Verifiable Inner Product Encryption Scheme*

Najmeh Soroush'!, Vincenzo Iovino!2, Alfredo Rial!, Peter B. Roenne!, and
Peter Y. A. Ryan!

! SnT, University of Luxembourg,{firstname.lastname}@uni.lu
2 University of Salerno, Italy, vinciovino@gmail.com

Abstract. In the standard setting of functional encryption (FE), we as-
sume both the Central Authority (CA) and the encryptors to run their re-
spective algorithms faithfully. Badrinarayanan et al. [ASTACRYPT 2016]
put forth the concept of verifiable FE, which essentially guarantees that
dishonest encryptors and authorities, even when colluding together, are
not able to generate ciphertexts and tokens that give “inconsistent” re-
sults. They also provide a compiler turning any perfectly correct FE into
a verifiable FE, but do not give efficient constructions.

In this paper we improve on this situation by considering Inner-Product
Encryption (IPE), which is a special case of functional encryption and
a primitive that has attracted wide interest from both practitioners and
researchers in the last decade. Specifically, we construct the first efficient
verifiable IPE (VIPE) scheme according to the inner-product functional-
ity of Katz, Sahai and Waters [EUROCRYPT 2008]. To instantiate the
general construction of Badrinarayanan et al. we need to solve several
additional challenges. In particular, we construct the first efficient per-
fectly correct IPE scheme. Our VIPE satisfies unconditional verifiability,
whereas its privacy relies on the DLin assumption.

Keywords: Inner-product encryption - verifiability - Functional com-
mitments

1 Introduction

Functional encryption (FE) is a new encryption paradigm that was first pro-
posed by Sahai and Waters [19] and formalized by Boneh, Sahai and Waters [G].
Informally, in an FE system, a decryption key allows a user to learn a func-
tion of the original message. More specifically, in a FE scheme for functionality
F: Kx M — CT, defined over key space IC, message space M and output space
CT, for every key k € K, the owner of the master secret key MSK associated with
master public key MPK can generate a token Tokj that allows the computation
of F(k,m) from a ciphertext of 2 computed under the master public key MPK.
A notable special case of FE is that of inner product encryption (IPE) [7/T4UT5/T8I17].
In IPE the message is a pair (m, x), with m € M, the payload message and vector

* The research were Supported by the Luxembourg National Research Fund (FNR)
CORE project FESS (no. C16/1S/11299247)

2 Soroush et al.

x the attribute in a set X, and the token is associated with a vector v € X. The
functionality is F'(v, (m,x)) = fu(x,m) which returns m if (x,v) = 0 (i.e,. the
two vectors are orthogonal) or L otherwise. IPE is a generalization of Identity-
Based Encryption [20/5/8] and Anonymous Identity-Based Encryption [@[], and
has been the subject of extensive studies in the last decade.

In FE and IPE, the encryptors and the Central Authority (CA) that generate
the tokens are assumed to be honest. Indeed, as noticed by Badrinarayanan et
al., in presence of any dishonest party (that is, either the party that generates
the token or the party who encrypts the message), the decryption outputs may
be inconsistent and this raises serious issues in practical applications (e.g., au-
diting). For instance, a dishonest authority might be able to generate a faulty
token Tok, for a vector v such that Tok, enables the owner to decrypt a ci-
phertext for a vector & that is not orthogonal to v. Or a dishonest encryptor
might generate a faulty ciphertext that decrypts to an incorrect result with an
honestly computed token. These issues are particularly severe in the applications
to functional commitments that we will see later.

Verifiable Inner Product Encryption (VIPE) overcomes those limitations by
adding strong verifiability guarantees to IPE. VIPE is a special case of Verifiable
Functional Encryption (VFE), firstly proposed by Badrinarayanan et al. [2] for
general functionalities. Informally speaking, in VIPE there are public verifica-
tion algorithms to verify that the output of the setup, encryption and token
generation algorithms are computed honestly. Intuitively, if the master public
key MPK and a ciphertext CT pass a public verification test, it means there
exists some message m and a unique vector & — up to parallelism — such that
for all vectors v, if a token Tok, for v is accepted by the verification algorithm
then the following holds:

Vv : Dec(Toky, CT) = fo(x,m)

The main component we employ for constructing a VIPE scheme is an IPE
scheme. However, it is worth mentioning that most IPE schemes cannot be made
verifiable following the general compiler of Badrinarayanan et al. because this
compiler requires the IPE scheme to have perfect correctness. We will later
discuss in depth why this property is crucial in constructing VIPE.

1.1 Our results and applications

Our Contribution. In this paper we construct an efficient VIPE scheme from
bilinear maps. Towards this goal, we build a perfectly correct IPE scheme that
may be of independent interest. To our knowledge, all IPE schemes known in
literature do not satisfy perfect correctness. Our perfectly correct IPE scheme is
based on standard assumptions over bilinear groups.

We assume the reader to be familiar with the construction of Badrinarayanan
et al. that transforms a generic FE scheme to a VFE scheme for the same
functionality. This transform, for the case of the inner-product functionality
of [14], requires a perfectly correct IPE scheme and non-interactive witness-
indistinguishable (NIWI) proofs for the relations we will define in Section

Verifiable Inner Product Encryption Scheme 3

Therefore, constructing an efficient VIPE scheme boils down to building an effi-
cient perfectly correct IPE scheme and efficient NIWI proofs for specific relations.
The rest of the paper is devoted to achieving these goals.

Motivating applications. IPE has numerous applications, including Anonymous
Identity-Based Encryption, Hidden-Vector Encryption, and predicate encryption
schemes supporting polynomial evaluation [14]. As shown by Badrinarayanan et
al. [2], making FE schemes verifiable enables more powerful applications. As an
example, in this section we show that VIPE can be used to construct what we
call polynomial commitment scheme which corresponds to a functional commit-
ment of Badrinarayanan et al. for the polynomial evaluation predicate. The same
construction can easily be adapted to construct functional commitments for the
inner-product predicate.

Perfectly binding polynomial commitments. Using a polynomial commitment
scheme [I3], Alice may publish a commitment to a polynomial poly(z) with co-
efficients in Z,,. If later Bob wants to know poly(m) for some value m, that is the
evaluation of the polynomial at some point, he sends m to Alice who replies with
the allegedly evaluation y and a proof that y = poly(m). The proof guarantees
that the claimed evaluation is consistent with the committed polynomial. We
require the scheme to be perfectly binding.

We construct a polynomial commitment scheme for polynomials of degree
at most d from a VIPE scheme for vectors of dimension d 4 2 in the following
way. Let VIP = (VIP.SetUp, VIP.TokGen, VIP.Enc, VIP.Dec) be a VIPE scheme.
We define the following algorithms:

e Commitment Phase: To commit to a polynomial poly(z) = agz?+aq_x9~ 1+
..+ a17 + ag € Zy[X], run VIP.SetUp(1*,d + 2) to generate (MPK, MSK),
compute the attribute x := (aq,aq—1,.-.,01,a0,1) € Zg“ and ciphertext
CT — VIP.Enc(MPK, z), and output the commitment com := (MPK, CT).

e Opening phase: In this phase, a party requests a query (m,y) to check if
the commitment corresponds to a polynomial poly such that poly(m) =
y. The Committer runs the token-generator algorithm of VIP for vector
v = (m%m1l ... m,1,—y) and sends Tok, as the opening. Note that
(,v) = agm? + ag_1m?~t + ...+ aym + ag — y = poly(m) — y, therefore
VIP.Dec(CT, Tok,) = 0 iff poly(m) =y

It is straightforward to see that the above algorithms form a functional commit-
ment (in the sense of [2]) for the polynomial evaluation predicate. We defer the
reader to [2] for more details on functional commitments.

1.2 Technical overview

To instantiate the transform of Badrinarayanan et al. we need to build an IPE
scheme with perfect correctness. Our starting point to construct a perfectly
correct IPE scheme is the IPE scheme of Park [I8] which only enjoys statistical

4 Soroush et al.

correctness. The reason for choosing this IPE is that it is conceptually simple
and its security is based on standard assumptions over bilinear groups. However,
to make it perfectly correct, we will need to solve several technical challenges.
The main improvements we need to achieve unconditional verifiability are the
following:

i. The master public key needs to be verifiable.
1. The scheme has to satisfy perfect correctness.

This requires substantial modification of all main algorithms: setup, token gen-
eration, encryption and decryption.

Verification of algorithm outputs. A VIPE scheme requires public verification
algorithms that can verify the outputs of the setup, encryption and token gener-
ation algorithms, in particular check whether these algorithms were run honestly.
In more detail, if any string (master public key, ciphertext or token) passes the
corresponding verification algorithm, it means it was a proper output of the cor-
responding algorithm (setup, encryption or token generation). Each party who
runs the setup, encryption or token generation algorithm needs to provide a proof
that it executed the algorithm honestly without revealing harmful information
about the secret parameters or the randomness used in the algorithm.

Usually non-interactive Zero-Knowledge (NIZK) proofs are used in this con-
text. Unfortunately, NIZK proofs cannot used for verifiable FE as they rely
on a trusted CRS (Common Reference String) or random oracles and we aim
at perfect verifiability which has to hold despite any collusion and computing
power. The transform of Badrinarayanan et al. solves the issue by employing
NIWI-proofs in a clever way.

Following the transform of [2], our VIPE consists of four parallel IPE. In
the VIPE’s encryption algorithm we first run each IPE’s encryption algorithm
to generate four ciphertexts and then we prove that all these four ciphertexts
are the encryption of the same message or that some other trapdoor predicate is
satisfied (the latter is needed for message indistinguishability and will be detailed
later).

