
Triply Adaptive UC NIZK

Ran Canetti∗

Boston University
Pratik Sarkar

Boston University
Xiao Wang

Northwestern University

Abstract

The only known non-interactive zero-knowledge (NIZK) protocol that is secure against adap-
tive corruption of the prover is based on that of Groth-Ostrovsky-Sahai (JACM’11) (GOS).
However that protocol does not guarantee full adaptive soundness. Abe and Fehr (TCC’07)
construct an adaptively sound variant of the GOS protocol under a knowledge-of-exponent as-
sumption, but knowledge assumptions of this type are inherently incompatible with universally
composable (UC) security.

We show the first NIZK which is triply adaptive: it is a UC NIZK protocol in a multi-
party, multi-instance setting, with adaptive corruptions and no data erasures. Furthermore, the
protocol provides full adaptive soundness. Our construction is very different than that of GOS:
it is based on the recent NIZK of Canetti et al (STOC’19), and can be based on a variety of
assumptions (e.g. LWE, or LPN and DDH). We also show how to get a succinct reference string
assuming LWE or DDH from GOS-like techniques.

∗Member of the CPIIS. Supported by NSF Awards 1931714, 1801564, 1414119, and the DARPA SIEVE program.

1

Contents

1 Introduction 3
1.1 Our Contributions . 4
1.2 Our Techniques and Instantiations . 4
1.3 Related Works . 5

2 Technical Overview 6
2.1 ZK Protocol of FLS . 6
2.2 Our ZK Protocol . 7
2.3 Our NIZK protocol . 10
2.4 Reducing the length of the crs . 12
2.5 Obtaining UC Security for multiple subsessions . 13

3 Preliminaries 14
3.1 Non-Interactive Zero Knowledge . 14
3.2 Interactive Zero Knowledge . 16
3.3 Commitment Schemes . 18
3.4 Common Reference String Model . 19
3.5 Correlation Intractability. 19

4 Triply Adaptive Delayed Input Three Round ZK Argument 20

5 Triply Adaptive NIZK Argument 25
5.1 Instantiation based on LWE assumption . 30
5.2 Instantiation based on LPN+DDH assumption . 30

6 Triply Adaptive NIZK Argument in the short crs model 31

7 Triply Adaptive, multi-proof UC-NIZK Argument 35

A Calculation for computing occurrence of bad event 44

2

1 Introduction

Non-Interactive zero knowledge (NIZK) [BFM90, BSMP91] is a magical primitive: With the help
of a trusted reference string, it allows parties to publicly assert knowledge of sensitive data, and
prove statements regarding the data, while keeping the data itself secret. Furthermore, proofs are
written once and for all, to be inspected and verified by anyone at any time.

Much work was done on this central concept. A first thrust provides basic formulations of
soundness and zero knowledge the presence of a reference string, and constructions that satisfy
them under standard assumptions [BSMP91, FLS99, GR13]. Indeed, even basic soundness and
zero knowledge turn out to be non-trivial to formulate and obtain, especially in the case of multiple
proofs that use the same reference string and where the inputs and witnesses are chosen adversarially
in an adaptive way.

A second thrust considers a multi-party setting and addresses malleability attacks [SCO+01,
DDN91], and universally composable (UC) security [CLOS02] In particular, UC NIZK has been
used as a mainstay for incorporating NIZK proofs in cryptographic protocols and systems - actively
secure MPC [GMW87], CCA secure encryption [NY90, DDN91], signatures [BMW03, BKM06] and
cryptocurrencies [BCG+14].

However, one challenge has remained: Can we have NIZK protocols that are secure in a multi-
party setting where the adversary can adaptively corrupt parties? Here the traditional definition
is extended so as to guarantee that the attacker does not gain any advantage towards breaking the
security of the overall system, beyond to the ideal case where the NIZK is replaced by a trusted
party, even when corrupting a prover after the proof was sent, and obtaining the hidden internal
state of the prover1.

The first protocol that provides security in such a setting is that of Groth Ostrovsky and Sahai
[GOS06] (GOS). That protocol is also UC secure, even in a multi-proof, multi-party setting. This
implies non-malleability, as well as a weak form of adaptive soundness (essentially it is guaranteed
that the sequence of instances proven to be in L in an execution of the protocol is indistinguishable
from a sequence of instances that are actually in L, even given the reference string). However it
does not guarantee full soundness, unless all instances to be proven are fixed ahead of time before
the reference string is known, to avoid dependency of the instance on the reference string. The
works of [KNYY19, KNYY20] have similar characteristics: they provide security against adaptive
corruptions, but only weak adaptive soundness.

Abe and Fehr [AF07] show how to prove full adaptive soundness of a variant of the GOS protocol,
under a knowledge-of-exponent (KOE) assumption2. However, the [AF07] analysis is inherently
incompatible [KZM+15] with UC security. Indeed, KOE-style assumptions require existence of a
knowledge extractor that has full access to the code of the environment, and furthermore is larger
than the same. In contrast, in the UC framework a single extractor/simulator would have to handle
arbitrary polytime environments.

We are thus left with the following natural question: Can we have triply adaptive NIZK proto-
cols, namely full-fledged UC NIZK protocols in the multi-party, multi-proof setting, in the case of
adaptive corruptions without erasures, and with full adaptive soundness? And if so, then under

1In cases where the prover can erase its sensitive state - specifically the witness and randomness used in generating
the proof - adaptive security is easy to obtain. However such immediate and complete erasure of local state is not
always practical

2[AF07] provides adaptive soundness and adaptive zero knowledge and claims security against adaptive corruptions
in Remark 11 of their paper

3

what assumptions?

1.1 Our Contributions

We obtain the first UC-secure NIZK protocol that is triply adaptive in the crs model. The crs
can be reused for multiple NIZK instances between different set of parties. Our result can be
obtained either from Learning With Errors (LWE) assumption or Decisional Diffie Hellman (DDH)
and Learning Parity with Noise (LPN) assumption. Our main result is summarized below.

Theorem 1.1. (Informal) Assuming LWE assumption holds or DDH and LPN assumptions hold,
there exists a multi-theorem NIZK protocol that UC-securely implements the NIZK functional-
ity(Fig. 1) against adaptive corruptions in the crs model for multiple instances. Furthermore,
it is adaptively sound and adaptively zero knowledge.

As an independent result we also obtain a compiler that transforms a NIZK protocol in the crs
model (where the crs can depend on the NP relation) to the short crs model (where the length of
the crs depends only on the security parameter) while preserving triple adaptive security. It can
be constructed from DDH or LWE assumptions. Previous such compilers [GGI+15, CsW19] were
known only from LWE. Compiling our above protocol we obtain a triply adaptive UC-NIZK in the
short crs model.

Theorem 1.2. (Informal) Assuming LWE assumption holds or DDH and LPN assumptions hold,
there exists a multi-theorem NIZK protocol that UC-securely implements the NIZK functional-
ity(Fig. 1) against adaptive corruptions in the short crs model (where |crs| = poly(κ) and κ is
the computational security parameter) for multiple instances. Furthermore, it is adaptively sound
and adaptively zero knowledge.

1.2 Our Techniques and Instantiations

Next, we discuss our protocols and their instantiations from various assumptions in more details.

– We demonstrate that the Sigma protocol ΠZK of [FLS99] (FLS) can be modified to obtain
a three round protocol ΠZK. The protocol ΠZK runs O(κ) parallel iterations of the modified
FLS protocol and UC-realizes the zero knowledge (ZK) functionality (Fig. 3) for a single
session in the crs model, given any non-interactive equivocal commitment scheme and a
public key encryption (PKE) scheme with oblivious ciphertext sampleability. Moreover, it is
triply adaptive in nature. We also show that the crs is multi-proof, i.e. prover can construct
multiple proofs for different statements with the same crs as long as the roles of the parties are
preserved. The equivocal commitment can be instantiated from DLP [Ped92], Decisional Diffie
Hellman [CSW20], LWE [GVW15] and many other assumptions [Oka93, FF02, GVW15].
The PKE can be instantiated from DDH assumption [ElG85] or LWE [GSW13] assumptions.
Thus, our triply adaptive ZK protocol can be instantiated solely based on DDH or LWE. Our
protocol also satisfies delayed-input property - only the last message of the prover depends
on the statement and the witness. This property allows ΠZK to substitute the usage of triply
adaptive NIZKs in the online phase of protocols (in the offline-online paradigm). The prover
and the verifier can run the first two rounds of ΠZK in the offline phase without the knowledge
of the statement. In the online phase the prover receives the statement and the witness. He
computes the third message and sends the proof. This serves the purpose of a NIZK in the
online phase by relying on DDH assumption; whereas NIZK from DDH is not known.

4

– In ΠZK the verifier algorithm is public-coin, i.e. the verifier’s message consists of publicly
sampled random coins. It allows us to apply the Fiat-Shamir heuristic [FS87] using correlation
intractable hash [CGH98] functions. This yields the first triply adaptive UC-NIZK (for a
single session) protocol ΠNIZK without relying on knowledge assumptions. Moreover, the
setup string is multi-proof and can be used by the prover to prove multiple statements. The
hash function can be instantiated from LWE [PS19] or circular LWE [CCH+19]. A recent
work by [BKM20] introduced the notion of CI for approximable relations (CI-Approx) and
showed that CI-Approx for constant-degree polynomials is sufficient for NIZK, provided the
underlying public-coin ZK protocol is implemented using a PKE where decryption can be
performed using a constant-degree polynomial. They construct CI-Approx functions from
enhanced trapdoor hash functions [DGI+19] based on DDH, Quadratic Residuosity (QR),
Decisional composite residuosity (DCR) and LWE, and implement their PKE using Learning
Parity with Noise (LPN) assumption (the LPN-based PKE scheme also satisfies oblivious
ciphertext sampling). Our results hold if we replace our CI hash function with a CI-Approx
hash. This yields our NIZK protocol from LWE or DDH and LPN assumptions.

– By applying techniques from GOS, we obtain a compiler which reduces the crs size of a NIZK
argument. Assuming reusable non-interactive equivocal commitments with additive homo-
morphism and PKE (with oblivious ciphertext sampleability) we compile any NIZK argument
Π with a long multi-proof crs, i.e. |crs| = poly(κ, |C|) to obtain a NIZK argument Πs with a
short multi-proof common reference string scrs, where |scrs| = poly(κ), C is the NP verifica-
tion circuit and κ is the computational security parameter. Moreover, Πs is triply adaptive if
Π is triply adaptive. By applying the compiler on our NIZK argument ΠNIZK (or ΠUC-NIZK) we
obtain a NIZK argument ΠsNIZK in the short crs model. Such homomorphic commitments can
be instantiated from various assumptions like DDH [Ped92, CSW20] and LWE/SIS [GVW15]
and other assumptions[Oka93, FF02, GVW15]. The PKE can be instantiated from DDH
assumption [ElG85] or LWE [GSW13] assumptions. Our compiler works based on DDH or
LWE assumption. Compiling ΠNIZK we obtain a triply adaptive NIZK ΠsNIZK in the short crs
model from LWE or DDH and LPN assumptions.

– We add non-malleability to our NIZK argument ΠsNIZK using a tag-based simulation-sound
trapdoor commitment scheme and a strong one-time signature scheme to obtain the multi-
session UC-secure NIZK ΠUC-NIZK in the short crs model. The tag-based commitment can
be instantiated from UC-commitments - DDH [CSW20] and LWE [DPR16]. Strong one-
time signatures can be constructed [Rom90] from one-way functions. We also prove that
our protocol also satisfies adaptive zero knowledge and provides adaptive soundness. Our
protocol ΠUC-NIZK is triply adaptive under LWE or DDH and LPN assumptions.

1.3 Related Works

The works of [GOS06, KNYY19, KNYY20] construct NIZKs which are secure against adaptive cor-
ruptions but they lack adaptive soundness. The works of [CCH+19, BKM20] construct statically
secure NIZKs which attain adaptive soundness and adaptive ZK. A concurrent work by [CPV20]
compiled delayed input Sigma protocol into a Sigma protocol which satisfies adaptive zero knowl-
edge. Upon applying the result of [CPS+16b] they obtain adaptive soundness. The Fiat-Shamir
transform is applied using CI hash function to obtain NIZKs, but they lack security against adaptive

5

corruptions. The only work which achieves triple adaptive security is [AF07] based on knowledge
assumptions; which is incompatible with the UC framework.

The literature consists of work [GGI+15, CsW19] that make the crs size independent of |C| but
those approaches are instantiatable only from LWE. Whereas, our compiler can be instantiated
from non-lattice based assumptions like DDH.

Paper Organization. In Section 2, we present the key intuitions behind our protocols. We
introduce some notations and important concepts used in this paper in Section 3. This is followed
by our triply adaptively-secure version of FLS in Section 4. Then, we make it non-interactive to
obtain our triply adaptively-secure NIZK protocol in Section 5 using CI hash functions. We present
our compiler to reduce the crs length in Section 6. Finally, we conclude with our multi-session UC-
NIZK protocol in the short crs model in Section 7.

Note. Throughout the paper we refer to security against adaptive corruptions as adaptive security.

2 Technical Overview

In this section we provide an overview of our protocol. First, we show that the Sigma protocol
of FLS can be modified to obtain a public-coin protocol implementing FZK (Fig. 3) functionality
using equivocal commitment and PKE with oblivious ciphertext sampling. Then, we make it non-
interactive by applying the Fiat-Shamir transform using correlation intractable hash functions.
Assuming homomorphic equivocal commitments we reduce the crs size to poly(κ). All our protocols
are triply adaptive and single session UC-secure. Finally, we make it UC-secure for multi-sessions
by adding non-malleability.

2.1 ZK Protocol of FLS

We briefly recall the ZK protocol of FLS for the sake of completeness. Let RHam be the set of
Hamiltonian graphs. The prover P proves that an n-node graph G is Hamiltonian, i.e. G ∈ RHam,
given a Hamiltonian cycle σ as a witness. P samples a random n-node cycle H and commits to
the adjacency matrix of the cycle. The matrix contains n2 entries, and P commits to the edges
as Com(1), and non-edges as Com(0). The prover sends these commitments to the verifier V. V
samples a random challenge bit e and sends it to the prover. If e = 0, then P decommits to the cycle
H. Else, it computes a random permutation π s.t. H = π(σ) and decommits to the non-edges in
π(G) and sends π. P sends these decommitments as its response z. Upon obtaining z, the verifier
performs the following based on e:

– e = 0 : Verify that z contains decommitments to 1, and they form a valid cycle, i.e. the
prover must have committed to a valid n-node cycle.

– e = 1 : Verify that z contains decommitments to 0, and the decommitted edges correspond
to non-edges in π(G).

Soundness and Proof of Knowledge. When G /∈ RHam, a corrupt prover gets caught with
probability 1

2 unless he breaks the binding property of the commitment scheme. The soundness
error can be further reduced to 2−κ with κ parallel repetitions. When G ∈ RHam and a corrupt
prover computes an accepting transcript (a, e, z) then a witness cycle σ can be extracted. They
rely on rewinding the prover as they are in the plain model. Extraction is performed by rewinding
the prover to generate a transcript - (a, e′, z′) on a different challenge e′ = 1 − e. Given z and z′

the extractor obtains (H,π) and computes σ = π−1(H).

6

Zero Knowledge. The protocol only achieves zero knowledge against an honest verifier. The
ZK simulator samples a random challenge e and based on that he computes (a, z) as follows.

– e = 0 : P samples a random n-node cycle H and commits to the adjacency matrix of the
cycle as a. He sets z as the decommitment to the cycle.

