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Abstract. Boneh-Durfee proposed (at Eurocrypt 1999) a polynomial
time attacks on RSA small decryption exponent which exploits lattices
and sub-lattice structure to obtain an optimized bounds d < N0.284 and
d < N0.292 respectively using lattice based Coppersmith’s method. In
this paper we propose a special case of Boneh-Durfee’s attack with re-
spect to large private exponent (i.e. d = N ε > e = Nα where ε and α
are the private and public key exponents respectively) for some α ≤ ε,
which satisfy the condition d > φ(N) −N ε. We analyzed lattices whose
basis matrices are triangular and non-triangular using large decryption
exponent and focus group attacks respectively. The core objective is to
explore RSA polynomials underlying algebraic structure so that we can
improve the performance of weak key attacks. In our solution, we im-
plemented the attack and perform several experiments to show that an
RSA cryptosystem successfully attacked and revealed possible weak keys
which can ultimately enables an adversary to factorize the RSA modulus.

Keywords: RSA · Cryptanalysis · small Public Key · Lattice Reduction
Attack · Large private Key · Coppersmith’s Method.

1 Introduction

1.1 Background

RSA public key algorithm [23] is one of the popular data encryption/decryption
and signing strategy which provides confidentiality and integrity services to
World Wide Web (WWW) since 1990 to onward (after Internet invention).
Most of the applications (i.e. financial, military and others), typically based on
SSL/TLS protocol which heavily dependent on RSA public key. An RSA cipher
suits used to secure the sender/receiver communication session over an insecure
remote network. Also, today’s m-commerce based applications widely adopting
RSA protection solutions for all their financial remittances. RSA includes pub-
lic/private key pair, where public key denotes by (N, e) and it is openly (publicly)
accessible. Furthermore N the modulus written as N = pq, where p and q be the
product of two unknown distinct (random) primes. The corresponding private
key d ∈ Z satisfy the equation (1) as follows.

ed ≡ 1 mod(φ(N)) (1)



Since four decades, cryptanalysts finding inadequacies in RSA by various means
as summarized in [6, 21], but still it consider a secure and widely adopted al-
gorithm due to big integer modulus. We briefly cover some popular RSA based
small and large decryption key attacks, then we formulate our specific large de-
cryption key attacks and “Focus Group” attacks to analyze the RSA security
using lattice reduction method in this work, which is not yet studied accord-
ing to best of our knowledge. We demonstrate our solution by exploiting RSA
polynomial especially for multivariate case. Before moving towards our concrete
problem, lets first summaries the previous work.

1.2 RSA Small Decryption Key Attacks

When an RSA cryptosystem require cost effective decryption/signature gener-
ation operations, the devised solution must use the small decryption exponent
d > N ε, where ε = 0.292. In 1990, Wiener [27] first exposed the small decryption
key vulnerability using Continued Fraction (CF) expansion and shows that the
decryption (private) exponent d < N0.25 leads to a polynomial time attack. Later
at Eurocrypt 1999, Boneh and Durfee [4,5] attack improves the Wiener’s bound
using lattice based Coppersmith’s method. In their solution an RSA small de-
cryption (private) attack (also known as “Small Inverse Problem” (SIP)) exploits
the triangular and non-triangular lattice structure and obtained a refined bounds
after a decade of Wiener’s result. In their attack they showed that an RSA cryp-
tosystem becomes insecure if d < N0.292 chosen, which is known as the most
refined RSA small exponent insecure attack bounds to date. Unlike Wiener’s
method, Boneh-Durfee’s attack yields a heuristic outcome based on Howgrave-
Graham’s reformulation of lattice based Coppersmith’s method to find the small
root of modular polynomial equation [7,13]. In most recent work by Willy Susilo
et al. [25] revisits the Wiener’s CF attack using classical Legendre method on
Continued Fraction (CF) to refine the their reported bound limitations. They
highlights the findings to improve the tight bound of the Wiener’s attack upto
d ≤ 1

4√18
= 1

2.06...N
1
4 . In our work, we revisits the existing limitations using

lattice reduction Coppersmith’s method. In our environment we implemented
the Wiener’s and Boneh-Durfee’s first attack method which is always failed and
ultimately can not retrieve the roots, though we take a slightly bigger values
than Wiener’s bound (i.e. d < N

1
4 ).

In literature various attempts have been made to improve Boneh-Durfee’s
attack bound but no one yet increases their optimized bounds, though many
of them proposed some strategies to optimize lattices and sub-lattice structure
as mentioned in [1, 10, 12, 14, 26]. Blömer and May [3] also proposed the small
decryption exponent attack, though they refined the triangular lattice construc-
tion mechanism without improving the Boneh-Durfee’s bound. In RSA small
decryption exponents, a “Focus Group” attacks proposed by S. Miller and B.
Narayanan [20] which claimed an improve LLL running time and performance
without picking sub-lattices from the original lattice as previously explained by
Boneh-Durfee’s work. According to them, the simple idea about “Focus Group”
attack is to opt specific vectors which can contribute to a non-trivial solution and
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helps to find the short vectors after LLL reduction. In this study, we consider a
special case of Boneh-Durfee’s Attack (i.e. large decryption exponent attack) as
well as the “Focus Group” attack to exploits the RSA large and small decryption
key security by implementing a solution to fulfill the experimental evidence. In
subsections, we describe both the cases in detail.

