Synchronous Constructive Cryptography

Chen-Da Liu-Zhang and Ueli Maurer

{lichen,maurer}@inf.ethz.ch, ETH Zurich

Abstract. This paper proposes a simple synchronous composable se-
curity framework as an instantiation of the Constructive Cryptography
framework, aiming to capture minimally, without unnecessary artefacts,
exactly what is needed to state synchronous security guarantees. The
objects of study are specifications (i.e., sets) of systems, and traditional
security properties like consistency and validity can naturally be un-
derstood as specifications, thus unifying composable and property-based
definitions. The framework’s simplicity is in contrast to current compos-
able frameworks for synchronous computation which are built on top
of an asynchronous framework (e.g. the UC framework), thus not only
inheriting artefacts and complex features used to handle asynchronous
communication, but adding additional overhead to capture synchronous
communication.

As a second, independent contribution we demonstrate how secure (syn-
chronous) multi-party computation protocols can be understood as con-
structing a computer that allows a set of parties to perform an arbitrary,
on-going computation. An interesting aspect is that the instructions of
the computation need not be fixed before the protocol starts but can also
be determined during an on-going computation, possibly depending on
previous outputs.

1 Introduction

1.1 Composable Security

One can distinguish two different types of security statements about multi-party
protocols. Stand-alone security considers only the protocol at hand and does not
capture (at least not explicitly) what it means to use the protocol in a larger
context. This can cause major problems. For example, if one intuitively under-
stands an r-round broadcast protocol as implementing a functionality where the
sender inputs a value and r rounds later everybody learns this value, then one
missed the point that a dishonest party learns the value already in the first
round. Therefore a naive randomness generation protocol, in which each party
broadcasts (using a broadcast protocol) a random string and then all parties
compute the XOR of all the strings, is insecure even though naively it may look
secure [I7]. There are also more surprising and involved examples of failures
when using stand-alone secure protocols in larger contexts.

The goal of composable security frameworks is to capture all aspects of a
protocol that can be relevant in any possible application; hence the term uni-
versal composability [6]. While composable security is more difficult to achieve

than some form of stand-alone security, one can argue that it is ultimately neces-
sary. Indeed, one can sometimes reinterpret stand-alone results in a composable
framework. There exist several frameworks for defining and reasoning about
composable security (e.g. [34] [6], [TT], 29] 32} 24}, [19]).

1.2 Composable Synchronous Models

One can classify results on distributed protocols according to the underlying in-
teraction model. Synchronous models, where parties are synchronized and pro-
ceed in rounds, were first considered in the literature because they are relatively
simple in terms of the design and analysis of protocols. Asynchronous models
are closer to the physical reality, but designing them and proving their secu-
rity is significantly more involved, and the achievable results (e.g. the fraction
of tolerable dishonest parties) are significantly weaker than for a synchronous
model. However, synchronous models are nevertheless justified because if one
assumes a maximal latency of all communication channels as well as sufficiently
well-synchronized clocks, then one can execute a synchronous protocol over an
asynchronous network.

Most composable treatments of synchronous protocols are in (versions of)
the UC framework by Canetti [6], which is an inherently asynchronous model.
The models presented in [6], [33] [18], [22] propose different approaches to model
synchronous communication on top of the UC framework [6]. These approaches
inherit the complexity of the UC framework designed to capture full asynchrony.
Another approach was introduced with the Timing Model [12] 14} [21]. This
model integrates a notion of time in an intuitive manner, but as noted in [22]
fails to exactly capture the guarantees expected from a synchronous network. A
similar approach was proposed in [2], which modifies the asynchronous reactive-
simulatability framework [3] by adding an explicit time port to each automaton.

Despite the large number of synchronous composable frameworks, the over-
head created when using them is still too large. For example, when using a model
built on top of UC, one typically needs to consider clock/synchronization func-
tionalities, activation tokens, message scheduling, etc. Researchers wish to make
composable statements, but using these models often turn out to be a burden
and create huge overhead. As a consequence, papers written in synchronous UC
models tend to be rather informal: the descriptions of the functionalities are in-
complete, clock functionalities are missing, protocols are underspecified and the
proofs are often made at an intuitive level. This leaves the question:

Can one design a composable framework targeted to minimally capture syn-
chronous protocols?

People have considered capturing composable frameworks for restricted settings
(e.g. [36L[7]), but to the best of our knowledge, there is no composable framework
that is targeted to minimally capture any form of synchronous setting.

1.3 Multi-Party Computation

In the literature on secure multi-party computation (MPC) protocols, of which
secure function evaluation (SFE) is a special case, most of the results are for the
synchronous model as well as stand-alone security, even though intuitively most
protocols seem to provide composable security. To the best of our knowledge,
the first paper proving the composable security of a classical SFE protocol is [§],
where the security of the famous GMW-protocol [15] is proved. The protocol
assumes trusted setup, and security is obtained in the UC framework. In [I], the
security of the famous BGW-protocol [4] is proved in the plain model. With the
results in [23] 22], one can prove security in the UC framework.

1.4 Contributions of this Paper

A guiding principle in this work is to strive for minimality and to avoid un-
necessary artefacts, thus lowering the entrance fee for getting into the field of
composable security and also bringing the reasoning about composable security
for synchronous protocols closer to being tractable by formal methods.

Our contributions are two-fold. First, we introduce a new composable frame-
work to capture settings where parties have synchronized clocks (in particular,
traditional synchronous protocols), and illustrate the framework with a few sim-
ple examples. Our focus is on the meaningful class of information-theoretic se-
curity as well as static corruption. However, in Section [0} we discuss how one
can further extend the framework.

As a second contribution, we prove the composable security of Maurer’s
simple-MPC protocol [27] and demonstrate that it perfectly constructs a ver-
satile computer resource which can be (re-)programmed during the execution.
Compared to [8, [I], our treatment is significantly simpler for two reasons. First,
the protocol of [27] is simpler than the BGW-protocol. Second, and more impor-
tantly, the simplicity of our framework allows to prove security of the protocols
without the overhead of asynchronous models: we do not deal with activation
tokens, message scheduling, running time, etc.

Synchronous Constructive Cryptography. Our framework is an instanti-
ation of the Constructive Cryptography framework [28] 29] [30], for specific in-
stantiations of the resource and converter concepts. Moreover, we introduce a
new type of construction notion, parameterized by the set Z of potentially dis-
honest parties, allowing to capture the guarantees for every such dishonest set
Z. An often considered special case is that nothing is guaranteed if Z contains
too many parties.

Synchronous resources are very simple: They are (random) systems where
the alphabet is list-valued. That is, a system takes a complete input list and
produces a complete output list. Parallel composition of resources is naturally
defined. There is no need to talk about a scheduler or activation patterns.

To allow that dishonest parties can potentially make their inputs depend on
some side information of the round, we let one round r of the protocol corre-
spond to two rounds, r.a and r.b (called semi-rounds). Honest parties provide

the round input in semi-round r.a and the dishonest parties receive some in-
formation already in the same semi-round r.a. In semi-round 7.b, the dishonest
parties give their inputs and everybody receives the round’s outputE|

The framework is aimed at being minimal and differs from other frameworks
in several ways. One aspect is that the synchronous communication network is
simply a resource and not part of the framework; hence it can be modelled ar-
bitrarily, allowing to capture incomplete networks and various types of channels
(e.g., delay channels, secure, authenticated, insecure, etc).

We demonstrate the usage of our model with three examples: a two-party
protocol to construct a common randomness resource (Section 7 the protocol
introduced in [5] to construct a broadcast resource (Section [A]), and the simple
MPC protocol [27] as the construction of a computer resource (Sections[7]and g).

The Computer Resource. We introduce a system Computer which captures
intuitively what traditional MPC protocols like GMW, BGW or CCD [15, [[,
35] [13],27] achieve. Traditionally, in a secure function evaluation protocol among
n parties, the function to compute is modelled as an arithmetic circuit assumed
to be known in advance. However, the same protocols are intuitively secure even
if parties do not know in advance the entire circuit. It is enough that parties
have agreement on the next instruction to execute.

We capture such guarantees in an interactive computer resource, similar to a
(programmable) old-school calculator with a small instruction set (read, write,
addition, and multiplication in our case), an array of value-registers, and an in-
struction queue. The resource has n interfaces. The interfaces 1,...,n — 1 are
used to give inputs to the resource and receive outputs from the resource. Inter-
face n is used to write instructions into the queue. A read instruction (INPUT, i, p)
instructs the computer to read a value from a value space V at interface i and
store it at position p of the value register. A write instruction (OUTPUT,1,p)
instructs the computer to output the value stored at position p to interface i. A
computation instruction (OP,py,p2,p3), OP € {ADD,MULT} instructs the com-
puter to add or to multiply the values at positions p; and p, and store it at
position p3. We then show how to construct the computer resource using the
Simple MPC protocol [27]. A similar statement could be obtained using other
traditional MPC protocols.