– e = 1 : P sets all the commitments to 0, i.e. commits to an null graph. It computes a random
permutation π and decommits to the non-edges in π(G).

Let use denote a proof as γ = (a, e, z). It can be observed that an honest γ is identically distributed
to a simulated γ when e = 0. When e = 1, an honestly γ contains a committed cycle whereas
γ contains commitments to 0. The two proofs are indistinguishable due to the hiding of the
commitment scheme.

Static Security. The protocol provides only security against static corruption of parties. Suppose
the ZK simulator constructs a simulated proof where e = 1 and the prover gets corrupted post-
execution. In such a case, the simulator obtains a valid witness cycle σ and he has to open
the unopened commitments (which are commitments to 0) s.t. they contain a cycle. Since the
commitments in the original FLS protocol were not equivocal in nature, the simulator fails to
equivocate the commitments; thus providing only static security.

Delayed-input property. The first message of the prover is computed based on the parameter
n without the knowledge of the graph or the witness. After obtaining e from V, the prover requires
the input graph G and the witness cycle σ to construct the response. Thus, only the last message
in this protocol depends on the input. This property is called delayed-input property.

2.2 Our ZK Protocol

Next, we consider ` = O(8µ, κ) (where µ is the statistical security parameter) parallel invocations
of the above protocol and we incrementally modify it to obtain our UC-secure ZK protocol ΠZK =
(a, e, z) = ({a1, . . . , a`}, {e1, . . . , e`}, {z1, . . . , z`}) in the crs model.

Soundness and Proof of Knowledge. We remove dependency on rewinding the prover (for
witness extraction) by assuming a PKE where the public key pk is provided in the crs. Recall that
the prover’s view in the first round consists of an adjacency matrix, i.e. n2 bits {bj}j∈[n2], of an
n-node cycle where n of the bit entries are 1. For each commitment cj = Com(bj ; rj) (where rj
is the commitment randomness) to bit bj in the prover’s first message ai (for the ith run of the
protocol), the prover also encrypts rj as Ej = Enc(pk, rj ; sj) using randomness sj . When the prover
decommits to cj as (bj , rj) in the third message zi he also provides sj as a valid opening of Ej to rj .
The verifier accepts the proof if both cj and Ej were correctly opened. Soundness follows similarly
to the FLS protocol by relying on the binding property of the commitment scheme. Meanwhile, a
corrupt prover’s witness can be extracted from the proof by a simulator S. The simulator possesses
the secret key sk corresponding to pk. He decrypts Ej to obtain rj . S reconstructs cj by brute
forcing over bj ∈ {0, 1} and using rj as the commitment randomness. This allows S to reconstruct
the adjacency matrix of the corrupt prover from (b1, . . . , bn2) values; hence recovering the witness.
The exact witness extraction process is a bit more involved and it requires running the protocol
` = O(8µ, κ) times instead of κ times.

7

Zero Knowledge. The FLS protocol guarantees ZK when the challenge is randomly sampled by
an honest verifier. However, in our protocol the verifier can be statically corrupt. In such a case,
the ZK simulator of FLS fails. To tackle this issue, we assume the commitments are equivocal in
nature and the public parameter of the commitment is provided in the crs. The ZK simulator of
ΠZK possesses the trapdoor of the commitment. It allows him to construct the commitments in
the equivocal mode for the first message ai. After obtaining the adversarially generated challenge
ei the simulator can equivocate the commitments s.t. they are consistent with the challenge and
the statement graph. However, we also need to equivocate the encryptions of the commitment
randomness, i.e. Ej . The encryptions cannot be equivocated since they are perfectly binding
due to the correctness of the PKE scheme. We solve this problem by using a PKE that allows
obliviously sampling a ciphertext from the ciphertext space. The obliviously sampled ciphertext is
indistinguishable from a real ciphertext. Using such a PKE, the prover sends two encryptions Ej,0
and Ej,1 corresponding to each cj = Com(bj ; rj) where Ei,bj = Enc(pk, rj ; sj) and Ei,bj (bj = 1− bj)
is sampled obliviously. When the prover opens cj to bj he also provides (rj , sj) and claims that
Ei,bj was sampled obliviously. The verifier checks that the commitment cj and the corresponding
encryption Ej,bj was computed correctly using the commitment randomness rj and the encryption
randomness sj respectively. This is the complete description of ΠZK and we summarize it later in
this section. Now, we can prove that ΠZK provides ZK. A ZK simulator can compute two openings of
cj as (0, rj) and (1, r′j). He encrypts both openings Ej,0 = Enc(pk, rj ; sj) and Ej,1 = Enc(pk, r′j ; s

′
j).

For opening cj to a bit, suppose 0, the simulator sends the opening as (0, rj , sj) and claims that
Ej,1 was obliviously sampled. The encryption of 1 (in the simulated proof) is indistinguishable
from obliviously sampled ciphertext (in the real ZK proof) due to the oblivious sampling property
of PKE. Thus, zero knowledge follows from the equivocal property of the commitment and the
oblivious ciphertext sampling property of the PKE.

Adaptive Security. We only consider the case where the prover is honest and the verifier is
statically corrupt (the other adaptive corruption cases are similar to the static corruption cases).
The ZK simulator constructs a simulated proof γ as described in the previous paragraph. Recall
that the commitments cj were constructed in the equivocal mode and the corresponding randomness
rj (resp. r′j) for bit 0 (resp. 1) are encrypted in Ej,0 (resp. Ej,1). Later, the prover gets post-
execution corrupted and the simulator obtains a valid cycle σ. The simulator needs to provide
prover’s randomness s.t. the unopened commitments are consistent with σ. The simulator can
open any unopened commitment cj to bit b, suppose 0, by sending the opening as (0, rj , sj) and
claim that Ej,1 was obliviously sampled. An adaptive adversary cannot distinguish between a real
prover’s view and a simulated prover’s view due to the equivocal property of the commitment
scheme and the oblivious ciphertext sampling property of PKE.

Delayed-input Adaptive Soundness. The FLS protocol supports input-delayed property, i.e.
only the last message of the prover depends on the statement and the witness. This allows the
prover to adaptively choose his statement in the last round of the protocol based on the first and
second round messages. We also allow the prover to adaptively choose his statement based on the
crs distribution. This does not hamper soundness since the crs distribution in real and ideal worlds
are identical and the simulator is provided with the trapdoor of the crs. If a corrupt prover breaks
adaptive soundness of the protocol then he breaks the binding property of the commitment scheme
or he correctly guesses the e string, which happens with negligible probability. The adversary for
the commitment obtains the crsCom for the commitment and he samples a public key pk to set
the crsZK = (crsCom, pk). He invokes the adversary for adaptive soundness to obtain a proof. The

8

adversary for the commitment scheme can check if in any iteration ∃i ∈ [`],∃j ∈ [n2], s.t. in the ith
iteration the commitment cj opens both to 0 and 1 by decrypting rj and r′j from Ej,0 and Ej,1 given
the secret key sk. He returns rj and r′j to the challenger of Com to break the binding property.

Delayed-input Adaptive Zero Knowledge. Our protocol also satisfies delayed-input adaptive
zero knowledge since the ZK simulator (presented above) works when the statement to be proven
is chosen adaptively (by a statically corrupt verifier) in the last round based on the crs distribution
and the first two messages.

Final Protocol. For the sake of completeness we describe our final protocol ΠZK. ΠZK consists
of ` = O(8µ, κ) parallel repetitions of the following protocol. The crs consists of a public key
pk and crsCom, i.e. the crs of the equivocal commitment scheme. P samples a random n-node
cycle H and commits to the adjacency matrix of the cycle. The matrix contains n2 binary entries,
and P commits to the edges as Com(1; r), and non-edges as Com(0; r). For each commitment
cj = Com(bj ; rj) (j ∈ [n2]) the prover also encrypts the randomness as Ej,bj = Enc(pk, rj ; sj) and
samples Ej,b obliviously. P sends these commitments and encryptions as its first message a. The
verifier V samples a random challenge bit e and sends it to the prover. If e = 0, then P decommits
to the cycle H and the randomness of the corresponding commitment and encryption, i.e. (rj , sj)
(the Ej,0 encryptions are claimed as obliviously sampled where j is an edge in H). Else, it computes
a random permutation π from σ to H. P sends π and decommits to the non-edges in π(G) and the
randomness of the corresponding commitment and encryption, i.e. (rj , sj) (the Ej,1 encryptions
are claimed as obliviously sampled where j is a non-edge in π(G)). P sends these decommitments
as its response z. Upon obtaining z, the verifier performs the following based on e:

– e = 0 : Verify that z contains decommitments to 1, and they form a valid cycle, i.e. the
prover must have committed to a valid n-node cycle.

– e = 1 : Verify that z contains decommitments to 0, and the decommitted edges correspond
to non-edges in π(G).

For each opened commitment cj (to bit bj) the verifier obtains (bj , rj , sj). He checks that cj =
Com(bj ; rj) and Ej,bj = Enc(pk, rj ; sj). V rejects the proof if any check fails. This completes the
description of ΠZK.

Multi-Proof Setting. The crs = (crsCom, pk) can be used by the same prover to prove multiple
statements. If the prover is corrupted then his witness for every accepting proof can be extracted
by a simulator given the secret key sk. If the prover is honest then the simulator can always
construct simulated proofs that are accepting given the trapdoor of crsCom. He simulates the proofs
by equivocating the openings of the commitments. Adaptive security is also ensured based on the
equivocal property of the commitment scheme and oblivious sampling property of PKE.

Usefulness in Offline-Online Paradigm. The input-delayed property allows us to substitute
the usage of NIZKs in offline-online paradigm protocols where the NIZK is run in the online phase.
The prover and the verifier can run the first two rounds of ΠZK in the offline phase without the
knowledge of the statement. In the online phase the prover receives the statement and the witness.
He computes the third message and sends the proof. It serves the purpose of a NIZK in the online
phase of the protocol by relying on DDH.

9

2.3 Our NIZK protocol

Next, we make ΠZK non-interactive to obtain ΠNIZK, which implements FNIZK functionality for a
single session, using the Fiat-Shamir transform. We instantiate the hash function in the Fiat-Shamir
Transform using a correlation intractable hash function H [PS19, CCH+19, BKM20].

Correlation Intractability. A correlation intractable hash function H has the following prop-
erty: For every efficient function f , given a hash function H ← H from the hash family H, it is
computationally hard to find an x s.t. f(x) = H(x). Based on the first message a of a trapdoor-
Sigma Protocol, the Fiat-Shamir challenge e can be generated using the hash function as e = H(a).
The prover computes the third message z using e. Trapdoor-Sigma protocol ensures that for every
statement not in the language there can be only one bad challenge e = g(a) s.t. (a, e, z) is an
accepting transcript. By setting the function f = g as the bad challenge function in H it is ensured
that a malicious prover who constructs a bad challenge e = H(a) can be used to break correlation
intractability since e = g(e) = f(e). This guarantees soundness of the NIZK protocol.

Applying the Fiat-Shamir transform on ΠZK. We denote ΠZK = (a, e, z) = ({a1, . . . , a`},
{e1, . . . , e`}, {z1, . . . , z`}). ΠZK protocol is not a trapdoor sigma protocol since the commitments
are equivocal in nature. For any G /∈ RHam and any prover’s first message a there can be many
different openings, hence many accepting transcripts (a, e, z). So we rely on the binding property of
the commitment scheme and move to a hybrid where the commitments are always binding. In this
hybrid, a corrupt prover can produce an accepting transcript corresponding to a for one possible
value of e. The bad challenge function is well-defined in this hybrid. Thus, we can apply the
Fiat-Shamir transform using H and rely on the correlation intractability argument for soundness
in this hybrid. More details of our NIZK protocol ΠNIZK follows.

The setup algorithm initializes the hash function H in the statistical mode, by setting the crs
of the protocol to be crs of ΠZK and hash key k, where k is generated as follows:

k = H.StatGen(Csk).

Csk is a poly-size circuit that takes a (of ΠZK) as input. Recall, that a should be a commitment to
a n-node cycle in ΠZK. Csk(a) is the circuit computing the function fsk(a) = e s.t. for every i ∈ [`],
ei = 0 if it can extract (using the extraction key sk of the commitment scheme) a n-node cycle from
ai, i.e. Ext(sk, ai) is a cycle (where Ext is the extractor algorithm for the commitment scheme).
Setting the hash function in the statistical mode ensures that the hash function H is correlation
intractable for all relations of the form:

Rsk = {(a, e) : e = fsk(a)}

The NIZK prover invokes the ZK prover (of ΠZK) to obtain a. The challenge vector e = (e1, e2, . . . , e`)
is generated non-interactively by hashing a using the hash key k.

e = H(k,a),

Upon computing e, the NIZK prover invokes the ZK prover with e to obtain z = (z1, z2, . . . , z`)
as a response. The NIZK prover sends the final proof as (a, e, z). The NIZK verifier computes
e′ = H(a) and runs the ZK verifier on γ to verify the proof. He aborts if e 6= e′ or the ZK verifier
rejects the proof.

10

Soundness and Proof of Knowledge. We argue soundness of the protocol by considering a
hybrid where the commitments are binding. This hybrid is indistinguishable from the real world
due to the binding property of Com. In this hybrid if G /∈ RHam, then the bad challenge function
is well defined for every a. It is guaranteed that the prover cannot construct an accepting proof
due to correlation intractability. Correlation intractability ensures that either of the following two
exhaustive cases occur for every i ∈ [`]:

– ei = 0 when Ext(sk, ai) is not a cycle: P has committed to a graph in ai which does not
contain a cycle. In such a case, it can open to a cycle in zi only if it breaks the binding
property of the underlying commitment scheme used to construct the commitments in ai.

– ei = 1 when Ext(sk, ai) is a cycle: Let G′ denote the graph committed in ai. We can argue
that there does not exist any graph G′ which is a permutation of input graph G and G′

contains contains a n-node Hamiltonian cycle, since G is not Hamiltonian. Thus, the prover
would fail to produce an accepting zi in this case which is permutation of the non-edges of
G, unless it breaks the binding property of the commitment scheme.

For proof of knowledge, the simulator can extract the witness σ from a maliciously generated proof
by running the underlying simulator of ΠZK for a corrupt prover.

Adaptive Soundness. Next, we argue adaptive soundness of ΠNIZK. The distribution of crs is
identical in the real and ideal world executions of ΠNIZK. The crs consists of the hash key k and the
crs of ΠZK. The Hash function H is instantiated in the statistical mode. It is statistically infeasible
to find e, s.t. e = f(a) unless the adversary breaks the binding of the commitment scheme. Given
an adversary for adaptive soundness one can construct an adversary ACOM for the commitment
scheme. ACOM obtains crsCom for the commitment and he samples a PKE key pair (pk, sk). ACOM

computes k ← H.StatGen(1κ, Csk) given sk. ACOM invokes A with crs = (k, crsCom, pk) to obtain a
proof. The adversary for the commitment scheme can check if ∃i ∈ [`],∃j ∈ [n2], s.t. commitment
cij opens both to 0 and 1 by decrypting rij and rij

′
from Eij,0 and Eij,1 given the secret key sk.

He returns rij and rij
′

to the challenger of Com to break the binding property. The only scenario
when A succeeds and ACOM fails to break the binding property is when A breaks the correlation
intractability property of hash function H. The hash function is initialized in the statistical mode
and it is infeasible to compute an e, s.t. e = f(a), unless A breaks the binding property of Com.
Thus ACOM always succeeds in breaking the binding property of Com if A succeeds in breaking
adaptive soundness of ΠNIZK.

