients of the polynomial f , regardless
of his computation power but under the bounded storage assumption. Impor-
tantly, ρ should be independent of the degree of the polynomial.

Hq(a0, · · · , ad−1|VK, (x1, val1), · · · , (xm, valm)) = d−O(poly(m)). (2)

5

3 Preliminaries

In the analysis of security and privacy of Info-Commit, we make use of several
basic properties of the entropy of random variables which we review in this sec-
tion. Furthermore, in the commitment phase of Info-Commit, we rely on a secure
two-party computation algorithm. Here we explain how this can be accomplished
via a series of reductions to a much simpler problem known as one-out-of-two
Oblivious Transfer [29, 30]. An information-theoretic solution for the latter will
be outlined in the bounded storage model borrowed from [31, 11, 14, 13].

3.1 Entropy of random variables

In this section we overview the definitions of various entropy functions of random
variables, the notion of Markov chain, and some useful properties that will help
us establish the soundness and verifiability of Info-Commit.

Definition 3 (Entropy). Let X,Y, Z be three random variables with domains
X , Y and Z respectively. Let q be an arbitrary positive number.

– The entropy of X in base q is a measure of its randomness and is defined as

Hq(X) = −
∑
x∈X

P(X = x) logq P(X = x). (3)

Note that for a uniformly distributed X over X we have Hq(X) = logq|X |
whereas for a deterministic X we have Hq(X) = 0.

– The joint entropy of X and Y is defined as

Hq(X,Y) = −
∑

(x,y)∈X×Y

P(X = x, Y = y) logq P(X = x, Y = y). (4)

– The conditional entropy of X given Y is defined as

Hq(X|Y) = Hq(X,Y)−Hq(Y). (5)

Some useful properties of the entropy terms are as follows.

– Property 1. All the entropy terms defined above are non-negative.
– Property 2. max{Hq(X), Hq(Y)} ≤ Hq(X,Y) ≤ Hq(X) + Hq(Y). This im-

plies that conditioning cannot increase the entropy, H(X|Y) ≤ H(X).
– Property 3. If X is independent of (Y,Z) then Hq(Y |X,Z) = Hq(Y |Z).

Definition 4 (Markov Chain). An ordered set of three random variables (X,Y,
Z) with domain X × Y × Z is said to form a Markov chain if

P(X = x, Z = z|Y = y) = P(X = x|Y = y)P(Z = z|Y = y) (6)

for every (x, y, z) ∈ X × Y × Z. Intuitively, this means that the two random
variables X and Y are independent, conditioned on knowing Y . This Markov
chain is represented via X ←→ Y ←→ Z.

– Property 4. If X ←→ Y ←→ Z forms a Markov chain, then Hq(X|Y,Z) =
Hq(X|Y).

6

3.2 Information-theoretic Oblivious Transfer

Suppose Alice has c secrets a0, · · · , ac−1 and Bob has a secret index i ∈ [0 : c−1].
Bob is interested in learning ai without revealing any information about i to Al-
ice. On the other hand, Alice wishes to reveal no information about a0, · · · , ac−1
to Bob except for the value of ai. This problem is referred to as Oblivious Trans-
fer (OT) [30]. If each of Alice’s c secrets belongs to an alphabet Y of size |Y| = q,
we refer to the problem as

(
c
1

)
q
−OT. In this paper we make use of an

(
c
1

)
q
−OT

algorithm in the commitment phase. Information-theoretic algorithms for
(
2
1

)
q

and
(
2
1

)
2

have been proposed in the literature in the bounded storage model

[13, 11, 14]. Furthermore, there exist unconditional reductions from
(
c
1

)
q
−OT to(

2
1

)
q
−OT and from

(
c
1

)
q
−OT to

(
c
1

)
2
−OT [32]. We will provide brief overviews

of these algorithms here and refer the readers to the corresponding references
for a more detailed description.

Reduction from
(c
1

)
q
−OT to

(2
1

)
q
−OT. Information-theoretic reductions

from
(
c
1

)
q

to
(
c
1

)
2

and from
(
c
1

)
2

to
(
2
1

)
2

have been presented in [32]. Here we

describe a reduction from
(
c
1

)
q
−OT to

(
2
1

)
q
−OT and refer the interested reader

to [32] to see the other reductions. Alice generates c − 2 random symbols over
the alphabet Y, namely r0, · · · , rc−3. Alice and Bob agree on an ordering of the
elements of Y. Let yi be the i’th element of Y in this ordering for i ∈ [0 : q− 1].
Define the summation operation over Y as yi + yj = ymod(i+j,q). Bob relies on(
2
1

)
q
−OT to request one element of each column of Table 1. If Bob is interested

Index Value 0 Value 1 · · · Value c− 3 Value c− 2

1 a0 a1 + r0 · · · ac−3 + rc−4 ac−2 + rc−3

2 r0 r0 + r1 · · · rc−4 + rc−3 ac−1 + rc−3

Table 1. Unconditional reduction from
(
c
1

)
q
−OT to c− 1 invocations of

(
2
1

)
q
−OT.

in ai, he will choose the second row for every column j < i, but chooses the first
row for the i’th column. Bob’s request to the remaining columns does not make
any difference in the overall outcome: Bob will only learn ai and nothing else
about the remaining aj values. If Bob wants ac−1, he will choose the second row
for every column of the table. Privacy of Bob follows from the privacy of the
underlying

(
2
1

)
q
−OT algorithm.