1.3 Special Case of Boneh-Durfee’s Attack (Large Decryption
(Private) Key Attack)

The attacks employed on RSA small decryption exponent are usually based on
lattice basis reduction method which gives an asymptotic outcome with respect
to the modulus size. Also their results are mostly dependent on lattice structure
(i.e triangular lattice construction is the most technical part). Boneh-Durfee’s
attack populate the SIP solution by implying an RSA bivariate polynomial equa-
tion which exploits the triangular and non-triangular lattice structure. Such type
of attacks are employed using lattice based Coppersmith’s method for finding
small roots of modular polynomials which ultimately yield a heuristic outcome.
Therefore, there is no such known method exist that can produce a rigorous
outcome especially for multivariate polynomials.

In 2004, Hinek motivates an alternate case instead of considering small pri-
vate key exponent, one can use bigger decryption key exponent to exploit the
RSA security [11]. Later in 2009, Luo et al. [18] devised an attack on private
exponent larger than the public exponent (i.e. d > e). It was one of the case
of Boneh and Durfee’s scheme used to obtained weak public keys in the range
of 0.258 ≤ e ≤ 0.857. But their algorithm does not cover complete solution of
the attack (especially they the solution did not cover e < 0.25), therefore con-
crete analysis still pending that can cover complete rigorous solution. In result
section [18], authors mentioned the shortcomings that experimental yield could
not achieve an algebraic independent polynomial vectors. Thus knowledge gap
still left in their study that still needs to be addressed thoroughly with concrete
experimental evidence.

1.4 Our contribution

In this paper, we revisit the Luo’s method as a special case of Boneh-Durfee’s
large decryption key. In Boneh and Durfee’s scheme, three major contributions
were reported using lattice based Coppersmith’s method which solves small de-
cryption key attacks by exploiting specific RSA modular polynomial. First re-
sult describe Wiener’s bound i.e. N < d1/4. In second result, they extended
the scheme by adding some extra polynomial vectors and achieved an improved
bound i.e. N < d0.284 based on experimental evidence. In third result, a sub-
lattice were picked from the original lattice and achieved more stronger bound
i.e. N < d0.292, heuristically. In their outcome, the picked sub-lattice were not
the full-rank, therefore a tedious work need to compute the determinant of such
non-triangular matrix especially for multivariate polynomials and it is not an
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easy task to achieve the desired outcome, thus their solution further needs de-
tailed analysis of the involved bound.

In our work, we made an experimental observation that the first method
of Boneh-Durfee’s scheme which supposed to work for d < N1/4 always failed.
In fact, in our experimental outcome the resultant (Res) identically vanish. To
solve the issue we utilize a certain condition in which it satisfy the weak RSA
keys analogous to d > φ(N) − N ε large decryption key. To devise the solution
we formulate the RSA key equation (1) into trivariate polynomial w.r.t to large
decryption exponent. In our settings we choose an appropriate auxiliary polyno-
mials (i.e. x-shift and a fixed number of y-shift helpful polynomials) to construct
a square triangular lattice. We also revisit the attack bound by using the “Fo-
cus Group” attack with experimental evidence to solve the specific SIP using
non-triangular lattice construction.

In theoretical analysis, a short polynomial vectors in the lattice immediately
reveals the solution through Gröebner basis computation [8]. As many authors
emphasize the necessity of a rigorous analysis of SIP solution based on Cop-
persmith’s approach especially for multivariate polynomials [2, 17]. We perform
several experiments according to varied integer m and reported detailed results
and comparisons with Boneh-Durfee’s [5] and Blömer and May [3] low secret
exponent attacks. In all cases, we observed that our attack method improves
the LLL running time w.r.t short lattice dimension. Also we analyze that the
obtained bounds gives a rigorous outcome and found that Boneh-Durfee’s heuris-
tic bound (i.e. d < N0.292) have considerable limitations which is quite far from
experimental outcome (i.e. d < N0.284).

1.5 Roadmap

The rest of the article proceeds as follows, in section 2, we describes the math-
ematical preliminaries and useful lemmas. In section 3, we briefly review the
Boneh and Durfee’s seminal work. In section 4, we describe the construction of
specific bivariate modular polynomial equation and in section 5, we covers the
specific solution of a modular polynomial using lattice basis reduction method.
In section 6, we describes the analysis of the obtained results and in section 9, we
describes the experimental outcome and detail comparison with known results
and finally in section 10, we conclude the paper.

2 Preliminaries

In this section, we describe a brief detail about lattices, technical lemmas 1 and
2. These lemmas are the fundamental tools to solve lattice based small inverse
problem. Also, by satisfying lemma conditions will helps to construct the devised
solution.

Fact 1. The decryption key d’s Most Significant Bit (MSB) can be recovered if
the given public key e chosen to be very small.
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Proof. Suppose RSA key equation ed = 1 + k φ(N), implies that ed = k(N +
1)− k(p+ q) + 1. In case of small e, we can recover k by exhaustive search using
the following relation.

d = k
e (N + 1) + 1

e −
k
e (p+ q) ≈ k

e (N + 1) + 1
e

As 1 < k < e, therefore the error in this approximation will be k
e (p+ q) < p+ q.

As p and q both have the same bit length, if we set d = d0 − d1 with d0 =

dk(N+1)
e + 1

ee, then | d0−d1 |< N ε implies that d0 estimates the most significant
bit value of d efficiently.

