
An algorithm for bounding non-minimum weight
differentials in 2-round LSX-ciphers

Vitaly Kiryukhin

JSC «InfoTeCS», LLC «SFB Lab», Moscow, Russia
Vitaly.Kiryukhin@infotecs.ru

Abstract

This article describes some approaches to bounding non-minimum weight differ-
entials (EDP) and linear hulls (ELP) in 2-round LSX-cipher. We propose a dynamic
programming algorithm to solve this problem. For 2-round Kuznyechik the nontriv-
ial upper bounds on all differentials (linear hulls) with 18 and 19 active Sboxes was
obtained. These estimates are also holds for other differentials (linear hulls) with
a larger number of active Sboxes. We obtain a similar result for 2-round Khazad.
As a consequence, the exact value of the maximum expected differential (linear)
probability (MEDP/MELP) was computed for this cipher.

Keywords: Kuznyechik, Khazad, SPN, LSX, differential cryptanalysis, linear cryptanalysis,
MEDP, MELP

1 Introduction

Differential [2] and linear [3] cryptanalysis are the two most known sta-
tistical attacks applicable to block ciphers. In this paper we will focus on the
first method. The analogous results for linear cryptanalysis will be obtained
in a similar way, due to the existing well-known duality [4].

There are several approaches to estimating the security of ciphers against
differential attacks. Many papers are devoted to the differential characteris-
tics. The maximal probability of such characteristics (EDCP) decreases when
the number of active Sboxes within R rounds increases. The upper bound
on such probability can be analytically obtained for many LSX-ciphers (AES
[11], Khazad [12], Kuznyechik [1], etc.). In particular, these results are pre-
sented in [11, 17].

However, many researchers note that differential cryptanalysis exploits
differentials and not characteristics (see for example [16, 14, 5]). The proba-
bility (EDP) of a differential (∆x,∆y) corresponds to the sum of the prob-
abilities of all characteristics with input difference ∆x and output difference

1

∆y [8]. So from this point of view security of a cipher against differential
attacks is based on the maximum expected differential probability (MEDP)
over R ≥ 2 rounds.

Related works. For 2-round LSX-ciphers, some approaches to comput-
ing upper bounds on the MEDP are known [13, 14, 15].

An algorithm for computing the exact MEDP of 2-round AES was pro-
posed in [5]. Article [10] describes upper bounds on the MEDP for so-called
«nested» LSX-ciphers (e.g. 4-round AES).

In [16] was shown that for some 2-round LSX-ciphers the MEDP is
achieved by differentials involving a number of active Sboxes which exceeds
the branch number of the linear layer (non-minimum weight differentials).

Some results about differential properties of 2-round Kuznyechik was ob-
tained in [18]. The cited paper contains an algorithm for constructing the best
minimum weight differentials and a proof that all other differentials have a
lower EDP. Thanks to these two results, the exact value of the 2-round MEDP
was computed.

Our contribution. We propose a dynamic programming algorithm
designed for bounding non-minimum-weight differentials in 2-round LSX-
ciphers. It uses only the difference distribution table and the differential
branch number of the linear layer. The algorithm minimizes the number of
high probability differential trails and does not try to minimize the total
number of trails. Because of this reason, the algorithm is not effective for
ciphers with small block size (for example, 32-bit 2-round AES).

We applied the developed algorithm to the 2-round Kuznyechik (Section 4
and Appendix B): the probability of any 2-round differential (linear hull) with
n + 3 = 19 active Sboxes is bounded by 2−88.34 (2−79.63... correspondingly).
These bounds also holds for any differential (linear hull) with a ≥ n+3 active
Sboxes. Similar results were obtained for 2-round Khazad (Appendix C), and
as a result, the exact values of MEDP = 2−45 + 2−60 and MELP = 2−37.80...

are also proved.
The set of estimates obtained by us can be used in further researches to

calculate the bounds on the MEDP (MELP) for more rounds. We plan to
use our new results together with a modified KMT2-DC (KMT2) algorithm
[6, 7]. The approach [7] allows to incorporate other upper bounds when those
bounds are superior to the values determined directly by the original algo-
rithm [6]. In this way, we hope to prove the greater security of Kuznyechik
to differential and linear cryptanalysis.

2

2 Notations and definitions

An LSX cipher E consists of sequence of rounds. Each of them contains
three operations: X – modulo 2 addition of an input block with an iterative
key; S – parallel application of a fixed bijective substitution; L – linear trans-
formation which can be represented as multiplication by the binary matrix.

To simplify the text and notations, we consider only byte-oriented LSX-
ciphers.

Denote: n – block size in bytes; ⊕ – bitwise XOR operation; x[i] – i-th ele-
ment of a vector or a sequence x, 1 ≤ i ≤ l, where l is size of the x; Supp(x) =
{i : x[i] 6= 0} – the support of a vector x; wt(x) = # {i : x[i] 6= 0} – the
weight of a vector x;

Fq – finite field of q elements; F∗q – all nonzero elements of a field Fq; Fl
q

– vector of l elements over Fq. Depending on the context, we will interpret a
value x ∈ 0, 2l − 1 as element of F2l or Fl

2 or as integer.

Definition 1. Let f : Fl
2 → Fl

2, let ∆x, ∆y ∈ Fl
2 be fixed, and let x ∈ Fl

2

be a uniformly distributed random variable. The differential probability is

DP (∆x,∆y) = Pr (f(x)⊕ f(x⊕∆x) = ∆y) . (1)

Definition 2. Let E be a cipher with key-size κ. Then, the expected proba-
bility of differential (∆x,∆y) is

EDP (∆x,∆y) = 2−κ
∑
K∈Fκ2

Pr (EK(x)⊕ EK(x⊕∆x) = ∆y) ,

where EK is a cipher with fixed key K. We futher assume that all round keys
are independent and uniformly distributed.

Definition 3. The maximum expected differential probability is

MEDP = max
∆x 6=0,∆y

EDP (∆x,∆y)

Definition 4. Let s be a function from F8
2 → F8

2,

δ (a, b) = #
{
x ∈ F8

2, s (x)⊕ s (x⊕ a) = b
}
, ∀a, b ∈ F8

2.

δmax = max
a6=0,b

δ (a, b) is the differential uniformity of s, pmax = 2−8 · δmax. The

differential distribution table is a 28 × 28 matrix of transition probabilities
such that

DDT[a][b] =
δs (a, b)

28
= DP (a, b) , a, b ∈ F8

2.

3

Definition 5. Let L-transformation (from Fn
28 to Fn

28) be a F28-linear. We
associate with L the code CL of length 2n over F28 defined by

CL = {(c, L(c)) , c ∈ Fn
28} .

The differential branch number BL of the linear transformation L is the min-
imum distance of the code CL

BL = min
c 6=0

wt (c, L(c)) .

Further, to simplify the text, we assume that CL is an MDS code and
B = BL = n+ 1.

