
Certificateless Public-key Authenticate
Encryption with Keyword Search

Revised: MCI and MTP

Leixiao Cheng 1

1School of Mathematical Sciences, Fudan University, Shanghai 200433, China

Abstract. Boneh et al proposed the cryptographic primitive public key
encryption with keyword search (PEKS) to search on encrypted da-
ta without exposing the privacy of the keyword. Most standard PEKS
schemes are vulnerable to inside keyword guessing attacks (KGA), i.e., a
malicious server may generate a ciphertext by its own and then to guess
the keyword of the trapdoor by testing. Huang et al. solved this prob-
lem by proposing the public-key authenticated encryption with keyword
search (PAEKS) achieving single trapdoor privacy (TP). Qin et al. de-
fined notion of multi-ciphertext indistinguishability (MCI) security and
multi-trapdoor privacy (MTP) security, and proposed the first PAEKS
scheme with MCI and TP.
Certificateless public-key authenticated encryption with keyword search
(CLPAEKS) is first formally proposed by He et al. as combination of the
PAEKS and the certificateless public key cryptography (CLPKC). Lin
et al. revised He’s work and re-formalize the security requirements for
CLPAEKS in terms of trapdoor privacy and ciphertext indistinguishabil-
ity. However, how to achieve both MCI and MTP security in a CLPAEKS
scheme is still unknown.
In this paper, we initially propose a CLPAEKS scheme with both MCI
security and MTP security simultaneously. We provide formal proof of
our schemes in the random oracle model.

Keywords: Certificateless Public key encryption · Keyword search ·
Keyword guessing attacks · Multi-ciphertext indistinguishability · Multi-
trapdoor privacy

1 Introduction

With the widespread application of cloud storage and computing, searching
for encrypted data in the cloud server has become a hot research topic. In 2004,
Boneh et al. [4] proposed the first public key encryption with keyword search
(PEKS). In a PEKS scheme, data sender generates and submits a ciphertext
embedded with a ciphertext keyword to the cloud. Searching for a ciphertext
with specific keyword, the receiver generates the trapdoor with a target keyword.
Obtaining a trapdoor, the cloud tests whether the target keyword of the trapdoor
is identical to the ciphertext keyword of each ciphertext. If so, the cloud returns

2 Leixiao Cheng 1

the successfully matched ciphertexts to the receiver. During this procedure, the
keywords information of both the ciphertext and the trapdoor cannot be exposed
to any third party i.e., ciphertext indistinguishability (CI) and trapdoor privacy
(TP). Ciphertext indistinguishability (CI) is a basic requirement for a PEKS
scheme, and trapdoor privacy (TP) is also important but cannot be captured by
a lot of PEKS schemes. Since, the keywords are often chosen from a low-entropy
keyword space in the real applications, it’s feasible for the adversary to guess
each keyword containing in a given trapdoor by the keyword guessing attacks
(KGA) [6].

Recently, Huang and Li [13] introduced the notion of Public-key Authenti-
cated Encryption with Keyword Search (PAEKS) to resist inside KGA (attacks
from a malicious cloud tester), in which the sender encrypts a keyword under his
public key and the senders secret key and then authenticates it, such that the
cloud server cannot launch KGA successfully by encrypting a keyword itself. Qin
et al., [19] defined new security model for PAEKS, i.e., the multi-ciphertext indis-
tinguishability (MCI) and multi-trapdoor privacy (MTP), to capture semantic
security against both chosen multi-keyword attacks and multi-keyword guessing
attacks. The MCI captures a practical attack on finding relations between two
encrypted files containing several same keywords. They analysed that the scheme
of [13] is secure against outside chosen single-keyword attacks but is vulnerable
to chosen multi-keyword attacks. Thus they made slight but nontrivial modifi-
cation to [1] to prevent both inside keyword guessing attack and outside chosen
multi-keyword attack. The MTP captures a practical attack on finding relations
between two trapdoors containing some same keywords. However, they didn’t
achieve MTP security. Since the MTP requires the adversary to distinguish two
tuples of trapdoors generated by two sets of keywords, to achieve MTP security,
the trapdoor generation algorithm must be probabilistic. Otherwise, the adver-
sary can easily distinguish the tuples by the difference of frequency of a keyword
in the two keyword sets. This’s the key point that [1,13,15,17,19] cannot achieve
MTP security, since their trapdoor generation algorithms are all deterministic.