Adaptive Zero Knowledge. For zero-knowledge, the NIZK simulator invokes the ZK simulator
of ΠZK to construct the first message a. The NIZK simulator computes e = H(a) and invokes the
ZK simulator of ΠZK to obtain z as the response. In the real world, a would contain cycle graphs.
In the ideal world the prover’s message a contains commitments in the equivocal mode (due to ZK
simulation in Sec. 2.2). We assume that the hash function H works as follows - given sk, decrypt
the commitment randomness rj from the encryption Ej,1; if cj is Com(1; rj) then set bj = 1, else
bj = 0. By following this approach, the hash function H would interprete that all the commitments
(in a) in the ideal world are Com(1), i.e. containing cycle graphs. Hence, the distribution of a in
both worlds is identically distributed for H. The output of H will also be identically distributed
in both worlds. Thus, zero knowledge follows from the ZK of ΠZK (by relying on the equivocal
property of Com and oblivious sampling property of PKE).

11

Adaptive Security. We only consider the case where the prover is honest and the verifier is
statically corrupt (the other adaptive corruption cases are similar to the static corruption cases).
The NIZK simulator constructs a simulated NIZK proof by invoking the ZK simulator of ΠZK as
described in the previous paragraph. When the prover gets corrupted post-execution, the simulator
obtains the witness σ and invokes the adaptive simulator of ΠZK with σ to obtain randomness that
demonstrates consistency between the simulated proof and the witness. Adaptive security of ΠNIZK

follows from adaptive security of ΠZK.

Multi-Proof Setting. The setup string can be reused by the same prover to prove multiple
statements if the underlying ZK protocol satisfies the same property. If a corrupt prover constructs
a malicious proof then his witness can be extracted by invoking the simulator of the underlying
multi-proof ZK protocol. Similarly, if the prover is honest then the simulator of the underlying
multi-proof ZK protocol can be used to construct simulated proofs that are accepting. If the prover
gets corrupted post-execution then the simulator of the multi-proof NIZK protocol obtains the
corresponding witnesses. He invokes the multi-proof ZK simulator with the witnesses to obtain
the prover randomness for the simulated proofs. Adaptive security for multi-proof NIZK protocol
follows from the adaptive security of the multi-proof ZK protocol.

2.4 Reducing the length of the crs

Currently, the crsNIZK of the ΠNIZK protocol contains the public hash key k which depends on the
circuit length. We reduce this to poly(κ) by applying a compiler which compiles any single-prover
multi-proof NIZK protocol ΠNIZK in the crsNIZK model to a NIZK protocol ΠsNIZK in the short
crssNIZK model, where |crssNIZK| = poly(κ), assuming additively homomorphic equivocal commit-
ment Com and a PKE with oblivious ciphertext sampling algorithm. Our compiler is inspired from
the work of GOS and it can be instantiated from DDH.

Given the witness w and the statement x for a language L, the prover computes a circuit C s.t.
C(y) = R(x,w) where R is the NP verification relation. Let y = {yi}i∈[|y|]. The prover commits to
each bit yi as ci = Com(yi; ri) and encrypts the corresponding randomness as ei,yi = Enc(pk, ri; si)
while ei,yi is sampled obliviously. The output wire is committed as Com(1; 1). Using ΠNIZK the
prover proves that each ci is a commitment to 0 or 1 and the underlying commitment randomness
is also encrypted correctly in ei,0 or ei,1. For each jth NAND gate with input wires α and β and
output wires Γ, it computes Cj = cα + cβ + 2cΓ − 2Com(0; 1) and proves using ΠNIZK that Cj is a
commitment to 0 or 1. The GOS protocol showed that if the order of the message domain of Com
is at least 4 then Cj will always be a commitment to 0 or 1. The verifier verifies the proofs and
checks that the commitment corresponding to the output wire is Com(1; 1).

Adaptive Soundness and Proof of Knowledge. The distribution of the crs is identical in
the real and ideal world. A corrupt prover P∗ can adaptively chose the statement based on the crs
distribution. If P∗ constructs a proof for a statement x /∈ L, then he must have broken the binding
property of the commitment scheme or the soundness of ΠNIZK. Else if P∗ constructs a proof for
a statement x ∈ L then the simulator can extract the witness bits yi from the individual proofs
by invoking the simulator of ΠNIZK. Note that we encrypt the randomness ri for each commitment
ci for reduction in the security proof. If a corrupt prover computes two valid openings of ci then
those openings can be decrypted and used to break the binding property of Com.

Adaptive Zero Knowledge. Zero-knowledge is ensured since a ZK simulator can construct the
ci commitments in the equivocal mode, i.e. ci = Com(0; ri) = Com(1; r′i), and set the encryptions
as (ei,0, ei,1) = (Enc(pk, ri; si),Enc(pk, r′i; s

′
i)). He sets the output wire commitment as Com(1; 1).

12

He invokes the ZK simulator of ΠNIZK to produce the proofs for each wire and each NAND gate. In
the real world one of the encryptions corresponding to a commitment is honestly generated while
the other is obliviously sampled. In the ideal world both encryptions are honestly generated. The
two cases are indistinguishable due to oblivious ciphertext sampling property of PKE. Thus, ZK
follows from the ZK of ΠNIZK, hiding of Com and oblivious ciphertext sampling property of PKE.
A statically corrupt verifier can also choose the statement adaptively based on the crs distribution.
Adaptive ZK of this protocol is ensured since ΠNIZK supports adaptive ZK, the Com is hiding and
PKE provides oblivious ciphertext sampling property.

Adaptive Security. When the prover gets corrupted and it obtains the witness w it can compute
y. Suppose yi = 0, then he opens ci and ei,0 as (0, ri, si) and claims that ei,1 was obliviously
sampled. It invokes the ΠNIZK simulator of wire i with input witness (yi, ri) to obtain randomness
for the NIZK proof corresponding to wire i. Similar steps are repeated to obtain randomness
for each NAND gate j and the corresponding NIZK proof. The encryption of r′i (in ideal world)
is indistinguishable from an obliviously sampled ciphertext (in real world) due to the oblivious
sampling property. Thus, security against adaptive corruption is ensured due to adaptive security
of ΠNIZK, equivocal property of Com and oblivious sampleability of PKE.

Multi-proof. The protocol ΠsNIZK also allows the prover to prove multiple statements using the
same crssNIZK. If a corrupt party breaks the security of the protocol in one of the proof then that
party can be used to either break the multi-proof security of ΠNIZK or the security of Com.

2.5 Obtaining UC Security for multiple subsessions

We add non-malleability to our ΠsNIZK protocol to attain UC-security for multiple statements in
different subsessions. This is performed in the same way as GOS using tag based simulation-sound
trapdoor commitment ComSST and strong one-time signature Sig. The prover generates a pair of
signature keys (vk, sk)← Sig.KeyGen. It commits to the witness bits w using ComSST with the tag
being (vk, sid, ssid, x) (where sid is the session ID of the multi-instance NIZK functionality and ssid
is the sub-session ID for the particular proof) and encrypts the randomness for the commitments.
It proves using ΠsNIZK that R(x,w) = 1 and the witness bits are correctly committed to compute
a proof π. It signs the proof π using sk and sends the proof π and the signature as the final proof.
The signature enables that an adversary cannot forge a signature on a different proof with the same
vk. Whereas, ComSST and ΠsNIZK ensures that an adversary cannot reuse the same proof π in a
different session ssid since it is bound to the vk and ssid.

Security against Statically Corrupt Prover. Soundness follows from the binding property
of ComSST, unforgeability of Sig and adaptive soundness of ΠsNIZK. The witness can be extracted
from the commitments by decrypting the randomness of the commitments from the encryptions
using sk. Next, we briefly discuss the different cases for triple adaptive security.

ZK and security against Adaptive Corruption of Prover. The ZK simulator commits to
all 0s as witness and invokes the ZK simulator of ΠsNIZK to construct the simulated proof. Upon
obtaining the witness it can equivocate the commitments using the trapdoor and equivocate the
proof by invoking the adaptive simulator of ΠsNIZK.

Adaptive Soundness and Adaptive Zero Knowledge. The crs distribution is identical in
the real and ideal world for our multi-session UC protocol. Adaptive soundness follows from the
unforgeability of signature, binding property of the tag-based commitment scheme and adaptive

13

soundness of underlying single instance NIZK protocol. For adaptive ZK our ZK simulator (men-
tioned in previous paragraph) suffices.

3 Preliminaries

Notations. We denote by a← D a uniform sampling of an element a from a distribution D. The
set of elements {1, 2, . . . , n} is represented by [n]. A function neg(·) is said to be negligible, if for
every polynomial p(·), there exists a constant c, such that for all n > c, it holds that neg(n) < 1

p(n) .
We denote a probabilistic polynomial time algorithm as PPT. We denote the computational and
statistical security parameters by κ by µ respectively. We denote computational and statistical

indistinguishability by
c
≈ and

s
≈ respectively. When a party P gets corrupted we denote it by P∗.

Let RHam denote the set of n-node Hamiltonian graphs for n > 1. We prove security of our protocol
in the Universal Composability (UC) model. We refer to the original paper [Can01] for details.

Definition 3.1. ([DN00] PKE with oblivious ciphertext sampling) A public key encryption
scheme PKE = (KeyGen,Enc,Dec) over message space M, ciphertext space C and randomness
space R satisfies oblivious ciphertext sampling property if there exists a PPT algorithm oEnc s.t.
for any message m ∈M, the following two distributions are computationally indistinguishable to a
PPT adversary A:

|Pr[A(m, c) = 1|(pk, sk)← KeyGen(1κ),m← A(pk), c← Enc(pk,m)]

−Pr[A(m, c̃) = 1|(pk, sk)← KeyGen(1κ),m← A(pk), c̃← oEnc(pk)] ≤ neg(κ)

3.1 Non-Interactive Zero Knowledge

We also provide the ideal UC-NIZK functionality in Fig. 1. It also considers the case for adaptive
corruption of parties where the prover gets corrupted after outputting the proof π. In such a case,
the adversary receives the internal state of the prover.

Figure 1: Non-Interactive Zero-Knowledge Functionality FNIZK

FNIZK is parametrized by an NP relation R. (The code treats R as a binary function.)

• Proof: On input (prove, sid, ssid, x, w) from party P : If R(x,w) = 1 then send
(prove, P, sid, ssid, x) to S. Upon receiving (proof, sid, ssid, π) from S, store (sid, ssid, x, w, π) and
send (proof, sid, ssid, π) to P .

• Verification: On input (verify, sid, ssid, x, π) from a party V : If (sid, ssid, x, w, π) is
stored, then return (verification, sid, ssid, x, π,R(x,w)) to V . Else, send (verify, V, sid, ssid, x, π)
to S. Upon receiving (witness, sid, ssid, w) from S, store (sid, ssid, x, w, π), and return
(verification, sid, ssid, x, π,R(x,w)) to V .

• Corruption: When receiving (corrupt, sid, ssid) from S, mark ssid as corrupted. If there is a
stored tuple (sid, ssid, x, w, π), then send it to S.

On input (corrupt-check, sid, ssid), return whether ssid is marked as corrupted.

We also consider Fm
NIZK (Fig. 2) functionality where a single prover can parallelly prove multiple

statements in a single session. The verifier verifies each of them separately. It is a weaker notion
than multi-session UC NIZK since Fm

NIZK considers only a single session between a pair of parties
with roles preserved. Different provers have to use different instances of Fm

NIZK to prove statements.
Next, we define the notion of triple adaptive security for NIZK protocols and provide the

property-based definitions of NIZK for completeness.

14

Figure 2: Non-Interactive Zero-Knowledge Functionality Fm
NIZK for single prover multi-proof setting

FNIZK is parametrized by an NP relation R. (The code treats R as a binary function.)

• Proof: On input (prove, sid, x, w, P) from party P : If there exists (sid, P ′) ∈ Q and P 6= P ′ or
R(x,w) 6= 1 then ignore the input. Else record Q = (sid, P). Send (prove, P, sid, x) to S. Upon
receiving (proof, sid, π) from S, store (sid, x, w, π) and send (proof, sid, π) to P .

• Verification: On input (verify, sid, x, π) from a party V : If (sid, x, w, π) is stored, then re-
turn (verification, sid, x, π,R(x,w)) to V . Else, send (verify, V, sid, x, π) to S. Upon receiving
(witness, sid, w) from S, store (sid, x, w, π), and return (verification, sid, x, π,R(x,w)) to V .

• Corruption: When receiving (corrupt, sid) from S, mark sid as corrupted. If there are stored
tuples of the form (sid, x, w, π), then send it to S.

Definition 3.2. A non-interactive zero-knowledge argument system (NIZK) for an NP-language
L consists of three PPT machines ΠNIZK = (Gen,P,V), that have the following properties:

• Completeness: For all κ ∈ N, and all (x,w) ∈ R, it holds that:

Pr[V(crs, x,P(crs, x, w)) = 1|(crs, td)← Gen(1κ, 1|x|)] = 1.

• Soundness: For all PPT provers P∗ and x /∈ L the following holds for all κ ∈ N:

Pr[V(crs, x, π) = 1|(crs, td)← Gen(1κ, 1|x|), π ← P∗(crs)] ≤ neg(κ).

• Zero knowledge: There exists a PPT simulator S such that for every (x,w) ∈ R, the
following distribution ensembles are computationally indistinguishable:

{(crs, π)|(crs, td)← Gen(1κ, 1|x|), π ← P(crs, x, w)}κ∈N

≈ {(crs, {S(1κ, x, td)})|(crs, td)← Gen(1κ, 1|x|}κ∈N

Definition 3.3. (Adaptive Soundness) ΠNIZK is adaptively sound if for every PPT cheating
prover P∗ the following holds:

Pr[x /∈ L ∧ V(crs, x, π) = 1|(crs, td)← Gen(1κ, 1|x|), (x, π)← P∗(crs)] < neg(κ).

Definition 3.4. (Adaptive Zero-Knowledge) ΠNIZK is adaptively zero-knowledge if for all PPT
verifiers V∗ there exists a PPT simulator S such that the following distribution ensembles are
computationally indistinguishable:

{(crs,P(crs, x, w), aux)}
c
≈ {S(crs, td, 1κ, x)}κ∈N

where (crs, td)← Gen(1κ, 1|x|) and (x,w, aux)← V∗(crs).

The Gen algorithm takes the |x| (length of the statement) as input to generate the crs. This
shows that the crs size depends on |x|. When the crs is independent of |x|, the Gen algorithm only
takes 1κ as input.

15

Definition 3.5. (Triple Adaptive Security for a single instance)
Let ΠNIZK = (Gen,P,V) be a NIZK protocol in the crs model. Then ΠNIZK satisfies triple adaptive
security for a single instance if it securely implements FNIZK functionality for a single instance and
provides adaptive soundness and adaptive zero knowledge.

Definition 3.6. (Triple Adaptive Security for multiple instances)
Let ΠNIZK = (Gen,P,V) be a NIZK protocol in the crs model. Then ΠNIZK satisfies triple adap-
tive security for multiple instances if it UC-securely implements FNIZK functionality for multiple
instances and provides adaptive soundness and adaptive zero knowledge.

3.2 Interactive Zero Knowledge

We present the ZK functionality from [JKO13] (in Fig. 3) in the UC model of [Can01]. Similar to
Fm
NIZK we also consider a Fm

ZK functionality (Fig. 4) where a single prover proves multiple statements
to a verifier in a single session. Different provers have to use different instances of Fm

ZK to prove
statements.