2-round LSX-cipher can be represented as a sequence of the operations

y = K3 ⊕ S (K2 ⊕ LS (K1 ⊕ x)) ,

where x, y ∈ Fn
28 are the plaintext and the ciphertext, K1, K2, K3 ∈ Fn

28 are
round keys derived from masterkey K. The linear transformation on the last
round was omitted without loss of generality.

A differential trail Ω = (∆x,∆1,∆2,∆y) in 2-round LSX is a collection
of four differences, where ∆x = x ⊕ x′, ∆1 is the difference after the first
nonlinear transformation, ∆2 = L (∆1), ∆y = y ⊕ y′, x and x′ are plaintext
blocks, y and y′ are the corresponding ciphertext blocks.

Definition 6. The expected probability of the 2-round trail Ω is defined as

EDCP (Ω) = 2−κ
∑
K∈Fκ2

Pr (∆1=x1⊕x
′
1 and ∆2=x2⊕x

′
2 and ∆y=y⊕y′ if x′=∆x⊕x) ,

where x is a uniformly distributed random variable; x1, x
′

1 are states after the
first S-transformation; x2, x

′

2 are states before the second S-transformation;
κ is a size of the masterkey K.

According to the assumption about round keys

EDCP (∆x,∆1,∆2,∆y) =

(
n∏
j=1

DP(∆x[j],∆1[j])

)(
n∏
j=1

DP(∆2[j],∆y[j])

)
.

Note, that if EDCP (∆x,∆1,∆2,∆y) 6= 0, then Supp (∆x) = Supp (∆1),
Supp (∆2) = Supp (∆y) and (∆1,∆2) is a codeword of the code CL. Therefore
EDP (∆x,∆y) =

=
∑

(∆1,∆2)∈CL,
Supp(∆x)=Supp(∆1),
Supp(∆2)=Supp(∆y)

∏
j∈Supp(∆x)

DP (∆x[j],∆1[j])
∏

j∈Supp(∆y)

DP (∆2[j],∆y[j]) .

4

The equality between the above formula of EDP (∆x,∆y) and the defi-
nition 2 was proved in [8].

We define the weight (in bytes) of the differential (∆x,∆y) or the differ-
ential trail (∆x,∆1,∆2,∆y) as wt(∆x) + wt(∆y). Denote

MEDPw = max
∆x6=0,∆y,wt(∆x)+wt(∆y)=w

EDP (∆x,∆y) ,

MEDP+
w = max

∆x 6=0,∆y,wt(∆x)+wt(∆y)≥w
EDP (∆x,∆y) , B ≤ w ≤ 2 · n.

Note that all mentioned definitions EDP, EDCP, MEDP are 2-round, unless
otherwise stated.

Our main goal is to compute the nontrivial upper bound on MEDP+
B+1,

MEDP+
B+2 and others.

3 Upper bound on non-minimum weight differentials

The strategy of our approach is as follows. Each differential trail Ω =
(∆x,∆1,∆2,∆y) in 2-round differential (∆x,∆y) uniquely corresponds to
codeword (∆1,∆2) in CL. All possible trails (codewords) in the differential
have the form Supp(∆x) = Supp(∆1), Supp(∆2) = Supp(∆y). Derive con-
straints («maximum cost») for the entire set of such codewords. Divide the
set into several subsets. Compute contribution to the constraints («cost»)
and the corresponding upper bound («value») for each possible subset. Se-
lect subsets so that the upper bound («total value») is maximum and the
selection satisfies all constraints («total cost» does not exceed «maximum
cost»). Thus, we obtain the upper bound on the differential.

3.1 Auxiliary lemmas

Lemma 1 (The rearrangement inequality [9]). Let l ∈ N, and sup-
pose c1, c2, . . . , cl and d1, d2, . . . , dl are sequences of nonnegative values. Let
c̃1, c̃2, . . . , c̃l and d̃1, d̃2, . . . , d̃l be the sequences obtained by sorting original
sequences in nonincreasing order. Then

l∑
i=1

cidi ≤
l∑

i=1

c̃id̃i.

Lemma 2. Let l ∈ N, and suppose c1, c2, . . . , cl, and c̃1, c̃2, . . . , c̃l, and
d1, d2, . . . , dl are sequences of nonnegative values. Each of them sorted in
nonincreasing order. Suppose there exists l′, 1 ≤ l′ ≤ l, such that

5

1) c̃i ≥ ci, for 1 ≤ i ≤ l′

2) c̃i ≤ ci , for l′ + 1 ≤ i ≤ l
3)
∑l

i=1 ci ≤
∑l

i=1 c̃i
Then

∑l
i=1 cidi ≤

∑l
i=1 c̃idi.

Proof. The proof of the lemma is given in particular in [6].

If statements 1-3 holds for some sequences c̃ and c, then we will say that
c̃ is greater than c under the conditions of Lemma 2.

Lemma 3. Let D be a h× v matrix. Let

D[i][j] ∈ {p1, p2, ..., pt, pmax}, 1 ≤ i ≤ h, 1 ≤ j ≤ v, t ∈ N,
0 ≤ p1 < p2 < . . . < pt < pmax ≤ 1, pk, pmax ∈ R, 1 ≤ k ≤ t.

Denote

νk = #{(i, j) : D[i][j] = pk, 1 ≤ i ≤ h, 1 ≤ j ≤ v}, 1 ≤ k ≤ t,

νmax(D) = #{(i, j) : D[i][j] = pmax, 1 ≤ i ≤ h, 1 ≤ j ≤ v}.
(2)

Denote ωl(D) the number of rows containing exactly l elements pmax

ωl(D) = #{i : #{j : D[i][j] = pmax, 1 ≤ j ≤ v} = l, 1 ≤ i ≤ h},
v∑
l=1

ωl(D) · l = νmax(D),

lmax = max
ωl(D)6=0

(l) .

(3)

Let D̃ be the reordered matrix D (see Fig. 1). Distributions from (2) and (3)
are also holds for D̃.

The reordering procedure consists of three following steps:
1) sort each row of D̃ in nonicreasing order;
2) sort each column of D̃ in nonicreasing order;
3) reorder each unequal to pmax element:

∀i, j, i′, j′ : D̃[i][j] = pmax or D̃[i′][j′] = pmax or(
D̃[i][j] ≥ D̃[i′][j′], i′ > i or i′ = i, j′ > j

)
,

1 ≤ i, i′ ≤ h, 1 ≤ j, j′ ≤ v.

Then
h∑
i=1

v∏
j=1

D[i][j] ≤
h∑
i=1

v∏
j=1

D̃[i][j].

6

pmax
pt

p2

p1

. . .h

v

lmax

ωlmax

1 2 ...

..
2
1

Figure 1: Example of matrix D̃ after the reordering procedure.

Proof. The proof of the lemma is given in [18].