For the sake of argument, let us assume the VIPE scheme consists only of two
(instead of four) parallel perfectly correct IPE scheme instantiations IP and IP.
The master public key of the Park’s scheme contains a component A = e(g, g’)
in which ¢ is public but ¢’ needs to be kept secret. An honestly computed
ciphertext CT in IP includes ct; = ¢~° and ct; = A~% - m among its components
(we here ignore the other components). We first provide proof that CT (resp. CT
in IP) is well-formed. Then we need to prove that the two ciphertexts are both
encryptions of the same message M (i.e., m = 7 = M). We reduce the problem
to proving that the following property holds:

Ct77 _ e(gvg/)is mo 6(6t1,g/) _ e(gé,gl)

cty e(g,9)7%-m e(cti,g) e(g%9)

However, since ¢’ and ¢’ are not public, the party who runs the encryption
algorithm would be unable to prove this property. We solve this issue in the

Verifiable Inner Product Encryption Scheme 5

following way: We add to the master public key of IP two elements g1, g (and

91,42 for IP) satistying A = e(g,9') = e(g1,92), A = (§.§') = e(g1,32). Then,
we add the following equations for the new secret variables X3 = ¢, A5 = gi:

ctrl -ty = e(X, g2) - (X3, 02) 7, e(g, As) = elcti, 1), e(§, Xs) = e(ctr, 41)

It is easy to see that these equations are satisfied iff m = m, and now they can be
proven by the encryptor. Having modified Park’s scheme, we thus have to prove
that the modified scheme is IND-secure. This is done in Section [3.1]in which we
reduce the IND-Security of the scheme to the Decision Linear assumption.

Achieving perfect correctness. For the Badrinarayanan et al.’s transform to work,
it is crucial that the underlying IPE scheme have perfect correctness. If the IPE
scheme had a negligible probability of decryption error rather than perfect cor-
rectness, then dishonest parties might collude with each other so that invalid
results would be accepted by the verification algorithms. Contrast this with the
aforementioned functional commitments. In the latter primitive, the committer
is the same party who generates the ciphertext (the commitment) and the token
(the decommitment) and thus might profit from a negligible space of decryp-
tion error to prove false assertions on its committed value. To our knowledge,
all IPE Schemesﬂ known in the literature have a negligible probability of error
which makes cheating possible and so not directly usable to construct verifiable
functional encryption and functional commitments for the IPE functionality.

In more detail, in most pairing-based IPE schemes the encryption and de-
cryption algorithms work as follows:

Enc(MPK, z,m) — CT, Dec(Tok,,CT) = m* =m - (r)<ﬂm’)7

in which r is some random value that depends on the randomness used by the
token generator and encryption algorithms. Thus, even in case of honest parties,
there is a negligible probability that r = 1 and so, even if (x,v) # 0, the
decryption algorithm may output a valid message m instead of L.

In case of dishonest parties, it may happen that two parties (the encryptor
and the token generator) collude with each other to create randomness such
that r equals 1. In this case, the parties would be able to provide valid proofs
of the fact that they followed the protocol correctly and invalid results would
pass the verification algorithms. A similar problem also appears in the context
of MPC in the head [12], where the soundness of the ZK protocol built from
MPC strongly relies on the perfect correctness of the underlying MPC. To cope
with statistical correctness in MPC in the head, a coin tossing protocol can be
employed, while in a completely non-interactive scenario like ours this is more
challenging. Hence, to obtain a VIPE scheme it is crucial to construct an IPE
scheme satisfying perfect correctness.

Recall that the decryption algorithm in the TPE scheme of Park [I8] works
as follows:

Dec(Tok,, CT = Enc(z,m)) — m* = m - e(g, h)M1ss+rzsa)(@v)

! Recall that we refer to the IPE functionality of Katz, Sahai and Waters [T4].

6 Soroush et al.

in which Aq, A2 are randomn values used in the token generation algorithm and
s3, 84 are random values used in the encryption algorithm. To decide whether
to accept the output of the decryption or not, the first attempt would be the
following. Generate two ciphertexts ct,ct’ with two independent random values
{s:},{s}}, decrypt both ct and ct’ to get M and M’ and if M = M’ accept the
result, or output L otherwise. In more detail:

M=m- e(h’ g)()x153+54)\2)(m,v>’M/ —m- e(h,g)()\lsé+s;)\2)<m,v)
However, in case {x,v) # 0 there is non-zero probability for which:
A183+ 84da = \iss+ dasy 0= M =M #m

To avoid this issue, we choose the random values in such a way that the above
equality can never occur. To do so, in the encryption algorithm we choose non-
zero random values sy, ..., 84 and sp,...,s) such that s3 # s, and s4 = sj. In
this case, we have:

A183 + Sg g =)\185 + Aosy =)\1(83 — Sé) =0= ()\1 = O) V (83 = Sg)

Based on the way Aq, s3, s; have been chosen, neither (A; = 0) nor (s3 = s%)
may happen, hence the decryption algorithm outputs m if and only if (x, v) = 0.
The resulting IPE scheme satisfies perfect correctness as wished. We will prove
that the new IPE scheme is still selectively indistinguishability-secure. When
constructing a VIPE scheme from such IPE scheme, these additional constraints
in the encryption and token generation procedures will correspond to more con-
straints in the proofs of correct encryption and token generation.

Furthermore, an additional challenge we will have to address is that some of
the proofs in the Badrinarayananet al.transform are for relations that consist of
a generalized form of distjunction and thus standard techniques to implement
disjunctions for GS proofs cannot be directly applied, see Section [5.1

1.3 Related work and comparison

Verifiable functional encryption has been introduced by Badrinarayanan et al. [2],
who provide a construction for general functionalities.

Recently, [3] introduced a new FE scheme that supports an extension of
the inner-product functionality. The scheme is perfectly correct assuming the
message space to be short. However, notice that when employing the scheme in
order to construct an IPE scheme (according to the functionality of Katz, Sahai
and Waters [14]) the perfect correctness is lost. In essence, the IPE constructed
from the scheme in [3] would encrypt some additional random value r so that
the decryption would return the value m + r - (@, v). In this way, if the vectors
x and v are orthogonal then the payload message m is obtained, otherwise a
random value is returned.

As corollary of our VIPE, we obtain functional commitments (in the sense
of [2]) for the polynomial evaluation and inner-product predicate. A similar form

Verifiable Inner Product Encryption Scheme 7

of commitments has been proposed by Libert et al. [I6] but differs from ours
in different aspects. In the Libert et al.’s scheme, the decommitter reveals the
evaluations of the inner-product of the committed vector with any vector of
its choice, whereas in ours just the binary value of the inner-product predicate
(i.e whether the two vectors are orthogonal or not) is leaked. Our functional
commitments are perfectly binding rather than computational binding as in
Libert et al. Moreover, ours are not based on any trust assumption, whereas
in [I6] the generator of the public-key can completely break the binding property.

Roadmap. In Section[2] we provide the building blocks and the basic terminology
used in this paper. In section [3| we construct our perfectly correct IPE scheme
and prove its security based on the Decisional Bilinear Diffie-Hellman and DLin
assumptions. In Section[df] we define VIPE and present one candidate construction
built on perfectly correct IPE and the NIWI proofs of Section

2 Preliminaries

Notation. Throughout the paper, we use A € N as a security parameter. For any
integer n > 0, we denote by [n] the set {1,...,n}. PPT stands for probabilistic
polynomial time algorithm and negl(\) denotes a negligible function in .

2.1 Building blocks

Definition 1 (Bilinear map [5]). A bilinear map consists of a pair of groups
G and Gr of prime order p endowed with a map e : G x G — G satisfying:

1. Bilinearity: for all a,b € Z, e(g%, g°) = e(g, 9)® for any g € G.
2. Non-degeneracy: e(g,g) # lg,. for any g € G.
8. Computability: there exists an efficient algorithm to compute the map.

Definition 2 (NIWI). A non-interactive witness indistinguishable proof sys-
tem (NIWI) is a pair of PPT algorithms (P,V) for a NP-relation Ry, satisfying
the following properties:

1. Completeness: for all (x,w) € Ry, Pr[V(z,m)=1]| 7 +— P(z,w)] = 1.

2. Perfect soundness: for every x ¢ L and w € {0,1}*, Pr[V(z,7)=1] =0.

3. Witness indistinguishability: for any sequence {(Zn, w1 n,W2.n)}nen, which
Ty € {0,1}", w1y, wa,, € Rr(zy,), the following holds:
ne€N:{mi | T1p ¢ Pl@n, w1 n)n e {m2n| Ton < P(Tn, W2n)}n.

Groth and Sahai (GS) [11] provide NIWI systems for the satisfiability of what
they call “Pairing Products Equations” that can be used to instantiate the
relations needed in our VIPE construction (cf. Construction @ Using the tech-
niques of [10], such proofs may be made perfectly sound.

8 Soroush et al.

IPE Scheme: For any n > 0, let X, be a set of vectors of length n defined over
some field and let M be a message space. For any vector v € X, the function

foirZnx M= M U{L}is

m If (x,v) =0

fol@,m) = {J_ If (x,v) #0

Both M, n and the field size can depend on the security parameter A but for
simplicity hereafter we will skip this detail. IPE can be seen as a FE scheme for
the previous functionality. More concretely, an IPE scheme is defined as follows.

Definition 3 (IPE Scheme). An IPE scheme IP for a message space M and
for a family of sets X = {X,,}n~0 consisting of sets of vectors of length n over
some field is a tuple of four PPT algorithms IP = (IP.SetUp, IP.TokGen, IP.Enc, IP.Dec)

with the following syntax and satisfying the following correctness property.

e IP.SetUp(1*,n) — (MPK,MSK): the setup algorithm, on input the security
parameter X\ and the vector length n, generates master public key MPK and
master secret key MSK for that parameter.

o IP. TokGen(MPK,MSK,v) — Tok,: on input master keys and vector v €
Xn, the token gemeration algorithm generates the token Tok,

e IP.Enc(MPK, 2", m) — CT: the encryption algorithm encrypts message m €
M and vector x € X,, under the master public key.

o IP.Dec(MPK, Tok,,CT) — m/ e MU {L}.

e Perfect correctness: IP is perfectly correct if for all \,n > 0,x,v € X, and
all m € M the following holds:

(MPK, MSK) +— IP.SetUp(1*, n),
Pr | Dec(MPK, Toky, CT) = fo(,m) | Toky, +— IP.TokGen(MSK, v), =1
CT «+— VIP.Enc(MPK, z,m)

The selectively indistinguishability-based notion of security for an IPE
scheme over the vector space Y and message space M is formalized by means
of the game IND**™ in Fig [1| between an adversary A and a challenger C
(defined in the game) parameterized by security parameter A and dimension n.

Pr [INDAPA — 1] — 1.