Figure 3: Zero-Knowledge Functionality FZK

FZK is parametrized by an NP relation R.

– On input (prove, sid, x, w) from P and (verify, sid, x) from V, output (verification, sid, x,R(x,w)) to
V.

Figure 4: Zero-Knowledge Functionality Fm
ZK for multiple statements in a single session

Fm
ZK is parametrized by an NP relation R.

– On input (prove, sid, x, w) from P and (verify, sid, x) from V : if there exists (sid, P ′) ∈ Q
and P 6= P ′ or R(x,w) 6= 1 then ignore the input. Else record Q = (sid, P) and output
(verification, sid, x,R(x,w)) to V.

We also define triple adaptive security for interactive ZK. An interactive ZK protocol consists of
ΠZK = (Gen,P,V) where Gen generates the crs and P and V are interactive algorithms. We denote
by 〈P(w),V〉(x, crs) the distribution of V’s output after running ΠZK with P on public input (x, crs)
and P possesses the private witness w.

Definition 3.7. A pair of PPT interactive algorithms ΠZK = (Gen,P,V) constitute an argument
system for an NP language L, if the following conditions hold:

• Completeness: For all κ ∈ N, and all (x,w) ∈ R, it holds that:

Pr
[
〈P(w),V〉(x, crs) = 1|(crs, td)← Gen(1κ, 1|x|)

]
= 1.

• Soundness: For all PPT provers P∗ and x /∈ L the following holds for all κ ∈ N:

Pr
[
〈P∗,V〉(x, crs) = 1|(crs, td)← Gen(1κ, 1|x|)

]
≤ neg(κ).

16

• Zero knowledge: For all PPT verifiers V∗ there exists a PPT simulator S such that for
every (x,w) ∈ R, the following distribution ensembles are computationally indistinguishable:

{〈P(w),V∗〉(x, crs)|(crs, td)← Gen(1κ, 1|x|)}κ∈N

≈ {〈S(1κ, x, td),V∗〉(x, crs)|(crs, td)← Gen(1κ, 1|x|}κ∈N

We can also define adaptive soundness and adaptive zero knowledge for ΠZK.

Definition 3.8. (Adaptive Soundness) ΠZK is adaptively sound if for every PPT cheating prover
P∗ the following holds:

Pr
[
x /∈ L ∧ (〈P∗,V〉(x, crs) = 1)|(crs, td)← Gen(1κ, 1|x|), x← P∗(crs)] < neg(κ)

Definition 3.9. (Adaptive Zero-Knowledge) ΠZK is adaptively zero-knowledge if for all PPT
verifiers V∗ there exists a PPT simulator S such that the following distribution ensembles are
computationally indistinguishable:

{〈P(w),V∗(aux)〉(x, crs)|(crs, td)← Gen(1κ, 1|x|), (x,w, aux)← V∗(crs)}κ∈N

≈ {(〈S(1κ, x, td),V∗〉(x, crs)|(crs, td)← Gen(1κ, 1|x|, (x,w, aux)← V∗(crs)}κ∈N

ΠZK enjoys delayed-input completeness if P needs x and w only to compute the last round and
V needs x only to compute the output. The previous round messages of ΠZK can be computed by
P and V having as input only the size of x, i.e. |x|. The notion of delayed-input completeness was
defined in [CPS+16a] for Sigma protocols. It can be generalized for interactive ZK protocols as
follows.

Definition 3.10. (Input-Delayed ZK protocols) Let ΠZK = (Gen,P,V) is a 2r + 1-round in-
teractive ZK protocol where P sends the first and last round message. We denote P = {Pi}i∈[r+1]

where Pi denotes the prover algorithm for computing (2(i− 1) + 1)th round message of ΠZK. Simi-
larly, V = ({Vi}i∈[r],Vout) where Vi denotes the verifier algorithm for computing 2ith round message
of ΠZK and Vout either accepts or rejects the proof. ΠZK is input-delayed ZK protocol if the following
holds:

• {Pi}i∈[r] takes as input the private state of Pi−1 and the public values - length of the statement,
i.e. |x|, crs and previous round messages.

• {Vi}i∈[r] takes as input the private state of Vi−1 and the public values - length of the statement,
i.e. |x|, crs and previous round messages.

• Pr+1 takes as input (x,w) and private state of Pr.

• Vout takes as input x and private state of Vr.

We define triple adaptive security for ΠZK for a single instance as follows.

Definition 3.11. (Triple Adaptive Security for a single instance) Let ΠZK = (Gen,P,V) be
an interactive ZK protocol in the crs model. Then ΠZK satisfies triple adaptive security for a single
instance if it securely implements FZK functionality for a single instance and provides adaptive
soundness and adaptive zero knowledge.

17

3.3 Commitment Schemes

A commitment scheme Com = (Gen,Com,Ver,Equiv) allows a committing party C to compute a
commitment c to a message m, using randomness r, towards a party V in the Com phase. Later
in the open phase, C can open c to m by sending the decommitment to V who verifies it using
Ver. It should be binding, hiding and equivocal using Equiv algorithm given trapdoor td of the crs.
Moreover, we require our commitment scheme to be additively homomorphic for message domain
of size at least four:

Com(m1; r1) + Com(m2; r2) = Com(m1 +m2; r1 + r2)

We also need a tag-based simulation sound commitment consists of ComSST = (KeyGen, Com, Ver,
TCom, TOpen) for our protocols.

We define an equivocal commitment scheme Com = (Gen,Com,Ver,Equiv) as follows:

Definition 3.12. (Correctness) Com is a correct commitment scheme if the following holds true

Pr
[
Ver(m, c, crs, r) = 1|(crs, td)← Gen(1κ), c← Com(m, crs; r)

]
= 1

Definition 3.13. (Binding) Com is computationally binding scheme if the following holds true
for all PPT adversary A

Pr
[
(m0, r0,m1, r1)← A(crs)|(crs, td)← Gen(1κ),

Com(m0; r0) = Com(m1; r1)
]
≤ neg(κ)

Definition 3.14. (Hiding) Com is computationally hiding scheme if the following holds true for
all PPT adversary A = (A1,A2).

Pr
[
b == b′|(crs, td)← Gen(1κ), (m0,m1, st)← A1(crs), b←r {0, 1},

(c, d)← Com(mb), b
′ ← A2(c; st)

]
≤ 1

2
+ neg(κ)

Definition 3.15. (Equivocal) Com is equivocal if it has a PPT algorithm Equiv s.t. the following
holds true for all PPT adversary A and all message pairs (m0,m1).∣∣∣Pr

[
A(c, r) = 1|(crs, td)← Gen(1κ),m← A(crs), c = Com(crs,m; r)

]
−Pr

[
A(c, r) = 1|(crs, td)← Gen(1κ),m← A(crs), c = Com(crs,m′; r′),

r = Equiv(m, r, c′, td)
]∣∣∣ ≤ neg(κ), for m 6= m′

Definition 3.16. (Extractable) Com is extractable if it has a PPT algorithm Ext if the following
holds true for any m ∈ {0, 1} and r ∈ {0, 1}∗.

Pr
[
Ver(m, c, crs, r) = 1 ∧ Ext(td, c) 6= m : (crs, td)← Gen(1κ), c = Com(m; r)

]
≤ neg(κ)

We denote Com(m, crs; r) as Com(m; r) to avoid notation overloading.

18

Tag-based simulation soundness. A tag-based simulation sound commitment scheme is de-
noted as ComSST = (KeyGen,Com,Dec,Ver,TCom,TOpen). We define it following [GOS12]. The
key generation algorithm KeyGen produces a crs as well as a trapdoor key td. There is a Com
algorithm that takes as input crs, a message m and any tag t and outputs a commitment c =
Com(crs,m, t; r). To open a commitment c with tag t we reveal m and the randomness r. Verifi-
cation is performed by verifying the commitment with r on (m, t). ComSST is a correct, binding
and hiding commitment scheme. ComSST has trapdoor opening if the following holds for all PPT
adversary A.

Pr
[
Ver(crs,m, t, r) = 1|(c, α)← TCom(td, t),m← A(c, crs),

r ← TOpen(crs, α, c,m, t)
]

= 1

The tag-based simulation-soundness property means that a commitment using tag t remains
binding even if we have made equivocations for commitments using different tags. For all non-
uniform PPT adversaries A we have

Pr
[
(crs, td)← KeyGen(1κ), (c, t,m0, r0,m1, r1)← AO(·)(crs)|t /∈ Q,

c = Com(m0, t; r0) = Com(m1, t; r1),m0 6= m1)
]
≤ neg(κ).

whereO(commit, t) computes (c, α)← TCom(td, t) returns c and stores (c, t, α), andO(open, c,m, t)
returns r ← TOpen(crs, α, c,m, t) if (c, t, α) has been stored, and where Q is the list of tags for
which equivocal commitments have been made by oracle O(·).
3.4 Common Reference String Model

Our protocols are in the common reference string model where the parties of a session sid, ssid have
access to a public reference string crs sampled from a distribution. In the one-time crs model, each
crs is local to each sid, ssid. In the reusable crs model, the same crs can be reused across different
sessions by different parties. The simulator knows the trapdoors of the crs in both cases. We refer
to [CLOS02] for more details.

3.5 Correlation Intractability.

As in [CCH+19, PS19, BKM20] we define efficiently searchable relations and recall the definitions
of correlation intractability, in their computational and statistical versions.

Definition 3.17. We say that a relation R ⊆ X × Y is searchable in size S if there exists a
function f : X → Y that is implementable as a boolean circuit of size S, such that if (x, y) ∈ R
then y = f(x). (In other words, f(x) is the unique witness for x, if such a witness exists.)

Definition 3.18. Let R = {Rκ} be a relation class, i.e., a set of relations for each κ. A hash func-
tion family H = (Gen, H) is correlation intractable for R if for every non-uniform PPT adversary
A = {Aκ} and every R ∈ Rκ the following holds:

Pr[(x,H(k, x)) ∈ R : k← Gen(1κ), x = Aκ(k)] ≤ neg(κ)

Definition 3.19. Let R = {Rκ} be a relation class. A hash function family H = (Gen, H) with a
fake-key generation algorithm StatGen is somewhere statistically correlation intractable for R if for
every R ∈ Rκ and circuits ∃zR ∈ Zκ s.t:

Pr[∃x s.t. (x,H(k, x)) ∈ R : k← StatGen(1κ, zR)] ≤ neg(κ).

19

and for every zκ ∈ Zκ if the following distributions the indistinguishable:

{StatGen(1κ, zκ)}κ
c
≈ {Gen(1κ)}κ.

Definition 3.20. A hash family H = (Gen, H), with input and output length n := n(κ) and, resp.,
m := m(κ), is said to be programmable if the following two conditions hold:

– 1-Universality: For every κ ∈ N, x ∈ {0, 1}n and y ∈ {0, 1}m, the following holds: Pr[H(k, x) =
y : k← Gen(1κ)] = 2−m.

– Programmability: There exists a PPT algorithm Gen′(1κ, x, y) that samples from the condi-
tional distribution Sample(1κ)|H(k, x) = y.

4 Triply Adaptive Delayed Input Three Round ZK Argument

The classical result of [FLS99] present an honest verifier zero knowledge protocol for Hamiltonian
graph with adaptive soundness (i.e. the graph can be chosen after V challenges P) and adaptive
zero knowledge. We remove the honest verifier assumption and prove that it can be made zero
knowledge and secure against adaptive corruption using a non-interactive equivocal commitment
scheme and a public key encryption scheme with an oblivious ciphertext sampling algorithm. Our
ZK protocol ΠZK is presented in Fig. 7 and the high-level overview can be found in Sec. 2.2. We
prove triple adaptive security of ΠZK by proving Thm. 4.1.

Theorem 4.1. If Com is a non-interactive equivocal commitment scheme and PKE is an IND-CPA
public key encryption scheme with oblivious ciphertext sampleability, then ΠZK UC-realizes FZK for
a single instance of the Hamiltonian Relation RHam against adaptive corruptions in the common
reference string model. Furthermore, ΠZK is adaptively sound and adaptive zero-knowledge.

Proof. We demonstrate that ΠZK is triply adaptive as follows. We consider ` = max(8µ, κ) for
statistical error 2−µ. V does not possess an input and hence the simulator can trivially simulate
its view for ` iterations by sampling ` random bits. Based on the P’s view, we have two possible
corruption cases:

P is statically corrupt and V is honest. In this case, the adversary corrupts the prover from
the start and tries to construct a correct proof without knowing the witness σ. The simulator SP
plays the role of the verifier. This demonstrates the soundness property of the protocol. If P∗ con-
structs an accepting proof then the simulator tries to extract a valid witness from it. The simulation
algorithm is presented in Fig. 5. We present the formal hybrids and prove indistinguishability as
follows:

– Hyb0: Real world.

– Hyb1: Same as Hyb0, except the reduction aborts if any commitment cij opens to both 0 and

1 using randomness rij,0 and rij,1.

The hybrids are distinguishable when P∗ has broken the binding property of the commitment
scheme cij . In such a case, the adversary for the binding property of the commitment scheme

can decrypt rij,0 and rij,1 from Eij,0 and Eij,1 respectively using sk. It returns (0; rij,0) and

(1; rij,1) as the response to the challenger of the binding property of Com. If P∗ distinguishes
between the two hybrids then there exists an adversary who breaks the binding property of
Com.

20

Figure 5: Simulation against a statically corrupt P∗ by SP
– Public Inputs: Common reference string crsZK = (crsCom, pk).

– Simulator Inputs: Trapdoor of crs = (td, sk) where td is the equivocating trapdoor of Com and
sk is the secret key for pk.

Prove :
P∗ sends a = (a1, a2, . . . , a`).

Challenge : SP(1κ, 1n)
SP samples challenge bits e = (e1, e2, . . . , e`) and sends it to P∗.

Response :
P∗ sends γ = (a, e, z) where, z = (z1, z2, . . . , z`), as response.

Verify : SP(G, γ)

– SP runs the honest verifier algorithm. If it outputs Reject, then SP outputs Reject.
– For i ∈ [`], j ∈ [n2], S decrypts rij,0 and rij,1 from Eij,0 and Eij,1 using sk. S aborts if rij,0 and rij,1

are valid decommitments of cij to both 0 and 1.

– S aborts if µ instances of ai are malformed (i.e. does not commit cycle graphs).
– Else, SP extracts σ as follows. For i ∈ [`] and ei = 1 :

• Obtain the permutation πi.

• Extract the committed n-node permuted cycle Hi from ai.

• Obtain the candidate Hamiltonian cycle σi by applying the inverse of permutation πi on Hi.

S outputs the majority among the candidate cycles as the witness cycle σ. Invoke FZK with σ
and conclude simulation. If extraction fails then SP sets σ = ⊥ and aborts.

21

– Hyb2: Same as Hyb1, except SP aborts if it fails to extract the correct witness.

The simulator fails to extract the correct witness when the majority of the candidate cycles
are incorrect. A corrupt P∗ can compute µ of the ai values, except with negligible probability
2−µ. We can assume that ei = 1 for those bad µ instances. In such a case, the simulator
needs to have µ+ 1 good instances where ei = 1. So there should be at least 2µ+ 1 instances
where ei = 1. That means that the challenge vector e should contain 2µ+1 1s. Such an event
occurs with overwhelming probability (1− 2−2µ) when ` = 8µ. The details of the calculation
is provided in Appendix. A. The two hybrids are indistinguishable statistically except with
negligible probability 2−µ.