Lemma 4. Let D and D̃ be given as in Lemma 3. Suppose c1, c2, . . . , ch is
a sequence of nonnegative values. Let c̃1, c̃2, . . . , c̃h be obtained by sorting the
above sequence in nonincreasing order. Then

h∑
i=1

ci

v∏
j=1

D[i][j] ≤
h∑
i=1

c̃i

v∏
j=1

D̃[i][j].

Proof. Directly follows from Lemmas 1 and 3.

3.2 Representation of trails in the differential

Consider an arbitrary differential (∆x,∆y), wt(∆x) + wt(∆y) =
B + 1. The differential consists only of trails (∆x,∆1,∆2,∆y) such that
Supp(∆x) = Supp(∆1) = {k1, k2, . . . , kt}, Supp(∆y) = Supp(∆2) =
{m1,m2, . . . ,mr}, t+ r = B + 1 = n+ 2.

It is easy to show that the number of differential trails does not exceed
T ≤ (28−1)2. Otherwise, there is a pair of codewords (∆1,∆2) and (∆′1,∆

′
2)

such that
wt ((∆1,∆2)⊕ (∆′1,∆

′
2)) < B.

Let’s imagine a set of differential trails in the form of a table. Such a
table, called Trails, has a size of T × (n+ 2). Each row is non-zero bytes of
the corresponding codeword

Trails[i] = ∆1[k1], . . . ,∆1[kt],∆2[m1], . . . ,∆2[mr], 1 ≤ i ≤ T,

EDP (∆x,∆y) =
T∑
i=1

t∏
j=1

DP(∆x[kj],Trails[i][j]) ·
t+r∏
j=t+1

DP(Trails[i][j],∆y[mj−t]).

(4)

7

For definiteness let’s sort the table by the byte value in the first column
(see Fig.2).

Let an arbitrary byte of ∆x with an index kj, 1 ≤ j ≤ t be fixed. Con-
sider j-th column of Trails. Bytes with the same value x will have the same
probability DP(∆x[kj], x). Similarly for ∆y. Let us denote the corresponding
table by DP∗ (Trails), where

DP∗ (Trails[i][j]) = DP(∆x[kj],Trails[i][j]), 1 ≤ i ≤ T, 1 ≤ j ≤ t,

DP∗ (Trails[i][j]) = DP(Trails[i][j],∆y[mj−t]), 1 ≤ i ≤ T, t < j ≤ t+ r.
(5)

We will divide table columns into 3 groups (subtables). The group C
contains exactly 1 column. In the group TrailsI there are u columns. The
third group has v columns, 1 + u+ v = n+ 2.

Trails = C||TrailsI||TrailsII,

DP∗ (Trails) = DP∗ (TrailsI) ||DP∗ (TrailsI) ||DP∗ (TrailsII) ,
(6)

where || is concatenation. We also denote

Blockj = {TrailsI[i]||TrailsII[i] : C[i] = j, 1 ≤ i ≤ T} , j ∈ F∗28. (7)

T

n+ 2 = B + 1

1 u v

.

01
....
01
01

02
....
02
02

FF
....
FF
FF

Block02

Figure 2: Representation of Trails

3.3 DDT simplification

Let all elements in each row (column) of the DDT be sorted in nonin-
creasing order. The row and the column with zero indexes are ignored. Let

8

us denote the such table DDTrow (DDTcol correspondingly)

DDTrow[x][1] ≥ DDTrow[x][2] ≥ . . . ≥ DDTrow[x][28 − 1], x ∈ F∗28,

DDTcol[1][y] ≥ DDTcol[2][y] ≥ . . . ≥ DDTcol[2
8 − 1][y], y ∈ F∗28.

We define sequences mx, my and m as

mx[i] = max
a∈F∗

28

DDTrow[a][i], my[i] = max
a∈F∗

28

DDTcol[i][a], i ∈ F∗28, (8)

m[i] = max(mx[i],my[i]), 1 ≤ i ≤ 28 − 1.

The sequence m is «greater» than any sorted nontrivial row/column of
the DDT. Let r be any nontrivial sorted row/column of the DDT. Then,
m[i] ≥ r[i], 1 ≤ i ≤ 28−1. Denote νmax(m) = #{i : m[i] = pmax, 1≤i≤28−1}.
Note, that

∑28−1
i=1 m[i] ≥ 1.

We also define the sequences ρ, ρx, ρy as follows. Let ρx (ρy) be one
of the nontrivial sorted row (column) of the DDT. The sequence ρx (ρy)
must be greater than any other sorted row (column) of the DDT under the
conditions of Lemma 2,

∑28−1
i=1 ρx[i] =

∑28−1
i=1 ρy[i] = 1. If ρx is greater than

ρy under the conditions of Lemma 2, then ρ = ρx otherwise ρ = ρy.

3.4 Constraints

We formulate a Lemma giving us some restrictions on the set of code-
words.

Lemma 5. Let table TrailsII and sequence m be given as above. The table
DP∗ (TrailsII) is defined by analogy with (5). Let us denote ωl (DP∗ (TrailsII))
the number of rows containing exactly l elements pmax:

ωl (DP∗ (TrailsII)) = #{i : #{j : DP∗ (TrailsII[i][j]) = pmax, 1≤j≤v} = l, 1≤i≤T}.
(9)

Then
ω2 ≤

(
v

2

)
· (νmax(m))2 , (10)

and finally

v∑
l=2

ωl ·
(
l

2

)
≤
(
v

2

)
· (νmax(m))2 . (11)

Proof. Let’s consider two arbitrary columns of TrailsII. These columns do not
contain any identical byte pairs. The total number of different byte pairs does

9

not exceed T ≤
(
28 − 1

)2. In each column not more than νmax(m) values are
mapped in pmax. Hence, not more than (νmax(m))2 byte pairs are mapped in
(pmax, pmax) . The number of ways to select 2 columns is

(
v
2

)
.

Thus we have (10).
Suppose there is a row containing 3 elements pmax. Then

(
3
2

)
= 3 pairs of

columns are generated, each of which contains a pair (pmax, pmax) . Similarly
for rows with l elements pmax. Each of them «takes»

(
l
2

)
pairs. Thereby we

obtain (11).

3.5 Bounds on DP∗(Block)

Suppose that we are given an arbitrary Block ∈ {Blockj, j ∈ F∗28}. The
block dimensions are h · (n + 1), h ≤ 28 − 1. We will give an upper bound
on Block’s contribution to the differential

∑h
i=1

∏n+1
j=1 DP∗ (Block[i][j]) . We

will use Lemmas 2, 3, 4.
Consider v = 0 and u = n+ 1. Then we have

h∑
i=1

u∏
j=1

DP∗ (Block[i][j]) ≤ max

max
x∈F∗

28

28−1∑
i=1

(DDT[x][i])u , max
y∈F∗

28

28−1∑
i=1

(DDT[i][y])u

 .

