
Bypassing Isolated Execution on RISC-V with
Fault Injection

Shoei Nashimoto1, Daisuke Suzuki1, Rei Ueno2 and Naofumi Homma2

1 Mitsubishi Electric Corporation, Japan, Nashimoto.Shoei@bx.MitsubishiElectric.co.jp
2 Tohoku University, Japan, homma@riec.tohoku.ac.jp

Abstract. RISC-V is equipped with physical memory protection (PMP) to prevent
malicious software from accessing protected memory regions. One of the main
objectives of PMP is to provide a trusted execution environment (TEE) that isolates
secure and insecure applications. In this study, we propose a fault injection attack to
bypass the isolation based on PMP. The proposed attack scheme involves extracting
successful glitch parameters for fault injection under the assumption of a black-box
environment. We implement a proof-of-concept TEE compatible with PMP in RISC-
V, and we verify the feasibility and effectiveness of the proposed attack through some
experiments conducted in the TEE. The results show that an attacker can bypass
the isolation of the TEE and read data from the protected memory region.

Keywords: Fault Injection · RISC-V · Memory Protection · Trusted Execution
Environment

1 Introduction
RISC-V is an open instruction set architecture (ISA) published in 2011 [PW17]. It has
attracted considerable attention in both academia and industry owing to its remarkable
features of no license fee, expandability with reduced wasteful functions in existing ISAs,
and flexibility with modular extensions [Fou19]. Owing to i ts flexibility, it can be used
in a wide variety of applications from low-end embedded devices running a bare-metal
program to high-end servers running the Linux operating system (OS).

It is important to design RISC-V by considering its security. Privileged instructions
and a memory protection unit called physical memory protection (PMP) play an important
role in its security. They prevent malicious applications and/or libraries from accessing
protected memory regions. Application execution based on memory isolation and the
secure area isolated from the insecure area are referred to as isolated execution and the
trusted execution environment (TEE), respectively. Furthermore, the TEE sometimes
represents the isolation mechanism itself. Intel Software Guard Extensions (SGX) and
ARM TrustZone are popular TEEs used for web servers and embedded devices.

Meanwhile, physical attacks, such as side-channel attacks and fault injection attacks,
should be considered from the viewpoint of embedded devices such as smartphones, gaming
consoles, and electrical appliances [RRR+04, Gil15, PT17]. In particular, fault injection
attacks induce improper operations and/or data corruption, for example, by momentary
distortion of the power supply or by providing an abnormal clock signal to a target device.
It has been reported that security mechanisms, such as secure boot and read protections
can be bypassed with fault injection [WP17, VTM+18]. Although PMP did not originally
address resistance to physical attacks as with other TEEs, the security evaluation of
RISC-V against fault injection attacks is a significant issue in practice.

2 Bypassing Isolated Execution on RISC-V with Fault Injection

In this study, we present a fault injection attack against a security mechanism of
RISC-V, i.e., memory isolation by PMP. The basic idea is to bypass isolated execution
by skipping the PMP configuration with fault injection. The proposed attack generally
targets instructions for realizing memory isolation by PMP, whereas existing attacks, as
in [WP17, WP17, VTM+18, BFP19], target an implementation-dependent fragment of
code such as secure boot and security configuration check. In particular, we focus on
three types of instructions for changing the PMP configuration. This feature makes it
possible to perform the proposed attack under the assumption of a black-box environment
starting with the extraction of successful glitch parameters. To verify the feasibility of
the proposed approach, we perform some experiments with a proof-of-concept (PoC) TEE
implementation (PoC TEE) compatible with PMP in RISC-V owing to its flexibility and
analyzability. Through these experiments, we demonstrate that we can read the memory
of a victim application protected by PMP under the black-box setting.
Related work. Fault injection attacks were first proposed to compromise cryptographic
processors [BDL97, BECN+06]. Since then, in addition to theoretical studies, various
types of injection techniques have been reported. Clock glitch is a technique of inserting a
distorted clock signal with a sudden voltage drop over a very short time [BRSK17, TSS17].
The same concept can be applied to a power supply, which is referred to as power glitch
(or voltage glitch/Voltage Fault Injection(V-FI)) [BFP19]. Another type of fault injection
technique directly irradiates laser or electromagnetic waves [WP17, VTM+18]. The effect
of fault injection on a target processor is represented by a fault model [YSW18]. The
instruction skip and data corruption models are common fault models for fault injection
attacks on processors.

Fault injection attacks have recently been adopted to break security mechanisms.
In [GA03, BTG10], a type-check operation on a Java virtual machine was subverted
with fault injection, which resulted in the execution of arbitrary code. In [NHH+16],
the size limitation of the user input was broken by skipping the increment of a loop
counter to cause buffer overflow. In [VTM+18], secure boot was bypassed by inducing
bit errors on a security register with laser fault injection. In [TM17], as an attack
after booting, privilege escalation was demonstrated with fault injection at system call.
Examples of practical attack scenarios include bypassing attacks against secure boot
and TrustZone-based TEE by corrupting the program counter register [TSW16]. In
[TSS17, QWLQ19a, QWLQ19b, MOG+20, KFG+20], attacks were performed on ARM
TrustZone and IntelSGX, respectively. The authors used dynamic voltage and frequency
scaling (DVFS) to inject faults and successfully subverted cryptography. In [WP17], Joint
Test Action Group (JTAG) protection was proven to be subverted even in Automotive
Safety Integrity Level D (ASIL-D)-certified microcontrollers. In [MTW+18, BFP19],
memory dump was performed by bypassing authentication or parameter checks with faults.

Meanwhile, how to extract the fault injection parameters and requirements for an
attack scenario has not been clarified or limited to a specific case in most studies. In
[TSS17, QWLQ19a, QWLQ19b, MOG+20, KFG+20], the authors presented attacker
models and showed how to determine the glitch parameters. Although their techniques
to determine the glitch parameters work in attacking against cryptography (i.e., code is
known), they cannot be applied to unknown target. In [WP17], the authors identified the
glitch timing using differences in power traces obtained from devices with two different
settings; however, they did not describe the preparation of such a profiling device.

The attacks on TEEs presented in [TSS17, QWLQ19a, QWLQ19b, MOG+20, KFG+20]
are related to our proposed attack in the sense that their purpose is to break the isolation
by TEE. The main differences between our attack and their attacks are the architecture and
protection mechanism for isolation. In addition, the proposed attack defeats the isolation
itself to induce a fault in the PMP configuration. In [TSS17, QWLQ19a, QWLQ19b,
MOG+20], the authors used data corruption to apply cryptanalysis techniques to extract

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 3

a secret key or to subvert signature verification. In [KFG+20], the authors also adopted
data corruption to break message authentication code. Thus, their fault model and target
function are different from ours.
Contributions. The contributions of this study can be summarized as follows.

1. We present a fault injection attack targeting isolated execution on RISC-V. In
particular, we provide a black-box scenario that enables us to start from the extraction
of the fault intensity and glitch timing.

2. We verify the feasibility and effectiveness of the proposed attack through actual
experiments with PoC TEE, where RISC-V core X300 [Fiv20b] is implemented on
the basis of Rocket Chip from University of California, Berkeley (UCB) [AAB+16]
on a field-programmable gated array (FPGA) board. We show that an attacker can
access the memory region of a victim application by bypassing the isolated execution
provided by PMP. In addition, we show that the proposed method can obtain the
glitch timing in a short time.

Paper organization. The remainder of this paper is organized as follows. Section 2
describes the security mechanism of RISC-V and existing TEEs implemented with RISC-V.
Section 3 introduces the attacker model used in this study, and explains the proposed
attack. Section 4 describes the PoC TEE to which the proposed attack is applied. The
PoC TEE is implemented on the basis of the TEEs described in Section 2. Section 5
describes experiments conducted using actual devices to verify the effectiveness of the
proposed attack. Section 6 discusses the applicability of the proposed attack to other
architectures, limitations of the proposed attack, and countermeasures against the attack.
Finally, Section 7 concludes the paper.

2 Security on RISC-V
In this section, we briefly explain the privileged architecture and memory protection
mechanism (PMP) based on [PW17, WA19]. Then, we introduce existing TEE examples
and their features. Hereafter, we focus on the 32-bit RISC-V architecture (RV32).

2.1 Privileged Architecture
RISC-V defines privilege levels as four modes in descending order of privilege: machine
(M-mode), hypervisor (H-mode), supervisor (S-mode), and user (U-mode). A higher
privilege mode can access all the functions used in the lower privilege modes. Therefore,
M-mode plays an important role in providing security. M-mode, H-mode, S-mode, and
U-mode are mainly used for the bootloader (or firmware), hypervisor, OS, and applications,
respectively.

An important function of M-mode is to handle exceptions. For this purpose, the
privileged architecture provides special registers called control and status registers (CSRs).
For example, in the CSRs, the mcause (Machine CAUSE) register memorizes why an
exception occurs and mie (Machine Interrupt Enable) register defines the exceptions that
should be handled. To realize isolated execution, M-mode handles access fault exceptions
caused by invalid memory access and environment call for switching applications given by
an ecall instruction.