If the verifier gets corrupted post-execution then the simulator can trivially simulate him by
returning e.

P is honest and V is statically corrupt. In this case, the simulator SV constructs an accepting
proof without knowing the witness. This demonstrates the zero knowledge property of the protocol.
Later, when the prover gets corrupted post-execution the simulator has to provide randomness s.t.
the simulated proof is consistent with the randomness. The original FLS prove ZK by sampling
the challenge e first and then constructing a based on that. However, we cannot perform that in
the UC setting as we lack rewinding property. Instead, we rely on the equivocal property of the
commitment scheme. We provide high-level overview for simulating one iteration and the same can
be repeated for ` instances. SV computes the commitments of ai in the equivocal mode. Upon
obtaining the challenge bit ei, he performs either of the following. If ei = 0, then he samples a
random n-node cycle H i and opens the commitments corresponding to H i as 1. He sets zi as
the decommitments. If ei = 1, then he samples a random permutation πi and then decommits
to the non-edges in πi(G) as zi and equivocates the corresponding commitments s.t. they open
to 0. In both cases, an adversarial V∗ cannot distinguish a real world execution from ideal world
execution due to the hiding property of the commitment scheme. The detailed simulation algorithm
is provided in Fig. 6. We present the formal hybrids and prove indistinguishability as follows:

– Hyb0: Real world.

– Hyb1: Same as Hyb0, except SV follows the simulation algorithm. The two hybrids differ in the
distribution of cij where j is an edge in H. In Hyb0, the value of cij is Com(1), whereas in Hyb1

cij is in the equivocal mode. The two hybrids are indistinguishable due to the hiding property
of the commitment and the real encryptions of the commitment randomness (in ideal world

corresponding to bij) are indistinguishable from oblivious ciphertexts (in real world) due to the
oblivious ciphertext sampling property of PKE. The simulator can successfully equivocate
these commitments in Hyb1 due to the equivocal property of the commitment scheme.

P gets corrupted post-execution. In this case, the prover gets corrupted post-execution and
SV has to provide randomness s.t. the transcript looks consistent with the witness. We consider
two cases of simulation based on the value of eij :

– ei = 0 : In this case, SV has previously opened the commitments corresponding to a random
n-node cycle to 1 as zi. Upon post-execution corruption, the simulator provides opening as
(0, rij,0, s

i
j,0) for the unopened commitments.

Indistinguishability proceeds due to equivocal proeprty of the commitment scheme and obliv-
ious ciphertext sampling property of PKE.

22

Figure 6: Simulation against a statically corrupt V∗ by SV
– Public Inputs: Common reference string crsZK = (crsCom, pk).

– Simulator Inputs: Trapdoor of crs = (td, sk) where td is the equivocating trapdoor of Com and
sk is the secret key for pk.

Prove : SV(1κ, 1n)
For each i ∈ [`] and j ∈ [n2], SV constructs ai as follows:

– Construct cij = Com(0; rij,0) = Com(1; rij,1).

– Set Eij,0 = Enc(pk, rij,0; sij,0) and Eij,1 = Enc(pk, rij,1; sij,1).

– Construct ai = {cij , Eij,0, Eij,1}.
S sends a = (a1, a2, . . . , a`) to V∗.

Challenge :
V∗ sends challenge bits e = (e1, e2, . . . , e`) and sets internal state stV = e.

Response : SV(G,a, e)

– For i ∈ [`] and ei = 0, SV samples a random n-node cycleHi and computes zi = {j, 1, rij,1, sij,1}j∈Hi .

– For i ∈ [`] and ei = 1, SV performs the following:

• Sample a random permutation πi.

• Apply πi(G) and decommit to non-edges in πi(G) s.t. they open to 0 by providing rij,0 and

sij,0 as opening randomness.

• Construct zi = (πi, {j, 0, rij,0, sij,0}j∈πi(G)
).

– Construct the response z = (z1, z2, . . . , z`).
– Sends γ = (a, e, z).

Verify :
Performs its own adversarial algorithm.

23

– ei = 1 : In this case, the simulator has opened the commitments corresponding to the
non-edges of πi(G) during the proof phase. Upon post-execution corruption, the simulator
equivocates the commitments corresponding to πi(σ) s.t. it opens to 1 and the other unopened
commitments open to 0.

Indistinguishability proceeds due to equivocal property of the commitment scheme and obliv-
ious ciphertext sampling property of PKE.

There is another adaptive corruption case, where the prover can get corrupted after sending ai

and before receiving ei. The simulator opens the commitments s.t. ai contains a random n-node
cycle graph. Indistinguishability proceeds due to equivocal property of the commitment scheme
and oblivious ciphertext sampling property of PKE.

Proof of Adaptive Soundness. Our crs distribution is identical in real and ideal world exe-
cution. It consists of crsZK = (crsCom, pk). If a corrupt prover breaks adaptive soundness of the
protocol then he breaks the binding property of the commitment scheme or he correctly guesses
the e string, which happens with negligible probability. We build an adversary ACOM for the com-
mitment scheme as follows. ACOM obtains the crsCom for the commitment and he samples a PKE
keypair (pk, sk) to set crsZK = (crsCom, pk). ACOM invokes the adversary for adaptive soundness
to obtain a proof. The adversary for the commitment scheme can check if ∃i ∈ [`],∃j ∈ [n2],
s.t. commitment cij opens both to 0 and 1 by decrypting rij and rij

′
from Eij,0 and Eij,1 given the

secret key sk. He returns rij and rij
′

to the challenger of Com to break the binding property. The
only scenario when the adaptive soundness adversary succeeds and ACOM fails to break the binding
property is when the adaptive soundness adversary correctly guesses e which occurs with 2−` ≤ 2−µ

probability.

Proof of Adaptive ZK. Our ZK simulator sends the first message a without the knowledge of
the statement graph G. It requires the knowledge of G for responding to the verifier’s challenge e.
The input statement can be adaptively chosen by the adversary after observing a and still our ZK
property would hold. Thus, ΠZK satisfies the notion of adaptive zero-knowledge.

Protocol ΠZK also implements Fm
ZK (Fig. 4) functionality, i.e. a single prover can prove multiple

statements using the same crsZK = (crsCom, pk), if the crsCom of the commitment scheme can be
reused multiple times. The protocol also satisfies triple adaptive security for each proof. Our result
is summarized in Thm. 4.2.

Theorem 4.2. If Com is a non-interactive equivocal commitment scheme in the reusable crsCom
model and PKE is an IND-CPA public key encryption scheme with oblivious ciphertext sampleabil-
ity, then ΠZK UC-realizes Fm

ZK for the Hamiltonian relation RHam against adaptive corruptions
in the common reference string model. Furthermore, ΠZK is adaptively sound and adaptive zero-
knowledge.

Proof. The crs = (crsCom, pk) can be used by the same prover to prove multiple statements
if crsCom can be reused for multiple commitments. If the prover is corrupted then his witness
for every accepting proof can be extracted by a simulator given the secret key sk. If the prover
is honest then the simulator can always construct simulated proofs that are accepting given the
trapdoor of crsCom. He simulates the proofs by equivocating the openings of the commitments.
Adaptive security is also ensured based on the equivocal property of the commitment scheme and
oblivious sampling property of PKE. Hence, adaptive security for multi-proof setting follows from

24

the adaptive security of single-proof setting. Adaptive soundness and adaptive zero knowledge for
this setting also follows from the single proof setting.

5 Triply Adaptive NIZK Argument

In this section, we present our adaptively-secure NIZK construction ΠNIZK based on H function
and the ZK protocol ΠZK. The prover P invokes the prover algorithm ΠZK.P1 to obtain a. Then,
it computes e by hashing a using H. Finally, it constructs the response z by invoking ΠZK.P2 on
a, e and internal state stP of ΠZK.P1. Verification is performed by invoking the verifier algorithm
of ΠZK on γ = (a, e, z). The formal protocol can be found in Fig. 10 and the high-level overview
can be found in Sec. 2.3. Our protocol UC-securely realizes a single instance of FNIZK. We prove
triple adaptive security of ΠNIZK by proving Thm. 5.1.

Theorem 5.1. If H is a somewhere statistically correlation intractable hash function family with
programmability, ΠZK is an input-delayed triply adaptive three round public-coin protocol imple-
menting FZK, then ΠNIZK UC-realizes FNIZK for a single instance of the Hamiltonian Language
RHam against adaptive adversaries. Furthermore, ΠNIZK is adaptively sound and adaptively zero
knowledge.

Proof. The hash key k of H function is generated in the statistical mode by running the StatGen
algorithm on Csk, where sk is the secret key in ΠZK which can be used to extract the committed
values in a. C is a poly-size circuit that takes a (of ΠZK) as input, computing the function fsk(a) = e
s.t. for every i ∈ [`], ei = 0 if it can extract a n-node cycle from ai, i.e. Ext(sk, ai) is a cycle. The has
function is somewhere statistical correlation intractable if the commitments are binding. It ensures
that a corrupt prover cannot construct a correct proof when the graph G is not Hamiltonian. For
proof of knowledge, the simulator can extract the witness σ from a maliciously generated proof
by invoking the simulator ΠZK.SP (extractor to be specific) for the ΠZK. For zero-knowledge, the
simulator invokes the ZK simulator ΠZK.SV to construct a simulated proof using the equivocal
property of the commitment scheme. For post-execution corruption of prover, it again invokes
ΠZK.SV with a correct witness to obtain randomness that demonstrates consistency between the
simulated proof and the witness. Next, we present our formal security proof. Our proof contains
two corruption cases, similar to the proof of ΠZK.

P is statically corrupt and V is honest. First, we demonstrate soundness and proof of knowl-
edge by simulating against a corrupt prover in Fig. 8. The hybrid argument follows:

– Hyb0: Real world.

– Hyb1: Same as Hyb0, except the reduction decrypts all the encryptions to obtain candidate
rij,0 and rij,1 values. It aborts if any (both opened and unopened) commitment cij opens to

both 0 and 1 using randomness rij,0 and rij,1 respectively.

The hybrids are distinguishable when P∗ has broken the binding property of the commitment
scheme cij . In such a case, the adversary for the binding property can return (0; rij,0) and

(1; rij,1) as the response to the challenger of the binding property. It is ensured that the bad
challenge function is defined if the reduction does not abort in Hyb1 since the commitments
are binding and for each a there is only one possible e s.t. (a, e, z) is valid.

25

Figure 7: Triply Adaptively Secure Zero Knowledge Protocol

ΠZK

– Primitives: Non-interactive equivocal commitment scheme Com=(Gen, Com, Ver, Equiv) and
public key encryption scheme PKE = (KeyGen,Enc,Dec) with oblivious ciphertext sampling al-
gorithm oEnc.

– Public Inputs: Setup string crsZK = (crsCom, pk) where (crsCom, td) ← Com.Gen(1κ) and
(pk, sk)← PKE.KeyGen(1κ). Let ` = max(8µ, κ).

– Private Inputs: V has an n-node input graph G. P has the same n-node input graph G and a
valid Hamiltonian Cycle σ.

– Notations: We denote prover algorithm as P = (P1,P2) and verifier algorithm as V = (V1,V2).
For a graph G we denote the complement graph as G.

Commit : P1(1κ, 1n)
Repeat the following protocol for i ∈ [`]:

– Sample a random n-node cycle graph Hi.
– Commit to the adjacency matrix of Hi as follows:

• For each edge j commit to 1, as cij = Com(1; rij) with randomness rij .

• For each non-edge j commit to 0, as cij = Com(0; rij) with randomness rij .

• For j ∈ [n2], the prover also encrypts the commitment randomness based on the bit bij being
committed as follows:

- If cij = Com(0; rij), then set Eij,0 = Enc(pk, rij ; s
i
j) with randomness sij and sample

Eij,1 ← oEnc(1κ).

- If cij = Com(1; rij), then set Eij,1 = Enc(pk, rij ; s
i
j) with randomness sij and sample

Eij,0 ← oEnc(1κ).

Construct the first message a = {cij , Eij,0, Eij,1}i∈[`],j∈[n2]. Send a to V. Set internal state stP =

{bij , rij , sij}i∈[`],j∈[n2].

Challenge : V1(1κ)
V samples a challenge vector e← {0, 1}` and sends it to P. Sets internal state stV = e = (e1, . . . , e`).

Response : P2((G, σ), e, stP)
Repeat the following protocol for i ∈ [`]:

– Upon obtaining the statement graph G and Hamiltonian cycle σ as witness compute a permutation
πi s.t. Hi = πi(σ).

– If ei = 0, decommit to edges in Hi. P also opens to the commitment and encryption randomness,
i.e. zi = {j, bij , rij , sij}j∈H .

– If ei = 1, reveal πi and decommit to non-edges in πi(G). P also opens to the commitment and
encryption randomness, i.e. zi = (πi, {j, bij , rij , sij}j∈πi(G)

).

Sends the proof γ = (a, e, z) = ({a1, . . . , a`}, e, {z1, . . . , z`}).
Verify : V2(G, γ, stV)
Repeat the following protocol for i ∈ [`]:

– If ei = 0, V outputs Accept if for all j ∈ Hi, the following holds - bij = 1, Hi is a cycle and

cij = Com(1; rij) where Eij,1 = Enc(pk, rij ; s
i
j).

– If ei = 1, V outputs Accept if for all j ∈ πi(G) the following holds - bij = 0, cij = Com(0; rij) and

eij,0 = Enc(pk, rij ; s
i
j).

– Else, V outputs Reject.

26

Figure 8: Simulation against a statically corrupt P∗ by S
– Public Inputs: Common reference string crsNIZK = (k, crsCom, pk).

– Simulator Inputs: Trapdoor of crs = (td, sk) where td is the equivocating trapdoor of Com and
sk is the secret key for pk.

Prove :
P∗ sends γ = (a, e, z).

Verify : S(G, γ)

– S runs the honest verifier algorithm. If it outputs Reject, then S outputs Reject.
– For i ∈ [`], j ∈ [n2], S decrypts rij,0 and rij,1 from Eij,0 and Eij,1 using sk. S aborts if rij,0 and rij,1

are valid decommitments of cij to 0 and 1 respectively.
– S extracts σ by invoking SP on γ.
– S aborts if σ = ⊥ else it invokes FNIZK with σ to complete simulation.

– Hyb2: Same as Hyb1, except S aborts if it fails to extract the correct witness from a.

The simulator fails to extract the correct witness when the corrupt prover P∗ finds an a
s.t. fsk(a) = e or he breaks the security of ΠZK. H is statistically correlation intractable
for Rsk = {(a, e) : e = fsk(a)} and hence such an a does not exist. An adversary who can
distinguish between the two hybrids can be used to break the security of ΠZK since the verifier
accepts the proof and yet the simulator of ΠZK fails to extract a correct witness.

If the verifier gets corrupted post-execution then the simulator can trivially simulate him since
he does not possess any input or randomness.

P is honest and V is statically corrupt. Next, we demonstrate zero knowledge by simulating
against a statically corrupt verifier in Fig. 9. The hybrid argument follows:

Figure 9: Simulation against a statically corrupt V∗

– Public Inputs: Common reference string crsNIZK = (k, crsCom, pk).

– Simulator Inputs: Trapdoor of crs = (td, sk) where td is the equivocating trapdoor of Com and
sk is the secret key for pk.

Prove : S(G, 1κ, 1n)

– S invokes SV(1κ, 1n) to obtain a and computes e = H(k,a).
– Constructs z = SV(G,a, e).
– S sends the proof γ = (a, e, z) to V.