Lattices and useful properties: Let Λ be a lattice spanned by ω linearly indepen-
dent (row) vectors define as v1, v2, . . . , vω ∈ Rn. The lattice (Λ) composed by
all integers, the set of vectors v1, . . . , vω is called the lattice basis and n ≥ ω.
In this work, we are only interested in full rank lattice. Therefore, if n = ω
then our lattice becomes the full rank. The linear combination of Λ is written
as a1v1 + . . . + anvω of (row) vector v1, v2, . . . , vω where a1, a2, . . . , an ∈ Z. In
addition for any vector with dimension greater than 1 can easily be transform
into corresponding lattice in which determinant is ±1. For lattice construction
and finding short vectors, we use the concepts of integer lattice over the polyno-
mial and Euclidean length vectors respectively. The determinant of a full rank
lattice is computed by det(Λ(B)) =| det(B) |. As lattice have many infinite basis,
therefore finding a basis that contains low norm vectors is one of the fundamen-
tal lattice problem [19]. The following LLL property by Lenstra, Lenstra and
Lovász [16] helps to compute low norm vectors efficiently.

Lemma 1. LLL [16,24] Let Λ be a lattice which have dimension ω. The reduced
basis vectors v1, v2, . . . , vω becomes the input to LLL and its output satisfy the
following inequality.

‖ vi ‖≤ 2
ω(ω−i)

4(ω+1−i) det(Λ)
1

ω+1−i for any 1 ≤ i ≤ ω.

Usually we are interested first couple of vectors to find the desired roots. If we
elaborate the above inequality further the property is simplifies as follows;

(i) v1, . . . , vn is a basis of Λ
(ii) |v1| ≤ 2(ω−1)/2λ1
(iii) |v1| ≤ 2(ω−1)/2(det(Λ))1/ω

(iv) |v2| ≤ 2ω/2(det(Λ))1/(ω−1)

(v) det(Λ) ≤
∏
i |vi| ≤ 2ω(ω−1)/2 det(Λ)

(2)

Howgrave-Graham’s lemma simplify the procedure for LLL algorithm where
one can find the low norm vectors. In LLL processing usually one can consider
first couple of reduced vectors to extract the desired result. The LLL lemma
1 is an essential ingredient which mostly output low norm within Euclidean
domain. Both the lemma’s mentioned above helps to compute the low norm of
the multivariate polynomial f(x1, . . . , xn).
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Lemma 2. (Howgrave-Graham’s [13] for multivariate settings) Let f(x1, . . . , xn) ∈
Z[x1, . . . , xn] be an integer polynomial in n variable with at most ω monomials.
Suppose that
1. f(x1, . . . , xn) ≡ 0 (mod R) for some x1, . . . , xn and
2. ‖ f(x1X1, . . . , xnXn) ‖< R√

ω

Then, f(x1, . . . , xn) = 0 holds over the integers.

In trivariate equations, we need two independent polynomial vectors which must
satisfy the lemma 2 conditions. Thus to achieve Howgrave-Graham’s bound as

2
ω(ω−i)

4(ω+1−i) det(Λ)
1

ω+1−i < R√
ω

. Upon success we ultimately obtain the shortest i

reduced basis vectors. Therefore, the above inequality can simplify as follows.

det(Λ) ≤ 2
−ω(ω−1)

4 ( 1
ω )ω+1−iRω+1−i

To simplify it more, we neglect insignificant terms i.e. 2
−ω(ω−1)

4 ( 1
ω )ω+1−i which

are independent of lattice as compare to det(Λ). Therefore, we obtain a more
simplified (roughly) approximate relation as follows.

det(Λ) ≤ Rω+1−i

Fact 2: In RSA small decryption key attacks, Boneh-Durfee’s and Blömer-May
solves the small inverse problem. As both the attacks work for all d < N ε for
some maximum ε = 0.292, then both the attacks can also works for very large
d > φ(N)−N ε.

Proof. We know that ed ≡ 1(modφ(N)) and we have certain condition which
satisfy d > φ(N) − N ε and d < φ(N). Therefore, ed ≡ 1(mod φ(N)). Here k
denotes the positive integer and defined by ed − kφ(N) = 1. As e and k are
very small, therefore finding the solution can reveals φ(N) and private exponent
computed as d = e−1(mod φ(N)). Suppose φ(N) = N −∆ by reducing equation
ed− k φ(N) ≡ 1 mod e gives the relation as

k(N −∆) ≡ 1(mod e)

Where | k |< Nα ≤ N ε and | ∆ |< 3N1/2. This inequality also satisfy both the
Boneh−Durfee and Blömer−May’s attacks.

For instance, we see the following example for the clarification of fact 2.
Example: Let, we have p = 557, q = 787, be distinct primes, thus N = pq =
438359 be the modulus, φ(N) = (p − 1)(q − 1) = 437016, let, e = 497 and
d = 425585, where d > e. Since, N0.292 < 45 < d = 425585 < 436971 < φ(N)−
N0.292. Let, e′ = e2 = 247009 can also be consider an RSA public exponent,
where the corresponding private exponent is d′ = d2modφ(N) = 436993. In this
case, we have d′ = 436993 > 436972 > φ(N)−N0.292. Then we can factorize the
RSA modulus efficiently with (N, e′).