The advantage of A in this game is Advip y ,(A) = 5

Definition 4. An IPE scheme IP is selectively-indistinguishable secure (IND-
Secure) if for all n > 0 and all PPT adversaries A, Advip » ,(A) is a negligible
function of \.

2.2 Hardness assumptions

We conjecture that the following problems hold relative to some bilinear group
generator GroupGen(1*) — (p,G,Gr,e) that takes security parameter \ as
input and outputs A-bit prime p, the descriptions of two groups G and G of
order p and a bilinear map e : G x G — Gr.

Verifiable Inner Product Encryption Scheme 9

Selective Challenge Phase. A(1*,n) — xo,21 € X,. Then A sends these two
vectors to the challenger.

Setup Phase. The challenger generates the pair (MSK, MPK) by invoking the setup
algorithm on input (1*,7). Then C sends MPK to A.

Query Phase 1. A asks for the token for a vector v; € X),.

Challenge Phase. A sends to the challenger two messages mo, m1 € M of the same
length.

C flips a coin to generate random bit b and send CT = Enc(MPK, xy, my).

Query Phase 2. Query Phase 2: same as Query Phase 1.

Output Phase. A outputs a bit b'.

Winning Condition. A wins the game if &’ = b and the following condition is met.
It is required that if mo # ma, (xo,v:), (x1,v;) # 0 for all the vectors v; queried in
both query phase 1 and 2, or (v;,xo) = 0 iff (v;,x1) = 0 otherwise. If the winning
condition is satisfied the output of the game is 1 or 0 otherwise.

Fig. 1. Security Game IND*!P*n

Assumption 1 The Decisional Bilinear Diffie-Hellman assumption (DBDH) in
bilinear groups (p,G,Gr,e) states the hardness for PPT adversaries of solving
the following problem. On input (g,9%,9%,97,Z) € G* x Gr, decide whether
Z = e(g,g®?7) or it is a random element in Gr.

Assumption 2 The Decisional Linear assumption (DLin) in a bilinear group
(p,G,Gr,e) states the hardness for PPT adversaries of solving the following
problem. On input (g,9%,g%,9°",¢°", Z) € G®, decide whether Z = g"*™ or a
random element in G.

In this paper we use the following equivalent formulation of DLin given in

[18]: on input (g,9%,9°,97,9°", Z) € GY decide whether Z = g°"*™) or a ran-
dom element.

Note that DLin is stronger than DBDH. In the rest of this paper we assume
the existence of a bilinear group generator GroupGen such that DLin (and thus
DBDH) holds relative to it.

3 Our perfectly correct inner-product encryption

In this section we construct our perfectly correct IPE, the key ingredient for
building verifiable inner-product encryption (see Section .

Let GroupGen(1*) — (p,G,Gr,e) be a bilinear group generator, and n €

N be the vector length. We construct a perfectly correct IPE scheme IP =
(IP.SetUp, IP.Enc, IP.TokGen, IP.Dec) for the set Z; of vectors of length n over
Z,, and for message space M = Gr.

Construction 1 [Our perfectly correct IPE scheme IP]

— IP.SetUp(1*, 1) — (MSK, MPK):
For security parameter A, i € [n] and b € [2], compute what follows:

10 Soroush et al.

1. Run GroupGen(1?*) (cf. Section to generate a tuple (p,G,Gr,e€).
. Pick g, g/ +— G and 51, 91, 52, 627 W1,i, tl,i7 fb,i7 hb,i; k Z;
3. Pick 2 <- Z, and compute {ws,t2,i}ic[n) such that:
2 =61wa,; — dawy; = Oita; — Oaty ;.
4. Fori=1,...n,b=1,2, set:

[\

Wyi =g, Fu=g¢", Ki=4" U=g¢" h=g"
. . 1
Thi=g", Hyy=g¢"" Ky=g% V,=g" A=elgg).
5. Set:

MPK =[(p,G, Gy, e), (g, b, {Wo.i, Fyi, Tvi, Hoi, U, Vo boepa),icng» K1, K2, A) € G183 x Gr)],
MSK =({wp,;, fo,ir tb,is h.is 0, O Yo (2] icn), 9') € Z3" T x G.

6. Return (MPK, MSK).
— IP.Enc(MPK, z,m) — CT:
1. Forx = (z1,...,2,) € Z,, and a message m € G, pick random elements
81,---54,51,...,83 < Zy such that s3 # s5 and compute what follows:

— S1 S2 T;S3 — S1 S2 TiS3
ety = Wi Fy5 - U™ ety = Wyoiy - Fy5 - Uy
Ct1 = 9527 Ctg = hsl,

. __s1 | prS2 | [/ %iS4 . __s1 | pyS2 | /%S4
ety =17 - Hi% - Vi s Cte =To5 - Hy% - Vs icn]

S S —S8
cty = e(g*®,¢%), ctg = A7°2 - m.
! ’ !’ ’ ’ !
I] S X85 ;o 1St A X85
) ;| s = Wis-Fis U2 ety = Woi - Fy3 - U
ct] = g%, cth = h°1,
1 i 7 !’
/Sy So T;S4 e oL | Sa XS4
ety =T, - Hy5 - Vit et =155 - Hyy - Vs ,
1€[n]
’ i
cty = e(g°%,g°*), cty = A7°2 - m.

2. Set:

Cty; , Cty;

ct = (cty,ct
(cts, etz {CtS,i , Cte g

’ o Cté,i s Cti;,i)
},ct7,ct8) , ct’ = (cty, cty, {Ct,&i Lty ,Ct7, ctg).
3. Output CT = (ct, ct’).
— IP.TokGen(MSK, v) — Tok,:
1. Pick A1, Ay <= Zy and for any i € [n] pick {r;} , {®;} « Z.

Ks;, Ky,
2. Set Tok, = (K4, K, {KB” ’ K4ﬂ}) as follows and return Tok,.
5,4 3 6,7 i€[n]
n n
—f1,i —f2,i —h1,i —ha,; —(ri+®;

Ka ZQI-HKs,ifl’ 'K4,if2' Kt Kt Kp= Hg (o),

=1 i=1
K3,i _ g—égri . g)\lvini’ K47i _ gélri . g_>\17)iw1,i.
K5,i _ g—92¢1‘, . g>\2'01‘,t2,i’ K6,i _ geléq‘, . g—>\2v7:t1,7;.

Verifiable Inner Product Encryption Scheme 11

— IP.Dec(CT, Tok,):
Let CT = (ct,ct’), such that ct = (ctq, cto, {cts;, Cta i, Cts 4, Cte i }, Ct7, Ctg),
ct’ = (cty, cty, {cty;, cty ;, ctys ;, Ctg ; }, ctr, ctg)
1. If cty = ct’ output L and stop, otherwise go to the next step.
2. Compute:

-

Y =ctg-e(ct;, Ka) -e(cte, Kp) -

1=1

=

T =ct;-e(ct], Ka)-e(cty, Kp) -
1

3. If T =7’ output 1" otherwise output L.

-
Il

Perfect Correctness: We now show that an honestly generated ciphertext
83%4

decrypts correctly with probability 1. Since Fy * - ctz; = W} - U™, we get
e(Ffj2 -cts g, KS,i) — e(g7g)sl)\lviwl,iwli_3337726162 . e(g, g)_51"”i62w1‘i+53)\1'vi61w2,i

e(F;j2 -ty K4,i) — e(g7g)—81>\1U¢w1,iw2,i+83$i5152 . e(g7 g)s17"i51w2,1:—83/\1’vi52wl,i

We then get

1wz, —O2wi 4

e(Fy ?cty i, K3 i)-e(Fy 2 ctai, Kui) = (e(gsl 9")-e(g", QMU’)>
— el g") - e(h g7) = elcta,g) - (g)
The same computation gives us
e(Hfj2 - Cts i, K5,) - e(Hfo"’ - ctg i, Kg,i) = e(ctg,gé") . e(h’\284,gz””")

As a conclusion we have the following:

e(cty, Ka) - He(Ct:s,i,Ks,i) ~e(cty;, Kai) - e(cts;, Ks,0) - e(ctg i, Ke,i) =
i=1
=A% H e(Fsz, Kg’i)e(Flj{QQ,K4,i) . e(Hl_,fQ,Kg,,i) . e(H;f?,K&i) =
i=1

= 2% efcty, Kp) - e(h, g) o)
Plugging this into the decryption algorithm we get
Y =m- e(h,g)(/\183-"-)\254)(ac,'v)7 T —m- e(h, g)(kls/3+34>\2)<w,v)

First note that it cannot happen that ct; # ct’, for honestly generated cipher-
texts. Clearly, (x,v) = 0= (T = 2" = m). All we need to check is thus that
if (x,v) # 0, we get output L. We could only get a wrong output if it happens
that 7 = 7", but this is impossible since it implies (using Ay # 0, s3 # %)

e(h,g)o‘ls‘**)‘lsé)(”’”> =1g; = AMi(ss — sh) (@, v) =, 0 = (x,v) =, 0.

e(cts,;, K3;) - e(cty;, Ky ;) - e(cts s, K5 ;) - e(ctes, Koi)-

e(cty ;, K3i) -e(cty ;, Ka;) - e(cty ;, Ks:) - e(ctg ;, Ko.i)-

@ Hybrid

@ Hybrid

@ Hybrid

@ Hybrid

® Hybrid

12 Soroush et al.

3.1 Security reduction to DLin and DBDH
In this section we prove our IPE scheme is IND-Secure under the standard com-

putational assumptions.

Theorem 1. The IPE scheme IP of Construction[]] is IND-Secure if the DBDH
and DLin assumptions hold relative to GroupGen.

To prove the theorem we define a series of hybrid experiments Hg,...,Hjs in
which Hy corresponds to the real experiment with challenge bit b = 0 and His
corresponds to the real experiment with challenge bit b = 1, and we show that
they are computationally indistinguishable.