Verify :
Performs its own adversarial algorithm.

– Hyb0: Real world.

– Hyb1: Same as Hyb0, except the hash key k is computed by programming the hash function
as follows k ← H.Gen(1κ)|H(k,a) = e for a← ΠZK.P1(1κ, 1n) and a random e. The proof is
computed by invoking the honest verifier on the witness.

27

The adversary cannot distinguish between the two hash keys due to indistinguishability be-
tween the two modes of the CI hash function. An adversary for the hash function can simulate
either of the two views by running the honest prover algorithm using the witness w. A dis-
tinguisher for the hybrids successfully distinguishes between the CI modes.

– Hyb2: Same as Hyb1, except the simulator invokes the ZK simulator SV of ΠZK with graph
G instead of (ΠZK.V1,ΠZK.V2) to compute (a, e, z).

In Hyb2 the first message a always contains a cycle and in Hyb3 a (which contains commitments
to all 1) also contains a cycle. The CI output is indistinguishable. Thus, indistinguishability
between the hybrids follow from the adaptive zero knowledge property of ΠZK since the
distribution of e is random.

– Hyb3: Same as Hyb2, except the hash key k is generated in statistical mode k← H.StatGen(1κ, Csk).

The adversary cannot distinguish between the two hash keys due to indistinguishability be-
tween the two modes of the CI hash function. An adversary for the hash function can simulate
either of the two simulated views by running the ZK simulator (of pizk) using the trapdoor
td for the commitment scheme. A distinguisher for the hybrids successfully distinguishes
between the CI modes.

P gets corrupted post-execution. When the prover gets corrupted post-execution, the simu-
lator obtains the correct witness σ. It invokes the simulator SV of ΠZK with σ to obtain randomness
s.t. the proof (a, e, z) is consistent with the statement G and the witness σ. An adaptive adversary
cannot distinguish the opening of a simulated proof from a real one due to adaptive security of
ΠZK. This completes our proof of security for adaptive corruptions.

Proof of Adaptive Soundness. Our crs distribution is identical in real and ideal world execu-
tion. It contains the crsZK (= (crsCom, pk)) and the description of the hash function H. The hash
function is defined in the statistical mode and we know that ΠZK is adaptively sound given Com
is binding. If an adversary A breaks adaptive soundness of ΠNIZK then we can use A to construct
an adversary ACOM to break the binding property of Com. ACOM obtains crsCom for the commit-
ment and he samples a PKE key pair (pk, sk) to set the crsZK = (crsCom, pk). ACOM computes
k← H.StatGen(1κ, Csk) given sk. ACOM invokes A with crsNIZK = (k, crsZK) to obtain a proof. The
adversary for the commitment scheme can check if ∃i ∈ [`],∃j ∈ [n2], s.t. commitment cij opens

both to 0 and 1 by decrypting rij and rij
′

from Eij,0 and Eij,1 given the secret key sk. He returns rij
and rij

′
to the challenger of Com to break the binding property. The only scenario when A succeeds

and ACOM fails to break the binding property is when A breaks the correlation intractability prop-
erty of hash function H. The hash function is initialized in the statistical mode and its infeasible
to compute an e, s.t. e = f(a), unless A breaks the binding property of Com. Thus ACOM always
succeeds in breaking the binding property of Com if A succeeds in breaking adaptive soundness of
ΠNIZK.

Proof of Adaptive ZK. The zero knowledge simulator for ΠNIZK in Fig. 9 is secure when the
statement graph G is adaptively chosen based on the crs distribution. Adaptive zero knowledge of
ΠNIZK follows from the adaptive zero knowledge property (Theorem. 4.1) of ΠZK.

28

Protocol ΠNIZK also implements Fm
NIZK (Fig. 2) functionality, i.e. a single prover can prove

multiple statements using the same crsNIZK, if the ΠZK implements Fm
ZK (Fig. 4) functionality. The

protocol also satisfies triple adaptive security for each proof. Our result is summarized in Thm.
5.2.

Figure 10: Triply Adaptively Secure Non-Interactive Zero Knowledge Protocol

ΠNIZK

– Primitives: Correlation Intractable hash family H = (Gen,StatGen, H).

– Public Inputs: Common reference string crsNIZK = (k, crsZK) = (k, crsCom, pk). a where k ←
H.StatGen(1κ, Csk).

b

– Private Inputs: V has input graph G. P has input graph G and a valid Hamiltonian cycle σ.

– Notations: In ΠZK, we denote the P algorithm as P = (P1,P2), where P1 constructs a and P2

computes z. Similarly, we denote V = (V1,V2), where V1 computes e and V2 verifies the proof.

Prove : P(G, σ, 1κ, 1n)

– Compute a by invoking P1 of ΠZK as (a, stP) = ΠZK.P1(1κ, 1n). Computes challenge e = H(k,a)
where e ∈ {0, 1}`.

– Computes response by invoking P2 as z = ΠZK.P2((G, σ), e, stp). P sends proof γ = (a, e, z) to V.

Verify : V(G, γ, 1κ, 1n)

– V computes e′ by computing e′ = H(k,a). V outputs Reject if e 6= e′. V outputs Accept if
ΠZK.V2(γ, e) = 1, else output Reject.

acrsCom of Com in ΠZK and sk is the corresponding decryption key.
bCsk is a poly-size circuit computing the function fsk(a) = e, s.t. for every i ∈ [`], ei =

0 iff Ext(sk, ai) is an n-node cycle.

Theorem 5.2. If H is a somewhere statistically correlation intractable hash function family with
programmability, ΠZK is an input-delayed triply adaptive three round public-coin protocol imple-
menting Fm

ZK, then ΠNIZK UC-realizes Fm
NIZK for the Hamiltonian Language RHam against adaptive

adversaries. Moreover, ΠNIZK is adaptively sound and adaptively zero knowledge.

Proof. The setup string crsNIZK can be reused by the same prover to prove multiple statements
if ΠZK satisfies multi-proof in the crsZK model. If a corrupt prover constructs a malicious proof
then his witness can be extracted by invoking the simulator of ΠZK. Similarly, if the prover is
honest then the simulator of ΠZK can be used to construct simulated proofs that are accepting.
If the prover gets corrupted post-execution then the simulator of the multi-proof NIZK protocol
obtains the corresponding witnesses. He invokes the simulator of ΠZK with the witnesses to obtain
the prover randomness for the simulated proofs. Adaptive security for multi-proof NIZK protocol
follows from the adaptive security of ΠZK. Adaptive soundness and adaptive zero knowledge of
ΠNIZK also follows from the adaptive soundness and adaptive zero knowledge of ΠZK.

Our ZK protocol ΠZK requires a public key encryption scheme with oblivious ciphertext sam-
pleability and an equivocal commitment scheme. In addition, the Fiat-Shamir transform requires a
CI hash function. We can obtain our NIZK from different assumptions based on the instantiation
of these primitives.

29

5.1 Instantiation based on LWE assumption

By instantiating the hash function H [PS19], equivocal commitment [CsW19] and PKE [GSW13]
from LWE we can obtain our NIZK protocol solely based on LWE assumption. We summarize our
result in Thm. 5.3.

Theorem 5.3. Assuming LWE assumption holds and the primitives in ΠNIZK are instantiated as
mentioned above, then ΠNIZK UC-realizes FNIZK for a single instance of the Hamiltonian Language
RHam against adaptive adversaries. Furthermore, ΠNIZK is adaptively sound and adaptively zero
knowledge.

5.2 Instantiation based on LPN+DDH assumption

The work of [BKM20] demonstrated that the CI hash function can be replaced by a CI-Apx hash
function for constant degree polynomial and the PKE scheme can be replaced by a statistically bind-
ing extractable commitment whose extractor can be represented by a constant degree polynomial.
The recent work of [BKM20] showed that given a commitment scheme Com any commit-and-open
Sigma protocol ΠCom can be converted to different commit-and-open Sigma protocol Π′Com with
the following properties and their results are summarized in Thm. 5.4.

– If Com is extractable then Π′Com is a trapdoor Sigma protocol.

– If the commitment extraction function ftd(a) = Com.Ext(td,a) has probabilistic constant-
degree representation, then so does the trapdoor function BadChallenge, corresponding to
Π′Com and, thereforeRΣ(ΠCom’) is probabilistically searchable by constant-degree polynomials.

Theorem 5.4 ([BKM20]). Let ΠCom = (Gen,P1,P2,V) be a trapdoor Sigma protocol for Language
L, where the output a of P1 is of length ` = `(κ). Let Com be a statistically-binding extractable
commitment scheme where, for any td, the function ftd(x) = Com.Ext(td, x) has an ε-probabilistic
representation by c-degree polynomials, for a constant c ∈ N and 0 < ε(κ) < 1/`. Then, for any
polynomial m := m(κ), there exists a trapdoor Sigma-protocol Π′Com for L with soundness 2−m

such that RΣ(ΠCom’) is ε′-probabilistically searchable by 6cc′-degree polynomials, where c′ ∈ N is an
arbitrary constant and ε′ = ` · ε+ 2−c

′
.

Next, they showed that the Fiat-Shamir transform can be applied using a correlation approx
hash function HApx to obtain a NIZK protocol. Moreover, if ΠCom is input-delayed then the NIZK
protocol satisfies adaptive soundness and adaptive zero knowledge.

Theorem 5.5 ([BKM20]). (Sufficient Conditions for NIZK for NP). The following conditions
are sufficient to obtain a NIZK argument system for NP with adaptive soundness and adaptive
zero-knowledge from Π′Com:

1. A trapdoor-Sigma protocol ΠCom satisfying delayed-input property.

2. A statistically-binding extractable commitment scheme where, for any td, the function ftd(x) =
Com.Ext(td, x) has an ε-probabilistic representation by c-degree polynomials, for a constant
c ∈ N and 0 < ε(κ) < 1/`(κ) for an arbitrarily large polynomial `.

3. A programmable correlation intractable hash family HApx for relations ε probabilistically search-
able by c′-degree polynomials, for some constant ε > 0 and arbitrarily large constant c′ ∈ N.

30

They instantiate the correlation approx hash function HApx from trapdoor hash [DGI+19] under
DDH, QR, DCR and LWE assumptions. The commitment scheme is instantiated under LPN
assumption s.t. its extractor algorithm can be probabilistically represented by a constant degree
polynomial. We refer to their paper [BKM20] for more details and formal definitions.

The ΠZK (Fig. 7) protocol is a trapdoor Sigma protocol assuming the commitment (in ΠZK) is
binding and it also satisfies delayed-input property. The commitment scheme (in ΠZK) is instan-
tiated as Pedersen Commitment under DLP assumption. We replace the PKE (in ΠZK) by the
LPN-based commitment scheme of [BKM20]. Their LPN-based PKE scheme also satisfies oblivious
ciphertext sampleability which we need for our security proofs. By applying the Fiat-Shamir using
HApx as the hash function and applying the result of Thm. 5.5 we obtain a triply adaptive NIZK
protocol from LPN+DDH assumption. We summarize our result in Thm. 5.6.

Theorem 5.6. Assuming LPN+DDH assumption holds and the primitives in ΠNIZK are instan-
tiated as mentioned above, then ΠNIZK UC-realizes FNIZK for a single proof of the Hamiltonian
Language RHam against adaptive adversaries. Furthermore, ΠNIZK is adaptively sound and adap-
tively zero knowledge.

6 Triply Adaptive NIZK Argument in the short crs model
In this section we present our compiler ΠsNIZK which obtains a triply adaptive NIZK protocol where
the crs size is independent of the circuit size and depends only on the security parameter assuming
a non-interactive equivocal commitment scheme in the reusable crs model which supports additive
homomorphism, PKE with oblivious ciphertext sampleability and a triply adaptively secure NIZK
protocol ΠNIZK in the crs model. Our compiler is presented in Fig. 11 and the overview can be
found in Sec. 2.4. We prove triple adaptive security of ΠsNIZK by proving Thm. 6.1.

Theorem 6.1. Assuming PKE is a public key encryption scheme with oblivious ciphertext sam-
pling, Com is an equivocal additively homomorphic commitment scheme in the reusable crsCom model
and ΠNIZK implements FNIZK against adaptive corruption of parties, then ΠsNIZK UC-securely im-
plements FNIZK functionality for NP languages against adaptive adversaries in the crs model where
|crs| = poly(κ). In addition, ΠsNIZK is adaptively sound and adaptively zero knowledge.

Proof. The work of [GOS12] showed that if the order of the message domain of Com is atleast 4
and α, β are the input values of a NAND gate and Γ is the output value then,

Γ = α� β if and only if α+ β + 2Γ− 2 ∈ {0, 1}

And if the order is 3 then

Γ = α� β if and only if α+ β + 2Γ− 2 ∈ {0, 1} and α+ β + Γ− 1 ∈ {0, 1}.

We assume the order is 4 (for the sake of simplicity) and correctness for the NAND gates follows
from this observation. It can be modified when the order is 3. Next, we present two possible
corruption cases.

P is statically corrupt and V is honest. In this case, the adversary can break the soundness of
the protocol if he can break the binding of the commitment or the soundness of ΠNIZK. The simula-
tion algorithm is presented in Fig. 12. We present the formal hybrids and prove indistinguishability
as follows:

31

Figure 11: Triply Adaptively Secure NIZK Protocol in the short crs model

ΠsNIZK

– Primitives: Non-interactive equivocal additively homomorphic commitment scheme Com =
(Gen,Com,Ver,Equiv). Public key encryption scheme PKE = (KeyGen,Enc,Dec) with oblivious
ciphertext sampling algorithm oEnc. Adaptively secure NIZK protocol ΠNIZK = (Gen,P,V).

– Public Inputs: Common reference string crssNIZK = (crsCom, pk, crsNIZK) where (crsCom, td) ←
Com.Gen(1κ), (crsNIZK, tdNIZK)← ΠNIZK.Gen(1κ) and (pk, sk)← PKE.KeyGen(1κ).

– Notations: If x ∈ L and w is a valid witness then R(x,w) = 1. Circuit C computes R(x) s.t.
C(y1y2 . . . yn) = 1 iffR(x,w) = 1 where y1y2y|w| = w and C has m NAND gates and n wires, where
the nth wire is the output wire of C. Com.Com(α; rα)+Com.Com(β; rβ) = Com.Com(α+β; rα+rβ).

Prove : P(x,w)

– Assign the wire values y1y2 . . . yn based on w.
– Commit to each bit yi as ci ← Com.Com(yi; ri) and encrypt the randomness as Ei,yi =

PKE.Enc(pk, ri; si) and Ei,yi ← PKE.oEnc(1κ) for i ∈ [n− 1].
– For the output wire let rn = 0 and cn = Com.Com(1; 1).
– For all i ∈ [n − 1], prove ci is a commitment to 0 or 1 by computing proof πi ←

ΠNIZK.P((ci, Ei,0, Ei,1), (wi, ri, si)) for the following relation,

R1((ci, Ei,0, Ei,1), (wi, ri, si)) = (∃ri, si : (ci = Com.Com(0; ri)∧

Ei,0 = PKE.Enc(pk, ri; si)) ∨ (ci = Com.Com(1; ri) ∧ Ei,1 = PKE.Enc(pk, ri; si))).

– For the jth NAND gate with input wires α and β and output wire Γ perform the following:

• Compute Cj = cα + cβ + 2cΓ − 2.

• Compute the randomness for Cj as Rj = rα + rβ + 2rΓ − 2.