In the real application scenarios of cloud storage, a fully trusted third party
is difficult to constructed. Since any entities involved in the cloud storage system
may be dishonest or malicious, schemes based on either public key infrastructure
or identity cryptography deeply relying on a completely honest key generation
center (KGC) will be broken down by a dishonest KGC. In order to get rid of
fully trusted in KGC, by combining the certificateless public key cryptography
(CLPKC) [2] and PAEKS [13], He et al. [12] proposed the certificateless public
key encryption with keyword search (CLPAEKS) to avoid the certificate man-
agement and the key escrow problem, and to achieve trapdoor privacy in PEKS
scenario. However, [12] didn’t capture the security requirements for trapdoor
privacy. Liu et al. [16] pointed out that [12] is vulnerable to KGA by a mali-
cious receiver, which is not considered in their security model, re-formalized the
security model to meet for trapdoor privacy.

CLPAEKS with MCI and MTP 3

1.1 Motivation and contributions

The trapdoor generation algorithm of the above searchable schemes is deter-
ministic, which means that they cannot achieve MTP security. How to construct
a certificateless searchable scheme with both MCI and MTP is still unknown.

In this paper, we initially propose certificateless public-key authenticate en-
cryption with keyword search (CLPAEKS) achieving both multi-ciphertext indis-
tinguishability (MCI) and multi-trapdoor privacy (MTP) simultaneously. Specif-
ically, we provide a concrete CLPAEKS scheme with probabilistic trapdoor gen-
eration algorithm to prevent both inside multi-keyword guessing attack and out-
side chosen multi-keyword attack. The security of our scheme is proved under
static assumptions (i.e., DDH assumption) in the random oracle model.

In Table 1, we compare our schemes with some other PEKS schemes.

Table 1. Comparison with other PEKS schemes

CI MCI TP MTP Probabilistic
TrapGen

Certificateless

[4]
√ √

[13]
√ √

[17]
√ √

[19]
√ √ √

[15]
√ √ √

[12]
√ √

[16]
√ √ √

Ours
√ √ √ √ √ √

CI: ciphertext indistinguishability against outside chosen single-ciphertext attacks.
MCI: multi-ciphertext indistinguishability against outside chosen multi-ciphertext
attacks.
TP: trapdoor privacy against inside single-keyword guessing attacks.
MTP: multi-trapdoor privacy against inside multi-keyword guessing attacks.
Probabilistic TrapGen: the trapdoor generation algorithm in the scheme is proba-
bilistic.
Certificateless: the certificate management and the key escrow problem are avoided.

1.2 Related works

In 2000 [1], Song et al. [24] introduced the first searchable symmetric encryp-
tion (SSE), which allows keyword search over encrypted data in the outsourcing
scenarios. In 2004, Boneh et al. [1] initialized proposed the first public key en-
cryption with keyword search scheme (PEKS). In 2005, Abdalla et al. [1] revised
Boneh’s work and provided a transform from an anonymous identity-based en-
cryption scheme to a secure PEKS scheme. In addition, they also extended the
basic notions of anonymous hierarchical identity-based encryption, public-key
encryption with temporary keyword search, and identity-based encryption with

4 Leixiao Cheng 1

keyword search. Since then, various PEKS schemes have been proposed. Golle et
al. [10] defined the security model for conjunctive keyword search over encrypted
data and presented the first schemes for conducting such searches securely. Park
et al. [18] proposed the public key encryption with conjunctive field keyword
search enabling an email gateway to search keywords conjunctively. Boneh et
al. [5] provided several public key system that support comparison queries, sub-
set queries and arbitrary conjunctive queries on encrypted data. Shi et al. [23]
designed an encryption scheme called multi-dimensional range query over en-
crypted data to deal with the privacy issues related to the sharing of network
audit logs. Moreover, proxy re-encryption with keyword search [22], decryptable
searchable encryption [9], keyword updatable PEKS [20] and attribute-based
encryption with keyword search [8, 25] enjoyed some other interesting features
compared with standard PEKS.