2.2 Physical Memory Protection
PMP consists of configuration registers (pmpcfgs) and address registers (pmpaddrs) included
in the CSRs. pmpcfg and pmpaddr define permission and its applied range, respectively.

4 Bypassing Isolated Execution on RISC-V with Fault Injection

pmp3cfg pmp2cfg pmp1cfg pmp0cfg

pmp7cfg pmp6cfg pmp5cfg pmp4cfg

pmpcfg0

pmpcfg1

8888

8888

08 716 1524 2331

08 716 1524 2331

L 0 A X W R
1111 2 2

01235 467

Figure 1: Format of pmpcfg [WA19]. Typically, pmpicfg and pmpaddri consist of a PMP
entry.

PMP refers to these registers at every memory access and checks whether it is permitted.
If it is not permitted, an access fault exception occurs, which is handled in M-mode.

Figure 1 shows the structure of pmpcfg. An 8-bit pmpicfg defines a PMP configuration
(0 ≤ i ≤ 15), and four pmpicfgs form a 32-bit pmpcfgj (0 ≤ j ≤ 3). Each pmpicfg has
attributes of L, A, X, W, and R. pmpicfg.X, .W, and .R indicate executable, writable, and
readable permission bits, respectively. pmpicfg.L is a lock bit and if it is set, its pmpicfg
does not change until the central processing unit (CPU) is reset. pmpicfg.A represents
the address-matching mode bit. As the address-matching mode, the naturally aligned
power-of-two (NAPOT) region and the top of range (TOR) are generally used. According
to pmpicfg, NAPOT encodes pmpaddri into the size and the base address. TOR covers the
range between pmpaddri-1 and pmpaddri with pmpicfg. Thus, NAPOT provides memory
isolation with a pair of pmpicfg and pmpaddri while TOR provides memory isolation with
a set of pmpicfg, pmpaddri-1, and pmpaddri. Hereafter, the pair or set is referred to as
PMP entry.

2.3 TEEs on RISC-V
Figure 2 shows a typical flow of the context switch under isolated execution by the TEE
on RISC-V. The TEE is constructed by multiple applications running in U-mode, an OS in
S-mode if it exists, and a monitor in M-mode. First, (1) an application calls the monitor
by causing an exception or interrupt. Then, (2) the monitor handles the exception or
interrupt and changes the PMP configuration by either switching the partial PMP entries
or rewriting all the PMP entries. Finally, (3) the monitor calls another application using a
privilege instruction.

The remainder of this section introduces two typical constructions of TEEs on RISC-V
and shows that the isolated execution can be represented as shown in Figure 2.

2.3.1 Keystone (UCB) [LK18, LKS+20]

The concept of Keystone is similar to that of Intel SGX. Keystone assumes a CPU to
support M-, S-, and U-modes, and it separates the CPU memory into untrusted and
trusted regions. An application running in U-mode in a trusted region is called an enclave
application, and it is supported by the enclave runtime in S-mode. The host OS and
applications are considered to be untrusted. The enclave application is called from a host
application. First, the host application calls Keystone security monitor (SM) in M-mode
via the OS by the supervisor binary interface (SBI) call implemented using ecall. Then,
Keystone SM deprives the permissions from the caller application and gives the permissions
to the callee application (i.e., the application being called). Finally, Keystone SM calls the

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 5

App.1 App.2 App.N

OS

Monitor

PMP1

PMP2

PMP3

PMP1

PMP2

PMP3
A) Switch partial PMPs

PMP1

PMP2

PMP3

PMP1

PMP2

PMP3
B) Rewrite all PMPs

(1) Call monitor

(2) Reconfigure PMP

(3) Call app.

U

S

M

Mode

Figure 2: Context switch on TEE. A square box denoted as “PMPi” indicates a PMP
entry.

enclave application by the SBI call using mret. To exchange data between the host and
the enclave applications or among the enclave applications, Keystone constructs a shared
memory using OS memory.

2.3.2 MultiZone (Hex Five) [Fiv20a, Fiv19]

Its concept is to isolate all applications and libraries from each other, and each isolated unit
running in U-mode is called a zone. Isolated execution is controlled by the nanoKernel. The
context switch is realized as follows. First, a zone calls the nanoKernel by timer interrupt
or environmental call exception according to the MultiZone application programming
interface (API) function using ecall. Next, the nanoKernel changes the PMP entries for
another zone1. Finally, the nanoKernel calls another zone using mret. To exchange data
between zones, MultiZone recommends that users should not use shared memory but use
InterZone Messenger.

Hereafter, we refer to an object for isolation, such as a zone or an enclave, as an
application. Furthermore, we refer to a mechanism that controls the application flow, such
as Keystone SM and nanoKernel, as a monitor.

3 Proposed Attack
This section describes the proposed attack for bypassing isolated execution provided by
PMP. First, we briefly describe a clock glitch injection assumed in the attack. Then, we
present the attacker model to organize the information required for the proposed attack.
Finally, we describe the attack scheme to obtain the information.

3.1 Clock Glitch Injection
In this study, we consider a clock glitch injection for the proposed attack because of its
high repeatability and temporal resolution [YSW18]. Note that it does not matter how an
attacker injects a fault as long as it can cause an instruction skip. More specifically, our
attack requires the ability to skip an arbitrary assembly instruction.

1Although we do not perform operation analysis for the perpose of license agreement, there is no doubt
that MultiZone adopts one of the PMP usages as shown in Figure 2.

6 Bypassing Isolated Execution on RISC-V with Fault Injection

Clock
signal

external_offset

Pulse trigger

Clock width offset

width

Glitch

Trigger
signal

Figure 3: Waveform of clock glitch. A glitch with intensity defined by width and offset
is induced external_offset cycles after reaching the positive edge of the trigger signal.

Figure 3 shows a typical clock glitch waveform with a trigger signal. Clock glitch
causes a setup time violation on flip-flops to provide a clock signal with a temporally short
signal drop during high-level logic [ADN+10, BRSK17]. This means that relatively slow
operations such as memory access are subject to such clock glitch. Typically, it affects
instruction fetch, which sometimes leads to an instruction skip. To cause an instruction
skip on an arbitrary instruction, the attacker must decide the proper fault intensity, defined
by the width and offset, and the glitch timing, defined by external_offset, as shown
in Figure 3.

3.2 Attacker Model
Figure 4 shows the attack scenario assumed in the proposed attack. It is based on a typical
use case for ARM TrustZone where given a CPU and software provided by hardware
(H/W) and software vendors, a user installs his/her application(s) in a blank region of the
CPU [Yiu15]. Smart phones are examples that users are allowed to install an application,
i.e., an arbitrary code, but they are not allowed to access secret data such as a password
file. Here, we assume that a monitor and an attack target application are installed by the
software vendor in advance and the attacker then installs his/her application. In general,
the purpose of the attacker is to write or read memory region protected by PMP. As
a typical example, we assume that the victim application is an encryption application
whose secret key is stored in the RAM and the attacker application is a memory dump
application.

Based on the above scenario, we summarize the capability of the attacker. The attacker
can

• physically access the target device,

• execute arbitrary code in U-mode, and

• call another application from his/her application.

In other words, the attacker can inject faults into the device and collect side-channel
information such as power consumption of the device. Moreover, the attacker can generate
a trigger signal for fault injection on his/her application. By contrast, the attacker cannot

• access the memory region protected by PMP or

• analyze the program flow and/or extract data by reverse engineering the program
running on the target device.

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 7

RISC-V-based CPU

S/W vendor

Monitor

S/W vendor

Applications /
Libraries

User

Blank region

Attacker

Malicious
application

Build & Install

H/W vendor

Figure 4: Attack scenario based on a use case for ARM TrustZone [Yiu15].

This means that attacker needs to bypass isolated execution provided by PMP under the
black-box environment while the target device is running. Our knowledge of the target
device is only that it realizes isolated execution based on the flow shown in Figure 2.

Under the above-mentioned assumptions, the following information is generally required
for the attack.

• Target instruction:
The attacker must determine which instruction should be skipped to break the
memory protection.

• Target address:
The attacker must identify the address where the target data is stored. We assume
that all specifications of the installed applications are open to users, i.e., the address
storing the target data is known. We discuss the feasibility of the assumption in
Section 6.2.

• Fault intensity:
The attacker must determine the proper fault intensity to obtain the desirable fault
effects. In particular, our attack employs single-instruction skip. For providing such
an instruction skip by clock glitch, we need to determine width and offset as shown
in Figure 3.

• Trigger signal:
The attacker must obtain a trigger signal as a reference to determine the glitch
timing. In general, (1) communication signals such as the universal asynchronous
receiver/transmitter (UART) signal, (2) digital signals using a general-purpose
input/output (GPIO) port, and (3) power consumption due to distinctive operations
such as cryptographic operations are major options [TM17, MTW+18, BFP19].

• Glitch timing:
The attacker must count the clock cycles from the trigger signal to the target
instruction to inject faults with proper timing. As for the clock glitch, we need to
determine external_offset as shown in Figure 3.