1.5 Notation

We denote random variables by capital letters. Prefixes of sequences of ran-
dom variables are denoted by a superscript, e.g. X* denotes the finite sequence
Xi,...,X;. For random variables X and Y, we denote by px |y the correspond-
ing conditional probability distributionﬂ Given a tuple ¢, we write the projection

! What is known as a rushing adversary in the literature is the special case of com-
munication channels where a dishonest receiver sees the other parties’ inputs of a
round before choosing his own input for that round.

2 Conditional probability distributions are denoted by a small “p” because they are
defined without defining a random experiment. A capital P for probabilities is used
only if a random experiment is defined.

to the j-th component of the tuple as [t],;. Given a sequence t' of tuples t1, ..., t;,
we write [t']; as the sequence [t1];,. .., [t;];. For a finite set X, z <—¢ X denotes
sampling x uniform randomly from X.

2 Constructive Cryptography

The basic concepts of the Constructive Cryptography framework by Maurer and
Renner [29] 28] [30] needed for this paper are quite simple and natural and are
summarized below.

2.1 Specifications

A basic idea, which one finds in many disciplines, is that one considers a set ¢ of
objects and specifications of such objects. A specification U C @ is a subset of ¢
and can equivalently be understood as a predicate on @ defining the set of objects
satisfying the specification, i.e., being in Y. Examples of this general paradigm
are the specification of mechanical parts in terms of certain tolerances (e.g. the
thickness of a bolt is between 1.33 and 1.34 millimeters), the specification of
the property of a program (e.g. the set of programs that terminate, or the set
of programs that compute a certain function within a given accuracy and time
limit), or in a cryptographic context the specification of a close-to-uniform n-bit
key as the set of probability distributions over {0,1}™ with statistical distance
at most € from the uniform distribution.

A specification corresponds to a guarantee, and smaller specifications hence
correspond to stronger guarantees. An important principle is to abstract a spec-
ification U by a larger specification V (i.e., U C V) which is simpler to under-
stand and work with. One could call V an ideal specification to hint at a certain
resemblance with terminology often used in the cryptographic literature. If a
construction (see below) requires an object satisfying specification V, then it
also works if the given object actually satisfies the stronger specification U.

2.2 Constructions

A construction is a function v : & — & transforming objects into (usually in
some sense more useful) objects. A well-known example of a construction useful
in cryptography, achieved by a so-called extractor, is the transformation of a
pair of independent random variables (say a short uniform random bit-string,
called seed, and a long bit-string for which only a bound on the min-entropy is
known) into a close-to-uniform string.

A construction statement of specification S from specification R using con-
struction ~y, denoted R 5 S, is of the form

RLS = ~(R)CS.

It states that if construction ~y is applied to any object satisfying specification
R, then the resulting object is guaranteed to satisfy (at least) specification S.

The composability of this construction notion follows immediately from the
transitivity of the subset relation:

RLSANSLT — RN T

2.3 Resources and Converters

The above natural and very general viewpoint is also taken in Constructive Cryp-
tography, where the objects in @ are systems, called resources, with interfaces
to the parties considered in the given setting. If a party performs actions at its
interface, this corresponds to applying a so-called converter which can also be
thought of as a system or protocol engine. At its inside, the converter “talks to”
the party’s interface of the resource and at the outside it emulates an interface
(of the transformed resource). Applying such a converter induces a mapping
® — &. We denote the set of converters as 3.

Figure [1] shows a resource with four interfaces where converters are applied
at two of the interfaces. The resource obtained by applying a converter 7w at
interface j of resource R is denoted as m/R. Applying converters at different
interfaces commutesf] The resource shown in Figure [] can hence be written

7T2P4R,

which is equal to p*m?R.

|

O = 1o

i

Fig. 1. Example of a resource with 4 interfaces, where converters = and p are attached
to interfaces 2 and 4.

Several resources (more precisely a tuple of resources) can be understood
as a single resource, i.e., as being composed in parallel. One can think that for
each party, all its interfaces are merged into a single interface, where the original
interfaces can be thought of as sub-interfaces.

3 This is an abstract requirement, in the sense of an axiom, which for an instantiation
of the theory, for example to the special case of discrete systems, must be proven to
hold.

2.4 Multi-Party Protocols and Constructions

Let us consider a setting with n parties, where P = {1,...,n} denotes the set of
parties (or, rather, interfaces)ﬂ A protocol consists of a tuple w = (7, ..., m,) of
converters, one for each party, and a construction consists of each party applying
its converter. However, an essential aspect of reasoning in cryptography is that
one considers that parties can either be honest or dishonest, and the goal is
to state meaningful guarantees for the honest partiesﬂ While an honest party
applies its converter, there is no such guarantee for a dishonest party, meaning
that a dishonest party may apply an arbitrary converter to its interface, including
the identity converter that gives direct access to the interface.

In many cryptographic settings one considers a set of (honest) parties and
a fixed dishonest party (often called the adversary). However, in a so-called
multi-party context one considers each party to be either honest or dishonest.
For each subset Z C P of dishonest parties one states a separate guarantee:
If the assumed resource satisfies specification Rz, then, if all parties in P\ Z
apply their converter, the resulting resource satisfies specification Sz. Typically,
but not necessarily, all guarantees Rz (and analogously all Sz) are compactly
described, possibly all derived as variations of the same resource.

Definition 1. The protocol ® = (71,...,m,) constructs specifications Sz from
Rz if
TP\Z
VZCP Rz ——Sz.

A special case often considered is that one provides guarantees only if the set
of dishonest parties is within a so-called adversary structure [I6], for example
that there are at most t dishonest parties. This simply corresponds to the special
case where Sy = @ if |Z] > t. In other words, if Z is not in the adversary
structure, then the resource is only known to satisfy the trivial specification @.

2.5 Specification Relaxations

As mentioned above, that a party j is possibly dishonest means that we have
no guarantee about which converter is applied at that interface. For a given
specification S, this is captured by relaxing the specification to the larger spec-
ification S*7:

S ={riS|reX A SeS}

If we consider a set Z of potentially dishonest parties, we can consider the set
of interfaces in Z as being merged to a single interface with several sub-interfaces,
and applying the above relaxation to this interface. The resulting specification

4 In the literature, one often refers to parties with a name, say P; for party at inter-
face i, but we do not need explicit party names and can simply refer to party i.

5 Note that in this view, the often used term “corruption” does not mean that a party
switches from being honest to being dishonest, it rather means that a resource loses
some guarantees, for example the memory resource of a party becomes accessible to
some other parties.

is denoted S*Z. This corresponds to the viewpoint that all dishonest parties
collude (or, as sometimes stated in the literature, are under control of a central
adversary). It is easy to see that the described *-relaxation is idempotent: For
any specification § and any set of interfaces Z, we have (§*2)*2 = §*z.

If one wants to prove that a given specification U is contained in $*#, one
can exhibit for every element U € U a converter « such that U = a? S for some
S € S. Here a? S means applying « to the interface resulting from merging the
interfaces in Z. If the same o works for every U, then one can think of «a as
corresponding to a (joint) simulator for the interfaces in Z.

It should be pointed out that Constructive Cryptography [30] considers gen-
eral specifications, and the above described specification type is only a spe-
cial case. Therefore the construction notion does not involve a simulator. In-
deed, this natural viewpoint allows to circumvent impossibility results in clas-
sical simulation-based frameworks (including the early version of Constructive
Cryptography[29, [28]) because the type of specifications resulting from requiring
a single simulator is too restrictive. See [20] for an example.

3 Synchronous Systems

To instantiate the Constructive Cryptography framework at the level of syn-
chronous discrete systems, we need to instantiate the notions of a resource R € &
and a converter m € Y. We define each of them as special types of random sys-
tems [26], BI]. We briefly explain the role of random systems in such definitions.

3.1 Random Systems

Definition 2. An (X,Y)-random system R is a sequence of conditional prob-
ability distributions pQ‘XiYi,l, for i > 1. Equivalently, the random system can

be characterized by the sequence pgi‘xi = H2=1 pgk\xkykfl’ fori > 1.

As explained in [25], a random system is the mathematical object correspond-
ing to the behavior of a discrete system. A deterministic system is a special type
of function (or sequence of functions), and the composition of systems is defined
via function composition. Probabilistic systems are often thought about (and
described) at a more concrete level, where the randomness is made explicit (e.g.
as the randomness of an algorithm or the random tape of a Turing machine).
Hence a probabilistic discrete system (PDS) corresponds to a probability dis-
tribution over deterministic systems, and the definition of the composition of
probabilistic systems is induced by the definition of composition of deterministic
systems (analogously to the fact that the definition of the sum of real-valued ran-
dom variables is naturally induced by the definition of the sum of real numbers,
which are not probabilistic objects).

Different PDS can have the same behavior, which means that the behavior,
i.e., a random system, corresponds to an equivalence class of PDS (with the
same behavior). The fact that the composition of (independent) random systems

corresponds to a particular product of the involved conditional distribution can
be proved and should not be seen as the definition. However, in this paper, which
only considers random systems (the actual mathematical objects of study), the
product of distributions appears as the definition.