Ho: this hybrid is identical to the real game with challenge bit b = 0. Precisely,
the ciphertext is computed for message mg and vector x as follows:

ct = (g°2, ™ AW, - B3 - Uy T - Hy% - Vi he o iein) (9%, 9°4), A7
Ct/ _ (952’ hsl,{Wlii . Fbsj . U;7537Tb5; . H;i 5 Vbr1'84}b€[2],i€[n]7e(gs37984)7A_Sz

mg)

.mo)

Hy: this hybrid is identical to the previous hybrid except that instead of e(g, g)**%4, e(g, g)%35,

the ciphertext contains two random elements Ry, R} + Gr. Precisely, the
ciphertext is computed as follows:

_ S2 S1 S1 S2 ;83 S1 ED) XS4 —S82
ct = (g, hH{WL - B35 - Uy Ty - Hy - Vi ™ boeo) i) Ba, A7 - mo)
1 (. sh 1S s 55 - 55 iS4 / —s)
ct’ = (g%, 7 AWy - B5 - U Ty Hy s - Vi ™ hoepatiefn), By, 4772 - mo)

Hs: this hybrid is identical to the previous hybrid except that instead of A~ -
mg, A7%2 - mg, the ciphertext contains two random elements R, R’ + Gr.
Precisely, the ciphertext is computed as follows:

ct = (g%, ™ AWy - Fy3 - Uy TG - Hys - Vi ™ heepg e B,)
ct’ = (g7, b AWy Byt - U Tyh - Hy% - V'™ hoepaieqn)» By, R
Hs: this hybrid is identical to the previous hybrid except that instead of T}} -

Hps - V}f"'sﬁTbs‘; . H;Ql - V%1, the ciphertext contains 7y} - Hlf:"i,Tliﬁ . Hlfi
Precisely, the ciphertext is computed as follows:

ct = (g%, BH{Wy -)% - U™ T - Hy Yoel2)ieln]s B, R)
ct/ = (gs;, hsll {Wbs,t . Fbsj . U;iSS, Tbsé H;’i }be[Q],iE[n]’R/17R/)

H,: this hybrid is identical to the previous hybrid except that instead of T; e
H;ZZ.,TLE . H;QZ., the ciphertext contains Tbsj . Hlf’zi . beis“,Tbsj . H;,zi At
Precisely, the ciphertext is computed as follows:

ct = (g% W Wy - B3 Uy, Ty - Hys - Vi ez ien) Ba, R)

I rosh o1t 51 s x; 8 s1 sh YiSa ’ ’
ct' = (g2, h 1{Wb,i B U Ty Hy G Y, oel2ierm), 1, 1Y)

Verifiable Inner Product Encryption Scheme 13

® Hybrid Hs: CTg = (ct,ct’), This hybrid is identical to the previous hybrid except that
the power of V}, in ct is s4 and its power in ct’ is). Precisely, the ciphertext
is computed as follows:

ct = (g%, W, Wy - By - Uy T - Hy% - Vi ™ el ien)s By R)
ot = (g% hH{W,, - B2 U™, Tk Hy% - V'™ e iern) By,)
® Hybrid Hg: this hybrid is identical to the previous hybrid except that s = s%. Precisely:
ct = (g%, Wy - Fyy - Uy Ty - Hy - Vi Yoea i), By R)
ct' = (g%, W { Wy - By - U™ Ty - Hy - V' e i) By RY)
® Hybrid H7: This hybrid is identical to the previous hybrid except we replace s3 with 0.
ct = (¢, W Wi - Bys Ty - Hy - Vi boepziepn), 1y RR)
Ct/ = (gs2’ h51{ Wli; . Flii aTIi; : H[:,Qz ! Vi,yi%}be[Q],ie[n]aR/la RI)
@ Hybrid Hg: This hybrid is identical to the previous hybrid except that instead of W' -
B, Wbsi . F;i, we set W' - 1% - Uy, Wbsi . Fbsi U, Precisely:
ct = (¢"2, W Wy - By - U2 T - Hy% - V9™ ey i) Bas R)
ot = (g%, A { Wy« Byd - U Tk - Hy2 - Vi hoep e, Bis)
® Hybrid Hg: this hybrid is identical to the previous hybrid except that instead of Wbsi .
Fbsj,Wbsé -Fbsj., we set Wbst Fbsi . U;”SS,W;; . Flle - U™ Precisely:
ct = (g%, W WS - 55 - U™ Ty - Hyl - V™™ hoetagietn), B, B)
ct’ = (g%, h{ Wy - B2 - U Tys - Hy? - VY e payic s RS RY)
® Hybrid Hyo: this hybrid is identical to the previous hybrid except that instead of W} -
FbS;leili . F;"j7 we set W - % - Ui“sg’,W;% . F;f -UJ™8. Precisely:
ct = (g%, Wy - Fys - U 1) - Hy - V9™ hiepgiemn)» By R)
ct' = (g%, B WL - Fy2 - UY™s, T3t - By - V™' Voepopicpgs Ry, R)
’ b,i b,i b Tbi b,i b be(2],i€[n]> 411,
® Hybrid H;;: this hybrid is identical to the previous hybrid except that instead of choosing
R,R <+ Gp, weset R=A"%.my, R = A~%2 . m;. Precisely, the ciphertext
is computed as follows:
ot = (g™ AP (W - By U™ T3 - H3% - Vi Yoeto et B AT o)

I s! s’ 3/1 5/2 yislg 5/1 5/2 YiSa / —s!
ot = (g%, B WL - Fy2 - UY, T30 - Hy® - V™ Voepoyicinps Rhs A% -my)

14 Soroush et al.

® Hybrid Hi: this hybrid is identical to the previous hybrid except that instead of Ry, R},

we set e(g%, g%), e(¢%3, g°*), which is identical to the real game with chal-
lenge bit b = 1, in particular for message m, and vector y. Precisely, the
ciphertext is computed as follows:

ct = (gsz,hﬁ{W;; . Flf,i . Ug!z‘537T;§ . Hg:zz . beiﬂ}be[Q],ie[n]v 6(9537954) LA 'ml)

’ s st 3/1 3/2 yisé 3/1 3/2 YiSa sh s —s!,
ct' = (g%, W {Wy ;- B5 - Uy Ty - Hy - V7 heepegiemnl s €(97%,974) , A7

Proposition 2 If the DLin assumption holds relative to GroupGen, then Hy and
Hy are computationally indistinguishable.

Proof. Let us assume there exists a PPT adversary A which distinguishes be-
tween H; and H;y; with non-negligible advantage e. We describe a simulator B
which uses A, on input (g, 4 = ¢g*, B = ¢°%,C = ¢",D = ¢*", Z) € G5, output
1if Z = ¢P+7) and 0 if Z is a random element in G. B interacts with A as
follows:

SetUp phase. The adversary A sends to the simulator, B, two vectors x,y €
Zy. The simulator picks g’ <~ G and 2.k, 0y, O, {wl,m{lmfb,hhb,i}ie[n],be[z] —
Z,,, compute {ws ;, 7?271‘}1‘6[”] such that for each i, 2 = Slwg)i — ggwl,i = O1ta,; —
02t ;. Compute the master public key components as follows and returns it:

{(Woi = g""" Fyi = 9™ hoericmls {Us = A% e, h = A% A =e(g,9).
{Ty: = A" Hy; = g™ Yoepppicin), (Vo = 9% boep), K1 = ¥, Ko = g

By doing so, B implicitly sets §, = agb,tm = oszJ for b € [2],i € [n] and 2 =
af2, which shows that each element of the master public key is independently
and uniformly distributed in Z,. Also notice that for each ¢ € [n], we have:
drwa i — 0wy ; = adiwy ;—adwi ; = 910452,1‘*92@{1,1‘ = O1tg,;— bty = af2 = (2.
hence the output has the same structure as output by the real setup algorithm.

Token query phase. B knows all the secret parameters except {0y, ts.i oe[2],ic[n]s $2-

When A asks for a query for a vector v, B picks)\1,5\2, {74, Pitietn) < Zy. In

generating Tok,,, the simulator implicitly sets, Ay = a)s,; = ar; which are in-

dependently and uniformly distributed in Z;. Token elements are set as follows:
K3, = A—d2rs CghvivRaTs — (by the above settings) = g0 L iz
Ks; =g "% Alevitaimi (by the above settings) = g~02%i . ghzvitzaei,

Similarly, K4,i _ Aélm . g—th‘,wl,zm,K&i _ 991?”71 .A_>\2“it1,71-7571.

n

Kp = ﬁA—n‘g—‘f’i _ Hg—(aﬁ-‘rfpi) — ﬁg—(ﬁ-‘r@i).
i=1

i=1 i=1

B knows { fv,i, hw,i}vef2),ic[n], hence it can compute K 4.

Verifiable Inner Product Encryption Scheme 15

Generating the challenge ciphertext. A sends message mg to B. To generate
a challenge ciphertext, B picks s1, sg, 57, 83, 33, 84, 83 < Zj; such that 53 # 35. B
implicitly sets s3 = 153, s4 = 3584 and computes the ciphertext as follows:

cty = g%, ct) = g% ,Cty = h®1 cty = h*1.

cty; = WL - 2 . Dhism: Lty = Wik 2. Dl
cty = W3 - F32 . Do ccty, = W3k . B . Dhamids,
cts; = Tilz Hi?l . Bf18azi ;Ctg’i — T;,llz . Hf:zl . BY1azi
ctos = Tg, - H32 - Beiar ccty, =Ty - Hy% - Bfofams,

Ct7 — (e(Z.,9)

SEH)P s =e(g,g) 7 my L cth = (F5H

e(B,c))§,3§47Cté = e(g,9') ™ - mo

Since, DobTids — gaémésmi — beiSZi,Bebgélwi — ‘/'1554961 _ VbS4Ii, by this settings,
for each i € [n], ctz i, cty;, ..., Ctg i, Ct ; are computed properly.

Analysing the game: There are two cases, Z = ¢g°("t") or Z « G:

o7 = it o &2 e(d"™.g9) _e(9”.97) elg® g") _ e(g".g
e(B,0) e(g%,97) e(g®,97) ’

e(Z7g) ek 5 5 s s s’ s
om0y = eld" g = elg g™ ety = (g™ g™)

= A interacting with Hy.

%)

:>Ct7:(

e Z + G = cty, ct, random elements in Gy = A interacting with Hj.
O

Proposition 3 If the DBDH assumption holds relative to GroupGen, then H;
and Hy are computationally indistinguishable.