This study especially focuses on how to obtain the target instruction, fault intensity, and
glitch timing. As for the target address, we follow the above-mentioned assumption. As
for the trigger signal, in the following experiment, for simplicity, we employ the monitor to

8 Bypassing Isolated Execution on RISC-V with Fault Injection

generate a trigger signal before calling the attacker’s application. However, note that we
must still identify a proper glitch timing because the trigger is not generated just before
the target instruction.

3.3 Attack Scheme
The basic idea of the proposed attack is to bypass the operation of reconfiguring the PMP
setting at the context switch. To this end, the possible target instructions for skipping are
limited to only the following three instructions1:

CSR Write: csrw pmpcfg (pmpaddr), rs
CSR Clear: csrc pmpcfg (pmpaddr), rs
CSR Set: csrs pmpcfg (pmpaddr), rs

where the first operand is either pmpcfgi or pmpaddri, and rs indicates a source register
storing a value written to the first operand. The reason for the limitation is that PMP,
composed of CSRs, requires special instructions to change their values. In other words,
one or more of these instructions must be executed as long as PMP provides memory
protection on RISC-V.

According to the above-mentioned characteristics of PMP, identification of the execution
timing of these instructions leads to a proper glitch timing. To this end, side-channel
analysis techniques based on power consumption can be used as in [BTG10, SBO+15,
PXJ+18, YUZP19]. It may be easier to identify the timing because the number of target
instructions to be identified is much smaller than that of conventional approaches. This
technique reduces the time for searching for a successful external_offset compared to
the naive brute-force method.

Based on the above-mentioned observations, the proposed attack scheme is shown in
Figure 5. The attack scheme consists of five steps and is divided into two phases, namely
the profiling and exploitation phases. In the profiling phase, (1) a proper fault intensity
(e.g., successful glitch parameters width and offset) is first extracted with a profiling
device implemented on the same CPU as the target device. Then, (2) power consumption
for each target instruction is measured and templates are created.

Next, (3) in the exploitation phase, the target device is used. First, a power trace
ranging from the trigger signal to the execution of the target instruction is collected. Then,
(4) the execution timing of the target instructions is identified using the templates and
the power trace. Finally, (5) the exploitation is performed with fault injection using the
obtained glitch parameters. Concrete exploitation methods are described in the following
sections.

4 Implementation of Trusted Execution Environment
This section describes the PoC TEE targeted for our attack in this study. This PoC
implementation is advantageous as it overcomes the following inconveniences of existing
TEEs. MultiZone has black-box components protected by the patent and license agreement,
which makes it difficult to analyze how our attack succeeds [Fiv18, Fiv20a]. Moreover,
the permission of Hex Five is required to publish the results. Keystone has no TEE
example that has multiple enclaves running [LK18]. Furthermore, it is difficult to analyze
its mechanism because it assumes relatively high-end devices running the Linux OS.

Our PoC TEE is implemented in a bare-metal manner (i.e., no OS) with the Freedom
Metal library (v201908) developed by SiFive [SiF20]. We present the system structure,
flowchart, and PMP usage in the PoC TEE. Note that the detailed implementation and
limitation of the PoC TEE are discussed in Appendix A and B.

1More precisely, they are pseudo-instructions using csrrw, csrrc, and csrrs, respectively.

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 9

(2) Measure power
consumption for target

instruction

Power consumption
template

(1) Extract successful
glitch parameters

(3) Measure Power
consumption through the

execution

(4) Search target
instruction using power

consumption

(5) Exploit

Glitch parameters
(width, offset)

Power consumption for
template matching

Glitch parameter
(external_offset)

Profiling
phase

Exploitation
phase

What an attacker obtainsWhat an attacker performs

Figure 5: Proposed attack scheme.

4.1 System Structure
Figure 6 shows the system structure of the PoC TEE. It consists of one monitor in M-mode,
three applications (apps. 1, 2, and 3) in U-mode, and a shared library and memory that
can be used in all the modes. App. 1 plays an OS-like role and runs on the basis of a user
command via UART. It executes the command to send data to other apps., call other
apps., and send processed results from other apps. to the user. App. 2 is a cryptographic
application that executes advanced encryption standard (AES) encryption, and it has its
own secret key in its RAM region. App. 3 is the attacker’s application dumping RAM.
More specifically, it obtains an address with the shared memory, reads data from the
address, and stores the data in the shared memory.

The shared library is a subset of the Freedom Metal library. The PoC TEE mainly uses
peripheral control functions for UART, GPIO, and PMP controls, and exception handling
functions. The shared memory is used for sharing data between isolated applications and
those sending data to the monitor to call other applications. For this purpose, the shared
memory divides its memory region into multiple sub-regions such as data region, identifier
(ID) regions for caller apps. and callee apps., and context regions for stack pointers (sp)
and return addresses (ra) (cf. Appendix A.2).

4.2 Flowchart
Figure 7 shows the flowchart of the PoC TEE behavior, which includes eight operations.
In (1), the monitor first registers exception handlers and initializes various variables. Next,

10 Bypassing Isolated Execution on RISC-V with Fault Injection

Monitor

Shared library (Freedom-metal) and memory

Application 1
(OS-like)

Application 2
(Crypto)

Application 3
(Memory dump)

M-mode

U-mode

Victim Attacker

Figure 6: System structure of our PoC TEE. Three applications are controlled by the
monitor, and they share data with shared memory.

Start

Monitor

(1) Initialize

App. 1

(2) Execute command

Monitor

(4) Handle exception

Monitor

(5) Terminate
app.?

Monitor

(6) Terminate app.

Monitor

(7) Call / resume app.

App. 2 or 3

(8) Run

App. 1

(3) Call app.?

Yes

No

No

Yes

… Monitor

… App.

Figure 7: Flowchart of PoC TEE. It mainly describes the context switch handled by the
monitor.

it configures the PMP entries and calls app. 1. In (2) and (3), app. 1 receives a user
command and executes it. If required, it calls another app. with ecall. In (4), owing to
the exception, the monitor runs the exception handler. In the case of environment call
exception, the exception handler invokes the ecall handler registered in the first step
above. In the case of memory access fault exception, the monitor fills the data region of
the shared memory with the value of 0xFF in hexadecimal, stops all the running apps., and
passes the control to app. 1. In steps (5)–(7), the apps. call and finalization are executed.
At this time, sp and ra are saved or restored while the PMP entries are reconfigured. In
(8), each app. runs and then moves back to (4).

4.3 PMP Usage
According to Figure 2, we implemented two types of PMP usage: one rewrites all PMP
entries, while the other switches the accessibility of the PMP entries selected. Hereafter,
we refer to them as the rewriting method and switching method, respectively. Tables 1 and
2 summarize the two usages, respectively. The rewriting method shown in Table 1 rewrites
all the PMP entries to realize isolated execution. The shared library and memory use two
PMP entries. Each app. uses two PMP entries for the isolation of ROM and RAM. If

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 11

Table 1: PMP usage for the rewriting method. N/A implies that the PMP entry is disabled.
PMPi denotes one PMP entry, which is configured by NAPOT for address matching.

PMP App.1 App.2 App.3
PMP0 Shared library
PMP1 Shared memory
PMP2 ROM App.1 ROM App.2 ROM App.3
PMP3 RAM App.1 RAM App.2 RAM App.3
PMP4 UART N/A N/A
PMP5 N/A
PMP6 N/A
PMP7 N/A

Table 2: PMP usage for the switching method. The gray and white cells represent
configurations with no accessibility (R=0,W=0,X=0) and all accessibility (R=1,W=1,X=1),
respectively. In the case of ”all region”, PMP6 and PMP7 construct one entry with TOR.
Apart from that, all PMPs use NAPOT.

PMP App.1 App.2 App.3
PMP0 ROM Monitor
PMP1 RAM Monitor
PMP2 ROM App.2 ROM App.2 ROM App.2
PMP3 RAM App.2 RAM App.2 RAM App.2
PMP4 ROM App.3 ROM App.3 ROM App.3
PMP5 RAM App.3 RAM App.3 RAM App.3
PMP6 All region Shared library
PMP7 Shared memory

required, PMP entries for a peripheral are added. The switching method shown in Table 2
switches the permissions of PMP entries, i.e., R, W, and X in pmpcfg, to provide isolation.
We refer to [LKS+20] and consider app. 1 as untrusted and app. 2 and app. 3 as trusted.
The untrusted app. can access all the memory regions as defined by PMP6 and PMP7
unless other PMPs forbid it. Only when the context switch from app. 1 to app. 2 (or app.
3) or vice versa occurs, PMP6 and PMP7 should be rewritten including pmpaddr.

5 Experiment
This section describes experiments conducted using actrual devices to verify the feasibility
and effectiveness of the proposed attack. First, we describe the experimental setup. Then,
we present two experimental results for extraction of the glitch parameters and exploitation,
which are based on the flow shown in Figure 5.