However, in actual practice, keywords are chosen from much smaller space
than the space of passwords, thus all the above schemes are susceptible to the
keyword guessing attacks (KGA). Byun et al. [6] analysed the security vul-
nerabilities on [1, 10] by performing off-line keyword guessing attacks. Rhee et
al. [21] introduced the concept of trapdoor indistinguishability and show that
trapdoor indistinguishability is sufficient for thwarting keyword-guessing attacks
and proposed a provably secure PEKS scheme in the designated tester model (d-
PEKS). Unfortunately, dPEKS suffers from an inherent insecurity called inside
keyword guessing attack (IKGA) launched by the malicious tester (i.e., cloud
server). Chen et al. [7] proposed a new PEKS framework named dual-server
PEKS scheme (DS-PEKS) using two uncolluded semi-trusted servers. Huang
et al. [13] proposed a public-key authenticated encryption with keyword search
scheme (PAEKS), which is secure against IKGA. It was then extended to certifi-
cateless PAEKS [12], identity-based setting with designed tester [15]. Recently,
Noroozi et al. [17] found that Huang’s work is insecure in the multi-receiver
model and Qin et al. [19] extended the security model of PAEKS and proposed
a PAEKS scheme secure against both inside keyword attacks and chosen multi-
keyword attacks.

The concept of certificateless public key cryptography (CLPKC) was initial-
ly introduced by Al-Riyami and Paterson [10], keeping users private key un-
revealed to (KGC) by allowing users to set a secret value themselves. Then,
Certificateless Public Key Encryption (CLPKE) [3] and Certificateless Signa-
ture (CLS) [14] schemes are proposed. He et al. [12] proposed the certificateless
public key encryption with keyword search (CLPAEKS) to avoid the certificate
management and the key escrow problem with trapdoor privacy. The security
models of [12] which only consider the searchable ciphertext indistinguishability
without accessing the ciphertext oracle cannot accurately capture the security
requirements for CLPAEKS. Liu et al. re-formalized the security model to meet
for trapdoor privacy. However, all above schemes cannot achieve MTP security,
since their trapdoor generation algorithms are deterministic.

CLPAEKS with MCI and MTP 5

1.3 Organization

This paper is organized as follows. Section 2 introduces the necessary pre-
liminaries. Section 3 presents the system and security model of CLPAEKS. We
give a concrete construction and formal security analysis of CLPAEKS in sec-
tion 4 and section 5 respectively. In the end, section 6 summarizes the paper and
prospects for the future research.

2 Preliminaries

In this section, we introduce some background knowledge bilinear maps and
Diffie-Hellman assumption.

2.1 Bilinear map

We briefly recall the definitions of the bilinear map. Let G0 and GT be two
multiplicative cyclic groups of prime order q. Let P be a generator of G0 and
e be a efficient computable bilinear map, e : G0 × G0 → GT . The bilinear map
e has a few properties: (1) Bilinearity: for all M,N ∈ G0 and a, b ∈ Zp, we
have e(aM, bN) = e(M,N)ab. (2) Non-degeneracy: for any generator P ∈ G0,
e(P, P) ∈ GT is the generator of GT . (3) Computability: For any M,N ∈ G0,
there is an efficient algorithm to compute e(M,N).