(12)
The inequality (12) is so-called «FSE 2003 bound» on MEDP [14]. Lemma
2 allows us to select a row (column) that maximizes expression (12). Then
we can rewrite inequality (12)

h∑
i=1

u∏
j=1

DP∗ (Block[i][j]) ≤
28−1∑
i=1

(ρ[i])u . (13)

Let v > 0. We will divide Block into two parts:

Block = BlockI||BlockII,
h∑
i=1

n+1∏
j=1

DP∗ (Block[i][j]) =
h∑
i=1

u∏
j=1

DP∗ (BlockI[i][j])
v∏
j=1

DP∗ (BlockII[i][j]) ,

(14)
where BlockI contains u columns, and BlockII contains v columns, u + v =
n+ 1. We will evaluate the contribution of BlockI by using the sequence

(ρ[1])u , (ρ[2])u , . . . ,
(
ρ[28 − 1]

)u
. (15)

We will also get a bound on the contribution of BlockII by using Lemma
3. Suppose that each column of DP∗ (BlockII) contains elements from the

10

sequence m. Assume also that we know

ωl (DP∗ (BlockII)) = #{i : #{j : DP∗ (BlockII[i][j]) = pmax, 1≤j≤v} = l, 1≤i≤h},
0 ≤ l ≤ v,

v∑
l=1

ωl · l ≤ νmax(m) · v.

(16)
In other words, ωl is the number of rows containing exactly l elements pmax.
Let B̃lockII be a table obtained by the reordering procedure from Lemma 3.
Then we get

h∑
i=1

v∏
j=1

DP∗ (BlockII[i][j]) ≤
h∑
i=1

v∏
j=1

DP∗
(

B̃lockII[i][j]
)

Thanks to Lemma 4 , we finally obtain
h∑
i=1

n+1∏
j=1

DP∗ (Block[i][j]) ≤
h∑
i=1

(ρ[i])u
v∏
j=1

DP∗
(

B̃lockII[i][j]
)
. (17)

Thus, if we know the distribution ωl, 0 ≤ l ≤ v, then we can calculate
the upper bound on

∑h
i=1

∏n+1
j=1 DP∗ (Block[i][j]).

3.6 Optimization problem

Let’s will form all possible sets

si = {(l, ωl), 0 ≤ l ≤ v} , 1 ≤ i ≤ N. (18)

For each set
∑v

l=1 ωl · l = νmax(m) ·v is true. In fact, we construct all possible
partitions of the number νmax(m) · v. The maximum term in the partition
does not exceed v.

For each set si, calculate the estimate πi using (17) and «contribution» ζi
for constraints (11): ζi =

∑v
l=2 ωl ·

(
l
2

)
. We can choose such u and v, which

would minimize the final estimation. For most practical cases we use u = 1
and v = n. We get a set of pairs

(π1, ζ1), (π2, ζ2), . . . , (πN , ζN ′). (19)

Pairs with the same ζi value can be removed. The pair with the largest πi
must be left. Hence N ′ ≤

(
v
2

)
· (νmax(m))2.

We can estimate the first column of DP∗ (Trails) using the sequence ρx
(or ρy). Due to the fact that wt(∆x) ≥ 1 and wt(∆y) ≥ 1, we can choose

11

ρx or ρy. We will choose so as to minimize the final value. For certainty, we
assume that ρx has been chosen.

Denote I = i1, i2, . . . , i28−1, 1 ≤ ij ≤ N ′, 1 ≤ j ≤ 28 − 1. Then

MEDPB+1 ≤ MEDPB+1 = max
I

28−1∑
j=1

ρx[j]·πij and
∑
i∈I

ζ i ≤
(
v

2

)
·(νmax(m))2 .

(20)
The optimal I is chosen by us using dynamic programming (see non-

optimized version of the pseudocode in Appendix A, Algorithm 1).
There is a trivial estimate on MEDPB+2 ≤

∑28−1
i=1 ρ[i] · MEDPB+1 =

MEDPB+1. Similar can be done for MEDPB+3 etc. Thus, we proved that
MEDP+

B+1 ≤ MEDPB+1.

3.7 Another constraints

We can compute the estimate on MEDP+
B+1 more precisely.

Consider the table DP∗(TrailsII). The number of rows that contains many
elements pmax is quite small.

Recall that wt(TrailsII[i]⊕TrailsII[j]) ≥ v− 1, i 6= j. Otherwise, there is
a codeword c ∈ CL, wt(c) < B. Thus, any two rows of TrailsII have exactly
one equal byte, or these rows do not have any matches.

In each column of TrailsII, no more than νmax(m) bytes are mapped in
pmax. TrailsII has v columns. Denote W = νmax(m) · v.

Suppose that some row of DP∗(TrailsII) contains w1 elements pmax.
Let’s say w1 bytes of W were involved. Let the other row contain w2

elements pmax. These two rows can intersect at most one byte. Therefore, at
least w2− 1 bytes are selected from W . The third row can intersect with the
first and the second rows. Hence we subtract w3− 2 from W . Continue until
W ≥ 0.

Let us have a series w1, w2, w3, ..., wT sorted in noninreasing order, where
T is the number of rows in TrailsII. Then(

W −
l∑

i=1

(wi − (i− 1))

)
≥ 0 (21)

must be true for all l ≤ T .
Let’s form all series ψ = w1, w2, . . . , wl for which the inequality (21) is

true. Denote the set of such series by Ψ. We will use a relatively small value
of l (about 5, 6).

12

We can modify the algorithm from Subsection 3.6 as follows. For each
set si from (18), we form a series ψ = w1, w2, . . . , wl. We obtain a sequence
similar to (19): (π1, ζ1, ψ1), (π2, ζ2, ψ2), . . . , (πN , ζN , ψN).

Hence, another constraint is added to the optimization problem (20):

sortl

(
ψi1||ψi2|| . . . ||ψi28−1

)
∈ Ψ, 1 ≤ ij ≤ N, 1 ≤ j ≤ 28 − 1,

where sortl is l largest elements of the sequence. Note that we do not need
to store the entire sequence ψi1||ψi2|| . . . ||ψi28−1

in memory. We only need the
first l values. Using the limitations described in this subsection requires a
lot of computing resources. Therefore, this modification is not used in the
calculation of bound on MEDP+

B+2.

3.8 Computing MEDP+
B+2 and other

Let us have (∆x,∆y) such that wt(∆x)+wt(∆y) = B+2 = n+3. Then
Lemma 5 can be reformulated by analogy as follows.

Lemma 6. Let the conditions of Lemma 5 be hold, but weight of the differ-
ential be equal to n+ 3. Then

v∑
l=3

ωl ·
(
l

3

)
≤
(
v

3

)
· (νmax(m))3 . (22)

The algorithm is similar to Subsection 3.6, but the optimization problem
is solved in two steps. As in Subsection 3.6:

– form all possible sets
si = {(l, ωl), 0 ≤ l ≤ v}, 1 ≤ i ≤ N ,

∑v
l=1 ωl · l = νmax(m) · v;

– for each set si, calculate the estimate πi by (17); ζi =
∑v

l=2 ωl ·
(
l
2

)
;

ηi =
∑v

l=3 ωl ·
(
l
3

)
.