Remarks: As we deal decryption key greater than public key, therefore Fact 2
helps to certify the validity of the weak keys. Our study also clarify the research
direction of the special cases of Boneh and Durfee’s and Blömer and May’s
schemes. We also validate the obtained theoretical and experimental bounds
w.r.t large decryption key attack in the analysis phase.
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Gröebner Basis Computation: Let Z[x, y, z] be the polynomial ring of two vari-
ables x, y, z over Z. If f is a polynomial defined over Z then the Newton polygon
of p refers to the convex hull of all the monomials. The most useful ordering is
the lexicographic order which is written as:

xα1yα2zα3 > xβ1yβ2zβ3 ⇔
{
α>β
Or

α=βand∃i,j∈{1,2,3},αi>βj ∀j<i,αi=βj
.

We compute the Gröebner basis with respect to lexicographic monomial or-
dering. The input will be the set of LLL reduced polynomials and in output we
extract the desired roots with the help of heuristic Assumption 1.
Assumption 1: The lattice-based construction yields an algebraically indepen-
dent polynomials. Gröebner basis of the ideal computes the zero dimensional
polynomials so that we can efficiently extract the desired roots corresponding to
the first couple of LLL reduced polynomials.

Note that in our attack method, we consider Assumption 1 always to be true.
In experiments, we validate the proposed attacks with the help of Assumption
1. We indeed successfully collected the roots by using Gröebner basis technique,
though it seems very difficult to prove or demonstrate the validity of algebraically
independent polynomials. Also, we assume that the running time of the Gröebner
basis computation is negligible as compared to the time complexity of the LLL-
algorithm, since in general, our algorithm yields more than the number of n
polynomials, so one can make use of these additional polynomials to speed up
the Gröebner basis computation.

3 Boneh-Durfee Small Inverse Problem

In this section, we recall a brief review about Boneh-Durfee’s small inverse prob-
lem. The detailed algorithm is available in [5].

3.1 Algorithmic Procedure

According to Boneh-Durfee settings an RSA public key is the pair of integers
(N, e) where N = pq describes the product of two n-bit distinct primes. The
corresponding private key d ∈ Z satisfy the key equation ed = k′(A − s) + 1
where, φ is an Euler totient function defined as φ(N) = (p − 1)(q − 1), there
exist a bivariate integers x, y such that.

ed+ x(A+ y) = 1, where A = N+1
2 and y = s = −p+q2

Boneh-Durfee shows that for small modular bivariate polynomials, once s is
known we can immediately find the secret key d and ultimately factorize the
modulus N = pq for the unknowns p and q. Also, e = Nα and d = N ε, where α
and ε denotes the public and private exponents respectively and if α ≈ 1, thus
e ≈ N . They modeled the bivariate polynomial provided an absolute value of
x, y as | x |< 3e1+(ε−1)/α ≈ eε, | y |< 2e

1
2α ≈ e0.5 respectively. The mapped

polynomial equation becomes.
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f(x, y) = x(A+ y)− 1 mod (e)

Boneh-Durfee algorithm finds x0 and y0 small roots of f(x0, y0) = 0 mod (e)
such that | x |< eε and | y |< e0.5 by fixing the integer m. The derived auxiliary
shift polynomial equations are written as follows.

gi,k(x, y) = xifk(x, y)em−k, for i = 0, . . . ,m− k and k = 0, . . . ,m
gj,k(x, y) = yjfk(x, y)em−k, for j = 1, . . . , t and k = 0, . . . ,m

By utilizing Coppersmith’s bivariate method for finding small solution of polyno-
mial, the constructed lower triangular square matrix becomes the input to LLL
algorithm. The outputted reduced vectors produced the two linear independent
polynomials g1, g2 ∈ Z[x, y] based on algebraic independence assumption gives
the common roots x0 and y0. The resultant (h(y) = Res(g1, g2)) reveals the root
y0 = −p+q2 which facilitate to factorize the modulus N .
Experimental Observations: This is completely dubious that the reduced
polynomials g1, g2 always satisfy the algebraic independence property, though
most of the time vectors are linear independent. Therefore, the obtained solu-
tion becomes a heuristic i.e. without certainty of algebraic independence, the
resultant identically output zero (vanished), therefore Boneh−–Durfee’s algo-
rithm fail to produce the desired output on each algorithm turn and ultimately
unable to factorize the modulus. We can adopt an alternate approach to com-
pute the greatest common factors [15] of LLL reduced polynomial vectors and
deduce the desired result if possible but it would make the process quite te-
dious. In a multivariate case, if we did not consider Assumption 1 to be true, we
can not compute the solution, therefore we should consider Assumption 1 to be
true which ultimately output the desired result and enables us to factorize the
modulus.

In our work, we formulate the RSA equation (1) into trivariate polynomial
according to new settings, see section 4 for more detail.