5.1 Experimental Setup
Figures 8a and 8b show the block diagram and overview of the experimental setup,
respectively. We implemented a RISC-V core on an Arty A7 equipped with an FPGA, and
the PoC TEE described in Section 4 was run on it. We used an X300 RISC-V core (Hex
Five) [Fiv20b], which is based on UCB’s Rocket Chip [AAB+16], and its key features are
the support for PMP and relatively high operational frequency (65 MHz). To simplify the
setup, we modified the core to make a port for providing an external clock for the clock
glitch. Further, we used CW1200 (NewAE Technology) for fault injection. A computer
communicated with Arty A7 and CW1200 via the universal serial bus (USB) UART. In

12 Bypassing Isolated Execution on RISC-V with Fault Injection

Arty A7

RISC-V
(X300)

UART

GPIO Computer

Control
program

CW1200

Trigger

Clock
generator

Reset

(a) Block diagram.

CW1200

Arty A7

USB UART

Breakout Board

100Ω
Clock glitch
Ground
Trigger
Reset

(b) Overview.

Figure 8: Experimental setup of H/W. The computer is connected to Arty A7 and CW1200
with USB. Arty A7 and CW1200 are connected with wire. For impedance matching, a
resistor of 100 Ω is inserted in the wire providing clock signal. Clock signal is provided to
the RISC-V core via input buffer.

the communication with Arty A7, the computer calls an app. and exchanges data. In the
communication with CW1200, the computer changes the glitch parameters and sends a
command to reset Arty A7.

5.2 Experiment #1: Extracting Glitch Parameters
This section deals with steps (1)–(4) of the attack scheme shown in Figure 5. The glitch
parameters of width and offset, and external_offset, are extracted experimentally.
However, for simplicity, external_offset is extracted using not the proposed method
based on power consumption but a GPIO-based marking signal that indicates the execution
timing of the target instructions.

5.2.1 Fault Intensity

First, we obtained width and offset experimentally to inject a fault into a profiling device
executing a test program. The program runs as follows: (1) it initializes GPIO; (2) it

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 13

40 20 20 400
width [%]

40

20

0

20

40

of
fs
et

 [%
]

No effect No responce Unexpected fault Expected fault

Figure 9: Characterization for searching proper glitch parameters. % represents ratio in
percent of each parameter to the original clock width shown in Figure 3

generates a pulse trigger signal; (3) it executes an instruction before and after sufficient
nops; and (4) it sends the result of the attack. We assumed that the target instruction
was “csrw pmpcfg0, a5”, where the register a5 held a value of 0x1b1b1b1d. The attack
result is given as the value of pmpcfg0. Thus, we obtain 0x00000000 and 0x1b1b1b1d as
the success and failure to skip, respectively.

Figure 9 shows the result of the experiment in which the faults were injected 10 times
for each glitch parameter. We changed width and offset from -45 to 45 [%] in steps of 1
[%]. The fault effects are overwritten on the graph in the order of no effect, no response,
unexpected fault, and expected fault. Therefore, the parameters plotted in blue indicate
that the attack was successful at least once. The following exploitation experiment used
all the parameters plotted in blue.

5.2.2 Glitch Timing

We used a GPIO-based marking signal to resemble the identification of the target instruction
positions with side-channel analysis techniques [BTG10, SBO+15, PXJ+18, YUZP19]. We
marked all the target instructions that enabled us to bypass isolated execution by skipping.
In a real attack, the attacker needs to perform a brute-force search for possible candidates
for skipping.

Figures 10b and 10a show the trigger signal and marking signals for the instructions
of csrw, csrc, and csrs while PoC TEE with the switching and rewriting methods ran,
respectively. The waveforms were measured with an oscilloscope (DPO7104) with a sam-
pling rate of 100MS/s. Figure 10a shows that csrw, csrc, and csrs are executed 7, 1,
and 1 time(s) during the trigger signal being high-level logic, respectively. Meanwhile,
Figure 10b describes that csrw, csrc, and csrs are executed 2, 12, and 12 times, respec-
tively. As for each target instruction, we can obtain the elapsed time between the trigger
signal and the marking signal. Therefore, we can calculate the number of elapsed cycles,
which corresponds to external_offset. The following exploitation experiment used all
candidates obtained by the result.

14 Bypassing Isolated Execution on RISC-V with Fault Injection

Q
ua

nt
iz

ed
 v

ol
ta

ge

Time [ms]
0 2 4 6 8

csrw

csrc

csrs

Trigger

4.84ms

(a) Rewriting method.

csrw

csrc

csrs

Time [ms]
0 2 4 6 8

Trigger

Q
ua

nt
iz

ed
 v

ol
ta

ge

7.23ms

(b) Switching method.

Figure 10: Positional relation between the trigger and the execution timing of the target
instructions. The trigger signal becomes high-level logic during the attacker’s application
running (cf. Section 5.3.1). The marking signal is a pulse signal generated just before the
execution of each target instruction.

5.3 Experiment #2: Exploitation
This section deals with step (5) of the attack scheme shown in Figure 5, i.e., accessing the
protected memory region by bypassing isolated execution with fault injection using the
glitch parameters obtained in Section 5.2. First, we describe the flow of the exploitation.
Then, we show the experimental result of applying the exploitation to the PoC TEE with
two types of PMP usages.

5.3.1 Operational Flow of Exploitation

Figure 11 shows a sequence diagram for the exploitation. According to the figure, we
explain the exploitation flow as follows. First, the computer initializes CW1200 and sends
a command to call app. 3. App. 1 receives the command and calls app. 3 via the monitor.
In this PMP reconfiguration, the monitor generates the trigger signal. App. 3 saves the
data needed for the RAM dump from its RAM region to the shared memory. This is
because app. 3 may lose its original RAM access permission in exchange to obtain the
target one. Then, it directly calls the attack target (i.e., app. 2) via the monitor. After
encryption in app. 2, the program flow returns to the caller application. In this PMP
reconfiguration, CW1200 injects faults at a proper timing with external_offset. If the
faults are induced correctly, app. 3 obtains the target RAM access permission. App. 3
reads the RAM data of app. 2 and then sends it to app. 1 via the shared memory. When
app. 3 finishes its operations, the monitor makes the trigger signal low-level logic. Finally,
the computer acquires the data to send a command to obtain the contents of the shared
memory.

App. 3 succeeds in dumping the target RAM data if the fault injection successfully
bypasses the target instruction. The influence of faults for exploitation is classified into
the following four classes:

1. No effect:
The CPU runs correctly, and the RAM access from app. 3 to app. 2 is handled as an
access fault exception. As a result, we obtain 0xFFFF... because the shared memory
is filled with 0xFF by the monitor.

2. No response:

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 15

© Mitsubishi Electric Corporation

confidential

16

攻撃のシーケンス図 (new)

Monitor
App.1

(OS-like)
App.2

(Crypto)
App.3

(Dump) Computer

Initialize & call

Call app.2

CW1200

PMP
conf.

PMP
conf.

Finish
PMP
conf.

Trigger high
Call app.3

Encryption
Clock Glitch

Dump app.2
RAMFinish & send dumped data

PMP
conf. Request dumped data

Prepare
for dump

Dumped data

AttackerVictim

Processing

H/W or S/W component

Digital command or data
Analog signal

Trigger low

Initialize

Figure 11: Sequence diagram for the exploitation.

The CPU runs abnormally owing to the excessive fault intensity. As a result, we
obtain no result.

3. Unexpected fault:
Fault is induced in the CPU but the target instruction is not skipped. As a result,
we obtain 0xFFFF... with no effect.

4. Expected fault:
Fault is induced in the CPU and the target instruction is skipped. As a result, we
obtain the secret key held by app. 2.

5.3.2 Exploitation of Rewriting Method

For the rewriting method, we need to skip the reconfiguration of PMP3 as shown in Table 1.
If we succeed in skipping it, we obtain the RAM control for app. 2 instead of app. 3. This
means that app. 3 cannot use its own stack memory. Hence, app. 3 is written so as to
avoid using local variables and function calls after calling app. 2, or injecting the fault.
The detailed implementation of app. 3 is shown in Appendix. A.6.

The attack requires the exchange of RAM permissions; therefore, pmpcfg does not
change. Thus, the target instruction is only the reconfiguration of pmpaddr. The assembly
code to reconfigure pmpaddr is as follows.

lw a5,-64(s0) // Load word (lw) on stack into a5
csrw pmpaddr3,a5 // Write addr value (a5) to CSR pmpaddr3

The target instruction is only csrw. If the lw instruction is skipped, register a5 becomes
undefined, which means that it is unknown whether the attack succeeds. To summarize the
above-mentioned observations, the successful glitch should skip csrw in the experiment.

Under the black-box environment, we called app. 3 with fault injection using the glitch
parameters extracted in Section 5.2. Here, we provided the margin of ±50 [cycle] to the
identified external_offset considering noise effects such as CPU pipeline and clock jitter.
And at 10 cycles after the identified 7th csrw, we obtained the secret key of 0x000102...0f.

5.3.3 Exploitation of Switching Method

We also performed an experiment for exploitation of the switching method. For the
switching method, we need to skip the reconfiguration of PMP3 as shown in Table 2. If

16 Bypassing Isolated Execution on RISC-V with Fault Injection

Table 3: Fault intensity parameters and success rate of using them. Parameters with a
success rate of 90 [%] or more are shown for 10 trials for each pair of parameters.