(2
1

)
q
−OT in the bounded storage model. Several works have proposed(

2
1

)
q
−OT and

(
2
1

)
2
−OT algorithms in the bounded storage model which remain

secure even if the two parties have infinite computation power [14, 12, 13, 11].
It is only necessary to assume that an upper bound N on the storage size of

7

Bob is known to Alice. The actual required storage size n for the algorithm to
succeed is much smaller than N . For instance, the algorithm in [14] only needs
n = N1/2+ε. The general idea behind all these algorithms is as follows. Alice
generates a random string of K bits such that K > αN for some α > 1. Let RX
represent the sub-sequence of the random string indexed by the set X ⊆ [N].
Alice broadcasts this sequence, and each of Alice and Bob randomly stores a
subset of the sequence of size

√
2`N . Let ΩA ⊆ [N] represent the indices of

the bits stored by Alice and define ΩB similarly. By the birthday paradox, with
high probability |ΩA ∩ ΩB | ≈ `. Alice reveals ΩA to Bob and Bob computes
two sets ΩA ∩ ΩB and ΩB\ΩA. Next, the two parties engage in an interactive
hashing algorithm [13] to generate two sets X0, X1 ⊆ ΩA of equal size such that
Xi ⊆ ΩB but |X1−i ∩ ΩB | � |X1−i| for some i ∈ {0, 1} chosen by Bob. The
interactive hashing algorithm also guarantees that Alice does not learn i. Alice
encodes a0 with RX0

and a1 with RX1
and sends both to Bob. Bob will be able

to decode ai, since he knows RXi . However, his incomplete knowledge of the set
RX1−i prevents him from learning a1−i.

While the state of the art
(
2
1

)
q
−OT and

(
2
1

)
2
−OT algorithms [14, 13] guaran-

tee perfect privacy for Bob, they only guarantee Alice’s privacy with probability
1−2−k

c

for some security parameter k and an arbitrary constant c. The negligi-
ble probability that Alice’s privacy is compromised will translate to a negligible
probability that Info-Commit fails to guarantee the privacy of the polynomial
against the verifier. But we can choose k large enough so that the privacy of
Alice is virtually perfect. We will make this argument precise in the analysis of
privacy of Info-Commit.

3.3 Secure Two-party computation based on
(c
1

)
q
−OT

A secure two-party computation algorithm S2PC(x, y, f,X ,Y,F) enables two
parties Alice and Bob to evaluate f(x, y), where f : X × Y → F is a publicly
known function, x ∈ X is the private input of Bob and y ∈ Y is the private
input of Alice [33]. At the end, Bob must learn f(x, y) but nothing else about
y, whereas Alice must learn nothing (not even f(x, y)). S2PC can be realized

via an instantiation of
(|X |

1

)
|F|−OT as follows. The two parties first agree on

an ordering of the elements of the set X . Let ζi represent the i’th element of
X in this ordering. Let j ∈ [|X |] be such that the private input of Bob satisfies

x = ζj . Bob can request the j’th row of Table 2 via an
(|X |

1

)
|F|−OT algorithm.

Bob will learn f(ζj , y) = f(x, y) but nothing else about y, whereas Alice will
learn nothing about x.

4 An Overview of Info-Commit

We start by noting that the polynomial f(x) = a0 + a1x + · · · + ad−1x
d−1 can

be rewritten as

f(x) =
[
1 xs · · · xs(s−1)

]
A
[
1 x · · · xs−1

]T
. (7)

8

index requested value

1 f(ζ1, y)

· · · · · ·
|X | f(ζ|X|, y)

Table 2. In order to learn f(x, y), the verifier will request the j’th row of this table
via an

(|X|
1

)
|F|−OT algorithm where j ∈ [|X |] is such that x = ζj .

Algorithm 1 Secure two-party computation, S2PC(x, y, f,X ,Y,F)

Input: Function f : X ×Y −→ F , Bob’s private input x ∈ X , Alice’s private input
y ∈ Y.
Output: Bob learns f(x, y) and nothing else about y. Alice will not learn anything.

1: The two parties agree on an ordering of the elements of the set X . Let ζi represent
the i’th element of X in this ordering.

2: Let j ∈ [|X |] be such that x = ζj . The verifier requests the j’th row of Table 2 via
an

(|X|
1

)
|F|−OT algorithm.

where s =
√
d and

A =

a0 a1 · · · as−1
as as+1 · · · a2s−1

. . .

as2−s as2−s+1 · · · as2−1

 . (8)

4.1 A basic algorithm

A rather straightforward algorithm is for the verifier to generate a c× s matrix
Λ ∈ Fc×sq uniformly at random. In the commitment phase, the verifier and the
prover will engage in a secure two-party computation algorithm to help the
verifier learn

Γ = ΛA. (9)

In this process, the verifier will not learn anything about A other than what is
revealed through Γ , and the prover will not learn anything about Λ. In the eval-

uation phase, the verifier will ask the prover to compute b = A
[
1 x · · · xs−1

]T
.

Suppose the prover responds with b̂. The verifier checks if Λb̂ = Γ
[
1 x · · · xs−1

]T
,

which can be done in O(
√
d). If b̂ 6= b, this identity holds only with probability

q−c [28], since the prover does not know anything about Λ. If the verification pro-

cess is successful, the verifier can recover f(x) =
[
1 xs · · · xs(s−1)

]
b̂ in O(

√
d).

The main issue with this algorithm is that Γ reveals
√
d symbols over Fq about

the polynomial f during the commitment phase, and another
√
d symbols for

each evaluation b. We wish to reduce this to a constant. We will accomplish this
in two steps: firstly, against a semi-honest verifier and next against a malicious
verifier.