It is important to distinguish the type and the description of a mathemat-
ical object. An object of a given type can be described in may different ways.
For example, a random system can be described by several variants of pseudo-
code, and as is common in the literature we also use such an ad-hoc description
language. The fact that a random system is defined via conditional probability
distributions does not mean that they have to described in that way.

3.2 Resources

A resource (the mathematical type) is a special type of random system [26] [3T].
Definition 3. An (X,Y)-random system R is a sequence of conditional prob-
ability distributions pﬁ‘xiyi,l, for i > 1. Equivalently, the random system can
be characterized by the sequence pgi‘xi = HZ:1 p)@k\xkykﬂf fori>1.

A resource with n interfaces takes one input per interface and produces an output
at every interface (see Figure . Without loss of generality, we assume that the

alphabets at all interfaces and for all indices ¢ are the sameﬂ An (n,X,Y)-
resource is a resource with n interfaces and input (resp. output) alphabet X

(resp. V).

o

1

Sy R bt

3]

fi-

Fig. 2. An example resource with 4 interfaces. At each invocation, the resource takes
an input z; € X at each interface j, and it outputs a value y; €) at each interface j.

Definition 4. An (n, X,Y)-resource is an (X™,Y™)-random system.

Parallel Composition. One can take several independent (n, X, J;)-resources
R4,..., Ry and form an (n, szl X;, szl Yj)-resource, denoted [Rq,...,Ry].

% The alphabets are large enough to include all values that can actually appear.

A party interacting with the composed resource [Ry,...,Rg] can give an input
a = (al,...,a"), which is interpreted as giving each input a/ € X; to resource
R;, and then receive an output b = (bt,...,b¥) containing the output from each
of the resources.

In the following definition, we denote by x; = (ai;,...,a,,;) the i-th input
to the resource, and by y; = (b1,...,by) the i-th output from the resource.
We further let [[z;]]; = ([a1,i];,- ., [an,];) be the tuple with the j-th component
of each tuple a. ;; and let [[z']]; be the finite sequence [[z1]];, ..., [[z:]];. We let
[ly:]]; and [[y°]]; be defined accordingly.

Definition 5. Given a tuple of resources (Ru, ..., Ry), where R; is an (n, X;, Y;)-
resource. The parallel composition R == [Ry, ..., Ry], is an (n, X?:1 X;, Xj:l Yi)-
resource, defined as follows:

k
Py xeyimr (Wi 2y) = H Py oy (illys [T, [l 115)

3.3 Converters

An (X,Y)-converter is a system (of a different type than resources) with two
interfaces, an outside interface out and an inside interface in. The inside inter-
face is connected to the (n,X,))-resource, and the outside interface serves as
the interface of the combined system. When an input is given (an input at the
outside), the converter invokes the resource (with an input on the inside), and
then converts its response into a corresponding output (an output on the out-
side). When a converter is connected to several resources in parallel [Rq, ..., Ry],
we address the corresponding sub-interfaces with the name of the resource, i.e,
in.R1 is the sub-interface connected to Rj.

More concretely, an (X, Y)-converter is an (X U Y, X U Y)-random system
whose input and output alphabets alternate between X and). That is,

— On the first input, and further odd inputs, it takes a value x € X and
produces a value 2’ € X.

— On the second input, and further even inputs, it takes a value 3y’ €), and
produces a value y €).

Definition 6. An (X,Y)-converter 7 is a pair of sequences of conditional prob-
ability distributions p}HXiX,iflynflyi,l and p%|XiX”‘Y”‘Y’L71’ fori > 1. Equiv-
alently, a converter can be characterized by the sequence

i .
pTrX/iyilxiyli = Hk::l p;r(éleX/k—ly/k—lyk—l : pgr/k‘XkX/ky/kyk—u fori>1.

Application of a Converter to a Resource Interface. The application of
a converter m to a resource R at interface j can be naturally understood as the
resource that operates as follows (see Figure [3)):

10

— On input (z1,...,2,) € X": input z; to 7, and let x; be the output.
Then, input (z1,...,2j-1,%}, ¥j+1,...,2,) € X" to R.

— On output (y1,..-,Yj-1,Y, Yj+1,---,Yn) € Y" from R, input y; to 7, and
let y; be the output.
The output is (y1,...,yn) € V™.

yft

R .

{
5133T l Y3
Fig. 3. The figure shows the application of a converter 7 to the interface 2 of a resource
R. On input a value z2 € X to interface out of 7, the converter m outputs a value
x5 € X at interface in. The resource R takes as input (z1, x5, T3, 74) € X4, and outputs

(y1,95,y3,y4) € Y*. On input 4 to interface in of 7, the converter outputs a value y2
at interface out.

Given a tuple a = (ay,...,a,), we denote ag;_,4y the tuple where the j-
th component is substituted by value b, i.e. the tuple (a1,...,aj—1,b, ajt1,an).
Moreover, given a sequence a’ of tuples t',...,t" and a sequence b of values
bi,...,b;, we denote az{j_ﬂ)i}7 the sequence of tuples t{jﬁb1}7 R t{jﬁbi}.

Definition 7. The application of an (X,)Y)-converter m at interface j of an
(n, X,Y)-resource R is the (n,X,Y)-resource 7/ R defined as follows:

o . N R _ .
le\Xf y 33 Z pXMYv\XZY” ([yl [xl]jay”) Pyi|xi (y?{jay’i}’x?{jax’i}>

x’

One can see that applying converters at distinct interfaces commutes. That
is, for any converters m and p, any resource R and any disjoint interfaces j, k,
we have that 77 p*R = p*m/R.

For a tuple of converters w = (my,...,7m,), we denote by wR the resource
where each converter 7; is attached to interface j. Given a subset of interfaces I,
we denote by mrR the resource where each converter 7; with j € I, is attached
to interface j.

11

4 Resources with Specific Round-Causality Guarantees

The resource type of Definition [f] captures that all parties act in a synchronized
manner. The definition also implies that any (dishonest) party’s input depends
solely on the previous outputs seen by the party.

In practice this assumption is often not justified. For example, consider a
resource consisting of two parallel communication channels (in a certain round)
between two parties, one in each direction. Then it is typically unrealistic to
assume that a dishonest party can not delay giving its input until having seen
the output on the other channel. Such adversarial behavior is typically called
“rushing” in the literature. More generally, a dishonest party’s input can depend
on partial information of the current round inputs from honest parties.

To model such causality guarantees, we introduce resources that proceed in
two rounds (called semi-rounds) per actual protocol round[] This makes explicit
what a dishonest party’s input can (and can not) depend on.

More concretely, each round r consists of two semi-rounds, denoted r.a and
r.b. In the first semi-round, r.a, the resource takes inputs from the honest parties
and gives an output to the dishonest parties. No output is given to honest parties,
and no input is taken from dishonest parties. In the second semi-round, 7.0,
the resource takes inputs from the dishonest parties and gives an output to all
parties. Figure [] illustrates the behavior of such a resource within one round.
When describing such resources, we often omit specifying the semi-round when
it is clear from the context.

Honest Party Dishonest Party
r.a
r.b

Fig. 4. Figure depicts a resource operating in a round. The dashed lines indicate that
no value is taken as input to the resource, and is output from the resource. The honest
(resp. dishonest) parties give inputs to the resource in the first (resp. second) invocation,
and all parties receive an output in the second invocation. The dishonest parties receive
in addition an output in the first invocation.

" This type of resource is similar to the notion of canonical synchronous functionalities
in [10].

12

When applying a protocol converter to such a resource, we formally attach
the corresponding converter that operates in semi-rounds, where round-r inputs
are given to the resource at r.a, and round-r outputs are obtained at 7.b.

5 A First Example

We demonstrate the usage of our model to describe a very simple 2-party protocol
which uses delay channels to generate common randomness. The protocol uses
a channel with a known lower and upper bound on the delay, and proceeds as
follows: Each party generates a random value and sends it to the other party via a
delay channel. Then, once the value is received, each party outputs the sum of the
received value and the previously generated random value. It is intuitively clear
that the protocol works because 1) a dishonest party does not learn the message
before round r, and 2) an honest party is guaranteed to learn the message at
round R.

Bounded-Delay Channel with Known Lower and Upper Bound. We
model a simple delay channel D—& (resp. ﬁC) from party 1 to party 2 (resp.
party 2 to party 1) with known lower and upper bound on the delay. It takes
a message at round 1, and is guaranteed to not deliver the message until round
r to a dishonest party, but is guaranteed to deliver it at round R to an honest
party. To model such a delay channel, we define a delay channel ﬁr, R,z With
message space M from party 1 to party 2 with fixed delay that takes a message
at round 1 and delivers it at round r if the receiver is dishonest, and at round
R if the receiver is honest. The set Z indicates the set of dishonest parties. The
channel ﬁCT} R,z in the other direction is analogous.