Fault intensity [%] Success rate [%]

Width Offset Profiling Exploitation
Rewriting method Switching method

-32 6 10 90 20
-31 5 50 90 20
-31 4 40 100 10
39 20 20 90 0
40 20 40 90 0
40 19 40 90 0
41 21 40 100 0
42 19 100 0 0
42 18 90 0 0

we succeed in skipping it, app. 3 additionally obtains the control of RAM for app. 2. This
PMP protection is weaker than that of the rewriting method, and we can use the same
code as that in Section 5.3.2.

The switching method does not need to change pmpaddr. The target instruction is only
the reconfiguration of pmpcfg. The assembly code to reconfigure pmpcfg is as follows.

lw a5,-24(s0) // Load word (lw) on stack into a5
csrc pmpcfg0,a5 // Clear CSR pmpcfg0 with mask bit (a5)
lw a5,-28(s0) // Load word (lw) on stack into a5
csrs pmpcfg0,a5 // Set CSR pmpcfg0 with config bit (a5)

One pmpcfg has a configuration for four PMP entries as shown in Figure 1. With the
specification of the Freedom Metal library, the corresponding pmpicfg in pmpcfg is cleared
(csrc) and a new value is then set into the pmpicfg (csrs). Thus, the target instruction
is limited to csrc. To summarize the above-mentioned observations, the successful glitch
should skip csrc.

Under the black-box environment, when we injected the fault with the glitch parameters
extracted in Section 5.2, we obtained the secret key. The successful external_offset was
greater by 7 cycles than identified 10th csrc.

5.4 Evaluation of Glitch Parameters
This section verifies the effectiveness of the proposed attack by comparing the experimental
results of profiling and exploitation. First, we evaluate the fault intensity. Then, we discuss
the glitch timing.

5.4.1 Fault Intensity

We performed the exploitation 10 times for each glitch parameter by fixing the value
of external_offset when the attack was successful in each experiment described in
Sects. 5.3.2 and 5.3.3. Table 3 summarizes a set of fault intensity values with a success
rate of 90 [%] or more in each experiment including the profiling experiment. From the
result, we observe that (1) parameters with a high success rate differ between the profiling
and exploitation experiments and (2) parameters with a high success rate differ even in
the exploitation experiments using the same device.

Observation (1) comes from individual differences. Even though such differences
exist, exploitation would be successful with the fault intensity extracted in the profiling
phase. The result of the same profiling experiment using the target device is shown in

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 17

Appendix C.1. The result suggests similar trends as in Figure 9, which indicates that a
cross-device profiling would work well.

Observation (2) seems to come from the effect of the CPU pipeline. Typically, the fetch
and write-back stages are object to the clock glitches because of their memory accesses,
which tend to be critical paths. Furthermore, there is another possibility that other stages
would be affected. A detailed investigation of this result will be conducted in the future.

5.4.2 Glitch Timing

We succeeded in attacking with the glitch timing extracted in Section 5.2. For further
investigation, we study how to shorten the time required for exploitation by identifying
the position of the target instruction. In the exploitation experiments, we expanded
external_offset by ±50. This means that we performed 100 trials for each candidate,
which results in 900 (100 × 9 candidates) and 2,600 (100 × 26 candidates) overall trials for
the rewriting and switching methods, respectively. Meanwhile, if we perform a brute-force
attack, we need approximately 314,600 (65 MHz × 4.84 ms) and 469,950 (65 MHz × 7.23
ms) overall trials for each PMP usage, respectively. Thus, a reduction of more than 99 [%]
of the trials is achieved.

6 Discussion
This section discusses the applicability of the proposed attack to other TEEs as well as its
limitations and countermeasures.

6.1 Applicability to TrustZone
ARM TrustZone is a well-known TEE for embedded devices. First, we describe the
differences between the isolation mechanisms of TrustZone and RISC-V TEE, and we then
show that the proposed attack can be applied to TrustZone. Table 4 summarizes the
comparison of TrustZone and RISC-V TEE according to [ARM15, Yiu15, NMB+16, Yiu17,
PS19, ARM19], where we focus on the state-of-the-art TrustZone based on ARMv8-A
(v8-A) and ARMv8-M (v8-M). As a RISC-V TEE, a bare-metal implementation is assumed,
such as our PoC TEE. Note that we excluded optional H/Ws for v8-A such as TrustZone
protection controller.

TrustZone has the concept of world, which divides the CPU resources into secure and
normal worlds, and isolates applications running in each world. Hereafter, we refer to
world-based isolation and isolation for applications as world isolation and app. isolation,
respectively. RISC-V has no concept of world; therefore, there is no separation in the
column of RISC-V in Table 4. The major features of TrustZone are as follows.

H/W unit:
The relation of PMA2 and PMP in RISC-V corresponds to that of IDAU and SAU in
v8-M. MPU in v8-M provides isolation based on the base address, size, and attribute,
which is similar to PMP. Meanwhile, MPU is different from PMP in that MPU is defined
in each world. MMU in v8-A has a richer function than MPU in v8-M in the sense that
MMU can translate a virtual address into physical one.

Privilege:
Privileges in v8-A are defined as EL3 for secure monitor, EL2 for hypervisor, EL1 for OS,
and EL0 for apps., which is the same as in RISC-V. Meanwhile, the privileges in v8-M are
defined as handler and thread modes, which is different from RISC-V.

How to configure world/app.:
TrustZone v8-M and v8-A perform the configuration of world(s) with SAU and MMU, and

2PMA is a H/W-defined unit for providing memory protection similarly to PMP.

18 Bypassing Isolated Execution on RISC-V with Fault Injection

Table 4: Comparison of RISC-V and TrustZone
Item RISC-V TrustZone v8-M TrustZone v8-A
How to isolate Check permissions at memory access. Check permissions at

address translation by
MMU.

of world Any (PMP entries
are at most 16

2 (secure and non-secure
(S/NS) states)

2 (secure and normal)

of app. Any
H/W units PMA, PMP IDAU, SAU, MPU MMU
Privilege M, H, S, U Handler Mode (Privi-

leged), Thread Mode
(Privileged/Unprivi-
leged)

EL3, EL2, EL1, EL0

How to config-
ure world iso-
lation

Configure PMP in
M-mode.

Configure SAU from code
in secure region.

Configure MMU (i.e.,
translation tables) in EL3
mode

How to config-
ure app. isola-
tion

Configure MPU in Privi-
leged mode.

Configure MMU in EL1
or EL2 modes

World switch Exceptions transfer
the control from
U/S-mode to
M-mode. M-mode
reconfigures PMP
and then returns
the control to
U/S-mode by mret.

Code in NS calls NSC
function and then moves
to S. Code in S calls
a callback function and
then moves to NS.

SMC instruction, excep-
tions, or interrupts, such
as IRQ and FIQ, transfer
the control from normal
to secure. Secure returns
to normal by ERET.

App. switch Interrupts, such as
IRQ and FIQ, trans-
fers the control from
non-privileged to privi-
leged modes. Privileged
mode reconfigures MPU
and then returns to
non-privileged mode.

Interrupts, such as IRQ
and FIQ, transfers the
control from EL0 to EL1
or EL2 modes. EL1 or
EL2 mode reconfigures
MMU and then returns
to EL0 mode by ERET

Abbreviations
PMA: Physical Memory Attribute, IDAU: Implementation Defined Attribution Unit, MMU:

Memory Management Unit, SAU: Software Attribution Unit, MPU: Memory Protection Unit, EL:
Exception Level, NSC: Non-Secure Callable, IRQ: Interrupt ReQuest, FIQ: Fast Interrupt reQuest

they then perform the configuration of app(s). with MPU and MMU, respectively. The
world configuration in v8-M is not changed after initialization, while the app. configuration
can be changed. In v8-A, each world has its own translation tables for MMU and they can
be changed. Hence, the same virtual address is translated to other physical addresses in
each world.

World/app. switch:
App. switches resemble each other although world switch is different from App. switch.
World switch in v8-M employs a specific function called NSC to move the world from NS
to S. Then, it employs a callback function located in the NS world to return from S to NS.
World switch in v8-A employs the SMC instruction, exceptions, or interrupts to move the
world from normal to secure. Then, it employs the ERET instruction to return from secure
to normal. This is similar to the operations of the monitor in RISC-V.

We can summarize the above-mentioned observations as follows.
1. The bypassing attack is applicable to app. isolation in TrustZone because the H/W

units, configuration of app. isolation, and app. switch of TrustZone correspond to
those of RISC-V. To perform the attack, we just skip the reconfiguration of MPU
in the privileged mode and the reconfiguration of MMU in the EL1 or EL2 modes

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 19

in v8-M and v8-A, respectively. Meanwhile, note that a detailed investigation is
required to identify a proper glitch timing.

2. The bypassing attack is not applicable to world isolation in TrustZone because the
world configuration is separated in each world. This means that insecure or normal
applications cannot access the secure world directly.