2.2 DDH assumption

The Diffie-Hellman (DDH) assumption is defined as: given group parameter
(G0, q, P) and three random elements x, y ∈R Z∗p. We say that the DDH as-
sumption holds, if there is no probabilistic polynomial time (PPT) adversary B
can distinguish between the tuple (P, xP, yP, xyP) and the tuple (P, xP, yP, ϑ),
where ϑ is randomly selected from G0. More specifically, the advantage ε of B
in solving the DDH problem is defined as∣∣∣Pr[A(P, xP, yP, xyP)=1]−Pr[A(P, xP, yP,ϑ)=1]

∣∣∣. (1)

Definition 1 (DDH). We say that the DDH assumption holds if no PPT al-
gorithm has a non-negligible advantage ε in solving DDH problem.

3 Definition and Security Model of CLPAEKS

3.1 System Model

Our proposed CLPAEKS scheme is composed of four entities: key genera-
tion center (KGC), cloud server (CS), data sender (IDS), data receiver (IDR).
Specifically,

6 Leixiao Cheng 1

• KGC: It is responsible for generating public parameters, master secret key,
and partial private/public keys of both sender and receiver.

• IDS : Data sender generates its own user private/public keys and encrypts the
ciphertext with the public keys of IDS and IDR and its own secret key, then
it submits the encrypted data to the CS.

• IDR: Receiver generates its own user private/public keys and the trapdoor
with the public keys of IDS and IDR and its own secret key, then it submits
the trapdoor to the CS to search for an encrypted data.

• CS: It is responsible for data processing, storage and retrieval.

3.2 Algorithms of CLPAEKS

The CLPAEKS consists of the following algorithms:
• Setup: Given security parameter λ, KGC runs this algorithm to generate the

public parameter PP and master secret key MSK.
• Partial public key: Given a user’s identity IDi, KGC runs this algorithm to

generate the partial public key RIDi
for the user.

• Partial private key: Given a user’s identity IDi, KGC runs this algorithm
to generate the partial private key dIDi for the user.

• User private key: Given a user’s identity IDi, the user UIDi
runs this algo-

rithm to generate its private key xIDi
.

• User public key: Given a user’s identity IDi, the user UIDi runs this algo-
rithm to generate its public key PIDi

.
• CLPAEKS: Given sender’s identity IDS , receiver’s identity IDR, sender’s se-

cret key SKIDS
= (dIDS

, xIDS
), public keys {PKIDS

= (RIDS
, PIDS

), PKIDR
=

(RIDR
, PIDR

)}, and a ciphertext keyword KW , the sender runs this algorithm
to generate the ciphertext Ct.

• TrapGen: On input public parameter PP , public key of receiver PKS , the
key pair of receiver (PKR, SKR) and a target keyword KW ′, this algorithm
is run by receiver to generate a Tr.

• Test: On input public parameter PP , ciphertext CT and trapdoor Tr, this
algorithm checks whether the ciphertext keyword KW is identical to the target
keyword KW ′. If so, it outputs 1; otherwise it outputs 0.
Correctness: For any honestly generated key pairs (PKR,SKR) and (PKS,SKS),

any two keywords KW,KW ′, Ct is generated by algorithm CLPAEKS and
Tr generated by algorithm TrapGen. If KW = KW ′, then the text algorith-
m outputs 1 with probability 1 i.e., Pr[Test(PP,Ct, Tr) = 1] = 1; otherwise
Pr[Test(PP,Ct, Tr) = 0] = 1− negl(λ).

3.3 Security Model

In certificateless cryptography, there are two types of adversaries, i.e., Type1
adversary and Type2 adversary [18]. Type1 adversary cannot access the systems
master key, but it can replace any users public key. Type2 adversary cannot
replace users public key, but it can access the systems master key.

CLPAEKS with MCI and MTP 7

We describe two security model introduced by Qin et al. [19]: multi-ciphertext
indistinguishability (MCI) security to capture outside chosen multi-ciphertext
attacks and multi-trapdoor privacy (MTP) security to capture inside multi-
keyword guessing attacks. The notion of MTP security of CLPAEKS in multi-
challenge setting is defined as follows:

Game 1 (type 1 adversary): In this game, the adversary is allowed to
lunch replace public key query.