9

4.2 Improved privacy against a semi-honest verifier

In order to improve the privacy of this algorithm, the prover will generate a
polynomial g of degree d − 1 uniformly among all polynomials of degree d − 1
over Fq. In the commitment phase, instead of directly committing to f , the
prover will commit to both h = f + g and g. Let A and B represent the s × s
matrices corresponding to the polynomials f and g, constructed similarly to (8).
If both commitments have the same structure as in (9), the verifier will be able
to gain substantial information about the matrix A by choosing his two secret
matrices to be linearly dependent. To prevent this, the protocol will require the
prover to commit to A+B “from left” as in (9), whereas the commitment to B
will be done from right. More concretely, the verifier and the prover will engage
in a secure two-party computation algorithm to help the verifier learn

Γ = Λ(A+B),

Ω = BΘT , (10)

for two c × s secret matrices Λ and Θ generated randomly by the verifier. To
gain intuition on how this helps with preserving the privacy of A, it helps to
think of c = 1. Knowing any single linear combination of the rows of A+B and
any single linear combination of the columns of B cannot reveal more than one
symbol over Fq about the elements of the matrix A. This argument will be made
precise in the analysis of privacy of the Info-Commit. In the evaluation phase,
the prover will be required to compute

v = (A+B)
[
1 x · · · xs−1

]T
,

u =
[
1 xs · · · xs(s−1)

]
B. (11)

Suppose the prover responds with v̂ and û. The verifier will check the correctness
of each result via two parities

Γ
[
1 x · · · xs−1

]T
= Λv̂,[

1 xs · · · xs(s−1)
]
ΘT = ûΩ. (12)

If both verification tests are successful, the verifier will recover

ĥ(x) =
[
1 xs · · · xs(s−1)

]
v̂,

ĝ(x) = û
[
1 x · · · xs−1

]T
. (13)

He will then find f̂(x) = ĥ(x)−ĝ(x) and will accept f̂(x) as the correct evaluation
of f(x). This algorithm guarantees the verifiability of the results with high prob-
ability following a similar analysis to [28]. Nonetheless, the privacy only holds
as long as (Λ,Θ) are generated randomly, i.e., if the verifier is semi-honest. We
will overcome this limitation in the next subsection.

10

4.3 Improving privacy against a malicious verifier

If both parties follow this protocol as described, the verifier will only learn a con-
stant number of symbols about the polynomial f upon observing (Γ,Ω) and the
pair (v, u) for a constant number of inputs (see the analysis of privacy in Section
6). However, a malicious verifier may deviate from this protocol by choosing Λ
and Θ in a deterministic manner. To elaborate on this, suppose c = 1 and the
verifier chooses Λ as the standard unit vector Λ =

[
1 0 · · · 0

]
. This helps him

learn Γ = A1 + B1, the first row of the matrix A + B. Subsequently, in the
evaluation phase, he requests the (v, u) pair for x = 0. Based on this, he can
learn u = B1, which is the first row of the matrix B. He will then proceed to
subtract Γ − u in order to find the first row of the matrix A, which reveals

√
d

symbols about the polynomial f .

We will propose a mechanism to resolve this threat. Suppose the verifier
requests the (v, u) pair for m different inputs x1, · · · , xm. Define the matrices X
and Y as

X =

1 x1 · · · xs−11

· · · · · ·
1 xm · · · xs−1m

 ,
Y =

1 xs1 · · · x
s(s−1)
1

· · · · · ·
1 xsm · · · x

s(s−1)
m

 , (14)

and let the matrices U and V be the concatenation of the vectors u and v for
all x ∈ {x1, · · · , xm}. In other words,

V = (A+B)XT ,

U = Y B. (15)

Since after m rounds of evaluation, the verifier learns both Γ = Λ(A + B) and
U = Y B, the prover must ensure that the matrices Λ and Y do not contain
any linear dependencies among their rows. Otherwise, this linear dependency
can be exploited to extract substantial amount of information about the matrix
A as outlined in the example above. Since rank(Y) = m and rank(Λ) = c
(with high probability for randomly chosen Λ), the prover must be ensured that
rank(Y ||Λ) = c + m where || denotes the vertical concatenation of the two
matrices. Similarly, we must have that rank(X||Θ) = c+m. To accomplish this,
we restrict the matrices Λ and Θ to have the same Vandermonde structures as
the matrices Y and X, respectively. In other words, Λ and Θ must be of the

11

form

Λ =

1 λs1 · · · λ
s(s−1)
1

· · · · · ·
1 λsc · · · λ

s(s−1)
c

 ,
Θ =

1 θ1 · · · θs−11

· · · · · ·
1 θc · · · θs−1c

 . (16)

Note that as long as

|{λ1, · · · , λc, x1, · · · , xm}| = |{θ1, · · · , θc, x1, · · · , xm}| = c+m, (17)

the two rank requirements will be satisfied. Note also that without loss of gen-
erality, we can assume that λi 6= λj , θi 6= θj and xi 6= xj for i 6= j, since the
verifier cannot benefit form receiving the same evaluation twice. Restricting the
structure of Λ and Θ as opposed to choosing them uniformly at random over
Fc×sq would mean that the prover now has some side information about these
matrices which he can utilize to bypass the verification test. Fortunately, the
analysis in Section 6 shows that this probability remains sufficiently small.

It is left to convince the prover that (17) holds. For this purpose, we designate
a set S ⊆ Fq of prohibited values from which the elements λi and θi can be
chosen. “Prohibited” means that in the evaluation phase, the verifier is not
permitted to delegate the evaluation of the function f at any member of S to
the prover. For instance, the verifier could provide an upper-bound ξ on its
input values to the prover, and then S ⊆ Fq could be chosen as a sufficiently
large interval whose smallest member is strictly larger than ξ.