/—[Resource ﬁr,&z} N

msg < 0
On input m € M at interface 1 of round 1, set msg <— m.
if 2 € Z then
Output msg at interface 2 at round r.
else
Output msg at interface 2 at round R.
end if

To capture that the delay channel is not guaranteed to deliver the message to
a dishonest receiver exactly at round r, we consider the *-relaxation (DC, g z)*#
on the delay channel at the dishonest interfaces Z. This specification includes
resources with no guarantees at Z. For example, the resource may deliver the
message later than r, or garbled, or not at all.

Common Randomness Resource. The sketched protocol constructs a com-
mon randomness resource CRS that outputs a random string. We would like to

13

model a CRS that is guaranteed to output the random string at round R to an
honest party, but does not output the random string before r to a dishonest
party. For that, we first consider a resource which outputs a random string to
each honest (resp. dishonest) party at round R (resp. 7).

,—[Resource CRSnR,Z} N
rnd g M
For each party i € {1,2}:
if 1 € Z then
Output rnd at interface ¢ at round r.
else
Output rnd at interface ¢ at round R.
L end if)

With the same idea as with the delay channels, we can model a common
randomness resource that is guaranteed to deliver the randomness to the honest
parties at round R but is not guaranteed to deliver the output to the dishon-
est parties at round r, by considering a *-relaxation on the resource over the
dishonest interfaces Z, (CRS, g z)*%.

Two-Party Construction. We describe the 2-party protocol # = (71, m2)
sketched at the beginning of the section and show that it constructs a common
randomness resource.

—i Converter m;

Local variable: rnd
Round 1

rnd g M _ L
Output rnd at in.dc. // in.dc for m

Round R
On input v € M at in.&, output rnd + v at out. // in.dé for

Lemma 1. 7 = (7, m%constructs the specification (CRS, r,z)*? from the spec-
ification [(DCy.r.2)*7, (DCy.r.2)*?).

Proof. We prove each case separately.

1) Z = @: In this case, it is easy to see that ﬂlwg[ﬁrﬂ,g, fTCnR@] =CRS, g,
holds, since the sum of two uniformly random messages is uniformly random.
2) Z = {2}: Consider now the case where party 2 is dishonest (the case where

party 1 is dishonest is similar). Let S := [RT)R,Z, C,.r,z]. It suffices to prove
that m S € (CRS, g z)*# because:

14

m1[(DC,p.2)", (DCp. 5. 2)*7) € (m1[DCy .z, Dy 7)™
— (m8)"* C ((CRS,,.2)"*)** = (CRS,. p.2)",

where the last equality holds because the *-relaxation is idempotent. Hence,
we show that the converter o described below is such that 7S = 02CRST7 R,Z-

—‘ Converter o

Initialization

rcv < 0.
Round 1.6

On input v € M at out.g:, set rev < v.

Round r.a

On input rnd at in, output rnd — rcv at out.d_c>.

Consider the system 7 S. The system outputs at interface 1 of round R.b,
a value rnd 4+ v, where rnd is a random value and v is the value received at
interface 2 of round 1.b (and v = 0 if no value was received). Moreover, the
system outputs at interface 2 of round r.a, the value rnd.

Now consider the system 0?CRS,. g z. The system outputs at interface 1 of
round R.b, a random value rnd’. Moreover, the system outputs at interface 2 of
round r.a, the value rnd’ — v, where v is the same value received at interface 2
of round 1.b (and v = 0 if no value was received).

Since the joint distribution {rnd + v,rnd} and {rnd’,rnd’ — v} are exactly
the same, we conclude that mS = 02CRS,. 7.

O

6 Communication Resources

6.1 Point-to-Point Channels

We model the standard synchronous communication network, where parties have
the guarantee that messages input at round k are received by round k£ + 1, and
dishonest parties’ round-k messages potentially depend on the honest parties’
round-k messages. Let CHy z(s,7) be a bilateral channel resource with n inter-
faces, one designated to each party ¢ € P, and where two of the interfaces, s and
r are designated to the sender and the receiver. The channel is parameterized
by the set of dishonest parties Z C P. The privacy guarantees are formulated
by a leakage function ¢(-) that determines the information leaked to dishonest
parties. For example, in an authenticated channel ¢(m) = m, and in a secure
channel ¢(m) = |m).

15

Resource CHy, (s, 7“)}

Round k,k > 1

On input m at interface s, output m at interface r.
Output £(m) at each interface ¢ € Z.

Let Nz be the complete network of pairwise secure channels. That is, Nz is
the parallel composition of secure channels CH, z (i, j) with £(m) = |m/|, for each
pair of parties 7,5 € P.

6.2 Broadcast Resource Specification

Broadcast is an important building block that many distributed protocols use.
It allows a specific party, called the sender, to consistently distribute a message.
More formally, it provides two guarantees: 1) Every honest party outputs the
same value (consistency), and 2) the output value is the sender’s value in case
the sender is honest (validity).

The broadcast specification BCy ;. z(s) involves a set of parties P, where one
of the parties is the sender s. It is parameterized by the round numbers k& and
[indicating when the sender distributes the message and when the parties are
guaranteed to receive it. The specification BCy ;. z(s), is the set of all resources
satisfying both validity and consistency. That is, there is a value v such that the
output at each interface j for j ¢ Z at round [.b is ygfb = v, and if the sender is

honest, this value is the sender’s input 2% at round k.a. That is:

BCr.,z(s) = {R € ’ 3”{(vj ejyé'b = v) A (5 €Z—v= x?“)}}

We show how to construct such a broadcast specification in Section [A] Let
BC A, z(s) be the parallel composition of BCy k+a,z(s), for each k > 1, and let
BC A,z be the parallel composition of BC z(s), for each party s € P.

7 The Interactive Computer Resource

In this section, we introduce a simple ideal interactive computer resource with
n interfaces. Interfaces 1,...,n — 1 are used to give input values and receive
output values. Interface n allows to input instruction commands. The resource
has a memory which is split into two parts: an array storing values S and a queue
C storing instruction commands to be processed. We describe the functionality
of the resource in two parts: Storing the instructions that are input at n, and
processing the instructions.

Store Instructions. On input an instruction at interface n at round r, the
instruction is stored in the queue C. Then, after a fixed number of rounds, the
input instruction is output at each honest interface i, and at dishonest interfaces
at round r.a.

16

Instruction Processing. The interactive computer processes instructions se-
quentially. There are three types of instructions that the resource can process.
Each instruction type has a fixed number of rounds.

1. An input instruction (INPUT, 4, p) instructs the resource to read a value from
a value space V at interface ¢ and store it at position p of the array S. If
party 7 is honest, it inputs the value at the first round of processing the input
instruction, otherwise it inputs the value at the last round. This models the
fact that a dishonest party i can defer the choice of the input value to the
end of processing the instruction.

2. An output instruction (OUTPUT, %, p) instructs the computer to output the
value stored at position p to interface i. If party ¢ is dishonest, it receives
the value at the first round of processing the output instruction. Otherwise,
the value is output at the last round of processing the instruction.

3. A computation instruction (OP,p1,p2,ps)), OP € {ADD, MULT} instructs the
computer to add or to multiply the values at positions p; and ps and store
it at pP3-

One could consider different refinements of the interactive computer. For
example, a computer that can receive lists of instructions, process instructions in
parallel, or a computer that allows instructions to be the result of a computation
using values from S. For simplicity, we stick to a simple version of the computer
and leave possible refinements to future work.

,—[Resource Com puterz} N

Parameters: 7;,76,7q,"'m,"'s. // #rounds to process an input, output, addition or

multiplication instruction, and to store an instruction

Initialization

L + empty array. // Store values

C + empty queue. // Store instructions

Next2Read < 1. // Counter indicating when to read the next instruction
Current < L. // Contains the current instruction being processed

Round £k, k> 1

// Read next instruction
if Next2Read = k then
Current < C.pop()
if Current # 1 then
Next2Read < k + r;, where r;, for j € {i,0,a,m}, is the round delay of
the instruction in Current.
else
Next2Read +— k + 1
end if
end if

// Process instruction

17

if Current = (INPUT, i, p) then

if i ¢ Z then

Read x € V at interface 7 at round Next2Read — r;.
else

Read x € V at interface ¢ at round Next2Read — 1.
end if
Lip] =

else if Current = (OP,p1,p2,p3), OP € {ADD,MULT} then
L[pg} < L[pl} oP L[pg]
else if Current = (OUTPUT,,p) then

if i ¢ Z then
Output L[p] at interface ¢ at round Next2Read — 1.
else
Output L[p] at interface ¢ at round Next2Read — 7.
end if
end if

Current <+ L

// Store instruction in queue

Read instruction I at interface n.

If I is a valid instruction, output I at each interface i € Z. Then, at round

k + A introduce the instruction in the queue C.push(7), and output I at each
interface ¢ ¢ Z. // If party n is honest, output to honest parties at (k + A).b
and dishonest parties at k.a. Otherwise, output to all parties at (k+ A).b

8 Protocol Simple MPC

We adapt Maurer’s Simple MPC protocol [27], originally described for SFE in
the stand-alone setting, to realize the resource Computer from Section[7] thereby
proving a much stronger (and composable) statement. The protocol is run among
aset P ={1,...,n} of n parties. Parties 1,...,n — 1 process the instructions,
give input values and obtain output values. Party n has access to the instructions
that the other parties needs to execute.