4 Formulation of Our Specific Trivariate Modular
Polynomial

Let RSA public key be (e,N), where N = pq be the product of two n-bit distinct
prime p and q, for simplicity we assume that greatest common factor of primes
denoted as gcd(p − 1, q − 1) = 2. The associated private key d be an integer
satisfy the equation (1) as ed = 1 mod(φ(N)) where, φ(N) = (p − 1)(q − 1)
implies that φ(N) = N − p − q + 1, there must exists some positive integer k
such that ed = 1 + k(N + 1 − (p + q)). Let we have s = p + q and A = N + 1,
then we obtain the following equation.

ed = k(A− s) + 1 (3)

Also, we consider the approximation of private key (i.e. d = d0− d1). By substi-
tuting d in equation (3) and using the Fact 1 we get the following equation.

ed0 − 1 = ed1 + k(A− s) (4)
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As d > φ(N)−N ε, also we know that φ(N) = A− s then equation (4) becomes.

ed0 − 1 = ed1 + k(A− s) (5)

Therefore, we model the equation (5) into trivariate modular polynomial as
follows.

f(x, y, z) = ex+ y(A− z) + 1 (6)

Where, e,A and R = N1+α are known integers. Also, x = d1, y = k and z = s
are three unknown variables. The equation (6) becomes the Small Inverse Prob-
lem (SIP) with possible roots x0, y0 and z0 satisfy the relation f(x0, y0, z0) =
0 mod R. We also know that e = Nα and d = N ε be the public/private exponents
respectively. We sketched the problem in theorem statement as follows.

Theorem 1. Let N = pq be the RSA modulus with balanced primes p and q
(i.e. n/2). Let e, d be the RSA public, private keys respectively. Assume the
approximation of d is d > φ(N)−N ε, where ε ≈ 0.30 and suppose that e = Nα

and d = N ε are the public/private key exponents respectively, then in some
special case of Boneh-Durfee SIP when d >> e, then RSA cryptosystem becomes
insecure upto ε ≥ α.

Please see the sections 5 and 6 for the detail proof of theorem 1.

5 Solution of Trivariate Modular Polynomial Equation

Proof (Theorem 1 Proof). We solve the trivariate polynomial equation (6) using
lattice based Coppersmith’s method for finding small roots of bivariate polyno-
mial. We generalize it to solve the trivariate case. The following relation must
satisfy at the end.

f(x0, y0, z0) ≡ 0 (mod R)

where R = N1+α and ‖ x0 ‖< X, ‖ y0 ‖< Y, ‖ z0 ‖< Z and let, X = R
1−ε

2(1+α) ,

Y = Nα = R
α

1+α and Z = R
1−ε

2(1+α) . In order to obtain an integer linear combina-
tion, we define a suitable polynomial equations which must share the common
roots (x0, y0, z0), so that the devised algorithm satisfy the equation (6). For that
we define a collection of auxiliary polynomials by fixing a positive integer m. In
our experimental settings m values varies (but every time we fix it to test the
algorithm) until we derived the desired outcome.

gi,j,k(x, y, z) = xiyjfk(x, y, z)Rm−k, for k = 0, . . . ,m, i+ j = r, where
r = 0, . . . ,m− k

hi,j,k(x, y, z) = xizjfk(x, y, z)Rm−k, for k = 0, . . . ,m, j = 1,
i = 0, . . . ,m− k − 1

The auxiliary polynomials gi,j,k(x, y, z) and hi,j,k(x, y, z) construct a triangu-
lar lattice spanned by the corresponding coefficient vectors that have sufficiently
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small norm according to Howgrave-Graham’s lemma. To find the linear combina-
tion of such polynomial coefficients of gi,j,k(xX, yY, zZ) and hi,j,k(xX, yY, zZ),
we construct a square triangular lattice. A toy example matrix with m = 2 ∈ Z+

is illustrated in Table 1. The lattice vectors are spanned in the matrix from left
to right row wise fashion.

Table 1. Example lattice spanned by polynomial vectors gi,j,k, hi,j,k with m = 2 for
RSA (d > e)

Gl 1 x y yz x2 y2 xy xyz y2z y2z2 z xz x2z yz2 xyz2 y2z3

G0 R2 R2

G1 xR2 XR2

yR2 * * YR2

fR * * * Y ZR

G2 x2R2 X2R2

y2R2 * * * Y 2R2

xyR2 * * * * * * XYR2

xfR XYZR

yfR * * * Y 2ZR

f2 * * * * * * Y 2Z2

H zR2 ZR2

xzR2 XZR2

zfR * * * Y Z2R

x2zR2 X2ZR2

xzfR * * * XYZ2R

zf2 * * * * * * * * Y 2Z3

For triangular matrix construction, we elaborate the collection of polynomials
to construct a square triangular matrix. In Table 1, the matrix divided into two
big blocks same as mentioned by Luo et al. [18]. We further subdivide the big
blocks into multiple rows w.r.t to m. In our toy example, we select m = 2
for illustration, therefore the big block Gl contains three smaller blocks namely
G0, . . . G2. The monomials ordering is an essential ingredients in our settings for
the construction of lower triangular square matrix. Furthermore, in our trivariate
polynomial case x-shifted polynomial monomials construct the matrix Gl block
and y-shifted polynomial monomials to construct an H block. Note down in our
settings, we fixed the H block monomials (in this work atleast 3 and at most
6 monomials are fixed). This will intact the triangular matrix structure, thus
we did not consider the full y-shifted polynomial monomials in this work. The
indices of Gl block are l = 0, . . . , 2 in which we map the corresponding rows of
polynomial coefficients gi,k(xX, yY, zZ).