4.4 Considerations regarding the size of the field

The privacy of Info-Commit as analyzed in Section 6 relies on the fact that the
set {αs|α ∈ S} is of the same size as S where S is the set of prohibited values.
This property holds if the function g(x) = xs is a permutation over Fq which is
the case if gcd(s, q − 1) = 1. It is also important that there exists a prohibited
subset of Fq of sufficiently large size. To ensure this, either the verifier should
set his upper bound ξ appropriately, or the field size should be increased once
the verifier provides the upper-bound. Of course, this adjustment must be done
without violating the first property.

5 Formal Description of Info-Commit

The formal description of the four functions of Info-Commit, namely Commit,
Eval, Verify and Recovery are provided in Algorithms 2,3,4 and 5. Theo-
rem 1 establishes that Info-Commit satisfies the requirements of an information-
theoretically verifiable and private protocol for commitment and verification.

12

Theorem 1. Info-Commit as described by the Commit, Eval, Verify and Re-
covery Algorithms 2,3,4 and 5 satisfies the correctness, soundness, privacy and
efficiency requirements as stated in Definition 2. Specifically,

– If the prover is honest, the verifier will accept the results with probability 1.
– The probability that the prover can pass the verification process with a false

result is negligible,

P(Verify(x, ˆval,VK,Kv) = 1, ˆval 6= val) ≤ 2

rc
. (18)

– The verifier only learns O(m2) symbols about the coefficients of the polyno-
mial f after he receives (VK, val1, · · · , valm) for any choice of Kv and any
m input values x1, · · · , xm.

Hq(a0, · · · , ad−1|VK, (x1, val1), · · · , (xm, valm)) = d−O(m2). (19)

– The complexity of the verifier per evaluation round is O(
√
d),

CVerify + CRecovery = O(
√
d). (20)

– The complexity of the prover per evaluation round is O(d),

CEval = O(d). (21)

Algorithm 2 The commitment function, Commit(a0, · · · , ad−1,Kv,Kp)

Input: The prover’s private polynomial coefficients, a0, · · · , ad−1, the verifier’s
secret key, Kv, the prover’s secret key, Kp.
Output: The verifier learns the verification key VK= (Γ,Ω).

1: The verifier sends an upper-bound ξ on its maximum input to the prover. The two
parties agree on a prohibited set S ⊂ Fq of size r(s − 1) where s =

√
d and r is a

small positive integer (for instance, r = 10). Every element of S must be greater
than ξ.

2: The prover generates a random polynomial g of degree d− 1 with matrix represen-
tation B. Let h = f + g and Kp = B.

3: The verifier chooses c distinct elements of S uniformly at random, named λ1, · · · , λc

where c is a small positive integer (for instance, c = 10). Similarly, he chooses
θ1, · · · , θc. Let Kv = (λ1, · · · , λc, θ1, · · · , θc) and define Λ and Θ as in (16).

4: The two parties run c instances of S2PC(α,A+B, η1, S,Fs×s,Fs) for α ∈ {λi|i ∈
[c]} where η1(α,A + B) :=

[
1 αs · · · αs(s−1)

]
(A + B). The verifier thus learns

Γ = Λ(A+B).
5: The two parties run c instances of S2PC(α,B, η2, S,Fs×s,Fs) for α ∈ {θi|i ∈ [c]}

where η2(α,B) := B
[
1 α · · · αs−1

]T
. The verifier thus learns Ω = BΘT .

6: Let VK= (Γ,Ω) be the verification key.

13

Algorithm 3 The evaluation function, Eval(x, a0, · · · , ad−1,Kp)

Input: The coefficients of the polynomial, a0, · · · , ad−1, the prover’s secret key,
Kp = B, the input to the polynomial, x.
Output: val = (v, u).

The prover evaluates

v = (A+B)
[
1 x · · · xs−1

]T
,

u =
[
1 xs · · · xs(s−1)

]
B, (22)

and returns val = (v, u) to the verifier.

Algorithm 4 The verification function, Verify(x, ˆval,VK,Kv)

Input: The input to the polynomial, x, the evaluation provided by the prover,
ˆval = (v̂, û), the (secret) verification key, VK= (Γ,Ω), and the verifier’s secret key,
Kv.
Output: The verifier either accepts or rejects ˆval.

The verifier checks the two parities

Γ
[
1 x · · · xs−1

]T
= Λv̂,[

1 xs · · · xs(s−1)
]
ΘT = ûΩ. (23)

If either parity fails, then Verify returns 0 (rejected), otherwise, it returns 1.

Algorithm 5 The recovery function, Recovery(x, ˆval)

Input: The input to the polynomial, x, and the evaluation provided by the prover,
ˆval = (v̂, û).
Output: The evaluation of the polynomial f̂(x) based on ˆval.

If Verify returns 1, the verifier will compute ĥ(x) and ĝ(x) based on

ĥ(x) =
[
1 xs · · · xs(s−1)

]
v̂

ĝ(x) = û
[
1 x · · · xs−1

]T
. (24)

and finds f̂(x) = ĥ(x)− ĝ(x).

14

6 The Analysis of Info-Commit

Correctness. If the prover is honest, he will provide the evaluations of the same
polynomial f that he has committed to. Consequently, in the verification phase,
identities (23) trivially hold and the recovered value is equal to h(x)−g(x) = f(x)
as desired.
Efficiency.The verification can be done in O(

√
d) since it only requires multi-

plying c × s matrices by vectors of length s =
√
d. The recovery can be done

in O(
√
d) since the main operation in this phase is inner products of vectors of

length s. Therefore, the overall complexity of the verifier in the evaluation phase
is O(

√
d). The prover, on the other hand, must compute the two vectors v and

u according to (22) which can be done in O(d).
Soundness. The analysis of soundness relies on the fact that the prover learns
nothing about the secret values λi, θi, i ∈ [c], during the commitment phase.
This follows from the property that the oblivious transfer algorithms in [13, 14]
provide perfect privacy for the receiver. Without loss of generality we can assume
that the prover has committed to the correct polynomial f . If not, we simply
use the letter f to denote the polynomial that the prover has committed to, and
expect the soundness property to hold with respect to this f . Note that such a
polynomial of degree d − 1 exists regardless of how the prover responds to the
queries in the commitment phase.