6.2 Limitations
The main limitations of the proposed attack can be summarized as follows.

6.2.1 How to identify target address

To retrieve the target data from the RAM, an attacker needs to know which region of
the RAM is used for a victim application and what address is used for storing the target
data. The target RAM region can be obtained from the memory map provided by the data
sheet of the target CPU or by guessing it using stack address allocated for the attacker’s
application. After obtaining the RAM dump, the attacker should find the target data in
it. Most of the memory region is initialized to 0 and static data is gathered in one place;
therefore, meaningful data can be extracted at a glance.

6.2.2 Factors that determine success or failure

The proposed attack bypasses isolated execution with PMP in RISC-V. Although target
instructions that change the PMP configuration can be identified and skipped, the success
or failure of the attack depends on the implementation of each TEE. The main factors
that determine success or failure are as follows.

1. Address-matching method in pmpcfg:
We mainly used NAPOT for the PoC TEE. In the rewriting method, NAPOT can
be replaced with TOR using two PMP entries. In such a case, the order of the PMP
entries differs from those shown in Tables 1 and 2. TOR covers the range between
two pmpaddrs; therefore, skipping the PMP configuration results in an increase or
decrease in the target range. The former result enables the attack to succeed while
the latter one causes the attack to fail.

2. The order of the PMP configuration:
As mentioned above, the order of the PMP entries affects the applicability of the
attack. For example, if the order of PMP2 and PMP3 is reversed in the rewriting
method, the access permissions of the ROM and RAM are exchanged. ROM access
is necessary to execute instructions for applications; thus, only the exchange of the
RAM for app. 3 and the ROM for app. 2 is allowed. Although such an exchange
breaks the memory protection by PMP, it prevents the achievement of the original
goal, i.e., obtaining the secret key. By contrast, an attack on the switching method
would be successful even if the order of the PMP entries is changed. This is because
the attacker can obtain the RAM permission for app. 2 in addition to his/her original
access permissions.

3. How to call other applications:
MultiZone adopts round-robin scheduling and allows each application (or zone)
to run for a short time by controlling them with timer interrupt [Fiv20a]. Thus,
any attacker application cannot be allowed to directly call a victim application.
Therefore, the attacker can target only the application executed just before his/her
application. Meanwhile, Keystone allows untrusted host applications to invoke the
enclave application at an arbitrary timing [LKS+20]. In such cases, our attack is
applicable as it is.

20 Bypassing Isolated Execution on RISC-V with Fault Injection

6.3 Countermeasures
In this study, we used clock glitch as an example of fault injection to demonstrate the
effectiveness of the proposed attack. Thus, countermeasures against clock glitch or a
specific fault method are beyond the scope of this discussion. Instead, we describe effective
countermeasures that can be implemented with software. Memory encryption is useful for
preventing a malicious application from reading secret data. Keystone provides it as a
plugin for additional protection against physical attackers [LKS+20]. Executing protected
instructions twice prevents single instruction skip [YGS+16, WP17, MTW+18, BFP19]. It
does not work for multiple fault injection, but it raises the bar by requiring the attacker to
have an advanced capability. Inserting random delay makes it difficult for the attacker to
identify the exact timing to inject faults [TSW16, WP17, MTW+18]. It is not an essential
treatment, but it decreases the success rate of each trial.

Meanwhile, our attack can evade some major countermeasures. These countermeasures
protect data with instruction duplication/triplication [YGS+16, MTW+18, BFP19], branch
instructions or loop structures [NHH+16, PHBC17, WSUM19], and control flows with
integrity checks [WP17, VTM+18, MTW+18, WSUM19], which are not effective. This
is because our proposed attack neither corrupts data nor transfers the control flow to a
malicious flow.

7 Conclusion
We proposed an attack to bypass isolated execution realized by the memory protection
mechanism in RISC-V, i.e., PMP. The main feature of the proposed attack is that it can be
performed in a black-box environment with minimal knowledge of an attack target. The
attack scheme consists of profiling and exploitation phases, and the profiling is executed
using a profiling device with the same CPU as the attack target. To verify the effectiveness
of the attack, we implemented the PoC TEE with two types of PMP usages by referring
to existing RISC-V-based TEEs. Through experiments, we showed that the fault intensity
and glitch timing required for fault injection could be obtained according to the attack
scheme. Moreover, we demonstrated that we could obtain secret data in the RAM region
isolated by PMP using an attacker’s application running on the same CPU.

From our experimental results (cf. Section 5.3) and discussion (cf. Section 6.2), we can
conclude that the rewriting method is relatively secure in the context of our fault injection
attacks. The switching method is easier to attack because the attacker can obtain the
permission of the victim RAM in addition to his/her original permissions. As mentioned
in Section 6.2, this suggests that the attack should be effective even when the order of the
PMP entries is changed.

We did not report the attack result to RISC-V-based TEE developers for two reasons:
(1) this is not a demonstration using actual products and (2) TEE does not focus on
invasive physical attacks such as fault injection attacks. This study aimed to show the
effectiveness of the proposed attack through experiments targeting the PoC TEE on the
basis of public information of Keystone and MultiZone. Note that we do not have detailed
knowledge of such TEE implementations, and it is uncertain what is achieved when the
attacker is deprived of access permissions granted for other applications. In addition, TEE
is generally intended to provide protection against software attacks, and most physical
attacks are out of scope. However, note that for a critical application requiring higher
security, physical attacks should be considered, such as plugins provided by Keystone.

The following issues remain to be addressed in the future: (1) a demonstration for
identifying the execute timing of target instructions on the basis of power consumption (cf.
Section 5.2.2) as a part of the proposed method; (2) further investigation of the reason
why the fault intensity differs even in the same device with different target instructions

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 21

(cf. Section 5.4.1); and (3) an evaluation of the proposed attack on TEEs on the basis of
another architecture such as ARM TrustZone (cf. Section 6.1).

References
[AAB+16] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David

Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser,
Adam Izraelevitz, et al. The rocket chip generator. EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[ADN+10] Michel Agoyan, Jean-Max Dutertre, David Naccache, Bruno Robisson, and
Assia Tria. When clocks fail: On critical paths and clock faults. In Interna-
tional Conference on Smart Card Research and Advanced Applications, pages
182–193. Springer, 2010.

[ARM15] ARM. ARM Cortex-A Series Programmer’s Guide for ARMv8-A. https:
//developer.arm.com/documentation/den0024/a/, 2015. Accessed 5-July-
2020.

[ARM19] ARM. Armv8-A Virtualization. https://developer.arm.com/
architectures/learn-the-architecture/armv8-a-virtualization/
single-page, 2019. Accessed 5-July-2020.

[BDL97] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance
of checking cryptographic protocols for faults. In International conference on
the theory and applications of cryptographic techniques, pages 37–51. Springer,
1997.

[BECN+06] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire
Whelan. The sorcerer’s apprentice guide to fault attacks. Proceedings of the
IEEE, 94(2):370–382, 2006.

[BFP19] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. Shaping the
glitch: optimizing voltage fault injection attacks. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 199–224, 2019.

[BRSK17] Swarup Bhunia, Sandip Ray, and Susmita Sur-Kolay. Fundamentals of IP
and SoC security. Springer, 2017.

[BTG10] Guillaume Barbu, Hugues Thiebeauld, and Vincent Guerin. Attacks on java
card 3.0 combining fault and logical attacks. In International Conference on
Smart Card Research and Advanced Applications, pages 148–163. Springer,
2010.

[Fiv18] Hex Five. SOFTWARE EVALUATION AGREEMENT. https://github.
com/hex-five/multizone-sdk/blob/master/LICENSE, 2018. Accessed 5-
July-2020.

[Fiv19] HEX Five. MultiZone API. https://github.com/hex-five/
multizone-api, 2019. Accessed 5-July-2020.

[Fiv20a] HEX Five. MultiZone. https://hex-five.com, 2020. Accessed 5-July-2020.

[Fiv20b] Hex Five. X300. https://github.com/hex-five/multizone-fpga, 2020.
Accessed 5-July-2020.

22 Bypassing Isolated Execution on RISC-V with Fault Injection

[Fou19] RISC-V Foundation. Members at a galnce. https://riscv.org/
members-at-a-glance, 2019. Accessed 5-July-2020.

[GA03] Sudhakar Govindavajhala and Andrew W Appel. Using memory errors to
attack a virtual machine. In 2003 Symposium on Security and Privacy, 2003.,
pages 154–165. IEEE, 2003.

[Gil15] Brett Giller. Implementing practical electrical glitching attacks. Black Hat
Europe, 2015.

[KFG+20] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and Ahmad-
Reza Sadeghi. V0LTpwn: Attacking x86 Processor Integrity from Software. In
29th USENIX Security Symposium (USENIX Security 20), pages 1445–1461.
USENIX Association, August 2020.

[LK18] Dayeol Lee and David Kohlbrenner. Welcome to Keystone Enclave’s Documen-
tation! http://docs.keystone-enclave.org/en/latest/index.html,
2018. Accessed 5-July-2020.