General Adversaries. In many protocols, the sets of possible dishonest parties
are specified by a threshold ¢, that indicates that any set of dishonest parties is
of size at most t. However, in this protocol, one specifies a so-called adversary
structure Z, which is a monotoneﬁ set of subsets of parties, where each subset
indicates a possible set of dishonest parties. We are interested in the condition
that no three sets in Z cover [n — 1], also known as Q3([n — 1], Z) [16].

8.1 Protocol Description

Let Z be an adversary structure that satisfies Q3([n — 1], Z). Protocol sMPC =
(m1,...,m) constructs the resource Computer,, introduced in Section for any
Z € Z. For sets Z ¢ Z, the protocol constructs the trivial specification @.

8If Zc Zand Z' C Z, then Z' € Z.

18

Assumed Specifications. The protocol assumes the following specifications: a
network specification Nz among the parties in P (see Section and a parallel
broadcast specification BC A z which is the parallel composition of broadcast
channels where any party in P can be a sender and the set of recipients is P (see

Section .

Converters. The converter m, is the identity converter. It allows to give direct
access to the flow of instructions that the parties need to process. Because the
instructions are delivered to the parties in P via the broadcast specification
BC A,z (n), parties have agreement on the next instruction to execute.

We now describe the converters mq,...,m,_1. Each converter m; keeps an
(initially empty) array L with the current stored values, and a queue C of in-
structions to be executed. Each time an instruction is received from BCa z(n),
it is added to C' and also output. Each instruction in C' is processed sequentially.

In order to describe how to process each instruction, we consider the ad-
versary structure 2’ = {Z \ {n} : Z € Z}. Let the maximal sets in Z’ be
max(Z) ={Z1,...,Zm}.

Input Instruction (input,i,p), for i € [n — 1]. Converter m; does as follows:
On input a value s from the outside interface, compute shares si, ..., s, using
a m-out-of-m secret-sharing scheme (m is the number of maximal sets in Z’).
That is, compute random summands such that s = Z;”Zl sj. Then, output s; to
the inside interface in.net.ch; x, for each party k € Z;.

Then each converter for party in Z, echoes the received shares to all parties
in Z, i.e. outputs the received shares to in.net.ch; j, for each party k € Z If
a converter obtained different values, it broadcasts a complaint message, i.e. it
outputs a complaint message at in.bc. In such a case, 7; broadcasts the share s;.
At the end of the process, the converters store the received shares in their array,
along with the information that the value was assigned to position p. Intuitively,
a consistent sharing ensures that no matter which set Z; of parties is dishonest,
they miss the share si, and hence s remains secret.

Output Instruction (output, i, p), for i € [n—1]. Each converter 1, € [n—1],
outputs all the stored shares assigned to position p at interface in.net.chy ;.
Converter m; does: Let vé be the value received from party [as share j at
in.net.ch;;. Then, converter m; reconstructs each share s; as the value v such
that {I | v} # v} € Z, and outputs > 85

Addition Instruction (add,pi,ps,p3). Each converter for a party in Z; adds
the j-th shares of the values assigned to positions p; and ps, and stores the result
as the j-th share of the value at position ps.

Multiplication Instruction (mult, p;, p2,p3). The goal is to compute a share
of the product ab, assuming that the converters have stored shares of a and of b
respectively. Given that ab = quﬂ apby, it suffices to compute shares of each
term a,b,, and add the shares locally. In order to compute a sharing of a,b,,
the converter for each party ¢ € Z N Z executes the same steps as the input
instruction, with the value a,b,. Then, converters for parties in Z N Z check

19

that they all shared the same value by reconstructing the difference of every pair
of shared values. In the case that all differences are zero, they store the shares
of a fixed party (e.g. the shares from the party in Z N Z with the smallest
index). Otherwise, each term a, and b, is reconstructed, and the default sharing
(apby,0,...,0) is adopted.

Theorem 1. Let P = {1,...,n}, and let Z be an adversary structure that sat-
isfies Q3([n — 1], Z). Protocol sSMPC constructs (Computer,)*Z with parameters
(TisTosTasTm,Ts) = (24 +2,1,0,2A + 4, A) from [Nz,BCa 7], for any Z € Z,
and constructs @ otherwise.

Proof. Case Z = @: In this case all parties are honest. We need to argue that:
Rg = sMPC[Ng, BC A | = Computerg,.

At the start of the protocol, the computer resource Computery, and each
protocol converter has an empty queue C' of instructions and empty array L
of values. Consider the system Rg. Each time party n inputs an instruction
I to BCa z(n), because of validity, it is guaranteed that after A rounds each
protocol converter receives I, stores I in the queue C' and outputs I at interface
out. FEach converter processes the instructions in its queue sequentially, and
each instruction takes the same constant amount of rounds to be processed for
all parties. Hence, all honest parties keep a queue with the same instructions
throughout the execution of the protocol.

Now consider the system Computery. It stores each instruction input at in-
terface n in its queue C', and outputs the instruction I at each party interface
i € P after A rounds. The instructions are processed sequentially, and it takes
the same amount of rounds to process each instruction as in Rg.

We then conclude that each queue for each protocol converter in R contains
exactly the same instructions as the queue in Computer,.

We now argue that the behavior of both systems is identical not only when
storing the instructions, but also when processing them.

Let us look at the content of the arrays L that Computery and each protocol
converter in Ry has. Whenever a value s is stored in the array L of Computery,
at position p, there are values s;, such that s = Z;’;l s; and s; is stored in each
converter m; such that j ¢ Z;. For each value s;, the converters that store s,
also stores additional information containing the position p and the index .

Consider an input instruction, (INPUT, ¢, p) at round k, and a value z is input
at the next round at interface 7. In the system Rg, the converter m; computes
values s;, such that s = Z;’;l s; and sends each s; to each converter m; such
that j ¢ Z;. All broadcasted messages are 0, i.e. there are no complaints, and
as a consequence s; is stored in each converter m;, where j ¢ Z;. In the system
Computer, the value « is stored at the p-th register of the array L.

Consider an output instruction, (OUTPUT, ¢, p). In the system Ry, each con-
verter 7; sends the corresponding previously stored values s; associated with
position p, and m; outputs s = 27;1 s;. In the system Computery, the value z
stored at the p-th register of the array L is output at interface .

20

Consider an addition instruction, (ADD, p1, p2,ps3). In the system Ry each
converter adds, for each share index [, the corresponding values associated with
position p; and po, and stores the result as a value associated with position ps
and index [. In the system Computer,, the sum of the values a and b stored at
the p;-th and ps-th positions is stored at position ps.

Consider a multiplication instruction, (MULT, p1, p2, p3). In the ideal system
Computerg, the product of the values a and b stored at positions p;-th and
po-th is stored at position ps. In the system Rg, let a, (resp. by) be the value
associated with position p; (resp. p2) and with index p (resp. ¢), that each
converter for party in Z, (resp. Z,) has. For each 1 < p,q < m, consider each
protocol converter for party j € Z,NZ,. (Note that since the adversary structure
satisfies Q3(P, Z), then, for any two sets Z,, Z, € Z, Z,NZ, # @.) The converter
does the following steps:

1. Input instruction steps with the value a,b, as input. As a result, each con-
verter in Z, stores a value, which we denote v, from j € Z, N Z,.

2. Execute the output instruction, with the value v} — v and towards all
parties in [n — 1]. As a result, every party obtains 0, and the value vj is
stored.

3. The value associated with position ps and index p, stored by each converter
for party in Z,, is the sum wy, = >>, v% .

As a result, each party in Z, stores w,, and >, wp = ab.

Case Z # @: In this case, the statement is only non-trivial if Z € Z, because
otherwise the ideal system specification is Sz = @, i.e. there are no guarantees.

We need to show that when executing sMPC with the assumed specification,
we obtain a system in the specification (Computer,)*Z. That is, for each network
resource N € Nz and parallel broadcast resource PBC = [BCy,...,BC,] € BCa
we need to find a system o such that:

R = sMPCp\ z[N,PBC] = S := oZ Computer .

—i Converter o

Round £, k> 1

// Dishonest party n
1: Emulate the behavior of the assumed broadcast resource BC,,, where honest
parties’ inputs are L, and dishonest parties’ inputs are given at out.
2: On input an instruction at in, store it.
// Instruction emulation
: Read the next instruction I to execute.
: if I = (INPUT, 4, p) then
if i ¢ Z then
Compute and output a random value s, at each interface out.i, i € ZNZ,.
Store sq, ¢ and p.

21

7 On input a complaint message on ¢ at out.i, output the stored value s,
at interface out.bc.

8: else
9: If there is exactly one value received sq for each Z N Z,, then store the
values s, with ¢ and p.

10: Otherwise, emulate the behavior of BC; for a complaint message, for
each ¢ such that there are zero or more than a different value, and for each
jEZNZ,.

11: On input sq at out, store it.