Proof. The proof of this proposition is similar to the proof of Lemma 5 in [I§]
with a slight modification in the SetUp phase. In our scheme, the master public
key has elements, K; and Ko, such that e(K;, K2) = A. In Park’s paper, to
generate the master public key, B randomly choose @ and sets A = e(A4, B)™* -
e(A,)%, this imply that ¢’ = g~*?+2@ In our scheme, B sets K, = B~k . gk
and Ko = A% , for some random k < Zj. The following computation shows that
the master public key is well-formed:

e(Kl’ K2) = e(AkaB% : g%) = e(ga7g—9,8 : ga) = e(g—a[3(2+a&’g) =A O
Proposition 4 If the DLin assumption holds relative to GroupGen, then Hy and

Hs are computationally indistinguishable.

The proof of the previous proposition is identical to the corresponding proof in
Park [18] and we omit it.

Proposition 5 If the DLin assumption holds relative to GroupGen, then Hs and
Hy are computationally indistinguishable.

Proof. The simulator takes as input (g, 4 = g%, B = ¢%,C =g¢",D = ¢*", Z Z
g?17)) and by interacting with the adversary A, distinguish between g%(1+7)
and a random element.

16 Soroush et al.

SetUp phase. Generating master public key is same as in [4] except for i €
[n],b € [2] it implicitly defines t,; = BOpy; + tpi, hei = BOpY; + hp s and sets
Ty = BebyiA£b=i,Hb)i = B%vighvi The proof that the simulator generates a
master public key distributed as the one created by the real challenger is identical
to the proof for proposition [4]

Token query phase. The simulator chooses ;\1,5\2,{771-,43,-}1-6[”] < Zy, and
then implicitly defines the following random values:

C X C 5\ C 'U'Z"X ~ C. Vs X
y2’>\2 952,”:7:247 y6112’¢i:@i+ BV Yi A2
« «

A=A — =

First, observe that:

_ Cyﬁvﬂij\z) 40— ¢y e

— dar; + Mvjwe; = —02(F; Jvwa,;

(67

Cy)\g

= —0o7; + Vi (B — wa;) + AMviwa; = —02T; + ¢y AoVl ; + A\vjwa,; =
———
OL’J)Q»@

= K3; = g %27 . gevhevitas (MY - [0y i computable

Similar computation:

) ~i — 5\ i~ P —5\ V4 J— —6 é,, J_S\ ij i J— 6 ¢i — LS\ 1{ i
Kyi= g™ g2t Wit Ky = g~ 270 g o2t Kg = g7 g™ 2t

n n - -
o —f1i gr—"J2,i p-—h1i p-—hai 4 —f1,i g-—J2,i 1-—B01yi—h1i 1-—BO2yi+ha;
Ka=yg - H Ky 'K, Ky; " Kg =g H Ky "K, ;" Ky K,
=1 1=1
n

_ g/ . H K?:quK;ZfzzK;ZhuK;lez (g—/%@rg)\zvitz,i)—ﬁ&lyi (gj@l’gkzmtl,i)—ﬁbyi

i=1

n -~ ~
o —f1i gr—f2,i pr—hii pr—hai —Xowv; By, (ta,i01—t1,:02)
—Q'HK:M K, ;™" Ky, "Kg; g TR ’
i=1

n ~ ~ ~ ~
=q- HK3_ifl‘iK4_if2’iK5_ihl‘iKﬁ_zm‘iB*’\z”iyiQ = K4 is computable.
i=1

n . . n -
Kg= Hgf(er(Pi) _ Hgiii+cy>\2:iwiﬁ7d‘siicz>\2:iyiﬁ _ Hg,(;i+¢?i)+#(cyuimifcmviyi) —
i=1 i=1 i=1

- n - n
=g Z;L=1(7:i+4"i)g%ﬂ(cw Do ViYi—Cy Doiq ViTi) Hg—(fai-i"f’ai) . g%ﬁ(cycm—%cy) — Hg_(F'i+¢'i)

i=1 i=1
Finally, to compute K g, notice that :
n n Y Y Y Y n
AoV T4 Aoy ~ A A ~
Zri + qv)l _ Zfz _ Cy 27)@3715 + Cy 2’Uzy2ﬁ _’_@Z _ _cxcy Qﬂ + CyCy Qﬂ + Zfz + dSi
i=1 i=1 @ @ ¢ “ =1

= Kg = H g*(’:i“ﬁi), So Kp is computable.
i=1

Verifiable Inner Product Encryption Scheme 17

Generating the challenge ciphertext. The simulator generates the chal-
lenge ciphertext as in {dfexcept that, for the components cts ;, ctg i, ctj ;, Ctg ;, the
values {y;};’s (rather than {x;};’s) are used as power of Z:

Cts; = Tlslz . Dt 'Hfzi . Chm _Zelyi Cto; = T251z . Dtz H2521 . Chg,i, .Zegyi

- ~r ~ ~1 ~ =/ ~
I _ St pti , gS2 L ohu | 701y I _ St pytes | pgS2 | he | 702y
cty ; = Tl,i D Hl,i C A Ctg; = T2,i D H2,i C A

Analysis of the game:

— Z = gPitn) = Cts,; = Tf)liHlsfiZ—%in@lyi — Tfllei : A interacts with Hs
- Z=9" = cts,; = Tls,lef22 .g—ﬁ(ﬁ+7)91yi .galyi'r‘ _ T18717,Hls,21 . 9(7'—6(714‘7))91%
- 0))])
e dn? cts; = Ty HS VY A interact with Hy O

Proposition 6 If the DLin assumption holds relative to GroupGen, then Hy and
Hs are computationally indistinguishable.

Proof. The simulator takes as input (g, A = ¢®, B = ¢%,C = g7, D = ¢°",Z =
gB("J”)) and by interacting with the adversary A, distinguish between the two

cases Z = ¢P+7) and Z & G, a random element of the group.

SetUp and token query phase. B runs as in the SetUp phase and token
query phase in proposition

Generating the challenge ciphertext. B chooses random elements 31, $2, §3, 34, 57, 55, 85, k <
Zy and computes the challenge ciphertext as follows:

. . o o
oct) =C - g2 =g = sy =17+ 5, ect), =CF - g% = gFFR o L — kT + 5y

ecty = D? . A% (g“ﬁ)("+§1) =h"T = 5 =+ 5

ect) = DR . 495 (gaé)(k"Jrg'l) =R o =k + 8

octy; =Wy Fi3 U™ - DTV OTv = Wik BT Ut ghetne - B =

WP EET U e I p g0 g,
octy; = W2§11 . F;’j - Uss® . D2 . 0F24 (similar computation as cts ;)

ot = Wik Bl UP™ DRI O WL B U R

W F D e i) LS. T g g g,
. ctﬁu = W;lll . F;% . U;gxi . DFW2, C’kf“, (similar computation as ctgﬂ-)

octs; =Ti% - Divi - Hi . Ol . z0wi . g5a0us

° thr,’i _ T1§,I1'L . Dkfl,i . nglzz . Ckill,'i . Zkb1y: ,95491%

ects; = T2§,1i . D£2,'i H2§,21 . Cﬁz,i . 702y ,g§49zyi

~ . ~ .
I _ Sy kta ; . Sz kha ; . kO2y; . 5402y;
ecty; = T2}i D H2’i C A g

18 Soroush et al.

Analysis of the game: First, notice that:
Dfl,i _ gnafl,i _ gn(tl,i*B‘glyi) _ Tln,z . g*ﬂnelyi,Dkﬁ,i — le,? ,g*kﬁnelyi
C’Bl,i _ gT(hl,i*ﬁelyi) _ H{,i . 9*57'91.%7 Ckﬁl,i _ Hf: 3 g*kﬁ‘F@lyi =
cts = Ti} - D G Ol (2 g™ =
= T{{jgl .Hlf’jg2 . (g—ﬁ(r+n) . 7. 954)0lyi — Tf,li 'Hf?i . (g(—ﬁ(f+n) . 7. 954)01%

cty,; = Tili . Hfi (gERBGEn) L gk L gFaytays

—Brn) L 7. g8 = g8t = cty . = TS . H52 . US4V
It Z = Pt 9 9 g R bt
g(—kB(T+n) L Zk . gha = gha = Cts; = Tili HlszZ LU
= The adversary interacts with hybrid Hy
Itz r g—ﬂ(7+n) . 7. g§4 _ gr+§4 = ct5; = Tls,li Hf?z . Uf4yi
=g _ _ ’ ’ ’o
g(RBTtn) L Zk L gsa — ghrtsa - cts; = Tili . HfzZ . Ufét-’h
= The adversary interacts with hybrid Hs
O
The proofs of indistinguishability for the other hybrids are similar to the ones
that we have shown, that is H; — Hg ~ Hy — H5, Hg — H7 =& H3 — H4, H7 — Hg =~
Hy — H3, Hg — Hg =~ Hy — Hs, Hg — H1g & Hy — Hs, Hig — Hip &= H; — Hy and
Hi1 — Hi2 = Hg — Hy.

4 Verifiable inner-product encryption

In this section we construct our (public-key) verifiable inner-product encryption.

Firstly, we present a formal definition of a VIPE scheme. Essentially, VIPE
is similar to IPE except that it is endowed with extra verification algorithms
VrfyCT, VrfyTok and VrfyMPK.

Definition 5. A verifiable inner product encryption scheme for a message space

M and for a family X = {X,}n>0 of vectors over some field is a tuple of PPT
algorithms (here called VIP) with the following syntax and properties:

VIP = (VIP.SetUp, VIP.TokGen, VIP.Enc, VIP.Dec, VIP.VriyMPK, VIP.VrfyCT, VIP.Vrfy Tok)

— VIP.SetUp(1*,n) — (MPK, MSK): as for IPE.

— VIP.TokGen(MPK, MSK; v) — Tok,,: as for IPE.

— VIP.Enc(MPK, 2, m) — CT: as for IPE.

— VIP.Dec(MPK, Tok,, CT) — m € M U{L}: as for IPE.

— VIP.VrfyMPK(MPK) — {0, 1}: this is a deterministic algorithm that outputs
1 if MPK was correctly generated, or outputs 0 otherwise.