Remember that for each input x, the prover is required to provide the verifier
with two vectors u and v as defined in (22). Here, we analyze the probability that
a malicious prover can pass the verification test (23) with a v̂ 6= v (û 6= u) and
show that this probability is negligible. Let (V,U) denote a random variable from
which the prover draws the evaluation (v̂, û). Note that (V,U) is independent of
(Λ,Θ). The probability that the prover can pass the first verification test with
an incorrect result is given by

pv = P
(
Γ
[
1 x · · · xs−1

]T
) = ΛV,V 6= v

)
= P

(
Λ(V − v) = 0,V 6= v

)
, (25)

where the randomness is with respect to (Λ,Θ,V,U). We need an upper-bound
on pv that holds for any x and any A,B. Define

[
γ0, · · · , γs−1

]
= V − v. We can

see this vector as the coefficients of a polynomial of degree s−1. The last equation
is then the probability that the prover can provide a nontrivial polynomial of
degree s− 1 such that all λsi , i ∈ [c], are the roots of this polynomial. Note that
the polynomial γ(x) = γ0 + γ1x+ · · ·+ γs−1x

s−1 has at most s− 1 roots in the
set S′ = {ys|y ∈ S}. Note also that all the terms λsi , i ∈ [c], are distinct. This
is because the field size q is chosen in such a way that gcd(s, q − 1) = 1. As
a result, the function e(x) = xs is a permutation, and the set S′ has r(s − 1)
distinct elements. Let T ⊆ S′ of size at most |T | ≤ s − 1 represent the roots of
the polynomial γ(x) that are in S′. In other words, t ∈ T , if and only if γ(t) = 0
and t ∈ S′. We are interested in the probability that λsi ∈ T , ∀i ∈ [c]. Since V is

15

independent of Λ, so is the set T . we can therefore bound pv as

pv = P(λsi ∈ T, ∀i ∈ [c]) ≤
(
s−1
c

)(
r(s−1)
c

) ≤ (
s− 1

r(s− 1)
)c =

1

rc
. (26)

Similarly, one can bound the probability that the prover can pass the second
verification test with û 6= u as pu ≤ 1

rc . As a result,

P(Verify(x, ˆval,VK,Kv) = 1, ˆval 6= val) ≤ pu + pv ≤
2

rc
. (27)

For instance, by choosing r = 10 and c = 10, this probability can be reduced to
2× 10−10.
The next two lemmas will help us establish the privacy of Info-Commit.

Lemma 1. Let c, d, s be three positive integers such that c, d ≤ s. Let E be an
s× s random matrix uniformly distributed over Fs×sq . Let F and G be arbitrary
full-rank c× s and s× d matrices respectively. Then

Hq(FE|EG) ≥ cs− cd. (28)

Proof. Since, G is full-rank, we have that EG is uniformly distributed over Fs×dq

and as a result, Hq(EG) = sd. So, we only need to prove that Hq(FE,EG) ≥
cs + sd − cd. Let L ∈ Fs2q be a column vector obtained from the vertical con-
catenation of the columns of E, such that Li+sj = Ei,j for all i ∈ [0 : s − 1],
j ∈ [0 : s− 1]. Let F = Is×s ⊗ F where Is×s is the s× s identity matrix and ⊗
denotes the Kronecker product. Let G = GT ⊗ Is×s. Since the two vectors FL
and GL are rearrangements of the the two matrices FE and EG, respectively,
we have that Hq(FE,EG) = Hq(FL,GL). The proof follows from the fact that
the (c + d)s by s2 matrix H = F||G obtained from vertical concatenation of F
and G has rank at least (c + d)s − cd as long as F and G are full-rank (See
Lemma 3 in the appendix).

Lemma 2. Let E,F,G be three random variables with alphabets E ,F ,G, satis-
fying the Markov chain E ←→ F ←→ G. Let h : E × G → W be an arbitrary
function. Then, we have

H(E|F, h(E,G)) ≥ min
g∈G

H(E|F, h(E, g)) (29)

Proof. The following chain of inequalities prove the claim.

H(E|F, h(E,G)) ≥ H(E|F,G, h(E,G)) (30)

=
∑
g∈G

p(G = g)H(E|F,G = g, h(E, g)) (31)

≥ min
g∈G

H(E|F,G = g, h(E, g)) = min
g∈G

H(E|F, h(E, g)). (32)

16

Note that the first inequality is due to Property 2 of entropy terms in the pre-
liminaries, and the last inequality follows from Property 4. Specifically, since
E ←→ F ←→ G forms a Markov chain, then E ←→ (F, h(E, g))←→ G forms a
Markov chain too, which allows us to drop G = g from conditioning.

Privacy. We prove that after m rounds of evaluation, the verifier learns at most
(m+c)2 symbols over Fq about the matrix A which represents the polynomial f .
The analysis of privacy relies on the fact that the verifier learns nothing about
(A+B,B) in the commitment phase except for what is implied via (Γ,Ω). This
follows because the secure two-party computation algorithm in [13, 14] provides
perfect privacy for the sender except with negligible probability. The analysis
also makes use of the fact that the λi and θi values in the commitment phase are
chosen from a “prohibited” set. As a result of this, the matrices Λ||Y and Θ||X
will be full-rank. Note that the verifier cannot benefit from selecting xi = xj ,
i.e., requesting the same evaluation point twice. Similarly, he cannot benefit from
setting λi = λj or θi = θj . Therefore, without loss of generality, we can assume
that rank(Λ||Y) = rank(Θ||X) = m+ c.