In big Gl block, the monomials in gi,j,k consider as a row component and
the sum of exponents for x, y and f equals to l, and gi,j,k with larger f
exponents appears in the lower rows of the matrix. Also, in Gl block each
row vector have indices (i, j, k). In Table 1, matrix diagonal entries used to
compute the determinant. For simplicity in Table 1, non-zero entries are de-
noted by ∗-symbol. Also, integer m help to find the full-rank lattice dimen-
sion. As m is given, thus dimension of the full-rank lattice is computed as

wm(g) =
m∑
l=0

m−k∑
i=0

+6 = (m+1)(m+2)(m+3)
6 + 6. According to lattice construction

principle as mentioned above, it is to be noted that only the x components in
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gi,j,k contributes the number of X elements in the diagonal entries and Xm is
computed as follows.

Xm(g) =
m∑
k=1

m−k∑
i=0

ik + 4 = m(m+1)(m+2)(m+3)
24 + 4

As f components in gi,j,k contribute the same way as Xm components, thus we
add up together and obtained the total number of Ym components as follows.

Ym(g) = Xmg+Fmg+ 4 =
m∑
k=1

m−k∑
i=0

ik+
m∑
k=1

m−k∑
i=0

ik+ 4 = m(m+1)(m+2)(m+3)
12 + 4

Similarly, Z components in hi,j,k contributes to the number of Zm elements as
follows.

Zm(h) =
m∑
k=1

m−k∑
i=0

ik + 10 = m(m+1)(m+2)(m+3)
24 + 10

Finally, the number of R elements in the diagonal entries are just the number of
Rm components in gi,j,k to describe the following relation.

Rm(g) =
m−k∑
k=0

(m− k)
m−k∑
i=0

1 = m(m+1)(m+2)(m+3)
8 + 6m− 4

By substituting Xm(g), Ym(g), Zm(g) into lattice determinant relation det(Λ) =
RRmXXmY YmZZm to fulfill the Howgrave-Graham’s condition i.e. if det(Λ) <
Rm/

√
w, this means that we are able to satisfy the lemma and obtain the desired

result accordingly.

| vi |<
Rm√
w
, i = 1, 2 (7)

The inequality (7) must holds over Z after substituting the values ofXm, Ym, Zm, Rm
so that we can compute the Gröebner basis which ultimately outputs the two
algebraically independent polynomials g1, g2 ∈ Z[x, y, z] such that

gj(x0, y0, z0) = 0, where j = 1, 2

The polynomials g1, g2 are linear independent but for algebraic independence we
need to validate it through computer experiments according to Assumption 1,
see section 9 for more detail. If the polynomial g1(x) and/or g2(x) both yields
zero output, then finding y0 becomes more difficult. In all experimental tests, we
obtained the results most of the time. We also compute the Gröebner basis of
the obtained linear combination of the zero dimensional independent polynomials
and ultimately we are able to deduced the desired solution.

6 Bound Analysis

In this section, we analyze the boundaries of α and ε such that | x0 |< R
1−ε

2(1+α) , |
y0 |< R

α
1+α , | z0 |< R

1−ε
2(1+α) , where (x0, y0, z0) are the polynomial roots. The

desired roots can be deduced using the above algorithm. As we compute the
determinant of the triangular square matrix, therefore our main concern is the
matrix diagonal entries only and it can be computed as follows.

11



det(Λ) = RRmXXmY YmZZm

By substituting the values of Rm, Xm, Ym and Zm in above relation, then accord-
ing to Howgrave-Graham’s Lemma condition, the following inequality obtained.

det(Λ) < Rm(w+1−i) ≤ Rm(ω−1)

∴ RRmXXmY YmZZm ≤ Rm(ω−1)

To optimize the solution w.r.t given value of m using the relation as follows.

Rm + 1−ε
2(1+α)Xm + α

1+αYm + 1−ε
2(1+α)Zm ≤ m(ω − 1)

After substituting values and by taking logarithms, we obtained the following
simplified relation.

(m+3)
2 + (1−ε)(m+3)

24(1+α) + α(m+3)
6(1+α) ≤ 0

To further simplify the above relation with respect to α, we pick the left side of
the inequality and neglect all the low order terms as follows.

α ≤ (m+3)ε−13m−9
24+16m

Solving the inequality by taking m→∞, we obtained the desired inequality.

α ≤ ε (8)

Remarks: In above simplification, we ignore all the values which are irrele-
vant w.r.t ε, and obtained a more simplified inequality (8). This also shows that
ε bound increases as α decreases. This concludes the proof of the theorem 1
with the observation that the matrix determinant increases in response of upper
bound of ε decreases, this could only be possible by fixing the y-shifted poly-
nomial monomials. Furthermore, we cryptanalyze the RSA as a special case of
Boneh-Durfee’s scheme with respect to large decryption exponent which satisfy
the condition d > φ(N)−N ε.