— VIP.VrfyCT(MPK, CT) — {0, 1}: this is a deterministic algorithm that out-
puts 1 if CT was correctly generating using the master public key for some
m in the message space M, or outputs O otherwise.

Verifiable Inner Product Encryption Scheme 19

— VIP.Vrfy Tok(MPK, v, Tok,) — {0, 1}: this is a deterministic algorithm that
outputs 1 if Tok, was correctly generated using the master secret key for
vector v, or outputs 0 otherwise.

— Perfect correctness: as for IPE.

— Verifiability: VIP is verifiable if for all MPK € {0,1}*, all CT € {0,1}*, there
exists n > 0, (x,m) € X, x M such that for all v € X, and Tok, € {0,1}*,
the following holds:

VIP.VrfyMPK(MPK) = 1 A

VIP.VrfyCT(MPK,CT) =1 A | = Pr[Dec(MPK, v, Tok,, CT) = fu(m)] = 1

VIP.Vrfy Tok(MPK, v, Tok,) = 1

Intuitively verifiability states that each ciphertext (possibly with a mali-
ciously generated public key) should be associated with a unique message (x,m)
- up to parallelism - and decryption for a function f, using any possibly ma-
liciously generated token Tok, should result in f,(z) for the unique message
associated with the ciphertext [2].

4.1 Our construction

Our VIPE is based on a perfectly correct IPE (cf. our IPE scheme of Construc-
tion , a perfectly binding commitment scheme such as commitment scheme
proposed in [I0] and NIWI proofs for some specific relations that will be de-
tailed below.

Let n € N be the vector length and A the security parameter, IP be a per-
fectly correct IPE scheme, Com be a perfectly binding commitment scheme and
let NIWITPK = (pmek pmeky - NIWIES = (penc penc) and NIWITK = (prok prok)
be NIWI proofs systems for, resp., the relations R™*, R and R™*, that are
essentially instantiation of analogous relations in [2]. The construction of these
NIWI systems is provided in Section

T w

W atn NN
o BP¥(mpk, (msk, r™)) = TRUE <= (mpk, msk) = IP.SetUp(1*, n; rmPk)

x

. P){h‘;k<(mpk,t7v)7 (msk, rmPX, rt°ke")) = TRUE <— (
x w
i Rﬁ;d (((Ctla mpkl)a R (Ctlm mpkk))’ (:Ev m, r?nca R rznc)) = TRUE, k € [4]

<= Vi € [k] ct; = IP.Enc(mpk;, &, m; r$"c)
o RF(z,w) = TRUE < P§"(z,w) V P§"(z,w), with

P?”c(({ci}ie[zl],{61}16[41,20721),(mama{rf‘"c}iem]’il,imr8°m7ri°m)) = TRUE
= ((eva),. . (en,a0)), (@ m, {1))) € B

PS”C(({Ci}iem {ai}ie) 20, 21), (m, @, {r"}icpay, i, 2, 160, r§°m)) = TRUE
. (MA@ Ai) A (e ai), (6 a) s (@m,5w)) € Rﬁs“)

A zg = Com({c;}iepa); r6°™) A 21 = Com(0; ri°™)

(mpk, (msk, r™<)) € REP*A
t = IP.TokGen(MSK, v; r°%)

)

20 Soroush et al.
o R™(z,w) = TRUE <= PK(z,w)V P¥*(z,w), with, where

Pk ((vv{ti}ieM]a{ai}ie[4]a20721)a({bi}ie[zl]){r;npk}ie[zl] {ft‘Ok}ie[4],i17i2,i3,r8 ri“)) = TRUE

e (Vi€ ((ai (b, 1)) € R™* A ((as, ti,v4), (i, 1™, 1)) € R and
A z1 = Com(1;r{°™)

PY*((v, {ti Yicy, {aitier, 20, 21), ({bi}ie[4]a (™Y ie s {8 Vie s i1, G2, g, 1™ r§°m)) = TRUE
11,1%9,13 € [4] A\ (’il =+ ig) 74\ (il #* ig) AN (ig =+ ig)

= | Vj€[3]: (ay, (bi,,r™™)) € R™P* A ((aij,ti],vij),(bv Pk rt-°k)> € R

ZJ’ZJ 1371 v e

A zg = Com({ci}ica); ™) A Im € M Vi € [4] IP.Dec(c;, t;) = fo(m)

Construction 7 [Our VIPE, VIP]

e VIP.SetUp(1*,n) — (MPK, MSK):

1. For i € [4], run IP.SetUp(1*,n) to generate (MPK;, MSK;) as output.

2. Run the commitment algorithm to generate Zg = Com(0; r§°™) and Z; = Com(1;r{°™).

3. Output VIP.MPK = ({MPK;}icpa], Zo, Z1), VIP.MSK = ({MSK;} (4}, uo, u1).

e VIP.Enc(MPK,m,z) — CT:

1. For i € [4], run the encryption algorithm to compute CT; = IP.Enc(MPK, m, x; r$"°).

2. Set z = ({CT;}igpa), IMPK; }iciys Zo, Z1), w = (m, @, {r"}ic(y, 0,0, 0140l 0l*11) and run
Pee(z, w) to generate Tt for relatlon R*"(z,w). Note that P§"“(x,w) = TRUE

3. Output ciphertext CT = ({CT; }icp4), Tet)-

e VIP.TokGen(MPK, MSK, f,):

1. For i € [4], run IP.TokGen(MSK, v; ri°) to generate Tok,.

2.z = (v,{Tok, }ic), IMPK; }ic), Zo, Z1), w = ({MSK ey, i Fier), 0, 0,0, 00400)
run Pk to generate Titok tO prove R™*(z,w) = TRUE. Note that Pt(z,w) = TRUE

3. Output token Tok, = ({Toky, }ic[4], Trok)-

e VIP.Dec(MPK, f,, Tok,, CT):

1. Run the verification algorithms V™Pk penc Ptok with inputs the corresponding pairs of
statement and proof (the proof for the verification of the master public key is set to the
empty string). If some verification algorithms fails, then stop and output L or go to the
next step otherwise.

2. For all i € [4], compute m() = IP.Dec(Tok{"), CT;) and output the following:

If Jiy,io,iz € [4] s.t. m =m0 =m2) = ms) = gutput m.
If Aiy,ig,iz € [4] s.t. m1) =m(2) = m0s) = gutput L .
e VIP.VrfyMPK(MPK): run V™PK(MPK, ¢) and output its result.
o VIP.VrfyCT (({CT;}iepas {MPK; }icpa)s Zos Z1), et):
run Ve“c(({CTi}i€[4] {I\/IPK Yies ZO, Zl),wct) and output its result.
L] VIP.VrfyTok(('u, {Toki,}iew, {MPKi}i€[4]a ZO7 Zl), 7Ttok):
run Vo (v, {Tokl, }icpa), {IMPK; }ic(a). Zo, Z1), Tiok) and output its result.

Correctness of VIP follows from perfect correctness of IP. IND-Security and Ver-
ifiability of VIP follows as corollary (following theorem [2)) from the verifiability
and IND-Security of the construction of [2] for general functions.

Verifiable Inner Product Encryption Scheme 21

Theorem 2. IfIP is a perfectly correct IND-Secure IP scheme for message space
M and for the set Zy, of vectors of length n over Z;, and NIWITPE NIWISE, NItk
are NIWI systems resp. for the relations R™, R, R** and Com is a non-
interactive perfectly binding and computationally hiding commitment scheme,
then VIP is an IND-Secure VIPE scheme for the class of inner product function-
ality over M and Z, .

5 NIWI Proofs and Verification algorithms

In this section we present the proof systems that we used in our VIP scheme, to
prove membership of relations R™, R and R®™. For each of our relation
we need to define a system of equations such that satisfiability of that system
and the membership in the relation are equivalent. Then, the GS generic prover
and verifier algorithms, NIWlgs = (Pgs, Vgs), can be used for such equations.
In this section, for each of our relations of Section [d] we will either define a
corresponding system of equations or we will show how to implement directly
(without using GS proofs).

Definition 6 (Pairing Product System of Equations). Consider bilinear
map € : G x G — Gp. The following system of equation with k equations over
m variables X; € G,i € [m] and constants Bi(t) €G, 7™ € Gp and 'y-(t-) € Zy for

1
i € [m],t € [k] is called a pairing product system of equations over (G,Gr,e):

I, e(X, BY) - TI TI e,)7 =70
E:<... (1)
m m m (k)
HiZl e(Xiv Bfk)) ! HiZl szl e(Xi, Xj)ﬂyw = T(k)

(91,92, --,9m) € G™ is a solution for the equation E iff

m 1 m m (1)
[TiZ: elgss Bi()) - Hj:1 e(gi,g;)" = s
<E[(917 cogm)] = TRUE) =

m k m m (k)
L2 e, B'L()) | Hj:1 e(gi, ;)" = (%)

We define the following relation for pairing product system of equations:
Re={(z,w)| z=E,w=(g1,.--,9m) : E[(91,-..,9m)] = TRUE}

Throughout the paper, we denote by NIWlgs = (Pgs, Vas) a Groth-Sahai [11]
NIWI-proof system. Precisely:

1: If (z,w) €Rg

P :E7 = yeey9m)) = v ’ -
® Pos(x w= (g gm)) = T Ves(z, 7e) {0; Otherwise

2 Actually, we will implement some or part of them not directly using GS proofs.

22 Soroush et al.

5.1 How to handle generalized OR statements

Some of our relations of Section [4] consist of a generalized form of disjunction
(OR) of two predicates, let us say P; and P,. Suppose that we have equivalent
systems of equations for each of the two predicate, that is a system of equa-
tions E; (resp. Fs) representing predicate P; (resp. P»). Consider the following
relation:

Ror ={(z,w)| z = (E1,Ez), w = (idx, w1, ws) :idx € {1,2} A (Eigx, wiax) € Bg A wig, € G3},

where idx means {1,2} — {idx}.

Notice that the relation is not exactly a disjunction of pairing product equa-
tions because we need to make sure that the statement that holds is the one
selected by the index in the witness, so we cannot use the technique of Groth
[9] and we will follow a different approach.