12: Input at in the sum of values s4 stored.

13: end if

14: else if I = (OUTPUT,4,p) then

15: Read x € V at interface in.

16: Output at out, random values s; such that
Zq:ZﬂZzz sq + Eq:ZﬂZ#Z 8q = . // The dishonest values s, associated
with position p are stored

17: else if I = (ADD, p1,p2,p3) then

18: For each g, add the values sq, s, associated with p1 and ps respectively,
and store the result as well as the position ps.

19: else if I = (MULT, p1,p2,ps) then

20: Consider, for each 1 < p,q < m, two possible cases:

21: if ZNZ,NZ, # @ then

22: The values a, and by, where a, (resp. by) is the value associated with
position p1 (resp. p2).

23: For each i € Z N Z, N Z,, follow the same steps as with the input

instruction (Steps 9-11). // Check that the dishonest parties in Z, N Z, input
a consistent sharing

24: Check that the values from party i add up to apbg. If so, store the values
from the party with the smallest index. Otherwise, define the sharing of a,b,
as (apbg, . ..,0), and output the corresponding shares to the dishonest parties.

25: else

26: If all parties in Z, N Z, are honest, generate random values as shares of
apby, store them and answer complaints, according to Steps 6-7.

27: Output Os as the reconstructed differences.

28: end if

29: end if

We first argue that the instructions written at the queue C' in resource
oZComputer, follow the same distribution as the instructions that the honest
parties store in their queue in the system R z. If party n is honest, this is true, as
argued in the previous case for Z = &. In the case that party n is dishonest, the
converter ¢ inputs (equally distributed) instructions as BC,, outputs to honest
parties in Rz by emulating the behavior of BC,,, taking into account the inputs
from dishonest parties provided at the outside interface, and the honest parties’
inputs are L.

Now we need to show that the messages that dishonest parties receive in
both systems are equally distributed. We argue about each single instruction
separately. Let I be the next instruction to be executed.

22

Input instruction: I = (INPUT,4,p). We consider two cases, depending on
whether party ¢ is honest.

Dishonest party i. In the system R, if a complaint message is generated from
an honest party, the exact same complaint message will be output by ¢ in the
system S. This is because o stores the shares received at the outside interface
by the dishonest parties, and checks that the shares are consistent. Moreover, at
the end of the input instruction it is guaranteed that all shares are consistent
(i.e., all honest parties in each Z, have the same share), and hence the sum of
the shares is well-defined. This exact sum is input at Computer, by o.

Honest party i. In this case, the converter ¢ generates and outputs random
consistent values as the shares for dishonest parties. On input a complaint from
a dishonest party, output at the broadcast interface its share to all dishonest
parties. In the system R, dishonest parties also receive shares that are randomly
distributed. Observe that in this case, the correct value is stored in the queue of
Computer,, but ¢ only has the shares of dishonest parties.

Output instruction: 7 = (OUTPUT,4,p). In this case, the emulation is only
non-trivial if party ¢ is dishonest. The converter outputs random shares such
that the sum of the random shares and the corresponding shares from dishon-
est parties that are stored, corresponds to the output value x obtained from
Computer,. Observe that in the system R, the shares sum up to the value z as
well, because of the @3 condition. Given that the correct value was stored in the
queue in every input instruction, the same shares that are output by o follow
the same distribution as the shares received by dishonest parties in R (namely,
random shares subject to the fact that the sum of the random shares and the
dishonest shares is equal to x).

Addition instruction: I = (ADD, p1, pa, p3). The converter o simply adds the
corresponding shares and stores them in the correct location.

Multiplication instruction: I = (MULT, p1, p2, p3). Consider each 1 < p,q <
m. Consider the following steps in the execution of the multiplication instruction
in R:

1. Honest parties execute the input instruction steps with the value a,b, as
input. Dishonest parties can use any value as input. However, it is guaranteed
that the sharing is consistent. That is, each converter for an honest party in
Z, stores a value, which we denote vy, from j € Z N ZI.

2. Execute the output instruction, with the value v —v}: and towards all parties
in P. If any dishonest party used a value different than a,b, in the previous
step, one difference will be non-zero, and the default sharing (a,b,,0,...,0)
is adopted. Otherwise, the sharing from Pj,, i.e. the values v} , is adopted.

Case Z N Z, N Z; # : If there is a dishonest party in Z, N Z,, then the
converter o has the values a;, and b, stored.
Step 1: For each dishonest party i € Z, N Z,, the converter o checks whether

the shares are correctly shared (it checks that the dishonest parties in Z, N

Z, input a consistent sharing), in the same way as when emulating the input
instruction.

23

Step 2: After that, o checks that the shares from party 7 add up to ayb,. If
not, the converter o defines the sharing of a,b, as (apby,0,...,0), and outputs
the corresponding shares to the dishonest parties.

Observe that given that the adversary structure satisfies the Q% condition,
there is always an honest party in ZQZ. Then, in the system R, it is guaranteed
that the value a,b, is shared. Moreover, as in S, the default sharing is adopted
if and only if a dishonest party shared a value different from ab,.

Case Z N Z,N Z, = @: If all parties in Z, N Z, are honest, dishonest parties
receive random shares in R. Moreover, all reconstructed differences are 0, since
honest parties in Z, N Z, share the same value. In S, o generates random values
as shares of a,b, as well, and then open Os as the reconstructed differences.

O

9 Concluding Remarks

The fact that the construction notion in Definition [1| states a guarantee for ev-
ery possible set of dishonest parties, might suggest that our model cannot be
extended to the setting of adaptive corruptions. However, the term adaptive
corruption most often refers to the fact that a resource can be adaptively com-
promised, e.g. a party’s computer has a weakness (e.g. a virus) which allows
the adversary to take it over, depending on environmental events. This can be
modeled by stating explicitly the party’s resources with an interface to the ad-
versary and with a so-called free interface on which the corruptibility can be
(adaptively) initiated. If one takes this viewpoint, it is actually natural to con-
sider a more fine-grained model of the resources (e.g. the computer, the memory,
and the randomness resource as separate resources) with separate meanings of
what “corruption” means. Note that the guarantees for honest parties whose
resources have been (partially) taken over are (and must be) still captured by
the constructed resource specification.

References

[1] Gilad Asharov and Yehuda Lindell. A full proof of the BGW protocol for perfectly
secure multiparty computation. Journal of Cryptology, 30(1):58-151, January
2017.

[2] Michael Backes, Dennis Hofheinz, Jorn Miiller-Quade, and Dominique Unruh. On
fairness in simulatability-based cryptographic systems. In Proceedings of the 2005
ACM workshop on Formal methods in security engineering, pages 13-22. ACM,
2005.

[3] Michael Backes, Birgit Pfitzmann, and Michael Waidner. The reactive simulata-
bility (rsim) framework for asynchronous systems. Information and Computation,
205(12):1685-1720, 2007.

[4] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract).
In 20th ACM STOC, pages 1-10. ACM Press, May 1988.

24

[5]
(6]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Piotr Berman, Juan A Garay, and Kenneth J Perry. Towards optimal distributed
consensus. In —, pages 410-415. IEEE, 1989.

Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136—145. IEEE Computer Society Press, October
2001.

Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally
composable security for standard multiparty computation. In Rosario Gennaro
and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of
LNCS, pages 3—22. Springer, Heidelberg, August 2015.

Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In 34th ACM STOC,
pages 494-503. ACM Press, May 2002.

David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally
secure protocols (extended abstract). In 20th ACM STOC, pages 11-19. ACM
Press, May 1988.

Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic
termination and composability of cryptographic protocols. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 240—-269. Springer, Heidelberg, August 2016.

Anupam Datta, Ralf Kiisters, John C. Mitchell, and Ajith Ramanathan. On the
relationships between notions of simulation-based security. In Joe Kilian, editor,
TCC 2005, volume 3378 of LNCS, pages 476-494. Springer, Heidelberg, February
2005.

Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In 30th
ACM STOC, pages 409-418. ACM Press, May 1998.

Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-
track multiparty computations with applications to threshold cryptography. In
Brian A. Coan and Yehuda Afek, editors, 17th ACM PODC, pages 101-111. ACM,
June / July 1998.

Oded Goldreich. Concurrent zero-knowledge with timing, revisited. In 34th ACM
STOC, pages 332-340. ACM Press, May 2002.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th ACM STOC, pages 218-229. ACM Press, May 1987.

Martin Hirt and Ueli M. Maurer. Player simulation and general adversary struc-
tures in perfect multiparty computation. Journal of Cryptology, 13(1):31-60, Jan-
uary 2000.

Martin Hirt and Vassilis Zikas. Adaptively secure broadcast. In Henri Gilbert,
editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 466—-485. Springer, Hei-
delberg, May / June 2010.

Dennis Hofheinz and Jérn Miiller-Quade. A synchronous model for multi-party
computation and the incompleteness of oblivious transfer. In Proceedings of FCS,
pages 117-130. Citeseer, 2004.