• Setup: Given a security parameter λ, the challenge sender identity IDS and
receiver identity IDR, new public key PK ′IDR

the challenger C generates the
public parameter PP , master secret key s and public key PKIDR

of IDS , then
responds the adversary A with PP .

• Phase 1: The adversary A is allowed to issue polynomial queries the following
oracles:

Hash query : A is allowed to issue queries all hash oracles.

Extract partial private key query : Given an identity IDi , the challenger
C generates the partial private key dIDi and returns it toA.A cannot enquire
the partial private key of IDS or IDR.

Extract user private key query : Given an identity IDi , the challenger
C generates the user private key xIDi and returns it to A.

Public key query : Given an identity IDi, the challenger C responds A with
the public key of PKIDi

.

Replace public key query : Given an identity IDi, A is allowed to ask the
challenger C to replace the public key PKIDi

with a new one PK ′IDi
. Note

that it’s prohibited from replacing the public key of the challenge senders
identity IDS before the challenge phase.

Ciphertext query OC : Given a ciphertext query (IDS , IDR,KW), C re-
sponds A with the ciphertext CT of keyword KW .

Trapdoor query OT : Given a trapdoor query (IDS , IDR,KW
′), C responds

A with the trapdoor Tr of keyword KW ′.

• Challenge: A chooses two keyword sets {KW i∗
0 }i∈[1,I] and {KW i∗

1 }i∈[1,I]
with the restriction that no element of {IDS , IDR,KW

i∗
j }j∈{0,1},i∈[1,I] has

been queried on OC or OT . C randomly chooses a bit θ ∈ {0, 1} and responds
A with a set of challenge trapdoors {Tri∗θ }i∈[1,I].

• Phase 2: This phase is the same as Phase 1 with the restriction that no
element of {IDS , IDR,KW

i∗
j }j∈{0,1},i∈[1,I] can be queried on OC or OT .

• Guess: A outputs a guess bit θ′ of θ and it wins the game if θ′ = θ. The
advantage of A to win the MTP security game is defined as AdvMTP

A (λ) =∣∣∣Pr[θ′ = θ]− 1
2

∣∣∣.
Game 2 (type 2 adversary): In this game, the adversary is allowed to request
for the master secret key.

• Setup: Given a security parameter λ, the challenger C generates the pub-
lic parameter PP , master secret key s and public keys PKIDS

,PKIDS
) of

challenge sender IDS , receiver IDR, respectively. Finally, it responds A with
PP ,s,PKIDS

,PKIDS
).

8 Leixiao Cheng 1

• Phase 1: The adversary A is allowed to issue polynomial queries the following
oracles:
Hash query : A is allowed to issue queries all hash oracles.
Extract partial private key query : Given an identity IDi , the challenger
C generates the partial private key dIDi

and returns it to A.
Extract user private key query : Given an identity IDi , the challenger
C generates the user private key xIDi

and returns it to A. A cannot enquire
the user private key of IDS or IDR.

Public key query : Given an identity IDi, the challenger C responds A with
the public key of PKIDi .

Ciphertext query OC : Given a ciphertext query (IDS , IDR,KW), C re-
sponds A with the ciphertext CT of keyword KW .

Trapdoor query OT : Given a trapdoor query (IDS , IDR,KW
′), C responds

A with the trapdoor Tr of keyword KW ′.
• Challenge: A chooses two keyword sets {KW i∗

0 }i∈[1,I] and {KW i∗
1 }i∈[1,I]

with the restriction that no element of {IDS , IDR,KW
i∗
j }j∈{0,1},i∈[1,I] has

been queried on OC or OT . C randomly chooses a bit θ ∈ {0, 1} and responds
A with a set of challenge trapdoors {Tri∗θ }i∈[1,I].