First, we assume that the privacy of the transmitter in the OT algorithm
is perfect. At the end of the proof, we will show that the negligible probability
that the privacy of the transmitter in the OT algorithm is compromised does
not make a fundamental difference in our analysis. For (X,Y, V, U) defined as in
(14),(15), we want to show that

Hq(A|V,U, Γ,Ω) ≥ d− (m+ c)2, (33)

for any choice of the evaluation points x1, · · · , xm and for any choice of θ1, · · · , θc,
λ1, · · · , λc. We start by simplifying the left hand side of (33).

Hq(A|V,U, Γ,Ω) = Hq(A|(A+B)XT , Y B,Λ(A+B), BΘT)

= Hq(A, (A+B)XT , Λ(A+B)|(A+B)XT , Y B,Λ(A+B), BΘT)

= Hq(A,BX
T , ΛB|(A+B)XT , Y B,Λ(A+B), BΘT)

= Hq(BX
T , ΛB|(A+B)XT , Y B,Λ(A+B), BΘT)

+Hq(A|BXT , ΛB, (A+B)XT , Y B,Λ(A+B), BΘT)

= Hq(BX
T , ΛB|(A+B)XT , Y B,Λ(A+B), BΘT) +Hq(A|AXT , ΛA), (34)

where the last equality follows from the fact that A is independent of B. The
second term in the final expression can be easily bounded as

Hq(A|AXT , ΛA) = Hq(A)−Hq(AX
T , ΛA)

≥ Hq(A)−Hq(AX
T)−Hq(ΛA) = d−ms− cs. (35)

Therefore, we must show that the first term satisfies

Hq(BX
T , ΛB|(A+B)XT , Y B,Λ(A+B), BΘT) ≥ ms+ cs− (m+ c)2. (36)

17

Observe that
(

(A+B)XT , Λ(A+B)
)

is independent of
(
BXT , ΛB, Y B,BΘT

)
(because A+B is independent of B). So, by Property 3 of the entropy terms in
the preliminaries, we have

Hq(BX
T , ΛB|(A+B)XT , Y B,Λ(A+B), BΘT) = Hq(BX

T , ΛB|Y B,BΘT).
(37)

It is left to prove that Hq(BX
T , ΛB|Y B,BΘT) ≥ ms+ cs− (m+ c)2. Note that

Hq(BX
T , ΛB|Y B,BΘT) = Hq(BX

T , ΛB, Y B,BΘT)−Hq(Y B,BΘ
T)

= Hq(BX
T , BΘT) +Hq(ΛB, Y B|BXT , BΘT)−Hq(Y B,BΘ

T). (38)

Due to the fact that xi and θi values are chosen from two different sets, we know
that Θ||X is a full-rank matrix. Therefore, Hq(BX

T , BΘT) = (c+m)s. Similarly,
the matrix Λ||Y is full-rank, thus by Lemma 1 we have Hq(ΛB, Y B|BXT , BΘT)
≥ (c+m)s− (c+m)2. Also, Hq(Y B,BΘ

T) ≤ Hq(Y B) +Hq(BΘ
T) = ms+ cs.

Therefore, Hq(BX
T , ΛB|Y B,BΘT) ≥ ms + cs − (m + c)2. This gives us the

desired inequality Hq(A|V,U, Γ,Ω) ≥ d− (m+ c)2.
We proved that Hq(A|(A+B)XT , Y B, Γ,Ω) ≥ d− (m+ c)2, for every choice

of the evaluation points x1, · · · , xm. Note that in general, the verifier may choose
the evaluation points after observing the commitment (Γ,Ω). In other words,
rather than assuming (X,Y) are arbitrary constants, we must treat them as
random variables which satisfy the Markov chain (A,B)←→ (Γ,Ω)←→ (X,Y).
But thanks to Lemma 2, since (Γ,Ω) appear in the conditioning, we have

Hq(A|(A+B)XT , Y B, Γ,Ω) ≥ (39)

min
x1,··· ,xm

Hq(A|(A+B)

1 x1 · · · xs−11

· · · · · ·
1 xm · · · xs−1m

T ,
1 xs1 · · · x

s(s−1)
1

· · · · · ·
1 xsm · · · x

s(s−1)
m

B,Γ,Ω). (40)

Therefore, the analysis above also addresses the case where the evaluation points
are chosen adaptively, after observing the commitment.

Finally, let us show that the negligible probability that the privacy of the
transmitter is compromised in the OT protocol does not make any fundamental
difference in the analysis above. Let (Γ ∗, Ω∗) represent the random variable that
the verifier learns by the end of the commitment phase. The analysis in [31, 14,
13] indicates that with overwhelming probability, (Γ ∗, Ω∗) does not reveal any
more information about (A+B,B) than what is implied through (Γ,Ω). Put dif-
ferently, with overwhelming probability, the sequence (Γ ∗, Ω∗) ←→ (Γ,Ω) ←→
(A + B,B) forms a Markov chain. Let T be a binary random variable that is
equal to 1 if and only if this Markov chain holds. We know that P (T = 0) = ε
(see for instance, Theorem 1 in [31]). Based on this, we can bound

Hq(A|V,U, Γ ∗, Ω∗) ≥ Hq(A|V,U, Γ ∗, Ω∗, T)

= P(T = 1)Hq(A|V,U, Γ,Ω) + P(T = 0)Hq(A|V,U, Γ ∗, Ω∗, T = 0)

≥ (1− ε)Hq(A|V,U, Γ,Ω). (41)

18

Note that ε can be made arbitrarily small by choosing a sufficiently large security
parameter in the OT algorithm [31]. In particular, it can be made inversely
proportional to d. Then

Hq(A|V,U, Γ ∗, Ω∗) ≥ Hq(A|V,U, Γ,Ω)−O(1). (42)

Therefore, it suffices to show that Hq(A|V,U, Γ,Ω) = d − O(m2) which we ac-
complished in the first part of the proof.