• Prove Cj is a commitment to 0 or 1 by computing proof π′j ← ΠNIZK.P(Cj , Rj) for the
following relation,

R2(Cj , Rj) = (∃Rj : Cj = Com.Com(0;Rj) ∨ (Cj = Com.Com(1;Rj))).

– P sends proof γ = {{ci, Ei,0, Ei,1, πi}i∈[n−1], cn, {π′j}j∈[m]} to V.

Verify : V(x, γ)

– Verifies cn = Com.Com(1; 0).
– Verifies πi for i ∈ [n− 1] using ΠNIZK.V((ci, Ei,0, Ei,1), πi) algorithm.
– For the jth NAND gate with input wires α and β and output wire Γ compute Cj = cα+cβ+2cΓ−2

and verify π′j by running ΠNIZK.V(Cj , Rj).
– If verification succeeds then output Accept else output Reject.

32

Figure 12: Simulation against a statically corrupt P∗ by S
– Public Inputs: Common reference string crssNIZK = (crsCom, pk, crsNIZK).

– Simulator Inputs: Trapdoor of crssNIZK = (td, sk, tdNIZK) where sk is the secret key for pk, td is
the equivocating trapdoor of Com and tdNIZK is the trapdoor of crsNIZK.

Prove :
P∗ sends proof γ = {{ci, Ei,0, Ei,1, πi}i∈[n−1], cn, {π′j}j∈[m]} to V.

Verify : S(x, γ)

– S runs the honest verifier algorithm to compute Cj for j ∈ [m] and verify cn = Com(1; 1).
– For i ∈ [n], S aborts if PKE.Dec(sk, Ei,0) and PKE.Dec(sk, Ei,1) are valid decommitment ran-

domness for ci to 0 and 1 respectively.
– S invokes the simulator of ΠNIZK with tdNIZK to verify {πi}i∈[n−1], {π′j}j∈[m] and extract y1 . . . y|w|.
– S invokes FNIZK with w = y1 . . . y|w| to complete the simulation.

– Hyb0: Real world.

– Hyb1: Same as Hyb0, except the simulator decrypts (ri,0, ri,1) from (Ei,0, Ei,1) for all i ∈ [n].
He aborts if ∃i ∈ [n] (resp. ∃j ∈ [m]) s.t ci (resp Cj) opens to both 0 and 1 using randomness
ri,0 (resp. Rj,0) and ri,1 (resp. Rj,1).

The adversary can distinguish between the hybrids if he computes valid decommitments for
both 0 and 1. In such a case, the simulator can extract the randomness for both decommit-
ments and he can be used to break the binding of the commitment scheme.

– Hyb2: Same as Hyb1, except the simulator aborts if the simulator of ΠNIZK fails to extract a
correct witness from a single proof.

Indistinguishability follows from the multi-proof security of ΠNIZK.

P is honest and V is statically corrupt. Next, we demonstrate zero knowledge property of
ΠsNIZK by relying on the ZK simulator of ΠNIZK and the equivocal property of Com. The simulation
algorithm is presented in Fig. 13. We present the formal hybrids and prove indistinguishability as
follows:

– Hyb0: Real world.

– Hyb1: Same as Hyb0, except the simulator constructs πi and π′j using the ZK simulator of
ΠNIZK.

Indistinguishability follows due to the multi-proof security of ΠNIZK.

– Hyb2: Same as Hyb1, except the simulator uses the equivocating trapdoor td (of Com)
computes all the commitments ci as commitment to 0 using randomness ri and commitment
to 1 using randomness r′i. He encrypts ri and r′i to form Ei,0 and Ei,1 respectively.

Indistinguishability follows from the equivocal property of Com. The oblivious ciphertext
sampling property of PKE also ensures that for every i ∈ [n] the following two events are
indistinguishable - one of Ei,0 and Ei,1 is obliviously sampled (real world view), both Ei,0 and
Ei,1 are valid encryptions (ideal world view).

33

Figure 13: Simulation against a statically corrupt V∗ by S
– Public Inputs: Common reference string crssNIZK = (crsCom, pk, crsNIZK).

– Simulator Inputs: Trapdoor of crssNIZK = (td, sk, tdNIZK) where sk is the secret key for pk, td is
the equivocating trapdoor of Com and tdNIZK is the trapdoor of crsNIZK.

Prove : S(x)

– For i ∈ [n − 1], compute ci = Com.Com(0; ri) = Com(1; r′i). Compute Ei,0 = PKE.Enc(pk, ri; si)
and Ei,1 = PKE.Enc(pk, r′i; s

′
i). Compute cn = Com.Com(1; 1).

– For j ∈ [m], i ∈ [n − 1], invoke ΠNIZK simulator with tdNIZK to obtain simulated proofs for πi and
π′j .

– Send proof γ = {{ci, Ei,0, Ei,1, πi}i∈[n−1], cn, {π′j}j∈[m]} to V.

Verify :
Runs its own adversarial algorithm.

P gets corrupted post-execution. We discuss simulating the view of an honest prover when it
gets adaptively corrupted post-execution. In such a case the adaptive simulator obtains the correct
y1 . . . yn and he equivocates the ci s.t. they open to yi. It claims that Ei,yi was randomly sampled
owing to the oblivious ciphertext sampling algorithm. πi and π′j are simulated by invoking the
adaptive simulator for ΠNIZK using the respective witnesses. Indistinguishability follows due to the
equivocal property of Com which holds in presence of adaptive corruptions, oblivious ciphertext
sampling property of PKE and adaptive security for multi-proofs of ΠNIZK.

Proof of Adaptive Soundness. In our compiler, the setup string is crssNIZK = (crsNIZK, pk, crsCom)
where crsNIZK is the setup string of an adaptively sound NIZK protocol ΠNIZK. If an adversary A
breaks adaptive soundness of ΠsNIZK then we can use A to construct an adversary ACOM, who
breaks the binding property of Com, or an adversary ANIZK, who breaks the adaptive soundness
property of ΠNIZK. We construct ACOM and ANIZK as follows:

• Constructing ACOM: ACOM obtains crsCom for the commitment and he samples a PKE key
pair (pk, sk) and crsNIZK to set crssNIZK = (crsNIZK, pk, crsCom). ACOM invokes A to obtain
a statement and a proof. A checks if ∃i ∈ [n], s.t. commitment ci opens both to 0 and 1
by decrypting ri and r′i from Ei,0 and Ei,1 given the secret key sk. If there is one such ci
then ACOM outputs (0, ri) and (1, r′i) to the commitment challenger and breaks the binding
property of Com. Else, A has broken the adaptive soundness of ΠNIZK.

• Constructing ANIZK: ACOM obtains crsNIZK for ΠNIZK. He samples a PKE key pair (pk, sk)
and crsCom to set crssNIZK = (crsNIZK, pk, crsCom). ACOM invokes A to obtain a statement and
a proof. A checks if ∃i ∈ [n], s.t. commitment ci opens both to 0 and 1 by decrypting ri
and r′i from Ei,0 and Ei,1 given the secret key sk. If there is no such ci then A has broken
adaptive soundness in atleast one of the {πi}i∈[n−1] or {π′j}j∈[m]. ANIZK samples one of those
proofs randomly and returns it to the challenger of adaptive soundness game of ΠNIZK. If A
wins with probability p and ACOM wins with probability pc then ANIZK wins with probability
p−pc

m+n−1 .

Proof of Adaptive ZK. Our ZK simulator in Fig. 13 suffices for adaptive zero knowledge as
the statement x is adaptively chosen by the adversary after obtaining crssNIZK.

34

Protocol ΠsNIZK also implements Fm
NIZK (Fig. 2) functionality and satisfies triple adaptive secu-

rity for each proof. Our result is summarized in Thm. 6.2.

Theorem 6.2. Assuming PKE is a public key encryption scheme with oblivious ciphertext sam-
pling, Com is an equivocal additively homomorphic commitment scheme in the reusable crsCom model
and ΠNIZK implements Fm

NIZK against adaptive corruption of parties, then ΠsNIZK UC-securely im-
plements Fm

NIZK functionality for NP languages against adaptive adversaries in the crs model where
|crs| = poly(κ). In addition, ΠsNIZK is adaptively sound and adaptively zero knowledge.

Proof. The protocol ΠsNIZK also allows the prover to prove multiple statements using the same
crssNIZK. If a corrupt party breaks the security of the protocol in one of the proof then that party
can be used to either break the multi-proof security of ΠNIZK or the security of Com.

The homomorphic commitment scheme can be instantiated from DDH [Ped92, CSW20] or
LWE [GVW15] asusmptions. The PKE can be instantiated from DDH assumption [ElG85] or
LWE [GSW13] assumptions. This yields our compiler from DDH or LWE assumption.

7 Triply Adaptive, multi-proof UC-NIZK Argument

In this section, we add non-malleability to our ΠsNIZK protocol to obtain our multi-proof UC-NIZK
protocol ΠUC-NIZK by using simulation sound tag-based commitments ComSST and strong one-time
signature scheme Sig. We add non-malleability to our proof by signing the proof using a pair of
keys (vk, sk) from Sig and committing the witness using a ComSST where the tag is (vk, sid, ssid, x).
The adversary is binded to vk since vk is part of the tag used to encrypt w using ComSST in the
proof γ. Sig ensures that an adversary cannot forge a signature using vk and this prevents non-
malleability. Our protocol is presented in Fig. 15. The same crs is used for multiple subsessions and
this ensures adaptive soundness and adaptive zero knowledge. High-level overview can be found in
Sec. 2.5. We prove security of ΠUC-NIZK by proving Thm. 7.1.

Theorem 7.1. If ΠsNIZK UC-realizes FNIZK for a single proof, Sig is a strong one-time secure
signature scheme, ComSST is a tag-based simulation-sound trapdoor commitment and PKE is a
public key encryption scheme with oblivious ciphertext sampling property then ΠUC-NIZK UC-securely
implements FNIZK for multiple instances against adaptive adversaries. In addition, ΠUC-NIZK is
adaptively sound and adaptively zero knowledge.

Proof. We consider that there are s subsessions and out of that the prover is statically corrupt
in s′ of those subsessions and he gets adaptively corrupted in s − s′ subsessions. In s′ of those
subsessions the adversary can break the security of the protocol without breaking the security
of the single-session NIZK protocol if he can forge a signature or if he can break the binding
property of the simulation sound tag-based commitment scheme ComSST. This is captured by a
sequence of hybrids for each such subsession. For the rest s − s′ subsessions, the environment Z
can distinguish a real and ideal world view either by distinguishing the views of the single-session
NIZK protocol or by breaking the equivocal property of ComSST(or oblivious ciphertext sampling
property of PKE). In Fig. 14 we capture our ideal world simulation against adaptive corruption of
parties for multi-subsessions. We consider 5s + 5 hybrids where in hybrid 5j (for j ∈ [s]) the first
j − 1 subsessions are simulated and the rest are real executions. The jth subsession is modified
in hybrids Hyb5j + 1- Hyb5j + 3 if the prover is statically corrupted. Else, if the prover is honest
then the simulator simulates on behalf of the prover and that is captured in hybrids Hyb5j + 4 and
Hyb5j + 5. In Hyb5j + 5 the first j subsessions are simulated and the rest s− j subsessions consist of
real executions.

35

– Hyb0: Real world execution of all the subsessions.

...

– Hyb5j: The simulator S simulates the first j − 1 subsessions by invoking the simulator
ΠsNIZK.S and the rest s − j + 1 subsessions are simulated by running the real protocol with
the honest prover’s input witness.

– Hyb5j + 1: Same as Hyb5j , except if the prover is statically corrupt in subsession j and the
reduction aborts if the corrupt prover has successfully generated a signature s using vk in
the proof for subsession j, where vk was used to generate a proof γ′ by an honest prover in
another subsession.

The adversary A can distinguish between the two hybrids if he forges a signature s on m =
(π, x, sid, ssid) using vk where vk has been used to generate a proof in a different NIZK
subsession. One can build an adversary for the strong one-time signature scheme As using A
where As outputs (m, s) as the forgery.

– Hyb5j + 2: Same as Hyb5j + 1, except if the prover is statically corrupt in subsession j and the
reduction aborts if ci (in the maliciously constructed proof for subsession j) opens to both 0
and 1 using randomness ri,0 and ri,1 from Ei,0 and Ei,1 respectively.

The adversary can distinguish between the hybrids if he computes valid decommitments for
both 0 and 1. In such a case, the simulator can extract the randomness for both decom-
mitments as the adversary can be used to break the the simulation soundness property of
ComSST for the challenge tag (vk, sid, ssid, x).

– Hyb5j + 3: Same as Hyb5j + 2, except if the prover is statically corrupt in subsession j then the
simulator constructs the ideal world view by invoking the single session simulator of ΠsNIZK.

Indistinguishability between Hyb5j + 2 and Hyb5j + 3 follows from the security of ΠsNIZK. This
completes simulating the jth subsession for static corruption of prover.

– Hyb5j + 4: Same as Hyb5j + 3, except if the prover is honest in the beginning of susbsession j
then the simulator simulates an honest prover by computing the commitments using TCom
and encrypts the corresponding randomness values for 0 and 1. The proof is generated
honestly using the knowledge of the witness and adaptive corruption of prover is simulated
by opening the honest prover randomness.

Indistinguishability follows from the security of ComSST and oblivious ciphertext sampling
property of PKE.

– Hyb5j + 5: Same as Hyb5j + 4, except if the prover is honest in the beginning of susbsession
j then the simulator invokes ΠsNIZK.S(x′) to simulate the proof. If the prover gets corrupted
post-execution with witness w then invoke the adaptive simulator of ΠsNIZK with w to obtain
randomness consistent with the proof.

Indistinguishability between Hyb5j + 4 and Hyb5j + 5 follows from the adaptive security of
ΠsNIZK. This completes simulating the jth subsession for adaptive corruption of prover.

...

36

– Hyb5s+ 5: This is the ideal world execution of the protocol where all the subsessions are
simulated. The ideal world adversary view consists of the combined ideal world views of all
the subsessions and this is forwarded to the environment Z.

Proof of Adaptive Soundness. If adversary A breaks adaptive soundness of ΠUC-NIZK for a
subsession j then one can either build an adversary AS, forging signature, or an adversary ACOM,
breaking soundness of ComSST, or an adversary AsNIZK breaking adaptive soundness of ΠsNIZK as
follows:

• Constructing AS: AS initiates a multi-session UC protocol with A. AS samples (pk, sk),
crsCom and crssNIZK s.t. he knows the trapdoors of crsUC-NIZK = (crsCom, pk, crssNIZK). A
obtains crsUC-NIZK as the setup string. AS has oracle access to obtain signatures using challenge
verification key vk. He incorporates the vk as part of the tag in a subsession j′ 6= j, where
the prover is honest. AS computes the proof for subsession j′ using trapdoors of crsCom and
crssNIZK. AS signs the proof using oracle access to the signing algorithm. AS sends this proof
to A as the proof for subsession j′. AS simulates other subsessions where the prover is honest,
by invoking the ZK simulator using the trapdoors of ΠUC-NIZK. A returns a statement and a
proof for subsession j where he breaks adaptive soundness. If A has used the same vk as part
of the proof in subsession j then AS forwards this proof as a forgery using vk to the signing
algorithm. The proofs in subsession j and subsession j′ are ensured to be different because
the subsession ids are different and hence the tags are different for each subsession. Thus,
the proof for subsession j with same vk will act as a forgery.