7 Comparison with Boneh-Durfee’s bounds

We cryptanalyze RSA in some special case of Boneh and Durfee scheme. We
derived the new RSA polynomial equation (6) from equation (5) instead of using
Boneh and Durfee’s derived equation k(A + s) = 1 mod e, where | k |< eε and
| s |< e0.5. After LLL processing their scheme obtained reduced vectors, but
without guarantee of algebraic independence (as the resultant becomes zero),
thus solution can not be extracted and the process unexpectedly failed. In our
scheme LLL always produce the linear independent polynomials g1(x) and g2(x)
and both the vectors satisfy the inequality as follows.

det(Λ) < Rm(w−1)/γ

12



where, γ = (ω2ω)(ω−1)/2. In Boneh-Durfee’s scheme γ be a small constant typ-
ically depends on lattice dimension ω and its value becomes negligible as com-
pared with em(ω−1). Also, when m taken to be very large, the highest order
terms (i.e. o(m2) becomes negligible and obtained bound becomes d < N0.284,
therefore an adversary can easily factorize the RSA modulus N . Also about the
bound d < N0.292 be the theoretical bound and it is far away from an experimen-
tal outcome, especially when the public key taken to be very small (say e = 3).
This is because after LLL processing, we only get a “supremum” of the norm of
first couple of vectors among reduced basis. In Fig. 1 without considering spe-
cial γ, the upper bound becomes d ≈ N0.30, but still the theoretical bound have
considerable limitation (as it is far from experimental outcome), thus the ob-
tained bound is not much tight as expected after tedious computation. Though
Boneh-Durfee considerably improved the existing small decryption key bound by
removing some unhelpful vectors (they named it “damaging vectors”) which are
based on sub lattice with larger integer m and obtained the bound d < N0.288,
but we observe that the theoretical bound of Boneh-Durfee’s attack is far from
experimental yield. In our analysis the γ value depends on lattice dimension ω

Fig. 1. Bounds when the RSA key is about 1024-bits

and it becomes negligible as compare to Rm(ω−1) with the help of floating point
LLL (L2) algorithm as presented by Stehlé and Ngyuen [24]. According to their
heuristic outcome, given any basis of a lattice Λ with higher dimension ω, the L2

always output first couple of vectors which have to satisfy the following relation.

‖ v1 ‖≈ 1.02ωdet(Λ)
1
w

Though this heuristic can be used in many experiments. In our experiment this
provides an approximate result as the vector norm is equal to an expected norm
as shown in Fig. 2. For further investigation of outputted LLL reduced vectors
norm produced a more tight bounds, which is near to d ≈ N0.30. More concisely,
let’s denote T (n) = log2n, where T (n) ∈ R and n denotes as an integer bits. We
elaborate the tight bound in theorem statement as follows.

Theorem 2. The RSA public key is (N, e) and the private key d = N ε, if we
pick a moderate enough m as m ≤ 2T (R)/(1− ε) then we have γ < (ω2ω)(ω−1)/2

13



Fig. 2. Upper Bounds when the RSA key is about 1024-bits

is less then Rmω where ω ≈ (1 − ε)m2 represents the lattice dimension as used
in lattice reduction method.

Proof. We carry the proof by taking T bit operations with respect to modulus
R as

T (Rm) ≈ T (Rm(1−ε)m2

) ≈ (1− ε)m3T (R)

We also have the relation

T (α) = T ((ω2ω)ω/2) ≈ w/2(T (ω) + ω)

≈ (1− ε)m2/2(2T (m) + (1− ε)m2)

≤ (1− ε)m4/2

If we take m ≤ 2T (R)/(1− ε), then

T (α) ≤ (1− ε)m4/2 = (1− ε)m3T (R)m(1−ε)
2T (R) ≤ T (Rmw)

Thus, when we simplify it we have α ≤ ε. This concludes that ε have more bits
than α.

In Theorem 2, it is clear that if we pick a moderate m, then the small constant
γ = (ω2ω)ω/2 becomes smaller than Rmω, thus it can be negligible. If we take
a larger m, then the higher order o(m3) terms can be ignored easily. This will
modify the upper bound on ε. In Boneh and Durfee’s scheme we can break RSA
scheme if and only if we pick a very large N and e. They ignored the small
constants like γ and o(m3) terms to achieve the bound ε < 0.292. Whereas,
in experimentation the practical attack only be significant for T (N) ≈ 1024
bits. Since we are considering the special case with d > e with the condition
d > φ(N) − N ε, in our settings it satisfy perfectly and ultimately it produce
RSA weak keys.

8 Comparison with “Focus Group” Attack

In this section, we compare our findings with “Focus Group” attack proposed
by Miller et. al. [20]. In their work authors claim that “Focus Group” attack
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minimize the lattice dimension and troubleshoot the choke points as faced in
LLL reduction process during scanning the larger dimension matrices. They
highlights experimental findings on small-exponent RSA attack as previously
done in Boneh-Durfee’s and Blömer and May’s work. For a brief review, we
summaries major steps involved in their attack, then we implement and give
result comparison with our proposed technique using our environment.

“Focus Group” Attack: The following are the major steps in “focus group” at-
tack.

Step-1: First scan the triangular matrix and pick only those basis whose di-
mension becomes consistent with minimized vector coordinates. After that LLL
algorithm process the scanned lattice efficiently especially it is useful for large
dimension matrices. Only pick specific vectors whose dimension approximately
remains same. In small-exponent RSA attacks, authors set the d’s value slightly
greater than d > N

1
4 ≈ N0.251.

Step-2: In this step, one can scan the LLL outputted vectors and identify
those basis which can be used to find short vectors. Usually the focus would be
given to x-shift auxiliary polynomials (as probability becomes high to produce
a desired short vectors) instead of considering y-shifts polynomials. In x-shifted
auxiliary polynomial vectors collection, one can scan concretely the outputted
rigorous short basis only.