• Phase 2: This phase is the same as Phase 1 with the restriction that no
element of {IDS , IDR,KW

i∗
j }j∈{0,1},i∈[1,I] can be queried on OC or OT .

• Guess: A outputs a guess bit θ′ of θ and it wins the game if θ′ = θ. The
advantage of A to win the MTP security game is defined as AdvMTP

A (λ) =∣∣∣Pr[θ′ = θ]− 1
2

∣∣∣.
Definition 2. The CLPAEKS achieves MTP security against inside multi-keyword
guessing attacks, if there exist no PPT adversary winning the above games with
a non-negligible advantage ε.

New, we introduce the notion of MCI security in multi-challenge setting as
follows:

Game 3 (type 1 adversary): In this game, the adversary is allowed to
lunch replace public key query.
• Setup: Given a security parameter λ, the challenge sender identity IDS and

receiver identity IDR, new public key PK ′IDS
the challenger C generates the

public parameter PP , master secret key s and public key PKIDS
of IDS , then

responds the adversary A with PP .
• Phase 1: The adversary A is allowed to issue the same queries as in Game 1.
• Challenge: A chooses two keyword sets {KW i∗

0 }i∈[1,I] and {KW i∗
1 }i∈[1,I]

with the restriction that no element of {IDS , IDR,KW
i∗
j }j∈{0,1},i∈[1,I] has

been queried on OC or OT . C randomly chooses a bit θ ∈ {0, 1} and responds
A with a set of challenge trapdoors {Cti∗θ }i∈[1,I].

• Phase 2: This phase is the same as Phase 1 with the restriction that no
element of {IDS , IDR,KW

i∗
j }j∈{0,1},i∈[1,I] can be queried on OC or OT .

• Guess: A outputs a guess bit θ′ of θ and it wins the game if θ′ = θ. The
advantage of A to win the MCI security game is defined as AdvMCI

A (λ) =∣∣∣Pr[θ′ = θ]− 1
2

∣∣∣.

CLPAEKS with MCI and MTP 9

Game 4 (type 2 adversary): In this game, the adversary is allowed to request
for the master secret key.
• Setup: Given a security parameter λ, the challenger C generates the pub-

lic parameter PP , master secret key s and public keys PKIDS
,PKIDS

) of
challenge sender IDS , receiver IDR, respectively. Finally, it responds A with
PP ,s,PKIDS

,PKIDS
).

• Phase 1: The adversary A is allowed to issue the same queries as in Game 2.
• Challenge: A chooses two keyword sets {KW i∗

0 }i∈[1,I] and {KW i∗
1 }i∈[1,I]

with the restriction that no element of {IDS , IDR,KW
i∗
j }j∈{0,1},i∈[1,I] has

been queried on OC or OT . C randomly chooses a bit θ ∈ {0, 1} and responds
A with a set of challenge trapdoors {Cti∗θ }i∈[1,I].

• Phase 2: This phase is the same as Phase 1 with the restriction that no
element of {IDS , IDR,KW

i∗
j }j∈{0,1},i∈[1,I] can be queried on OC or OT .

• Guess: A outputs a guess bit θ′ of θ and it wins the game if θ′ = θ. The
advantage of A to win the MCI security game is defined as AdvMCI

A (λ) =∣∣∣Pr[θ′ = θ]− 1
2

∣∣∣.
Definition 3. The PAEKS achieves MCI security against outside chosen multi-
ciphertext attacks, if there exist no PPT adversary winning the above security
game with a non-negligible advantage ε.

4 CLPAEKS with both MTP and MCI

The construction detail of our CLPAEKS is shown as follows.
• Setup: Given a security parameter λ, the algorithm chooses a bilinear map
e : G0 ×G0 → GT , where G0 and GT are groups with prime order q and P is
the generator of G0, a random s ∈R Z∗q such that Ppub = sP and hash functions
H : {0, 1}∗ −→ G0; h1 : {0, 1}∗×G0 −→ Z∗q ; h2 : {0, 1}∗×G0×G0×G0 −→ Z∗q .
It outputs the public parameter PP = (e,G0,GT , q, P, Ppub, H, h1, h2), and
keeps MSK = s secret.