We obtain the sequence (π1, ζ1, η1), (π2, ζ2, η2), . . . , (πN , ζN , ηN).
Let’s solve first optimization problem for all values η′ ≤

(
v
3

)
· (νmax(m))3.

Denote I = i1, i2, . . . , i28−1, ij ∈ N, 1 ≤ j ≤ 28 − 1.

π′ = max
I

28−1∑
j=1

ρx[j]·πij , under condition
∑
i∈I

ζi ≤
(
v

2

)
·(νmax(m))2 and

∑
i∈I

ηi = η′.

We can get all the values η′ by solving the optimization problem once.
Thus, the sequence (π′1, η

′
1), (π

′
2, η
′
2), . . . , (π

′
N ′, η

′
N ′) will be obtained,

N ′ ≤
(
v
3

)
· (νmax(m))3 .

13

We will solve the second optimization problem

MEDP+
B+2 ≤ MEDPB+2 = max

I

28−1∑
j=1

ρx[j]·π′ij and
∑
i∈I

η′i ≤
(
v

3

)
·(νmax(m))3 .

The pseudocode in Appendix A contains a non-optimized version of the
algorithm. Application of the described approach is computationally infeasi-
ble for MEDP+

B+3 in most cases. Furthermore, the potential estimation shift
is very small (see summary table 1).

4 New bounds on MEDP for 2-round Kuznyechik

Kuznyechik block cipher [1] consists of a sequence of 9 rounds and a post-
whitening key addition. The block size is 128 bits (n = 16 bytes), the key
has a size of 256 bits. The cipher Sbox has no explicit analytical form [19],
such as in AES. The rows and columns of the DDT have different unbalanced
distributions. The sequence my is «greater» than mx. L-transformation is
defined as a LFSR over F28, the differential branch number B = n+ 1.

In [18] was proved that each 2-round best differential contains only one
differential trail
MEDP = MEDPB = max

Ω 6=0
EDCP(Ω) =

(
8

256

)13 (6
256

)4
= 2−86.66....

Using the proposed algorithms we showed that

MEDP+
B+1 ≤ 2−87.54..., MEDP+

B+2 ≤ 2−88.34....

The calculation MEDP+
B+1 and MEDP+

B+2 used the fact that wt (∆x) ≥ 2.
We can use ρx instead of ρ (the rows of DDT instead the columns) in at
least two coordinates. Obtained bound on MEDP+

B+3 will be not less than
2−88.42....

Table 1 shows all computed values. The numbers are rounded to the sec-
ond decimal place. The second data column presents the bounds we obtained
using «FSE 2003 bounds» [14]. The last column (*) shows the limitation on
the capabilities of the presented algorithm. For information about the linear
method, see Appendix B.

(pmax)B FSE2003
MEDPB≤ MEDPB = MEDP+

B+1 ≤ MEDP+
B+2 ≤ (*)MEDP+

B+3 ≤
−85 −83.97 −86.66 −87.54 −88.34 −88.42

(plin,max)B FSE2003
MELPB≤ MELPB = MELP+

B+1 ≤ MELP+
B+2 ≤ (*)MELP+

B+3 ≤
−74.54 −73.54 −76.73 −77.15 −79.63 −80.50

Table 1: Summary table of results for Kuznyechik (log2 scale).

14

5 Conclusion

We propose a dynamic programming algorithm for bounding non-
minimum weight differentials (linear hulls) in 2-round LSX-ciphers. Thanks
to the presented algorithm, we derive some new bounds on differentials
and linear hulls for 2-round Kuznyechik (Table 1). Similar results were ob-
tained for 2-round Khazad (Table 2), and as a result, the exact values of
MEDP = 2−45 + 2−60 and MELP = 2−37.80... are also proved.

The source codes of the presented algorithms can be found at:
https://gitlab.com/v.kir/diff2rLSX

For any LSX-cipher with independent round keys, the R-round MEDP
(MELP) is the upper bound for (R + 1)-round MEDP (MELP). The pre-
sented results are a step towards obtaining new nontrivial bounds on R-round
MEDP (MELP), i.e. new proofs of Kuznyechik strength against differential
and linear cryptanalysis.

References
[1] GOST R 34.12-2018 – National standard of the Russian Federation – Information technology

– Cryptographic data security – Block ciphers, 2018.
[2] Biham, E., Shamir, A., “Differential cryptanalysis of DES-like cryptosystems”, Journal of

Cryptology, 1991, 3–72.
[3] Matsui M., “Linear cryptanalysis method for DES cipher”, Advances in Cryptology – EU-

ROCRYPT’93, 765, Springer, Berlin, Heidelberg, 1994, 386–397.
[4] Biham E., “On Matsui’s linear cryptanalysis”, LNCS, Advances in Cryptology – EURO-

CRYPT’94, 950, Springer, Berlin, Heidelberg, 341–355..
[5] Keliher L., Sui. J., “Exact Maximum Expected Differential and Linear Probability for 2-

Round Advanced Encryption Standard (AES)”, IET Information Security 1(2), 2007, 53–57.
[6] Keliher L., “Linear Cryptanalysis of Substitution-Permutation Networks, PhD Thesis”, 2003.
[7] Keliher L., “Refined Analysis of Bounds Related to Linear and Differential Cryptanalysis for

the AES”, LNCS, Advanced Encryption Standard – AES, 3373, ed. Dobbertin H., Rijmen
V., Sowa A., Springer, Berlin, Heidelberg, 2005, 42–57.

[8] Lai, X., Massey, J.L., Murphy, S., “Markov ciphers and differential cryptanalysis”, LNCS,
Advances in Cryptology – EUROCRYPT’91, 547, Springer-Verlag, 1991, 17–38.

[9] Hardy G.H., Littlewood J.E., Polya G., “Inequalities”, Cambridge Mathematical Library (2.
ed.), Cambridge: Cambridge University Press, 1952.

[10] Sano F., Ohkuma K., Shimizu H., Kawamura S., “On the security of nested SPN cipher
against the differential and linear cryptanalysis”, IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, E86-A, No. 1 (2003), 37–46.

[11] Daemen J., Rijmen V., “The Design of Rijndael: AES – The Advanced Encryption Standard
Heidelberg etc.: Springer”, 2002.

[12] Barreto P., Rijmen V., “The Khazad legacy-level block cipher”, First open NESSIE Work-
shop. Leuven., November 2000.

[13] Kang J.-S., Hong S., Lee S., Yi O., Park C., Lim J., “Practical and provable security against
differential and linear cryptanalysis for substitution-permutation networks”, ETRI Journal,
23, No. 4, (December 2001).