Acknowledgement

The authors would like to thank Mohammad Ali Maddah-Ali, Srivatsan Ravi
and Ali Rahimi for the fruitful discussions and for revising the manuscript.

References

1. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating computation: inter-
active proofs for muggles,” in Proceedings of the fortieth annual ACM symposium
on Theory of computing. ACM, 2008, pp. 113–122.

2. R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers,” in Annual Cryptology Conference.
Springer, 2010, pp. 465–482.

3. S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable delegation of computation over
large datasets,” in Annual Cryptology Conference. Springer, 2011, pp. 111–131.

4. D. Fiore and R. Gennaro, “Publicly verifiable delegation of large polynomials and
matrix computations, with applications,” in Proceedings of the 2012 ACM confer-
ence on Computer and communications security. ACM, 2012, pp. 501–512.

5. B. Libert, S. C. Ramanna, and M. Yung, “Functional commitment schemes: From
polynomial commitments to pairing-based accumulators from simple assumptions,”
in 43rd International Colloquium on Automata, Languages, and Programming
(ICALP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

6. A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commitments to poly-
nomials and their applications,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2010, pp. 177–194.

7. S. Li, M. Yu, S. Avestimehr, S. Kannan, and P. Viswanath, “Polyshard: Coded
sharding achieves linearly scaling efficiency and security simultaneously,” arXiv
preprint arXiv:1809.10361, 2018.

8. B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable secret sharing and
achieving simultaneity in the presence of faults,” in 26th Annual Symposium on
Foundations of Computer Science (sfcs 1985). IEEE, 1985, pp. 383–395.

9. Q. Zheng and S. Xu, “Secure and efficient proof of storage with deduplication,” in
Proceedings of the second ACM conference on Data and Application Security and
Privacy. ACM, 2012, pp. 1–12.

10. J. Benet, D. Dalrymple, and N. Greco, “Proof of replication,” Protocol Labs, 2017.
11. C. Cachin, C. Crépeau, and J. Marcil, “Oblivious transfer with a memory-bounded

receiver,” in Proceedings 39th Annual Symposium on Foundations of Computer
Science (Cat. No. 98CB36280). IEEE, 1998, pp. 493–502.

19

12. Y. Aumann, Y. Z. Ding, and M. O. Rabin, “Everlasting security in the bounded
storage model,” IEEE Transactions on Information Theory, vol. 48, no. 6, pp.
1668–1680, 2002.

13. C. Cachin, C. Crépeau, J. Marcil, and G. Savvides, “Information-theoretic inter-
active hashing and oblivious transfer to a storage-bounded receiver,” IEEE Trans-
actions on Information Theory, vol. 61, no. 10, pp. 5623–5635, 2015.

14. Y. Z. Ding, D. Harnik, A. Rosen, and R. Shaltiel, “Constant-round oblivious
transfer in the bounded storage model,” in Theory of Cryptography Conference.
Springer, 2004, pp. 446–472.

15. C. Papamanthou, E. Shi, and R. Tamassia, “Signatures of correct computation,”
in Theory of Cryptography Conference. Springer, 2013, pp. 222–242.

16. X. Ma, F. Zhang, and J. Li, “Verifiable evaluation of private polynomials,” in 2013
Fourth International Conference on Emerging Intelligent Data and Web Technolo-
gies. IEEE, 2013, pp. 451–458.

17. X. Bultel, M. L. Das, H. Gajera, D. Gérault, M. Giraud, and P. Lafourcade, “Ver-
ifiable private polynomial evaluation,” in International Conference on Provable
Security. Springer, 2017, pp. 487–506.

18. D. Catalano and D. Fiore, “Vector commitments and their applications,” in Inter-
national Workshop on Public Key Cryptography. Springer, 2013, pp. 55–72.

19. J. Benaloh and M. De Mare, “One-way accumulators: A decentralized alternative to
digital signatures,” in Workshop on the Theory and Application of of Cryptographic
Techniques. Springer, 1993, pp. 274–285.

20. B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly practical
verifiable computation,” in 2013 IEEE Symposium on Security and Privacy. IEEE,
2013, pp. 238–252.

21. J. Groth, “On the size of pairing-based non-interactive arguments,” in Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 2016, pp. 305–326.

22. E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward,
“Aurora: Transparent succinct arguments for r1cs,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. Springer,
2019, pp. 103–128.

23. H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica, “{DIZK}: A distributed
zero knowledge proof system,” in 27th {USENIX} Security Symposium ({USENIX}
Security 18), 2018, pp. 675–692.

24. E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza,
“Zerocash: Decentralized anonymous payments from bitcoin,” in 2014 IEEE Sym-
posium on Security and Privacy. IEEE, 2014, pp. 459–474.

25. M. Naor and B. Pinkas, “Oblivious polynomial evaluation,” SIAM Journal on
Computing, vol. 35, no. 5, pp. 1254–1281, 2006.

26. C. Hazay, “Oblivious polynomial evaluation and secure set-intersection from alge-
braic prfs,” Journal of Cryptology, vol. 31, no. 2, pp. 537–586, 2018.

27. T. Tassa, A. Jarrous, and Y. Ben-Ya’akov, “Oblivious evaluation of multivariate
polynomials,” Journal of Mathematical Cryptology, vol. 7, no. 1, pp. 1–29, 2013.