• Extract partial private key: Given a user’s identity IDi ∈ {0, 1}∗ and
MSK, the algorithm picks a random rIDi

∈R Z∗q and computes RIDi
= rID1

P ,
αIDi

= h1IDi, RIDi
, then sets dIDi

= rIDi
+ sαIDi

(mod q). It publishes
RIDi

and sends the partial private key dIDi
to user IDi secretly.

• Set secret value: Given a user’s identity IDi ∈ {0, 1}∗, the algorithm picks
a random xIDi

∈R Z∗q as a secret value.
• Set private key: Given a user’s identity IDi ∈ {0, 1}∗, it’s secret value
xIDi and partial private key dIDi , the algorithm sets the user’s private key as
SKIDi = {xIDi , dIDi}.

• Set public key: Given a user’s identity IDi ∈ {0, 1}∗, it’s secret value xIDi

and partial public information RIDi
, the algorithm computes PIDi

= xIDi
P .

sets the user’s public key as PKIDi
= {PIDi

, RIDi
}.

• CLPAKES: Given sender’s identity IDS , receiver’s identity IDR, sender’s
secret key SKIDS

, public keys (PKIDS
, PKIDR

), and a ciphertext keyword
KW , the algorithm randomly chooses r1, r2 ∈R Z∗p, then computes βIDS

=

10 Leixiao Cheng 1

h2(IDS , Ppub, PIDS
, RIDS

), βIDR
= h2(IDR, Ppub, PIDR

, RIDR
) and generates

the ciphertext as

C1 = r1(dIDS
+ βIDS

xIDS
)H(IDS , IDR,KW) + r2P,

C2 = r2(RIDR
+ αIDR

Ppub + βIDR
PIDR

),

C3 = r1(dIDS
+ βIDS

xIDS
)P.

(2)

Finally, it outputs CT = (C1, C2, C3).
• Trapdoor: Given sender’s identity IDS , receiver’s identity IDR, receiver’s

secret key SKIDR
, public keys (PKIDS

, PKIDR
), and a target keyword KW ′,

the algorithm randomly chooses r′ ∈R Z∗p, then computes

T1 = r′(dIDR
+ βIDR

xIDR
)H(IDS , IDR,KW

′),

T2 = r′(RIDR
+ αIDR

Ppub + βIDR
PIDR

),

T3 = r′P.

(3)

Finally, it outputs Tr = (T1, T2, T3).
• Test(PP,Ct, Tr): The algorithm checks whether the following equation holds

or not:

e(C1, T2) = e(T1, C3) · e(T3, C2). (4)

If so, it outputs 1; otherwise it outputs 0.

4.1 Correctness

If the ciphertext keyword KW is identical to the target keyword KW ′, we
have the following equation:

e(C1, T2) =e(r1(dIDS
+ βIDS

xIDS
)H(IDS , IDR,KW) + r2P, r

′(RIDR
+ αIDR

Ppub + βIDR
PIDR

))

=e(r′(dIDR
+ βIDR

xIDR
)H(IDS , IDR,KW), r1(dIDS

+ βIDS
xIDS

)P)·
e(r′P, r2(RIDS

+ αIDS
Ppub + βIDS

PIDS
))

=e(T1, C3) · e(T3, C2).

(5)

The above equation holds with probability 1, if KW = KW ′; it doesn’t hold
with overwhelming probability when KW 6= KW ′.

5 Security Analysis

In this section, we provide a formal security analysis of our scheme on both
MTP and MCI securities.

Theorem 1. Our scheme is semantically MTP secure against inside keyword
guessing attacks in the random oracle model under the DDH assumption.