[14] Park, S., Sung, S.H., Lee, S., Lim, J., “Improving the Upper Bound on the Maximum
Differential and the Maximum Linear Hull Probability for SPN Structures and AES.”, LNCS,
Fast Software Encryption - FSE 2003, 2887, Springer, Berlin, Heidelberg, 2003, 247–260.

15

https://gitlab.com/v.kir/diff2rLSX

[15] Canteaut, A., Roue, J., “On the behaviors of affine equivalent sboxes regarding differential
and linear attacks”, Advances in Cryptology – EUROCRYPT 2015, 9056, Springer, Berlin,
Heidelberg, 2015, 45–74.

[16] Canteaut, A., Roue, J., “Differential Attacks Against SPN: A Thorough Analysis”, Codes,
Cryptology, and Information Security, C2SI 2015, May 2015, Rabat, Morocco, 9084,
Springer International Publishing, Cham, 2015, 45–62.

[17] Malyshev F.M., Trifonov D.I., “Diffusion properties of XSLP-ciphers”, Mat. Vopr. Kriptogr.,
7:3 (2016), 47–60.

[18] Kiryukhin V., “Exact maximum expected differential and linear probability for 2-round
Kuznyechik”, Mat. Vopr. Kriptogr., 10:2 (2019), 107–116.

[19] Shishkin V., Marshalko G., “A Memo on Kuznyechik S-Box”, ISO/IEC JTC 1/SC 27/WG
2 Officer’s Contribution N1804, September 2018.

16

A Pseudocode of algorithms

Require: (π1, ζ1), (π2, ζ2), . . . , (πN ′ , ζN ′), and ρx, and s =
(
v
2

)
· (νmax(m))2

Ensure: MEDPB+1

1: ρ̃x := nondecreasing_sort(ρx) // 0, . . . , 0, 2
256
, . . . , pmax

2: ρ̃x := nonzero_elements(ρ̃x) // 2
256
, . . . , pmax

3: state[s] := [0, . . . , 0] // indexing from 0
4: for j := 1 to len(ρ̃x) do
5: new_state[s] := [0, . . . , 0] // indexing from 0
6: prx := ρ̃x[j]
7: for c := 0 to s do
8: for i := 1 to N ′ do
9: pr := prx · πi + state[c]

10: pairs := ζ i + c
11: if pairs ≤ s then
12: if new_state[pairs] < pr then
13: new_state[pairs] := pr
14: end if
15: end if
16: end for
17: end for
18: state := new_state
19: end for
20: return max(state)

Algorithm 1: Computing MEDPB+1

The pseudocode above (Algorithm 1) contains a non-optimized version
of the algorithm. The complexity of the algorithm is

O

(
len(ρ̃x) ·N ′ ·

(
v

2

)
· (νmax(m))2

)
,

where len(ρ̃x) is a number of nonzero elements in ρx.
If v = 16, νmax(m) = 2, len(ρ̃x) ≤ 27 (Kuznyechik), then the approxi-

mate number of operations is 225 (less than a minute on a common PC). The
number of distinct pairs N ′ = 7665.

17

Require: (π1, ζ1, η1), (π2, ζ2, η2), . . . , (πN , ζN , ηN), and ρx, and
spairs =

(
v
2

)
· (νmax(m))2, striplets =

(
v
3

)
· (νmax(m))3

Ensure: MEDPB+2

1: ρ̃x := nondecreasing_sort(ρx) // 0, . . . , 0, 2
256
, . . . , pmax

2: ρ̃x := nonzero_elements(ρ̃x) // 2
256
, . . . , pmax

3: state[spairs][striplets] := [0, . . . , 0] // indexing from 0,0
4: for j := 1 to len(ρ̃x) do
5: new_state[spairs][striplets] := [0, . . . , 0] // indexing from 0,0
6: prx := ρ̃x[j]
7: for cpairs := 0 to spairs do
8: for ctriplets := 0 to striplets do
9: for i := 1 to N do

10: pr := prx · πi + state[cpairs][ctriplets]
11: pairs := ζi + cpairs

12: triplets := ηi + ctriplets

13: if pairs ≤ spairs and triplets ≤ striplets then
14: if new_state[pairs][triplets] < pr then
15: new_state[pairs][triplets] := pr
16: end if
17: end if
18: end for
19: end for
20: end for
21: state := new_state
22: end for
23: (π′

1, η
′
1), . . . , (π′

N ′ , η
′
N ′) := (state[spairs][0], 0), . . . , (state[spairs][striplets], striplets)

24: return call Algorithm 1 ((π′
1, η

′
1), (π′

2, η
′
2), . . . , (π′

N ′ , η
′
N ′), ρx, s = striplets)

Algorithm 2: Computing MEDPB+2

The complexity of Algorithm 2 is estimated as trivial as Algorithm 1. If
v = 16, νmax(m) = 2, len(ρ̃x) ≤ 27, then N = 7665 and the approximate
number of operations is 241 (about an hour on common PC).

B Application to Linear Cryptanalysis

There is a certain duality between differential and linear cryptanalysis
[4]. It allows us to apply the algorithms described above to calculate linear
characteristics.

We make the appropriate substitutions.
Differential probability (DP, EDP, EDCP, MEDP) is replaced by linear

probability (LP, ELP, ELCP, MELP correspondingly). DDT is replaced by
Linear Approximation Table (LAT). Input/output differences ∆x and ∆y

18

are replaced by input/output masks µx and µy correspondingly.

LP(µx, µy) = (2 Pr(µx • x = µy • f(x))− 1)2, µx, µy ∈ Fl
2, f : Fl

2 → Fl
2,

where • is the inner product over F2, and x ∈ Fl
2 is a uniformly distributed

random variable.
Differential branch number is replaced by linear branch number. If a linear

transformation generates an MDS code both values are equal to n+ 1.
The value pmax = max

a6=0,b
DDT[a][b] is replaced by

plin,max = max
a6=0,b

LAT[a][b] = LP(a, b), a, b ∈ F8
2.

By analogy with the differential trail a linear characteristic
Ω = (µx, µ1, µ2, µy) for 2 rounds is introduced. ELCP(Ω) is equal to

ELCP(Ω) =

(
n∏
j=1

LP(µx[j], µ1[j])

)(
n∏
j=1

LP(µ2[j], µy[j])

)
,

where µ2 = LT · µ1, L is a binary matrix such that y = L(x) = L · x and LT

is a transposed matrix.
The linear code CL is replaced by the code CLT.
The linear hull (similar to differential) is the set of all linear characteristics

having input mask µx and output mask µy.
The expected probability of the 2-round linear hull (µx, µy) is equal to:

ELP (µx, µy) =
∑

(µ1,µ2)∈F2·8·n
2

(
n∏
j=1

LP(µx[j], µ1[j])

)(
n∏
j=1

LP(µ2[j], µy[j])

)
and

MELP = max
µx 6=0,µy

ELP (µx, µy) .