28. S. Sahraei and A. S. Avestimehr, “INTERPOL: information theoretically verifiable
polynomial evaluation,” in IEEE International Symposium on Information Theory
(ISIT), 2019.

29. M. O. Rabin, “How to exchange secrets by oblivious transfer,” Technical Memo
TR-81, 1981.

30. S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for signing con-
tracts,” Communications of the ACM, vol. 28, no. 6, pp. 637–647, 1985.

20

31. Y. Z. Ding, “Oblivious transfer in the bounded storage model,” in Annual Inter-
national Cryptology Conference. Springer, 2001, pp. 155–170.

32. G. Brassard, C. Crepeau, and J.-M. Robert, “Information theoretic reductions
among disclosure problems,” in 27th Annual Symposium on Foundations of Com-
puter Science (sfcs 1986). IEEE, 1986, pp. 168–173.

33. A. C. Yao, “Protocols for secure computations,” in Foundations of Computer Sci-
ence, 1982. SFCS’08. 23rd Annual Symposium on. IEEE, 1982, pp. 160–164.

Appendix

Lemma 3. Let c, d, s be three positive integers such that c, d ≤ s. Let F and G be
two full-rank c×s and d×s matrices over the field respectively. Let F = Is×s⊗F
and G = G⊗ Is×s and let H = F||G be the (c+ d)s by s2 matrix obtained from
vertical concatenation of F and G. Then, rank(H) ≥ (c+ d)s− cd.

Proof. Since F is full-rank and c ≤ s, F must have at least one c × c full-rank
submatrix. Let τ ⊆ [0 : s − 1] represent the indices of the columns of one such
sub-matrix and let Fτ be the corresponding submatrix of F . Define

ρ = {cs+ i+ sj|j ∈ [0 : d− 1], i ∈ τ}. (43)

Intuitively, ρ corresponds to the rows of G which may have a non-zero element
in any column from τ . Note that |ρ| = cd. we will argue that by eliminating the
rows indexed in ρ from H we will find a full-rank matrix. Since this resulting
matrix has (c+ d)s− cd rows, the claim will follow. In Equation (44) below, we
have illustrated an example with s = 4, c = 3 and d = 2. We have assumed that
τ = {1, 2, 3} and have marked the full-rank submatrix of F in blue. The rows
indexed in ρ are shown in red.

Let λ be a vector of length (c+ d)s such that λi = 0,∀i ∈ ρ and λH = 0. We
will show that λ must be the all-zero vector. For j ∈ [0 : s − 1], let Hj be the
submatrix ofH obtained from columns {i+sj|i+cs ∈ ρ}. Since λH = 0, we must
have λHj = 0. But for any i ∈ [0 : (c+ d)s− 1]\[jc : (j + 1)c− 1], either λi = 0
or the i’th row of Hj is an all-zero vector. It follows that λ[jc:(j+1)c−1]Fτ = 0.
But Fτ is full-rank, so λ[jc:(j+1)c−1] = 0. Since this holds for every j ∈ [0 : s−1],
we conclude that λ[0:cs−1] = 0.

It follows from λ[0:cs−1] = 0 and λH = 0 that λ[cs:(c+d)s−1]G = 0. Define the
s × d matrix θ such that θi,j = λi+sj . Observe that λ[cs:(c+d)s−1]G is a vector
found by rearranging the elements of the matrix θG. Since λ[cs:(c+d)s−1]G = 0,
we must have θG = 0. Since G is full-rank, it follows that θ = 0 and as a result

21

λ[cs:(c+d)s−1] = 0. We conclude that λ = 0 which establishes the claim.

H =

f0,0 f0,1 f0,2 f0,3 0 0 0 0 0 0 0 0 0 0 0 0
f1,0 f1,1 f1,2 f1,3 0 0 0 0 0 0 0 0 0 0 0 0
f2,0 f2,1 f2,2 f2,3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 f0,0 f0,1 f0,2 f0,3 0 0 0 0 0 0 0 0
0 0 0 0 f1,0 f1,1 f1,2 f1,3 0 0 0 0 0 0 0 0
0 0 0 0 f2,0 f2,1 f2,2 f2,3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 f0,0 f0,1 f0,2 f0,3 0 0 0 0
0 0 0 0 0 0 0 0 f1,0 f1,1 f1,2 f1,3 0 0 0 0
0 0 0 0 0 0 0 0 f2,0 f2,1 f2,2 f2,3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 f0,0 f0,1 f0,2 f0,3
0 0 0 0 0 0 0 0 0 0 0 0 f1,0 f1,1 f1,2 f1,3
0 0 0 0 0 0 0 0 0 0 0 0 f2,0 f2,1 f2,2 f2,3
g0,0 0 0 0 g0,1 0 0 0 g0,2 0 0 0 g0,3 0 0 0
0 g0,0 0 0 0 g0,1 0 0 0 g0,2 0 0 0 g0,3 0 0
0 0 g0,0 0 0 0 g0,1 0 0 0 g0,2 0 0 0 g0,3 0
0 0 0 g0,0 0 0 0 g0,1 0 0 0 g0,2 0 0 0 g0,3
g1,0 0 0 0 g1,1 0 0 0 g1,2 0 0 0 g1,3 0 0 0
0 g1,0 0 0 0 g1,1 0 0 0 g1,2 0 0 0 g1,3 0 0
0 0 g1,0 0 0 0 g1,1 0 0 0 g1,2 0 0 0 g1,3 0
0 0 0 g1,0 0 0 0 g1,1 0 0 0 g1,2 0 0 0 b1,3

.

(44)

22