By hypothesis Pgs takes as input a system of equations E as statement and
a solution (g1,...,¢gm) as witness and provides a NIWI-proof of membership of
(E,w) € Rg. Therefore, to use NIWlgs to generate a NIWI-proof for relation Rog,
we need to define a third system of equation Egr with the following properties:

1. Egr = RBgg. With this notation, we mean that there exist two efficiently
computable functions f and g such that:

Jw = (idx, w1, ws) (z = (E1,E2),w) € Ror < 3 (Eor = f(z), W) € Re.

B

(z,w) € Ror = (f(2),9(z,w)) € Rog-
The latter properties guarantee that a proof for relation Bor computed using
NIWIgs satisfies completeness and soundness. For WI to hold, we need the

following property.
2. The function f is efficiently invertible.

Now we show how to construct the system of equations Egz with the aforemen-
tioned properties.

Consider two systems of pairing product equations E; and E; - same structure
as in For simplicity, we assume the equations are over two variables (the general
case is straightforward).

Ei:e(X,a1) e(Xa,a2) =71 ,Ex : e(V1,01) - €(Va, b2) =72

We define the new system of equation Egr with 4 new variables Z11, Z12, Z21, Z22
as follows:

-e(Zidx, 9) = e(g,9)

(
(
EOR : 6(2117222) =1
(
(-e(Ziax, 9) = e(g9%,9)

Verifiable Inner Product Encryption Scheme 23

Analysis of the equations: Consider (Zigx < gidx, X1 < g1, X2 < g2, V1 <
93, V2 < ga, Z11 < g11, ..., 222 < go2) as a solution for Egr. So, there exist
values idx, z11, 222 € Zjp, such that giax = g%, g11 = g7, g2 = ¢722 and for t € [k]
there exist values «; such that 7 = e(g, o).
¢ e(211,9) - e(Ziax, 9) = e(g,9) = e(g" T g) =1
= z11 = 1 —idx and similarly zo9 = 2 — idx.

° 8(211,222) =1= (211 =0V z99 = 0)
e211=0 A zn=1—idx=e(X) < g1,a1) - e(Xa ¢ go,a2) =71

= (E1[g1,92] = TRUE A idx=1)
° Similarly, 290 =0 A z99g =2 —idx = 6(221, 222) =1= (Eg[gg,gd =TRUE A idx = 2)
The above facts imply that:
Eor[(Gidx; 91, - - -5 94,911, - - -, g22)] = TRUE =

((Ealgr. g2, n] = TRUE A idx = 1) v (Ezlgs, g1, 2] = TRUE A idx = 2)),

as it was to show. It is also easy to see that the previous transformation is
efficiently invertible.

For the other direction, suppose w.l.o.g that w; = (g1, g2,a1) is a solution
to = E; (the other case is symmetrical and we omit it), namely (z,w;) € R.
Suppose also that ws = (g3, g4, a2) € G? is an arbitrary triple of elements of G.
Therefore (1, wq,ws) is a witness to (E1, E2) with respect to relation Rgg. Then,
setting (Zidx <« gl,Xl — gl,XQ <~ gg,yl — go,yg «— gO,ZH — gO,Zlg —
g, 291 <= g, 229 < g'), we have that:

Eor[(giax; 91, - - - 9a, 911, - - -, g22)] = TRUE.

(Notice that we implicitly defined a transformation g as needed.)

5.2 OR proof in the general case

If the number of pairing products (m) in each of the two equations is greater
than 1, such as:

{G(Xhéh) re(Xy,a2) =7 E. . {e(yhbﬂ e(V2,b2) =
9
e

E;: ,
VT e(Xn,af) - (X, ab) = e(V1,0) - e(Vz,a3) =75

then Egr can be defined as:

e(X1,a1) - e(X1,a2) - e(Z11,212) =71

e(Xy,d)) - e(Xo,dly) - e(Z11, 213) = 7]

e(Vi,b1) - e(V2,b2) - €(Z221, 222) = T2
Eor : { e(V1,0]) - €(Va,bh) - €(Za3, Z92) = 74

e(Z11,22) =1

e(Z211,9) -e(Zix, 9) = e(g,9)

e(222,9) - e(Zix, 9) = e(9°, 9)

24 Soroush et al.

‘We omit further details.

Notations: For the rest of this section, let us fix n € N as dimension of the
vector space and let i € [n],b € [2]. Note we can efficiently check whether a
string is a valid group element. We recall what follows.

mpk = (ga h7 {Wb,i7 Fb,ia Tb,ia Hb,iv Ubv Vb}v K17 KQa A) S G4n+8 X GT
msk = ({wy.i, fo,is to,i» ho.is O, O}, 2, k) € Z" T
tok = (K4, Kp,{K3,i, K1, K5, Ko }i) € G2

Ct3i, Cty; ;o fethycty I) 8n+6 2
ct = ((cty,ct ' ’ cty, ct cty, ct ’ ’ ct-, ct eG x G
((1,¢CL2, {CtS,i , CtG,i , L7y 8)7(1> Loy Ctls,i , Ct%yi y Gl 8) T

5.3 Master Public Key Verification

Let £ = mpk. Since g and e(g,g) are generators for the groups G and G of
prime order p, we can represent all components of = as a power of either g or
e(g,g). That is, there exist 2, k', {wy i, fo,i, tb,is Mo} {06, O, ko } for ¢ € [n] and
b € [2], in Z, such that: h = ¢g” A = e(g,g)k/,Wbﬂ' = gwi, Fy, = g/ T =
gtvi, Hy ;= gMvi Uy = g%, Vi = g%, K, = g*. The following holds:

e(g,h) =e(Ur, Wa,;) - e(Uz, W) " = e(g,9%) = e(g”, g">7) - e(g™, g~"")
= ()= 51’[0271‘ — 62’[01,7;.

e(ga h) :e(Vl’TQJ) ' e(‘/%Tl,i)il = e(gagQ) = e(galagtli) : e(‘geZagitl'i)
= = 9125271' — 922&171'.

e(K1, K2) =e(g™,g") = A =e(g,g") = K = kiky
By defining ¢’ = ¢, K1 = ¢, K, = g*2, it follows that: A = e(K1, K>), K1 = g, Ko = ¢'%

Hence, we have the following verification algorithm for master public key:

Input: mpk, Output: 1 if mpk is a well-generated master public key for IP scheme and 0 otherwise

(1) If A # e(K1, K2). output 0 otherwise go to the next step
(2) For i =1ton do :

(i.a) If e(Uy, Wa;) - e(Us, Wi,;) " # e(h, g), output 0 otherwise go to the next step
(i.b) I e(Vi ,To;) -e(Va ,Ti,i)" # e(h, g), output 0 otherwise go to the next step
(3) Output 1.

Fig. 2. Master public key verification algorithm. (membership in relation Er;pk)

Verifiable Inner Product Encryption Scheme 25

5.4 Token verification algorithms

As it was defined in section, there are two relation for token, Rmk and R™*. The
following algorithm verifies membership in relation Rtok.

Input: MPK,v = (v1,...,v,) # 0, tok
Output: 1 if tok is a well-generated token for IP scheme and 0 otherwise

If v = 0 output 0 else put index i* such that v;= £ 0

Compute AT = e(Kgyi, Ul) . e(K47i, UQ) and A; = e(K57i, Vl) . e(K(;’i, VQ)
If A7 = 1g,; OR A3 = 1g, output L

For i =1 to n do: -

(a) If (e(K3 UL - e(Kai, UQ)) " £ (A7)¥ output 0

(b) I ((Ks,i, V1) - (KGuVQ)) # (A3)" output 0
5. If e(Ka,g) # AH " e(Ksi, Fri) he(Kai, Foi) ™ te(Ks,, Hii) " 'e(Ke,i, Ha,i) " output 0

I, e(Kse, W) - e(Kai, Wayi) 'e(KS,iaTl,i) -e(Ke,i,T2i) # e(h, Kg) ™! output 0
7. output 1.

Ll e

o

Fig. 3. First token verification algorithm. (membership in relation R{g")

Correctness of the algorithm: For simplicity let’s assume v; # 0 and
it =1.
o5 A5 € Gr = 3N, e €Z, st A} = e(g, h)M, Ay = e(g, h)*2™
oVi € [n| Ir;, vl €Z,y s.t. Ks; = g o2 ~g>‘1”iw2”',K4,i = g‘s”; LML
=e(Ks,,Ur) e(Ky;, Us) = e(g 02" - ghvmmzs gy e(ghri . g=hviwne goa) —
e(g,9)"1 27T - (g, W)Y =

v1

é(e(KB,ile) 'e(K4,i7U2)) = e(g,)12 L g(g, B)Mrors

_Step 3: AT#lGT»AS#lGT:AI#O7)‘2#O
V1
— Step 4.a: If (e(Kg’Z', Ul) . e(K4’Z-, Ug)) = (AT)UI =

e(g,9)" 12 e (h, g) M = e(g, AN = e(g,)02 = g,
Vi€ [n]:r=r) = Kay= g 0 gh o Ky = gt g

And similar computations show that the equality in ”Step 4.b” holds for

all ¢ € [n]. Then we conclude that there exists ¢; € Z, such that: K5,; =
9—92¢1‘, . g>\2'U7‘,t2,i’ K6,i — gel¢i . g_)\Q'Uitl,i

26 Soroush et al.

— Step 5
n
Ky = g/ HK?)_)iflrLK;’;f2lK5_,’flllK6_77‘h2l
1=1

n
—f1i pr=f2,i r—h1,i g o—ha
< e(Ka,g) Ze(g/HKg,ifl’ K4,zfz Ks,il Kﬁ,iz . 9)
i=1

= e(Kag)=A [[e(Ksi, Fri) " e(Kui Foi) ' e(Ksi, Hi i) e(Kei, Hai) ™

=1

— Step 6

e(Ks;,Wi,) e(Kyi,Way) e(Ks,;,Th:) - e(Kei, To;) = e(h, Kg)™*

—.

o
Il
i

e(g_(;z"’i,gwl,i) . e<g51m,gw2,i) . e(g_02¢i7gt1,i) . e(geldﬁi,gtz.i)

Il

©
Il
=

e(gri(51w2,i*52w1,i), g) . e(g¢i(91t2,i*92t1,i), g)

I

«
Il

1
= [T eto.)+ = e(h, Kp) ™ = Kp = [g+
i=1

i=1

The second relation is a disjunction of two predicates, R™*(z, w) = Pk v Pk,
The proof of membership for this relation can be implemented using the token
verification algorithm for relation jgk and assuming to have pairing product
equations corresponding to the commitments in the two aforementioned predi-
cates. We skip further details.