[LKS+20] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. Keystone: An open framework for architecting trusted execution envi-
ronments. In Proceedings of the Fifteenth European Conference on Computer
Systems, pages 1–16, 2020.

[MOG+20] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss,
and Frank Piessens. Plundervolt: Software-based fault injection attacks
against Intel SGX. In 2020 IEEE Symposium on Security and Privacy (S&P),
2020.

[MTW+18] Alyssa Milburn, Niek Timmers, Nils Wiersma, Ramiro Pareja, and Santiago
Cordoba. There Will Be Glitches: Extracting and Analyzing Automotive
Firmware Efficiently. Black Hat USA, 2018.

[NHH+16] Shoei Nashimoto, Naofumi Homma, Yu-ichi Hayashi, Junko Takahashi, Hi-
toshi Fuji, and Takafumi Aoki. Buffer overflow attack with multiple fault
injection and a proven countermeasure. Journal of Cryptographic Engineering,
1(7):35–46, 2016.

[NMB+16] Bernard Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho, and Sarah
Martin. Trustzone explained: Architectural features and use cases. In 2016
IEEE 2nd International Conference on Collaboration and Internet Computing
(CIC), pages 445–451. IEEE, 2016.

[PHBC17] Julien Proy, Karine Heydemann, Alexandre Berzati, and Albert Cohen.
Compiler-assisted loop hardening against fault attacks. ACM Transactions
on Architecture and Code Optimization (TACO), 14(4):1–25, 2017.

[PS19] Sandro Pinto and Nuno Santos. Demystifying Arm TrustZone: A Compre-
hensive Survey. ACM Computing Surveys (CSUR), 51(6):130, 2019.

[PT17] Jungmin Park and Akhilesh Tyagi. Using Power Clues to Hack IoT Devices:
The power side channel provides for instruction-level disassembly. IEEE
Consumer Electronics Magazine, 6(3):92–102, 2017.

[PW17] David Patterson and Andrew Waterman. The RISC-V Reader: An Open
Architecture Atlas. Strawberry Canyon, 2017.

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 23

[PXJ+18] Jungmin Park, Xiaolin Xu, Yier Jin, Domenic Forte, and Mark Tehra-
nipoor. Power-based side-channel instruction-level disassembler. In 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6. IEEE,
2018.

[QWLQ19a] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. Voltjockey:
Breaching trustzone by software-controlled voltage manipulation over multi-
core frequencies. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 195–209, 2019.

[QWLQ19b] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. VoltJockey:
Breaking SGX by Software-Controlled Voltage-Induced Hardware Faults. In
2019 Asian Hardware Oriented Security and Trust Symposium (AsianHOST),
pages 1–6. IEEE, 2019.

[RRR+04] Srivaths Ravi, Srivaths Ravi, Anand Raghunathan, Paul Kocher, and Sunil
Hattangady. Security in embedded systems: Design challenges. ACM Trans-
actions on Embedded Computing Systems (TECS), 3(3):461–491, 2004.

[SBO+15] Daehyun Strobel, Florian Bache, David Oswald, Falk Schellenberg, and
Christof Paar. Scandalee: a side-channel-based disassembler using local
electromagnetic emanations. In 2015 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 139–144. IEEE, 2015.

[SiF20] SiFive. Freedom Metal Machine Compatibility Library. https://github.
com/sifive/freedom-metal, 2020. Accessed 5-July-2020.

[Sma19] SmarterDM. micro-aes. https://github.com/SmarterDM/micro-aes, 2019.
Accessed 5-July-2020.

[TM17] Niek Timmers and Cristofaro Mune. Escalating privileges in Linux using
voltage fault injection. In 2017 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), pages 1–8. IEEE, 2017.

[TSS17] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. CLKSCREW:
exposing the perils of security-oblivious energy management. In 26th USENIX
Security Symposium (USENIX Security 17), pages 1057–1074, 2017.

[TSW16] Niek Timmers, Albert Spruyt, and Marc Witteman. Controlling PC on ARM
using fault injection. In 2016 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 25–35. IEEE, 2016.

[VTM+18] Aurélien Vasselle, Hugues Thiebeauld, Quentin Maouhoub, Adele Moris-
set, and Sebastien Ermeneux. Laser-induced fault injection on smartphone
bypassing the secure boot. IEEE Transactions on Computers, 2018.

[WA19] Andrew Waterman and Krste Asanovic. The RISC-V Instruction Set Manual
Volume II: Privileged Architecture. https://riscv.org/specifications/
privileged-isa, 2019. Accessed 5-July-2020.

[WP17] Nils Wiersma and Ramiro Pareja. Safety!= security: On the resilience of
ASIL-D certified microcontrollers against fault injection attacks. In 2017
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages
9–16. IEEE, 2017.

24 Bypassing Isolated Execution on RISC-V with Fault Injection

[WSUM19] Mario Werner, Robert Schilling, Thomas Unterluggauer, and Stefan Mangard.
Protecting RISC-V Processors against Physical Attacks. In 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 1136–
1141. IEEE, 2019.

[YGS+16] Bilgiday Yuce, Nahid Farhady Ghalaty, Harika Santapuri, Chinmay Desh-
pande, Conor Patrick, and Patrick Schaumont. Software fault resistance is
futile: Effective single-glitch attacks. In 2016 Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC), pages 47–58. IEEE, 2016.

[Yiu15] Joseph Yiu. ARMv8-M architecture technical overview. ARM WHITE
PAPER, 2015.

[Yiu17] Joseph Yiu. Software Development in ARMv8-M Architecture. embedded
world 2017, 2017.

[YSW18] Bilgiday Yuce, Patrick Schaumont, and Marc Witteman. Fault attacks
on secure embedded software: threats, design, and evaluation. Journal of
Hardware and Systems Security, 2(2):111–130, 2018.

[YUZP19] Baki Berkay Yilamz, Elvan Mert Ugurlu, Alenka Zajic, and Milos Prvulovic.
Instruction level program tracking using electromagnetic emanations. In
Cyber Sensing 2019, volume 11011. International Society for Optics and
Photonics, 2019.

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 25

ROM
Freedom-metal

(128K)

0x2040 0000

0x2042 0000

0x2043 0000

0x2044 0000

0x2045 0000

ROM Monitor (64K)

ROM App.1 (64K)

ROM App.2 (64K)

ROM App.3 (64K)
0x2046 0000

分離デザイン Flash (ROM)
最⼤: 512MiB

.text

.rodata, .data

Figure 12: Memory map of ROM. The maximum size for the overall ROM is 512MB.

RAM
Shared memory

(4K)

0x8000 0000

0x8000 1000

RAM Monitor (4K)

RAM App.1 (4K)

RAM App.2 (2K)

RAM App.3 (2K)

.data, .bss

0x8000 2000

0x8000 3000

0x8000 3800

.heap

0x8000 4000

.stack

Figure 13: Memory map of RAM. The maximum size for the overall RAM is 16kB.

A Specification and Implementation of PoC TEE
A.1 Memory Map
The memory maps indicating the ROM and RAM for the PoC TEE are shown in Figures 12
and 13.

A.2 Specification of Shared Memory
The shared memory, shown in Figure 14, separates its memory region into two sub-regions:
one for application calls (0–11) and one for shared data (12–127). It is declared as a
128-byte array of uint8_t. SP and RA denote registers for stack pointers and return
addresses, respectively. caller ID and callee ID are used for the monitor managing
application calls. The monitor saves the context of the application with the caller ID and
calls an application with the callee ID. cmd is used for determining what each application
does. An example of cmd usage is presented in Section A.6.

A.3 Function for Switching Applications
The function for switching applications involves the following three steps: (1) store sp and
ra into the shared memory, (2) store caller ID and callee ID into the shared memory, and

26 Bypassing Isolated Execution on RISC-V with Fault Injection

共有メモリの構造
uint8_t shared_buffer[128]

124

0

8

12

SP

RA

Caller
ID cmdCallee

ID

4

data

…

127

Figure 14: Structure of shared memory.

Table 5: Specification of commands for app.1.
Cmd Class Function Size Description

0x80

0x10
0x10 N/A Echo cmd
0x20 N/A Get response
0x30 size Set buffer

0x20

0x10 size Set shared memory
0x18 size Get shared memory
0x20 N/A Call app. 2
0x30 N/A Call app. 3

(3) transfer the control to the monitor in M-mode by environment call exception caused
by ecall. The original code of the function is as follows.

1 void cal l_app (uint8_t ca l l e r_ id , uint8_t ca l l e e_ id) {
2 uintptr_t sp , ra ;
3 uintptr_t ∗ t ;
4 __asm__ v o l a t i l e ("mv %0, sp " : "=r " (sp)) ;
5 __asm__ v o l a t i l e ("mv %0, ra " : "=r " (ra)) ;
6
7 t = (uintptr_t)&shared_buf fer [SHARED_SP] ;
8 ∗ t = sp ; // [0 : 3]
9 t = (uintptr_t)&shared_buf fer [SHARED_RA] ;

10 ∗ t = ra ; // [4 : 7]
11 shared_buf fer [SHARED_CALLER] = ca l l e r_ i d ;
12 shared_buf fer [SHARED_CALLEE] = ca l l e e_ id ;
13 __asm__ v o l a t i l e (" e c a l l ") ;
14 }

A.4 Specification of Commands for App. 1
App. 1 plays an OS-like role and executes commands from users via UART. Table 5
summarizes the specification of the commands. The command is given by a 4-byte array
of uint8_t and each byte is interpreted as Cmd, Class, Function, and Size, respectively.