(23)
In order to go to linear cryptanalysis, one needs to replace all formulas

in Section 3 according to the above analogies.
For 2-round Kuznyechik the only best linear hull containing 37 linear

characteristics Ω1,Ω2, ..., Ω37 is found [18].

MELP = MELPB =
37∑
i=1

= ELCP(Ωi) = 2−76.73....

We show that

MELP+
B+1 ≤ 2−77.15..., MELP+

B+2 ≤ 2−79.63....

A bound on MELP+
B+3 will be not less than 2−80.50....

19

C Khazad

Khazad [12] is a 64-bit (n = 8 byte) block cipher using a 128-bit key. It is
an 8-round SP network. The plaintext is initially XORed with the whitening
key and then undergoes 8 identical rounds.

S-transformation and L-transformation are involutions, S = S−1, L = L−1.
The sequences mx and my are equal (see definition 8).
Due to this involution structure, we can consider only half of the subsets of

codewords. Let’s assume that for some 2-round differential (∆x,∆y) we know
the value of EDP(∆x,∆y). Then we know the value of EDP(∆y,∆x) =
EDP(∆x,∆y).

We have shown that each best differential contains two differential trails
Ω1 and Ω2.

EDCP(Ω1) = pBmax =

(
8

256

)9

= 2−45, EDCP(Ω2) = 2−60.

Eight best differentials (∆x,∆y) and eight differentials (∆y,∆x) were
found. For each of them MEDPB = EDP(∆x,∆y) = EDP(∆y,∆x) =
EDCP(Ω1) + EDCP(Ω2).

We proved that MEDP+
B+1 ≤ 2−44.99... and with improvements described

in Subsection 3.7 MEDP+
B+1 ≤ 2−45.02.... Using algorithm from Subsection

3.8, we get MEDP+
B+2 ≤ 2−45.09.... Thus

MEDP = MEDPB = 2−45 + 2−60.

We also found 16 best linear hulls: eight in the form (µx, µy) and eight in
the form (µy, µx). Each of them contains 108 linear characteristics Ω1, Ω2,
Ω3, ..., Ω108.

ELCP(Ω1) = 2−37.80... < pBlin,max = 2−36, ELCP(Ω2) = 2−67.70....

MELPB =
108∑
i=1

= ELCP(Ωi) = 2−37.80....

MELP+
B+1 ≤ 2−37.83..., MELP+

B+2 ≤ 2−37.92....

(24)

Because of this, we get

MELP = MELPB = 2−37.80....

The obtaining of MEDP+
B+3 and MELP+

B+3 is computationally infeasible
task for us. Furthermore, the result of the algorithm will be not less than
2−45.11... and 2−37.94... respectively.

20

Khazad
(pmax)B FSE2003

MEDPB≤ MEDPB = MEDP+
B+1 ≤ MEDP+

B+2 ≤ (*)MEDP+
B+3 ≤

−45 −43.36 −44.99 −45.02 −45.09 −45.11

(plin,max)B FSE2003
MELPB≤ MELPB = MELP+

B+1 ≤ MELP+
B+2 ≤ (*)MELP+

B+3 ≤
−36 −35.86 −37.80 −37.83 −37.92 −37.94

Table 2: Table of results (log2 scale).

The best differentials

We show only 8 of the 16 differentials (∆x,∆y). The remaining differen-
tials (∆y,∆x) can be easy obtained by swapping ∆x and ∆y.

∆x 1208f0000000000f log2 EDCP(Ωi)
Ω1 1248f0000000000f 0000b548fbeb4800 −45
Ω2 c8070a0000000023 0000130753a60700 −60
∆y 0000bf0818910800
∆x 081200f000000f00 log2 EDCP(Ωi)
Ω1 481200f000000f00 000048b5ebfb0048 −45
Ω2 07c8000a00002300 00000713a6530007 −60
∆y 000008bf91180008
∆x f0001208000f0000 log2 EDCP(Ωi)
Ω1 f0001248000f0000 b54800004800fbeb −45
Ω2 0a00c80700230000 13070000070053a6 −60
∆y bf08000008001891
∆x 00f008120f000000 log2 EDCP(Ωi)
Ω1 00f048120f000000 48b500000048ebfb −45
Ω2 000a07c823000000 071300000007a653 −60
∆y 08bf000000089118
∆x 0f00000000f00812 log2 EDCP(Ωi)
Ω1 0f00000000f04812 0048ebfb48b50000 −45
Ω2 23000000000a07c8 0007a65307130000 −60
∆y 0008911808bf0000
∆x 000f0000f0001208 log2 EDCP(Ωi)
Ω1 000f0000f0001248 4800fbebb5480000 −45
Ω2 002300000a00c807 070053a613070000 −60
∆y 08001891bf080000
∆x 00000f00081200f0 log2 EDCP(Ωi)
Ω1 00000f00481200f0 ebfb0048000048b5 −45
Ω2 0000230007c8000a a653000700000713 −60
∆y 91180008000008bf
∆x 0000000f1208f000 log2 EDCP(Ωi)
Ω1 0000000f1248f000 fbeb48000000b548 −45
Ω2 00000023c8070a00 53a6070000001307 −60
∆y 189108000000bf08

Table 3: The best 2-round Khazad differentials

21

The best linear hulls

As in the previous subsection, we show only 8 of the 16 linear hulls.

µx 6f078e0000000500
µy 00006f0eb400e153

µx 076f008e00000005
µy 00000e6f00b453e1

µx 8e006f0705000000
µy 6f0e0000e153b400

µx 050000008e006f07
µy e153b4006f0e0000

µx 008e076f00050000
µy 0e6f000053e100b4

µx 00050000008e076f
µy 53e100b40e6f0000

µx 000005006f078e00
µy b400e15300006f0e

µx 00000005076f008e
µy 00b453e100000e6f

Table 4: The best 2-round Khazad linear hulls

Ωi µ1 µ2 log2 ELCP(Ωi) Ωi µ1 µ2 log2 ELCP(Ωi)

1 8e4c6f0000002c00 00008ee31300e11e -37.80 22 e9645e0000004000 0000e973a800b716 -75.71

2 a3a9c1000000e300 0000a3fccd0062d8 -67.71 23 b1476b0000007f00 0000b15d3000dae4 -75.71

3 039d5d0000007100 00000319b6005e40 -70.37 24 2de5ae000000cf00 00002d1fde0083c6 -75.71

4 f15a660000008b00 0000f19f540097eb -70.71 25 1deceb0000008800 00001dceb500f602 -75.81

5 8803e10000001e00 000088d8ec0069a1 -70.92 26 05d2d30000004300 000005224900d6ff -75.91

6 a4927b0000000100 0000a4cfa000df58 -71.47 27 daf0460000007600 0000dabb75009c92 -76.03

7 f9639d0000007d00 0000f9c371006455 -71.77 28 32e02c000000e600 000032c04f001ebb -76.34

8 1ba365000000ba00 00001bf54a007ebd -71.85 29 465283000000c600 000046f99b00c5b0 -76.40