5.5 NIWI®" = (Pec, yenc): NIWI-proof for encryption algorithm

For the relation BfS, we first provide a proof of satisfiability for a system of
equation related to a single ciphertext, that is k = 1, and we will later extend it
to the case of two ciphertexts, that is k = 2.For k£ > 2, the algorithm is similar

to the case k = 2.
Let x = (mpk, ct). We define the following variables, (1 <i < n):

Si=g" Si=g% Si=g" AXi=g" Sj=g" Si=g%

U =U3 U=U> V=V* Vo=V

U =US Uy=Us* Ki=Kp K=K

We have the following Equations related to component cts:
e(cty, g) = e(h®,g) = e(h,g°*) = e(h,S1)
e(cth,g) = e(h*l,g) = e(h, g*1) = e(h, S}),

Verifiable Inner Product Encryption Scheme 27
and equations related ct;; for j =1,2,3,4and ¢ =1,...,n:
e(ctsi,g) = (Wi, g) - e(Fy}, 9) - (U™, g) = e(Wi i, 9™) - €(F14,9%) - e(Ur*, g™)

=e(W1,;,51) - e(F1,,cty) - e(lh, X))
=e(cts;,9) - e(Fi,ct1) 't =e(W1,,81) - e(lh, X)

(
e(cty;, 9) - e(Fy ,ct)) ™! =e(Wy,;,S)) -eUd;, X))
e(cts,i,g) - e(H i, cta) ' = e(T1i,S1) - e(V1, Xi)
e(cty;,9) - e(Hy i cth) ™! =e(Ty;,S)) -e(Vy, X))
e(cte,i,g) - €(Ha i, cta) ' = e(T2,S1) - e(Va, i)
() - e() () -e(Va, X;)

The equations show that the exponent of U;® and V™ in ctg;, cty;, Cts ;, Ct ;
are x;. So we have the following equation:

e(Uh,Us) - e(U ", Us) = (U, Us) - e(Uy ', Us*) = (U1, U2)** ™ = lg,
e(vla VQ) : e(Vlilv VQ) = e(VS4a VQ) : e(Vfl» V2S4) = e(vlv ‘/2)84784 = lg,

The equation related to ct; = e(g®, g®¢) is the following;:
cty = (g™, g*) = e(S3,84), ctr = e(g*,g*) = e[S}, 54)
To prove s3 # s, we just need check wether ct; # ct’, or not.
ctr # cty = e(g%,g*) # e(g*%, g™*) = 55 # 5.
The equation related to ctr, ct’ is the following:

’ ’ 7
ctg= A2 m ety = A% m = oty Lot = A cm AT o = A

ety - cth = oKy, K2) ™% = e(K1, K37) - (K K3?) = e(K1, Ka) - e(Ky ! KY)

And to prove that the the power of A and g are both —ss and s5 in ct; and ctg,
we add the following equation:

e(CtlaKl) = e(chl)ae(Ctlvil) = e(g7lc/1)

28 Soroush et al.

So we have the following system of equation for one single ciphertext.

e(cta, g) = e(h, S1), e(cth, g) = e(h,S}), e(Cta, §) = e(h, Sy), e(Cty, §) = e(h,S))
e(cts,i,g) - e(Fii,ct1) ™t = e(W1,;,S1) - e(Us, X;)
e(cty ;, g) - e(Fri,ct)) ™" = e(W1,;,87) - ey, Xi)
e(cty, g) - e(Fay,cty) t = e(Wa, S1) - e(Us, X))
e(cty ;, 9) - e(Fau,ct)) ™ = e(Wa;, S) - e(Us, X))
E. e(cts,i,g) - e(Hyi,cta) = e(Th4,81) - e(V1, X;)
e(cty ;,9) - e(Hy i cty) ' =e(Th,,S) - e(Vi, &;)
e(cts i, g) - e(Ha,i, cta) ™' = e(T2,:,S1) - e(V2, i)
e(cts ;,9) - e(Ha,cty) ' = e(Th:, Sp) - e(Vy, i)
cty = (83, 84), cth = (S84, 84), Ctr = e(Ss, S4), cty = (S}, Si)
ctg1 -cty = e(K1,Ks) ~e(Kf1,IC’1),<ft;1 ~€té = e(f(l,leg) e([%'fl,/@’l)
e(cty, K1) = e(g, K1), e(ct), K1) = e(g,KY)

Now we need to provide a proof that two ciphertext ct, ¢t are the encryption of
a single message m and a single attribute x:

Xi = gxia')ei = gzl = e(Xug) = e(ga')ei) = e(;(;,f]) : e(g7gei)71 = 1GT

Notice that ctg, cty are the only components of te ciphertext which are related
to the message and cty,ct] are the only components which are related to them,
so we have:

’
cts = A7°% - m, cty =A""2-m
~ A& ~ ! Y
ct8:/132~m, ctg = A7%2 - m.

Ctg = A7m ANl p—se 280
Ctg = /i_é"‘m} = ctyct, = A A% =
e(Kf27K51) : e(Kf2’k2) = e(Kf17K§2) 'e(klak?)

=e(K1, Ky ') e(Ki, Ky) = e(K; ', Ka) - e(K1, Ky)

So the prover has to provide a proof for the following system of equations:

2
Bt §elg, K1) = e(cty, K1)
e(g, K1) = e(ctr, K1)
e(X;,§) - e(g, Xi) ™! = 1g,
Summing up, the NIWI-proof system for encryption algorithm, would be same

as GS NIWI-proof system which takes as input pairing product equations E
and E,_4.

Verifiable Inner Product Encryption Scheme 29

6 Conclusion

Our main contribution in this paper is the construction of the first efficient ver-
ifiable (attribute-hiding) inner product encryption scheme from bilinear groups.
The privacy of our scheme is based on the standard DLIN assumption whereas its
verifiability is unconditional. Towards this goal, we also construct the first per-
fectly correct (attribute-hiding) inner product encryption scheme for plaintexts
of arbitrary length. Our verifiable inner product encryption scheme is selectively
secure only; we leave as an interesting open problem the construction a fully
secure one.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consistency
properties, relation to anonymous IBE, and extensions. Cryptology ePrint Archive,
Report 2005/254 (2005), http://eprint.iacr.org/2005/254

2. Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Verifiable functional encryption.
In: Proceedings, Part II, of the 22Nd International Conference on Advances in
Cryptology — ASTACRYPT 2016 - Volume 10032. pp. 557-587. Springer-Verlag
New York, Inc., New York, NY, USA (2016)

3. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryp-
tion for quadratic functions with applications to predicate encryption. In: Katz,
J., Shacham, H. (eds.) Advances in Cryptology - CRYPTO 2017 - 37th An-
nual International Cryptology Conference, Santa Barbara, CA, USA, August 20-
24, 2017, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10401,
pp. 67-98. Springer (2017). https://doi.org/10.1007/978-3-319-63688-7_3, https:
//doi.org/10.1007/978-3-319-63688-7_3

4. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology
— EUROCRYPT 2004. Lecture Notes in Computer Science, vol. 3027, pp. 506-522.
Springer (May 2004)

5. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) Advances in Cryptology — CRYPTO 2001. Lecture Notes in Com-
puter Science, vol. 2139, pp. 213-229. Springer (Aug 2001)

6. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011: 8th Theory of Cryptography Conference. Lecture
Notes in Computer Science, vol. 6597, pp. 253-273. Springer (Mar 2011)

7. Boneh, D.; Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007: 4th Theory of Cryptography Conference. Lecture
Notes in Computer Science, vol. 4392, pp. 535-554. Springer (Feb 2007)

8. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) 8th IMA International Conference on Cryptography and Coding.
Lecture Notes in Computer Science, vol. 2260, pp. 360-363. Springer (Dec 2001)

9. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) Advances in Cryptology —
ASTACRYPT 2006. Lecture Notes in Computer Science, vol. 4284, pp. 444—459.
Springer (Dec 2006)

http://eprint.iacr.org/2005/254
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-319-63688-7_3

30

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Soroush et al.

Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) Advances in Cryptology — CRYPTO 2006. Lecture Notes
in Computer Science, vol. 4117, pp. 97-111. Springer (Aug 2006)

Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) Advances in Cryptology — EUROCRYPT 2008. Lecture Notes
in Computer Science, vol. 4965, pp. 415-432. Springer (Apr 2008)

Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, San Diego, California, USA, June 11-13, 2007. pp. 21-30
(2007)

Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) Advances in Cryptology — ASI-
ACRYPT 2010. Lecture Notes in Computer Science, vol. 6477, pp. 177-194.
Springer (Dec 2010)

Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) Advances in Cryptology
— EUROCRYPT 2008. Lecture Notes in Computer Science, vol. 4965, pp. 146-162.
Springer (Apr 2008)

Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In: Gilbert, H. (ed.) Advances in Cryptology — EUROCRYPT 2010.
Lecture Notes in Computer Science, vol. 6110, pp. 62-91. Springer (May 2010)
Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: From
polynomial commitments to pairing-based accumulators from simple assumptions.
In: 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Ttaly. pp. 30:1-30:14 (2016)

Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryp-
tology — EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp.
591-608. Springer (Apr 2012)

Park, J.H.: Inner-product encryption under standard assumptions. Des. Codes
Cryptography 58(3), 235-257 (2011). https://doi.org/10.1007/s10623-010-9405-9,
https://doi.org/10.1007/s10623-010-9405-9

Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) Ad-
vances in Cryptology — EUROCRYPT 2005. Lecture Notes in Computer Science,
vol. 3494, pp. 457-473. Springer (May 2005)

Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) Advances in Cryptology — CRYPTO’84. Lecture Notes in Com-
puter Science, vol. 196, pp. 47-53. Springer (Aug 1984)

https://doi.org/10.1007/s10623-010-9405-9
https://doi.org/10.1007/s10623-010-9405-9

	Verifiable Inner Product Encryption Scheme