Dennis Hofheinz, Dominique Unruh, and J6rn Miiller-Quade. Polynomial runtime
and composability. Journal of Cryptology, 26(3):375-441, July 2013.

Daniel Jost and Ueli Maurer. Overcoming impossibility results in composable se-
curity using interval-wise guarantees. In Daniele Micciancio and Thomas Risten-
part, editors, Advances in Cryptology — CRYPTO 2020, volume 12170 of LNCS,
pages 33—62. Springer, 8 2020.

25

[21]

22]

23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

31]

32]

[33]
[34]

[35]

[36]

Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent general
composition of secure protocols in the timing model. In Harold N. Gabow and
Ronald Fagin, editors, 37th ACM STOC, pages 644—653. ACM Press, May 2005.

Jonathan Katz, Ueli Maurer, Bjérn Tackmann, and Vassilis Zikas. Universally
composable synchronous computation. In Amit Sahai, editor, TCC 2013, volume
7785 of LNCS, pages 477-498. Springer, Heidelberg, March 2013.

Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure
protocols and security under composition. In Jon M. Kleinberg, editor, 88th ACM
STOC, pages 109-118. ACM Press, May 2006.

Ralf Kiisters and Max Tuengerthal. The iitm model: a simple and expressive
model for universal composability. TACR Cryptology EPrint Archive, 2013:25,
2013.

David Lanzenberger and Ueli Maurer. Coupling of random systems. In Theory of
Cryptography — TCC 2020, to appear, 11 2020.

Ueli Maurer. Indistinguishability of random systems. In International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 110-132.
Springer, 2002.

Ueli Maurer. Secure multi-party computation made simple. Discrete Applied
Mathematics, 154(2):370-381, 2006.

Ueli Maurer. Constructive cryptography - a new paradigm for security definitions
and proofs. In In TOSCA, pages 33,56, 2011.

Ueli Maurer and Renato Renner. Abstract cryptography. In In Innovations in
Computer Science. Citeseer, 2011.

Ueli Maurer and Renato Renner. From indifferentiability to constructive cryp-
tography (and back). In Martin Hirt and Adam D. Smith, editors, TCC 2016-B,
Part I, volume 9985 of LNCS, pages 3-24. Springer, Heidelberg, October / Novem-
ber 2016.

Ueli M. Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguishability
amplification. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS,
pages 130-149. Springer, Heidelberg, August 2007.

Daniele Micciancio and Stefano Tessaro. An equational approach to secure multi-
party computation. In Robert D. Kleinberg, editor, ITCS 2013, pages 355—372.
ACM, January 2013.

Jesper Buus Nielsen. On protocol security in the cryptographic model. BRICS,
2003.

Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation
of secure reactive systems. IBM Thomas J. Watson Research Division, 2000.

Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In 21st ACM STOC, pages 73-85. ACM
Press, May 1989.

Douglas Wikstrom. Simplified universal composability framework. In Eyal
Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS,
pages 566-595. Springer, Heidelberg, January 2016.

26

Appendix
A Broadcast Construction

We show how to construct the broadcast resource specification introduced in Sec-
tion using the so-called king-phase paradigm [5]. The construction consists
of several steps, each providing stronger consistency guarantees.

A.1 Weak-Consensus
Let Z be a set of parties. The primitive weak-consensus provides two guarantees:

— Validity: If all parties in Z input the same value, they agree on this value.
— Weak Consistency: If some party i € Z decides on an output y; € {0,1},
then every other party j € Z decides on a value y; € {y;, L}.

A specification WCy, ; 7+ capturing the guarantees of a weak-consensus primitive
(up to t dishonest parties, and where parties input at round k and output at
round [) can be naturally defined as the set of all resources satisfying validity
and weak consistency. More concretely, for |Z] < ¢, WCj 1 z+, is the set of all
resources which output a value at round [.b that satisfy the validity and weak
consistency properties, according to the inputs from round k.a. That is:

WC1.z4 = {R ced ‘ 31)(Vj e”Z yéfb € {U,L}) A

(Hv’ VieZait=v sVjeZylt= x;‘“)}

And when |Z| > ¢, WCi 1.z, = D.

Protocol ITE = (w¥¢,... m¢) constructs specification WCy. . z+ from Nz. The
protocol is quite simple: At round k each party sends its input message to every
other party via each channel. Then, if there is a bit b that is received at least
n — t times, the output is b. Otherwise, the output is L. At a very high level,
the protocol meets the specification because, if a party ¢ outputs a bit b, it
received b from at least n —t parties, and hence it received b from at least n — 2t
honest parties. This implies that every other party received the bit 1 — b at most

2t <n —t times (since ¢ < 7). Hence, no honest party outputs 1 — b.

—i Converter 7;°

Local Variable: y.
Round &

On input z; at out, output x; to each in.net.ch; ;, where j € P.
On input values y; at each in.net.ch; ;:
if [{j €P |y, =0} >n—tthen

y<0

27

else if |{j€"P | yj:1}| >n —t then
y<+1

else
y<+ L

end if

Output y at out.

Theorem 2. Let t < 3. Ik constructs WCh .zt from Nz, for any Z C P
such that |Z| < t, and constructs ¢ otherwise.

Proof. Let Z C P such that |Z| < t. We want to prove that the system specifi-
cation Rz = (H"]fc)i./\/'z CWCh i, z,t-

For that, all we need to prove is that at round k.b, the outputs from the honest
parties satisfy both the weak-consistency and the validity property, where the
inputs to be taken into account are those at round k.a. We divide two cases:

— If every party i € Z had as input value b at round k (there was pre-
agreement): In the system specification WCy, . z+, the parties output the
bit b by definition. In the system specification Rz, each party i € Z receives
the bit b at least n — ¢ times. Hence, each party i € Z also outputs b.

— Otherwise, in Rz, either every party i € Z outputs L (in which case the
parties meet the specification WCy i, z,.), or some party ¢ outputs a bit b.
In this case, we observe that it received b from at least n — t parties, and
hence it received b from at least n— 2t honest parties. This implies that every
other party received the bit 1 — b at most 2t < n — t times (since ¢ <).
In conclusion, no honest party outputs 1 — b, and the parties output a value
v; € {J_, b}

O

A.2 Graded-Consensus

We define graded-consensus with respect to a set of parties Z. In this protocol,
each party inputs a bit x; € {0,1} and outputs a pair value-grade (y;,g;) €
{0,1}2. The primitive provides two guarantees:

— Validity: If all parties in Z input the same value, they agree on this value
with grade 1.

— Graded Consistency: If some party i € Z decides on a value y; € {0,1} with
grade g; = 1, then every other party j € Z decides on the same value Yi = Y-

Specification GCy 1,7+ captures the guarantees of a graded-consensus primitive

secure up to t dishonest parties, and where parties give input at round k and
output at round . If |Z| < t:

28

GCrizt = {R € ’
Yo (EIjEZyé-‘b: (v,1) > Vie Z Y = (v,g9) A g€ {0,1}) A
(Hv VjeZ x?‘“ =v—=Vjez yé'b = (m?'a, 1))}

And when |Z| > t, ng’l,Z,t = .
We show a protocol ch = (7§, ..., m%°) that constructs specification GCp 11,7,
from the assumed specification [WCy, k. 7.+, Nz]: At round k, each party ¢ invokes
the weak consensus protocol on its input z;. Then, at round k£ + 1, each party
sends the output from the weak consensus protocol to every other party via the
network. After that, each party ¢ sets the output value y; to be the most received
bit, and the grade g; = 1 if and only if the value was received at least n—t times.

If any party ¢ decides on an output y; with g; = 1, it means that the party
received y; from at least n — ¢ parties, where at least n — 2¢ are honest parties.
Hence, every other honest party received the value y; at least n— 2t times. Given
that n — 2t > t, at least one honest party obtained y; as output of WC 1.z +.
Therefore, by weak consistency, no honest party obtained 1 — y; as output from
WCi, i, z,+, from which it follows that each honest party j received it at most
t < n — 2t times and therefore outputs y; = y;.

—i Converter 75°

Local Variables: y, g.
Round &

On input z; at out, output x; at in.we. // Output the value to WCk i 2z
On input z; at in.wc, store the value.

Round £+ 1

Output z; at each interface in.net.ch; j, for j € P.
On input a message z; from each in.net.chj;: // Value from each party j
if [{j€P |z =0} >|{j€P|z =1} then
y<+<0
else
y<+1
end if
if [{j €P |z =y} >n—tthen
g1
else
g+ 0
end if
Output (y,g) at out.

Theorem 3. Let t < Z. ch constructs GCr 1,24 from WCi gz, Nz|, for
any Z C P such that |Z| <t, and constructs @ otherwise.

w0l

29

Proof. Let Z C P such that |Z| < t. We want to prove that the system specifi-
cation Rz := (ch)i[wck7k,z7t,./\/z] C GChky1,2,t-

For that, all we need to prove is that at round (k + 1).b, the outputs from
the honest parties satisfy both the graded-consistency and the validity property,
where the inputs to be taken into account are those at round k.a.