A.5 Implementation of app. 2
App. 2 is a victim application executing AES encryption, which is implemented with
micro-aes [Sma19]. App. 2 receives plaintext by the shared memory and then encrypts it.

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 27

Finally, it stores the corresponding ciphertext in the shared memory. A user can obtain
the ciphertext via app. 1. A secret key used for the encryption is declared as a static
variable, and it is copied to the RAM. The original code of app. 2 is as follows.

1 #de f i n e AES_BLOCK_SIZE 16
2
3 aes_128_context_t ctx ;
4
5 s t a t i c uint8_t key [AES_BLOCK_SIZE] = {0x00 , 0x01 , 0x02 , 0x03 ,
6 0x04 , 0x05 , 0x06 , 0x07 ,
7 0x08 , 0x09 , 0x0a , 0x0b ,
8 0x0c , 0x0d , 0x0e , 0 x0f } ;
9

10 void sep2_main () {
11 i n t i ;
12 uint8_t block [AES_BLOCK_SIZE] = {0} ;
13
14 aes_128_init(&ctx , key) ;
15 f o r (i = 0 ; i < AES_BLOCK_SIZE; i++) {
16 block [i] = shared_buf fer [SHARED_DATA + i] ;
17 }
18
19 aes_128_encrypt(&ctx , b lock) ;
20
21 f o r (i = 0 ; i < AES_BLOCK_SIZE; i++) {
22 shared_buf fer [SHARED_DATA + i] = block [i] ;
23 }
24
25 cal l_app (CTX_SEP2, CTX_END) ; // f i n i s h
26 }

A.6 Implementation of App.3
App. 3 is an attacker application dumping the victim RAM. More specifically, it receives
a base address and an offset, and it then reads data from the address of ”base adder +
offset”. The original code of app. 3 is as follows.

1 void sep3_main () {
2 // f o r cal l_app () without us ing stack (RAM)
3 uintptr_t sp , ra ;
4 uintptr_t ∗ t ;
5
6 uint8_t cmd [2] ;
7 uint16_t o f f s e t ;
8 uint32_t reg_val ;
9 s t a t i c uint32_t base_addr = BASE_ADDR;

10
11 ∗ ((uint16_t ∗)cmd) = ∗ ((uint16_t ∗)&shared_buf fer [SHARED_CMD]) ;
12
13 switch (cmd [0]) {
14 case 0x33 :
15 switch (cmd [1]) {
16 // −−− s e t base addr −−−
17 case 0x10 :
18 base_addr = ∗(uint32_t ∗)&shared_buf fer [SHARED_DATA] ;
19 break ;
20

28 Bypassing Isolated Execution on RISC-V with Fault Injection

21 // −−− s e t o f f s e t & load data (without f a u l t i n j e c t i o n) −−−
22 case 0x20 :
23 o f f s e t = ∗(uint16_t ∗)&shared_buf fer [SHARED_DATA] ;
24 reg_val = ∗ ((uint32_t ∗) (base_addr + o f f s e t)) ;
25
26 ∗ ((uint32_t ∗)&shared_buf fer [SHARED_DATA]) = reg_val ;
27 break ;
28
29 // −−− e xp l o i t with f a u l t −−−
30 case 0 xf1 :
31 // TIP : save o f f s e t va lue from app . 3 RAM to shared RAM
32 o f f s e t = ∗(uint16_t ∗)&shared_buf fer [SHARED_DATA] ;
33 ∗(uint16_t ∗)&shared_buf fer [SHARED_DATA+STR_ADDR] = o f f s e t ;
34
35 /∗ cal l_app (CTX_SEP3, CTX_SEP2) ; // <− f a u l t here ∗/
36 // TIP : e c a l l without cal l_app () to avoid us ing stack
37 __asm__ v o l a t i l e ("mv %0, sp " : "=r " (sp)) ;
38 __asm__ v o l a t i l e ("mv %0, ra " : "=r " (ra)) ;
39
40 t = (uintptr_t)&shared_buf fer [SHARED_SP] ;
41 ∗ t = sp ; // [0 : 3]
42 t = (uintptr_t)&shared_buf fer [SHARED_RA] ;
43 ∗ t = ra ; // [4 : 7]
44 shared_buf fer [SHARED_CALLER] = CTX_SEP3;
45 shared_buf fer [SHARED_CALLEE] = CTX_SEP2;
46 __asm__ v o l a t i l e (" e c a l l ") ;
47
48 // TIP : 16−byte memory ac c e s s without us ing s tack
49 ∗ ((uint32_t ∗)&shared_buf fer [SHARED_DATA+0]) = ∗ ((uint32_t

∗) (BASE_ADDR_TGT + ∗ ((uint16_t ∗)&shared_buf fer [
SHARED_DATA + STR_ADDR]) +0)) ;

50 ∗ ((uint32_t ∗)&shared_buf fer [SHARED_DATA+4]) = ∗ ((uint32_t
∗) (BASE_ADDR_TGT + ∗ ((uint16_t ∗)&shared_buf fer [
SHARED_DATA + STR_ADDR]) +4)) ;

51 ∗ ((uint32_t ∗)&shared_buf fer [SHARED_DATA+8]) = ∗ ((uint32_t
∗) (BASE_ADDR_TGT + ∗ ((uint16_t ∗)&shared_buf fer [
SHARED_DATA + STR_ADDR]) +8)) ;

52 ∗ ((uint32_t ∗)&shared_buf fer [SHARED_DATA+12]) = ∗ ((uint32_t
∗) (BASE_ADDR_TGT + ∗ ((uint16_t ∗)&shared_buf fer [
SHARED_DATA + STR_ADDR]) +12)) ;

53 // TIP : re turn without sp use
54 shared_buf fer [SHARED_CALLER] = CTX_SEP3;
55 shared_buf fer [SHARED_CALLEE] = CTX_END;
56 __asm__ v o l a t i l e (" e c a l l ") ;
57 break ;
58
59 d e f au l t :
60 break ;
61 }
62 break ;
63
64 d e f au l t :
65 break ;
66 }
67
68 cal l_app (CTX_SEP3, CTX_END) ; // f i n i s h
69 }

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 29

B Drawbacks of PoC TEE
Our PoC TEE aims to show the feasibility and effectiveness of our proposed attack in
principle. Therefore, some functions of the actual TEE are omitted from our PoC TEE.
The drawbacks of the PoC TEE are as follows.

• Heap memory:
Heap memory was not implemented in the PoC TEE. Accordingly, memory isolation
for heap memory is not performed. The behavior of using a memory allocation
function such as malloc() was not investigated.

• Automatic generation for applications running on the PoC TEE:
Three applications in the PoC TEE were hard-coded as shown in Figure 6. The
memory allocation for each application is defined in a linker script. To provide
automatic generation for TEE applications, we need to dynamically generate the
script from some types of configuration files.

• sp usage in exception handler:
The exception handler uses sp as it is, which means that the monitor uses the
stack region of the caller application when handling the exception. It should be
changed as soon as the handler is called; however, we did not implement it because
it required to modification of the function provided by the Freedom Metal library.
This implementation may become a vulnerability. Nevertheless, we do not treat it as
an attack vector in this study.

C Supplement for Experiment
C.1 Profiling #2
We performed the same profiling experiment using the target device. Figure 15 shows the
result for verifying the effectiveness of the method for extracting the fault intensity using
a profiling device. It suggests similar trends as in Figure 9.

The successful clock glitches are divided into four types as shown in Figure 15. Figure 16
shows representative waveforms from each type. They indicate that pairs of types #1 and
#3, and types #2 and #4 show similar trends each other.

30 Bypassing Isolated Execution on RISC-V with Fault Injection

40 20 20 400
width [%]

40

20

0

20

40

of
fs

et
 [%

]

No effect No responce Unexpected fault Expected fault

Type #1

Type #2 Type #3

Type #4

Figure 15: Profiling result for the exploitation device.

0 10 20 30 40 50
Time [ns]

3

2

1

0

1

2

3

V
ol

ta
ge

 [V
]

(a) Type #1

0 10 20 30 40 50
Time [ns]

3

2

1

0

1

2

3

V
ol

ta
ge

 [V
]

(b) Type #2

0 10 20 30 40 50
Time [ns]

3

2

1

0

1

2

3

V
ol

ta
ge

 [V
]

(c) Type #3

0 10 20 30 40 50
Time [ns]

3

2

1

0

1

2

3

V
ol

ta
ge

 [V
]

(d) Type #4

Figure 16: Successful glitches: (a) width=-32, offset=6, (b) width=-10, offset=20, (c)
width=41, offset=21, (d) width=19, offset=-45. The clock signal split into two at the
central position is a glitch.