9 0ba4a60000008700 00000b459300adfe -72.05 30 af36dd0000008600 0000af8a330072a6 -76.54

10 849cfd0000007b00 000084ae120079df -72.56 31 d66f5a0000001300 0000d6cd8b008cec -76.88

11 2f0cc70000006e00 00002f0efa00e8b9 -72.71 32 6167bf0000005e00 000061ab4400deb7 -76.92

12 bb97f90000002800 0000bb1031004225 -72.90 33 bf311e000000bb00 0000bf3aea00a1e5 -76.96

13 d3bd890000005000 0000d3efc2005a13 -72.98 34 c5f5c40000005f00 0000c564e40001ef -77.40

14 ecb68d0000000300 0000ec51e10061e9 -73.32 35 42f4640000005500 000042d340002670 -77.51

15 6728310000006c00 00006790bb005608 -74.23 36 a0349c0000009200 0000a0e57b003c98 -77.54

16 064f8e0000003200 0000063bff0088bf -74.28 37 4726b70000001600 000047f10900f08f -77.81

17 9aed4b0000008200 00009a791100d19d -74.62 38 bae3cd000000f800 0000ba18a300771a -77.85

18 b5e18c000000ec00 0000b577eb003924 -74.92 39 d020d40000002100 0000d0f674000453 -78.15

19 35db960000000400 000035f32200a33b -75.32 40 c96ad80000003a00 0000c9121a001191 -78.15

20 f715e8000000b900 0000f7a4ab001f54 -75.51 41 a80d670000006400 0000a8b95e00cf26 -78.30

21 1007c30000003d00 000010b0d900d343 -75.66 42 9804220000002300 000098683500bae2 -78.49

Table 5: One of the best 2-round Khazad linear hull,
µx = 6f078e0000000500, µy = 00006f0eb400e153 (part 1)

22

Ωi µ1 µ2 log2 ELCP(Ωi) Ωi µ1 µ2 log2 ELCP(Ωi)

43 e5fb420000002500 0000e5055600a768 -78.68 76 a70f260000007000 0000a7d616008118 -85.22

44 ff2c130000004f00 0000fff88e00ecea -78.76 77 82d3730000004900 00008295ed00f160 -85.32

45 701448000000b300 000070130f0038cb -78.90 78 2943490000005c00 0000293505006006 -85.40

46 665c05000000bc00 0000669829006337 -79.02 79 903dd9000000d500 000090341000495c -85.60

47 f02e520000005b00 0000f097c600a2d4 -79.20 80 9f3f98000000c100 00009f5b58000762 -85.85

48 7e623d0000007700 00007e74d50043ca -79.32 81 de56a1000000e500 0000de91ae007f52 -85.85

49 aae40e000000c500 0000aaa87a00a459 -79.54 82 b708e50000004d00 0000b766cf00525b -86.19

50 b67cd10000009d00 0000b66e5d006764 -79.71 83 d96d1b0000000700 0000d9a2c300c2d2 -86.49

51 6f11ca0000009a00 00006fcc9e00a5b6 -79.85 84 9dd6f10000006000 00009d4a7c006c1d -86.49

52 93a084000000a400 0000932da600171c -80.03 85 4950c2000000d200 00004996d3008b8e -86.49

53 71607c0000006300 0000711b9d000df4 -80.15 86 8f385b000000fc00 00008feb8100d421 -86.49

54 2ade140000002d00 00002a2cb3003e46 -80.25 87 be452a0000006b00 0000be32780094da -86.71

55 6bb72d0000000900 00006be645004676 -80.34 88 b2da360000000e00 0000b244860084a4 -86.83

56 75c69b000000f000 000075314600ee34 -80.37 89 9ca2c5000000b000 00009c42ee005922 -86.83

57 b0335f000000af00 0000b055a200efdb -80.83 90 8977d5000000ce00 000089d07e005c9e -87.60

58 c481f00000008f00 0000c46c760034d0 -81.02 91 a67b12000000a000 0000a6de8400b427 -87.66

59 1f05820000002900 00001fdf91009d7d -81.34 92 8dd1320000005d00 00008dfaa500bf5e -87.85

60 fb8af4000000dc00 0000fbd255000f2a -81.40 93 caf7850000004b00 0000ca0bac004fd1 -88.19

61 6df8a30000003b00 00006dddba00cec9 -81.85 94 a5e64f000000d100 0000a5c73200ea67 -88.49

62 6c8c97000000eb00 00006cd52800fbf6 -82.05 95 5c85d2000000ac00 00005c0443008e32 -89.02

63 7dff600000000600 00007d6d63001d8a -82.19 96 fe58270000009f00 0000fef01c00d9d5 -89.66

64 814e2e0000003800 0000818c5b00af20 -82.37 97 4e6b780000003000 00004ea5be00360e -89.91

65 217ab2000000aa00 00002169200093b8 -82.57 98 52f3a70000006800 000052639900f533 -90.19

66 04a6e70000009300 0000042adb00e3c0 -82.82 99 682a700000007800 000068fff3001836 -90.49

67 eaf9030000003100 0000ea6a1e00e956 -82.83 100 e48f76000000f500 0000e40dc4009257 -90.49

68 d8192f000000d700 0000d8aa5100f7ed -82.90 101 317d710000009700 000031d9f90040fb -91.22

69 74b2af0000002000 00007439d400db0b -83.66 102 738915000000c200 0000730ab900668b -91.66

70 c027170000001c00 0000c046ad00d710 -83.74 103 62fae20000002f00 000062b2f20080f7 -92.19

71 eb8d37000000e100 0000eb628c00dc69 -83.85 104 0c9f1c0000006500 00000c76fe00107e -92.19

72 15d5100000007e00 00001592900005bc -84.03 105 173c79000000df00 00001783b4006ec3 -92.49

73 ccb80b0000007900 0000cc305300c76e -84.57 106 dcbfc80000004400 0000dc808a00142d -93.02

74 28377d0000008c00 0000283d97005539 -84.68 107 0f02410000001400 00000f6f48004e3e -94.49

75 55c81d0000008a00 00005550f40048b3 -85.02 108 3ad9d70000001000 00003a9c6a00ed05 -97.66

Table 6: One of the best 2-round Khazad linear hull,
µx = 6f078e0000000500, µy = 00006f0eb400e153 (part 2)

23

	1 Introduction
	2 Notations and definitions
	3 Upper bound on non-minimum weight differentials
	3.1 Auxiliary lemmas
	3.2 Representation of trails in the differential
	3.3 DDT simplification
	3.4 Constraints
	3.5 Bounds on DP*(Block)
	3.6 Optimization problem
	3.7 Another constraints
	3.8 Computing MEDPB+2+ and other

	4 New bounds on MEDP for 2-round Kuznyechik
	5 Conclusion
	References
	A Pseudocode of algorithms
	B Application to Linear Cryptanalysis
	C Khazad