Step-3: Finally, algorithm running improves the lattice performance, pro-
cessing time, storage and overall efficiency of the devised attack. All remaining
unused basis automatically discarded and ultimately it improves the overall at-
tack performance.

We implemented the “Focus Group” attack according to authors setting in
our environment. We observe some extra interesting results besides authors men-
tioned in their findings.

Remarks: We notice that when we pick consistent length vectors in “Focus
Group” attack, it affects the lattice structure and output a non-triangular matrix
as the determinant computation involves more work. Also, another important
findings is that authors introduced two additional integer parameters in-spite of
already defined two fixed integers (m,t) as mentioned by Boneh-Durfee’s study
and our proposed attack method. Even authors did not mentioned how to op-
timized those integers (i.e. bound analysis completely ignored), this makes the
process more ambiguous and the analysis more complex, therefore in “Focus
Group” attack authors completely ignored the fine grained tuning and analysis.

9 Experimental Results

In computer experiments, we implemented the proposed technique and carried
several experiments on SageMath environment [9] in Windows 10 environment
on a computer with Intel(R) Core(TM) i5− 4590CPU@3.30 GHz CPU, 20 GB
RAM and 6 MB L3 Cache. In all experimental tests, every time we found the
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linear independent vectors with norm smaller than Rm√
w

. Also, in our experi-

ments the obtained vectors further scrutinized through resultant method and
Gröebner basis method for the extraction of polynomial roots x0, y0 and z0.
We compare the running time with Boneh-Durfee’s [5] work and Blömer and
May [4] work. A few important results are mentioned in Table 2 for reference.
Our results improves the LLL running time as compare to existing schemes with

Table 2. Private Exponent d recovered using integer (m) and lattice dimension (w)

N (bits) ε m,w LLL Time(Ours) LLL Time [3] LLL Time [6]

1000 0.104 3,26 70 sec 4 minutes 45 minutes
1000 0.15 4,41 04 minutes 6 minutes 100 minutes
1024 0.28 5,62 20 minutes 7 hours -
500 0.29 6,90 15 minutes 90 minutes -
1024 0.29 6,90 75 minutes 90 minutes -
1024 0.30 8,171 145 minutes 22 hours -

reduced lattice dimension. We point out running time of the polynomial with
respect to LLL basis reduction. If we increase the value of m, the time to com-
pute Gröebner basis takes longer than normal and ultimately we obtained the
independent polynomials in which we can extract the desired roots. We compiled
the “Focus Group” attack results in Table 3. Though we obtained an improved
results for N ≈ 1024-bits, but for larger dimensions the process becomes quite
tedious, especially when we use very big (i.e. N ≈ 10000-bits). In our imple-
mented solution we construct the lattice according to Miller et al. [20] auxiliary
polynomials to fulfill the focus group attack. After constructing the lattice, the
input is given to LLL (L2) algorithm [16, 22] which produced the reduced basis
matrix. We observed that, the experimental outcome produced quite interesting
results when we compare to Miller et al. [20] outcome. We found the decryption
key every time on each algorithm execution and compile the useful results in
the range of 0.23 ≤ ε ≤ 0.285. Whereas their study reports some results in the
range of 0.25 < ε ≤ 0.284. We observed that the introduction of two additional
variables σ, τ always produced a non-triangular matrix, though makes the pro-
cess quite complex but most of the time satisfy the Howgrave-Graham’s lemma
conditions. We randomly verify by selecting different values of m, t, σ, τ it always
provide desired outcome at the end.

10 Conclusions

In this work, we showed that if we consider a special case of Boneh and Dur-
fee algorithm when d > e and prove that its shortest polynomial vector by
using lattice basis reduction algorithm, then we are able to find the weak pub-
lic keys upon the validity of d > φ(N) − N ε. If we have many solutions in the
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Table 3. Private Exponent recovery using “Focus Group” attack with integers
(m, t, σ, τ) by constructing non-triangular lattice

N (bits) ε m, t σ, τ Matrix Dim. LLL Time(Ours) LLL Time [20] LLL Time [6]

1024 0.265 6,2 2,0 34*42 03 sec 1 minutes 45 minutes
2048 0.230 6,3 2,0 37*42 12 sec 6 minutes 100 minutes
2048 0.240 5,2 1,-1 29*33 03 sec 7 minutes -
2048 0.250 5,2 1,-1 26*33 03 sec 9 minutes -
6000 0.260 6,3 2,-1 39*49 135 sec 24 minutes -
10000 0.277 6,2 2,0 34*42 270 sec 61 minutes -
10000 0.285 6,2 2,0 37*49 05 minutes 73 minutes -

given bounded range, Boneh-Durfee algorithm always fails as the construction of
small ω-dimensional lattice. As in our study we consider small public key (N, e)
with large decryption key d, therefore the theoretical upper bound on ε is much
tighter than Boneh and Durfee and Blömer and May’s claim. According to our
experimentation when we take RSA 1024-bit public key, the obtained experi-
mental bound on ε ≈ 0.288, which we consider as an ideal bound. Also, our new
settings countermeasure the security against numerous attacks with more better
and modified theoretical bound approximately upto ε ≈ 0.30, where in Boneh-
Durfee’s case one must pick a very large public key (N, e) to obtain the result
ε < 0.292. Our results are based on Assumption 1, thus the obtained outcome
be a heuristic which still needs improvements.
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