• Constructing ACOM: ACOM initiates a multi-session UC protocol with A. ACOM receives
crsCom from the challenger of the binding game. ACOM samples (pk, sk) and crssNIZK and
sets crsUC-NIZK = (crsCom, pk, crssNIZK). A obtains crsUC-NIZK as the setup string. If A breaks
adaptive soundness of subsession j then ACOM checks if ∃i ∈ [|w|], s.t. commitment ci opens
both to 0 and 1 by decrypting ri and ri

′ from Ei,0 and Ei,1 given the secret key sk. He returns
ri and ri

′ to the challenger of Com to break the binding property.

• Constructing AsNIZK: AsNIZK obtains crssNIZK from the challenger of adaptive soundness for
ΠsNIZK. AsNIZK initiates a multi-session UC protocol with A. AsNIZK samples (pk, sk) and
crsCom and sets crsUC-NIZK = (crsCom, pk, crssNIZK). A obtains crsUC-NIZK as the setup string.
AsNIZK simulates subsessions where the prover is honest by invoking the ZK simulator using
the trapdoors of crsCom. If A returns a statement and a proof for subsession j then AsNIZK

checks that @i ∈ [|w|], s.t. commitment ci opens both to 0 and 1 by decrypting ri and ri
′

from Ei,0 and Ei,1 given the secret key sk. Also, AsNIZK verifies that the vk contained in the
tag for session j is not used in any previous subsessions where the prover was honest. These
two checks rule out the possibility of A breaking the binding property of Com and forging a
signature. After these checks, it is ensured that A succeeds in breaking adaptive soundness
in subsession j by breaking adaptive soundness of ΠsNIZK. AsNIZK forwards the statement and
the proof (without the signature) forwarded by A in subsession j.

Proof of Adaptive Zero Knowledge. Our simulator for an honest prover provides adaptive
zero knowledge even when a statically corrupt verifier adaptively chooses the statement to be proven
based on the crsUC-NIZK distribution.

37

Figure 14: Simulation against adaptive corruption of parties in ΠUC-NIZK

– Public Inputs: Common reference string crsUC-NIZK = (crsCom, pk, crssNIZK).
– Simulator Inputs: Trapdoor of crsUC-NIZK = (td, sk, tdsNIZK) where td is the trapdoor for ComSST,

sk is the secret key of pk and tdsNIZK is trapdoor of crssNIZK.

The simulator S simulates multiple NIZK subsessions concurrently using the trapdoor td of crs. S
maintains a list L of subsession ids, corresponding statements x′′ and proofs with entries of the form
- (ssid′′, x′′, γ′′). Upon obtaining a request for ideal world adversary view in subsession ssid from the
environment Z with statement x, the simulator S returns γ to Z if (ssid, x, γ) ∈ L. If (ssid, x′′,) ∈ L
and x 6= x′′ : S returns ⊥ to Z. Else, S generates the ideal world view as described below for ssid based
on the corruption of prover.

Case 1: If the prover is statically corrupt in subsession ssid :

Prove :
S invokes the dummy adversary for subsession ssid with statement x to obtain γ =
(π, {ci, Ei,0, Ei,1}i∈[|w|], s, vk).

Verify : S(x, γ, sid, ssid)

– Abort if vk was the verification key of an honestly generated proof in a different subsession ssid′ 6=
ssid and Sig.Ver(vk, (π, x, sid, ssid), s) = 1.

– For i ∈ [|w|], S aborts if PKE.Dec(sk, Ei,0) and PKE.Dec(sk, Ei,1) are valid decommitment ran-
domness for ci to 0 and 1 respectively.

– Extracts witness w by invoking the simulator algorithm for ΠsNIZK with trapdoor tdsNIZK of crssNIZK
for statement x′ = (x, vk, {ci, Ei,0, Ei,1}i∈[|w|]), i.e. w = ΠsNIZK.S(x′, π).

– If w = ⊥ then output Reject. Else, invoke FNIZK with w and output Accept.

Case 2: If the prover is honest at the beginning of subsession ssid :

Prove : S(x, sid, ssid)

– Generates signature key pair (sk, vk).
– For i ∈ [|w|], S computes (ci, r

′
i)← ComSST.TCom(crsCom, td, (vk, x, sid, ssid)).

– Compute randomness ri,0 ← ComSST.TOpen(crsCom, c, 0, r
′
i) and ri,1 ←

ComSST.TOpen(crsCom, c, 1, r
′
i). Encrypt Ei,0 = PKE.Enc(pk, ri,0) and Ei,1 = PKE.Enc(pk, ri,1).

– S invokes π ← ΠsNIZK.S(x′) with trapdoors tdsNIZK for statement x′ = (x, vk, {ci, Ei,0, Ei,1}i∈[|w|])
to obtain π.

– Signs the proof s← Sig.Sign(sk, π, sid, ssid, x).
– S sends the proof γ = (π, {ci, Ei,0, Ei,1}i∈[|w|], s, vk) to verifier.

Verify :
Performs its own algorithm.

Post-Execution Corruption of Prover :
S computes the correct decommitment randomness ri,wi

and its encryption randomness si. It invokes
the adaptive simulator ΠsNIZK.S on (w, sk, ri,wi

, si) to obtain randomness for π. It opens ci and Ei,wi

using randomness ri,wi
and si respectively and claims that Ei,wi

is randomly sampled.

38

Figure 15: Triply Adaptive UC-Secure NIZK Protocol for multiple sessions in the short crs model

ΠUC-NIZK

– Primitives: Strong one-time signature scheme Sig = (KeyGen,Sign,Ver). Public key encryption
scheme PKE = (KeyGen,Enc,Dec) with oblivious ciphertext sampling algorithm oEnc. Simulation
sound tag based commitment ComSST = (KeyGen,Com,Dec,Ver,TCom,TOpen).

– Public Inputs: Common reference string crsUC-NIZK = (crsCom, pk, crssNIZK) where (crsCom, td)←
ComSST.KeyGen(1κ), (crssNIZK, tdsNIZK) ← ΠsNIZK.Gen(1κ) and (pk, sk) ← PKE.KeyGen(1κ). Ses-
sion id sid and subsession id ssid.

Prove : P(x,w, sid, ssid)

– Generates signature key pair (sk, vk)← Sig.KeyGen(1κ).
– Commits to the bits of witness wi using the tag (vk, sid, ssid, x) as ci =

ComSST.Com(crsCom, wi, (vk, sid, ssid, x); ri) using randomness ri. Encrypt the randomness
as Ei,ri = PKE.Enc(pk, ri; si) and Ei,yi ← PKE.oEnc(1κ) for i ∈ [n− 1].

– Computes proof π ← ΠsNIZK.P((x, vk, {ci, Ei,0, Ei,1}i∈[|w|]), (w, sk, {ri, si}i∈[|w|])) for the following
relation:

R′(x′, w′) = ((x, vk, {ci, Ei,0, Ei,1}i∈[|w|]), (w, sk, {ri, si}i∈[|w|]) : C(x,w) = 1∧

(∀i ∈ [|w|], ci = ComSST.Com(crsCom, wi, (vk, sid, ssid, x); ri)∧

(Ei,0 = PKE.Enc(pk, ri; si) ∨ Ei,1 = PKE.Enc(pk, ri; si))).

– Signs the proof s← Sig.Sign(sk, π, sid, ssid, x). Sends the proof γ = (π, {ci, Ei,0, Ei,1}i∈[|w|], s, vk).

Verify : V(x, γ, sid, ssid)

– The verifier outputs Accept if ΠsNIZK.V((x, vk, {ci, Ei,0, Ei,1}i∈[|w|], π) = 1 and
Sig.Ver(vk, (π, x, sid, ssid), s) = 1. Else, output Reject.

39

References

[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In Salil P.
Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 118–136. Springer, Heidelberg,
February 2007.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from
bitcoin. In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA,
USA, May 18-21, 2014, pages 459–474, 2014.

[BFM90] Manuel Blum, Paul Feldman, and Silvio Micali. Proving security against chosen cypher-
text attacks. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages
256–268. Springer, Heidelberg, August 1990.

[BKM06] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger def-
initions, and constructions without random oracles. In Shai Halevi and Tal Rabin,
editors, TCC 2006, volume 3876 of LNCS, pages 60–79. Springer, Heidelberg, March
2006.

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from LPN and trap-
door hash via correlation intractability for approximable relations. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2020, Part III, LNCS, pages 738–767.
Springer, Heidelberg, August 2020.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signa-
tures: Formal definitions, simplified requirements, and a construction based on general
assumptions. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages
614–629. Springer, Heidelberg, May 2003.

[BSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive
zero-knowledge. SIAM J. Comput., 20(6):1084–1118, 1991.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, 51st ACM STOC, pages 1082–1090. ACM Press, June 2019.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, re-
visited (preliminary version). In 30th ACM STOC, pages 209–218. ACM Press, May
1998.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 34th ACM STOC, pages
494–503. ACM Press, May 2002.

40

[CPS+16a] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan
Visconti. Improved OR-composition of sigma-protocols. In Eyal Kushilevitz and Tal
Malkin, editors, TCC 2016-A, Part II, volume 9563 of LNCS, pages 112–141. Springer,
Heidelberg, January 2016.

[CPS+16b] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan
Visconti. Online/offline OR composition of sigma protocols. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 63–92. Springer, Heidelberg, May 2016.

[CPV20] Michele Ciampi, Roberto Parisella, and Daniele Venturi. On adaptive security of
delayed-input sigma protocols and fiat-shamir nizks. In Clemente Galdi and Vladimir
Kolesnikov, editors, Security and Cryptography for Networks - 12th International Con-
ference, SCN 2020, Amalfi, Italy, September 14-16, 2020, Proceedings, volume 12238
of Lecture Notes in Computer Science, pages 670–690. Springer, 2020.

[CsW19] Ran Cohen, abhi shelat, and Daniel Wichs. Adaptively secure MPC with sublinear
communication complexity. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part II, volume 11693 of LNCS, pages 30–60. Springer, Heidelberg,
August 2019.

[CSW20] Ran Canetti, Pratik Sarkar, and Xiao Wang. Efficient and round-optimal oblivious
transfer and commitment with adaptive security. Cryptology ePrint Archive, Report
2020/545, 2020. https://eprint.iacr.org/2020/545 (To appear in Crypto’20).

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended
abstract). In 23rd ACM STOC, pages 542–552. ACM Press, May 1991.

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail
Ostrovsky. Trapdoor hash functions and their applications. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 3–32. Springer, Heidelberg, August 2019.

[DN00] Ivan Damg̊ard and Jesper Buus Nielsen. Improved non-committing encryption schemes
based on a general complexity assumption. In Mihir Bellare, editor, CRYPTO 2000,
volume 1880 of LNCS, pages 432–450. Springer, Heidelberg, August 2000.

[DPR16] Ivan Damg̊ard, Antigoni Polychroniadou, and Vanishree Rao. Adaptively secure multi-
party computation from LWE (via equivocal FHE). In Chen-Mou Cheng, Kai-Min
Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume
9615 of LNCS, pages 208–233. Springer, Heidelberg, March 2016.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.

[FF02] Marc Fischlin and Roger Fischlin. The representation problem based on factoring. In
Bart Preneel, editor, CT-RSA 2002, volume 2271 of LNCS, pages 96–113. Springer,
Heidelberg, February 2002.

41

https://eprint.iacr.org/2020/545

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput., 29(1):1–28, 1999.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer, Heidelberg, August 1987.

[GGI+15] Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and Adam D. Smith.
Using fully homomorphic hybrid encryption to minimize non-interative zero-knowledge
proofs. Journal of Cryptology, 28(4):820–843, October 2015.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229. ACM Press, May 1987.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge
for NP. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages
339–358. Springer, Heidelberg, May / June 2006.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive
zero-knowledge. J. ACM, 59(3):11:1–11:35, 2012.

[GR13] Oded Goldreich and Ron D. Rothblum. Enhancements of trapdoor permutations. Jour-
nal of Cryptology, 26(3):484–512, July 2013.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 75–92. Springer, Heidelberg, August 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomor-
phic signatures from standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld,
editors, 47th ACM STOC, pages 469–477. ACM Press, June 2015.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 955–966.
ACM Press, November 2013.

[KNYY19] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Exploring
constructions of compact NIZKs from various assumptions. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 639–669. Springer, Heidelberg, August 2019.

[KNYY20] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Compact
NIZKs from standard assumptions on bilinear maps. In Vincent Rijmen and Yuval Ishai,
editors, EUROCRYPT 2020, Part III, LNCS, pages 379–409. Springer, Heidelberg,
May 2020.

42

[KZM+15] Ahmed E. Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, T.-H. Hubert Chan, Char-
alampos Papamanthou, Rafael Pass, Abhi Shelat, and Elaine Shi. How to use snarks
in universally composable protocols. IACR Cryptol. ePrint Arch., 2015:1093, 2015.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In 22nd ACM STOC, pages 427–437. ACM Press, May 1990.

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification schemes and corre-
sponding signature schemes. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of
LNCS, pages 31–53. Springer, Heidelberg, August 1993.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–
140. Springer, Heidelberg, August 1992.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 89–114. Springer, Heidelberg,
August 2019.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In
22nd ACM STOC, pages 387–394. ACM Press, May 1990.

[SCO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and
Amit Sahai. Robust non-interactive zero knowledge. In Advances in Cryptology -
CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 19-23, 2001, Proceedings, pages 566–598, 2001.

43

A Calculation for computing occurrence of bad event

The simulator fails to extract the correct witness when the majority of the candidate cycles are
incorrect. A corrupt P∗ can compute µ of the ai values, except with negligible probability 2−µ.
We can assume that ei = 1 for those bad µ instances. In such a case, the simulator needs to have
µ+ 1 good instances where ei = 1. So there should be at least 2µ+ 1 instances where ei = 1. That
means that the challenge vector e should contain 2µ+1 1s. Such an event occurs with overwhelming
probability (1− 2−2µ) when ` = 8µ. The probability that e does not contain 2µ+ 1 1s is given as
follows. We denote the hamming weight of e as HW(e) :

Pr[HW(e) < (2µ+ 1)] =

(
`
1

)
+ . . .+

(
`

2µ

)
2`

=

(
8µ
1

)
+ . . .+

(
8µ
2µ

)
28µ

< 2µ×
(

8µ
2µ

)
28µ

=
2µ

28µ
×
(

8µ

2µ

)
=

2µ

28µ
× 8µ!

2µ!× 6µ!

≈ 2µ

28µ
×

√
2π8µ(8µ

e)8µ

√
2π2µ(2µ

e)2µ
√

2π6µ(6µ
e)6µ

(Due to Stirling’s approximation)

=
1

28µ
×
√

4µ

3π
× 88µ

22µ × 66µ

=

√
4µ

3π
× (0.35)µ

< 2−µ

44

	Introduction
	Our Contributions
	Our Techniques and Instantiations
	Related Works

	Technical Overview
	ZK Protocol of FLS
	Our ZK Protocol
	Our NIZK protocol
	Reducing the length of the crs
	Obtaining UC Security for multiple subsessions

	Preliminaries
	Non-Interactive Zero Knowledge
	Interactive Zero Knowledge
	Commitment Schemes
	Common Reference String Model
	Correlation Intractability.

	Triply Adaptive Delayed Input Three Round ZK Argument
	Triply Adaptive NIZK Argument
	Instantiation based on LWE assumption
	Instantiation based on LPN+DDH assumption

	Triply Adaptive NIZK Argument in the short crs model
	Triply Adaptive, multi-proof UC-NIZK Argument
	Calculation for computing occurrence of bad event