At round k.a, each party ¢ € Z inputs the message z; to WCi i, z,+- Then, it
is guaranteed that at round k.b, honest parties obtain an output that satisfies
validity and weak-consistency. At round (k + 1).b, we divide two cases:

— If every party i € Z had as input value b at round k (there was pre-
agreement): In GCy 41,7, the parties output the bit (b,1) by definition.
In Rz, each party i € Z outputs the bit b as z; because of the validity of
WC, .,z Then, party ¢ receives at least n —t times the bit b. Hence, each
party i € Z also outputs b.

— If an honest party 7 decides on an output y; with g; = 1, then it means that
the party received y; from at least n — ¢ parties, where at least n — 2t are
honest parties. This implies that every other honest party received the value
y; at least n — 2t times. Given that n — 2¢ > ¢, at least one honest party
obtained y; as output of WCy, z+ at round (k + 1).b. Therefore, by weak
consistency, no honest party obtained 1 —y; as output from WCy, 7z, from
which it follows that each honest party j received at most t < n — 2t times
and therefore outputs y; = y;.

(]

A.3 King-Consensus

We first define a specification that achieves king-consensus with respect to a set
of parties Z. In the king-consensus primitive, there is a party K, the king, which
plays a special role. The primitive provides two guarantees:

— Validity: If all parties in Z input ‘the same value, they agree on this value.
— King Consistency: If party K € Z, then there is a value y such that every
party j € Z decides on the value y; = y.

We describe a specification KCy; z+ k that models a king-consensus primitive
where K has the role of king, and is secure up to ¢ dishonest parties, which starts
at round k and ends at round [. If |Z] < ¢

KCr1,z,t,5 = {R € ’ (K €Z »wVieZyt= y) A
And when |Z] > t, KCy 1,21,k = .

Protocol ITF, = (7%° ..., 7%) constructs specification KCl k+2,z+,k from the

assumed specification [GC k41,74, Nz]: At round k, each party i invokes the

30

graded consensus protocol on its input z;. Then, at round k + 2, the king K
sends the output zx from the graded consensus protocol to every other party.
Finally, each party i sets the value y; = z; to the output of graded consensus if
the grade was ¢g; = 1, and otherwise to the value of the king y; = zx. Note that
consistency is guaranteed to hold only in the case the king is honest: if every
honest party ¢ has grade g; = 0, they all adopt the king’s value. Otherwise, there
is a party j with grade g; = 1, and graded consistency ensures that all honest
parties (in particular the king) have the same output.

—i Converter 7%°

Local Variable: y.
Round &

On input z; at out, output x; at in.gc. // Output to GCp 11 2.4
Round k£ +1

On input (z;,¢:) from in.gc, store the pair.
Round £ +2

If i = K, output zx to each in.net.chg j;, for j € P. // Party i is the king
On input zx from in.net.chg ;:
if g; =0 then
Y <— 2K
else
Y < 2
end if
Output y at out.

Theorem 4. Let t < 3. Hffc constructs KCi k42,7t x from [GCr k1,24, Nz],
for any Z C P such that |Z| < t, and constructs ¢ otherwise.

Proof. Let Z C P such that |Z| < t. We want to prove that the system specifi-
cation Rz = (IIE)%[GCk k41,2,6, Nz) C KCh k42,2.4 K -

At round k.a, each party i € Z inputs the message z; to GCp r+1,z.+. Then,
it is guaranteed that at round (k + 1).b, honest parties obtain an output that
satisfies validity and graded-consistency. We divide two cases:

— If every party i € Z had as input value b at round k (there was pre-
agreement): In KCp r42 7+ i, the parties output the bit b at round k + 2
by definition. In the system specification Rz, each party i € Z receives the
bit (b,1) at round k + 1, because of the validity of GCy x+1,7,. Hence, each
party i € Z also outputs b at round k + 2.

— Otherwise, assume the king is honest. If every honest party ¢ obtains an
output (z;,0), then at round (k + 2).b, every party takes the value of the
king zx. Otherwise, there is a party j that obtained an output (z;,1) at
round (k 4+ 1).b. In this case, graded consistency implies that all honest
parties have the same output. In particular, this holds for the honest king.
Thus, all parties decide on the same output.

31

A.4 Consensus

We define a specification that achieves consensus with respect to a set of parties
Z. The primitive provides two guarantees:

— Validity: If all parties in Z input the same value, they agree on this value.
— Consistency: There is a value y such that every party j € Z decides on the
value y; = y.

We describe a specification Cj, ;. z + that models consensus, secure up to ¢ dishon-
est parties, which starts at round k and ends at round 1. If |Z] < ¢

Crize = {R cd ‘ (31) Vie Z ytt = v) A
(Elv VieZ :E;?'“ =v—VjeZ yé:b = xf“)}

And when |Z| > t, Cry.z+ = .

Protocol ITE _ = (7$°"s ... mS°"®) constructs specification Ch k+3(t+1)—1,2,¢ from
the assumed specification [KCp x12,2,t,1,- - - s KChtst k+3¢t+1)—1,2,t,44+1]- The idea
is simply to execute the king consensus protocol sequentially ¢t + 1 times with
different kings. More concretely, at round k + 3j, j € [0,¢], parties execute
the king consensus protocol, where the king is j + 1. If parties start with the
same input bit, validity of king consensus guarantees that this bit is kept until
the end. Otherwise, since the number of dishonest parties is at most ¢, one of
the executions has an honest king. After the execution with the honest king,
consistency is reached, and validity ensures that consistency is maintained until

the end of the execution.

cons

Converter 7;

Local Variable: y.

On input = at round k, y < .
for j=0tot do

Output y at inkc at round k + 35. // Output to KCrisj krsi42.2.6.5+1
On input 2" at in.kc at round k + 35 + 2, set y < z’.
end for

Output y at out.

Theorem 5. Lett < n. IIX _ constructs Cr k32,2t from [KChpt2,z41,---,
KChistkt+3t+2.z.t.t+1], for any Z C P such that |Z| < t, and constructs ¢ oth-
erwise.

Proof. Let Z C P such that |Z| < t. We divide two cases:

32

— If every party i € Z had as input value b at round k (there was pre-
agreement): After each input to KCrisjktsjt2,2.t,+1, the parties obtain
the bit b because of validity. This is the same in Cy g43:+2,7,+ by definition.

— Otherwise, given that there are up to ¢ dishonest parties and there are ¢t + 1
different kings, there is an honest king K. The output of any system in
the specification KCp43(x—1),k+3K—1,7,,k 18 the same value v for all honest
parties because of the king consistency. All the following invocations to king
consensus keep the value v as the output because of the validity property.
Thus, all parties decide on the same output.

O

A.5 Broadcast

In Section [6.2] we introduced a broadcast resource specification. We show how
to achieve such a specification from Cy; z ¢, as long as |Z| < ¢, for any ¢ < g
We recall the broadcast specification resource secure up to t dishonest parties,
which starts at round k& and ends at round [. If |Z] < ¢:

BChiz1 = {R ed|B[(ieZyt=v)A(seZsv= mk)]}

And when |Z] > t, BCri.z:=9P.
Protocol ITF, = (7%¢,... %) constructs specification BCy xy3t43 7z from the
assumed specification [Crt1 k+3i+3, Z,t,/\/' 7]. The sender simply sends its input
value x to every party, and then parties execute the consensus protocol on the
received value from the sender.

Theorem 6. Lett < 5. 1% constructs BCp, gy3t+3, 2.t from [Cri1 k43643, 2,6, N7z),
for any Z C P such that |Z| < t, and constructs & otherwise.

Proof. Let Z C P such that |Z| < t. We divide two cases:

— If the sender is honest, every honest party receives the sender’s input x,
and inputs this value into the consensus resource. Because of the validity of
consensus, every honest party obtains zs from the consensus resource and
outputs it. This is the same in BCj, j4-3¢+3,7,+ by definition.

— Otherwise, the consistency of the consensus resource guarantees that every
honest party receives the same value from the consensus resource, and hence
every honest party outputs the same value.

O

As a corollary of composing all the previous protocols, we obtain that there
is a protocol which constructs broadcast from a network of bilateral channels.

Corollary 1. Lett < 5. There is a protocol that constructs BCy k+3t+3,2,t from
Nz, for any Z C P such that |Z| < t, and constructs ® otherwise.

33

	Synchronous Constructive Cryptography
	Introduction
	Composable Security
	Composable Synchronous Models
	Multi-Party Computation
	Contributions of this Paper
	Notation

	Constructive Cryptography
	Specifications
	Constructions
	Resources and Converters
	Multi-Party Protocols and Constructions
	Specification Relaxations

	Synchronous Systems
	Random Systems
	Resources
	Converters

	Resources with Specific Round-Causality Guarantees
	A First Example
	Communication Resources
	Point-to-Point Channels
	Broadcast Resource Specification

	The Interactive Computer Resource
	Protocol Simple MPC
	Protocol Description

	Concluding Remarks
	Broadcast Construction
	Weak-Consensus
	Graded-Consensus
	King-Consensus
	Consensus
	Broadcast