CLPAEKS with MCI and MTP 11

Proof. Supposed that a PPT adversary A can break the MTP security of our
scheme with a non-negligible advantage ε > 0, then there exists a PPT simulator
B that can distinguish a DDH tuple from a random one with a non-negligible
probability. The DDH challenger C selects x, y ∈R Z∗p, θ ∈ {0, 1}, R ∈R G0

at random. Let Z = xyP , if θ = 0, R else. Next, C sends B the DDH tuple
〈P, xP, yP,Z〉. Then, B plays the role of simulator in the following security game.

Game 1 (type1 adversary):
• Setup: A chooses the challenge sender’s identity IDS and challenge receiv-

er’s identity IDR. The new public key to replace PIDR
is P ′IDR

. B random-
ly chooses αIDS

, βIDS
, αIDR

, βIDR
∈R Z∗q , RIDS

, RIDR
∈R G0, computes

Ppub = 1
αIDR

(x · P − βIDR
P ′IDR

− RIDR
), and adds (IDS , RIDS

, αIDS
) and

(IDR, RIDR
, αIDR

) to the list Lh1 , adds (IDS , RIDS
,⊥, βIDS

) and (IDR, RIDR
,⊥

, βIDR
) to list LE1

. Then, it sends PP = (e,G0,GT , q, P, Ppub, H, h1, h2) to A.
• Phase1: The adversary A may issue the following queries:

h1 query: B maintains a list Lh1
of tuple (IDi, RIDi

, αIDi
). This list is ini-

tially empty. Given a query tuple (IDi, RIDi
), B responds as follows:

1. If (IDi, RIDi
, αIDi

) has already existed in the Lh1
, B responds A with

h1(IDi, RIDi
) = αIDi

.

2. Otherwise, B picks a random αIDi
∈R Z∗p and adds the tuple (IDi, RIDi

, αIDi
)

into Lh1
and responds A with αIDi

.

H query OH : B maintains a list LH of tuple (KWi, ID
′
S , ID

′
R, ui, ci, Hi).

This list is initially empty. Given a query tuple (KWi, ID
′
S , ID

′
R), B re-

sponds as follows:

1. If (KWi, ID
′
S , ID

′
R, ui, ci, Hi) is in the LH , B respondsA withH(ID′S , ID

′
R,KWi) =

Hi.

2. Otherwise, B flips a random coin ci ∈ {0, 1} with the probability Pr[ci =
0] = δ.

3. B picks a random ui ∈R Z∗p and sets H(ID′S , ID
′
R,KWi) = Hi = (1 −

ci)yP + uiP .

4. B adds the tuple (KWi, ID
′
S , ID

′
R, ui, ci, Hi) into LH and responds A

with Hi.

h2 query: B maintains a list Lh2 of tuple (IDi, PIDi , RIDi , βIDi). This list is
initially empty. Given a query tuple (IDi, PIDi , RIDi), B responds as follows:

1. If (IDi, PIDi
, RIDi

, βIDi
) has already existed in the Lh2

, B responds A
with h2(IDi, Ppub, PIDi , RIDi) = βIDi .

2. Otherwise, B picks a random βIDi
∈R Z∗p and adds the tuple (IDi, PIDi

, RIDi
, βIDi

)
into Lh2 and responds A with βIDi .

Extract partial private key query: B maintains a list LE1
of tuple (IDi, RIDi

, dIDi
).

This list is initially empty. Given a query on IDi, B responds as follows:

1. If (IDi, RIDi
, dIDi

) is existed in the LE1
, B responds A with dIDi

.

2. Otherwise, if IDi 6= IDS and IDi 6= IDS , B randomly picks dIDi
, αIDi

∈R
Z∗p and computesRIDi

= dIDi
P−αIDi

Ppub, then adds the tuple (IDi, RIDi
, αIDi

)
into Lh1

and (IDi, RIDi
, dIDi

) into LE1
and responds A with dIDi

.

3. If IDi = IDS or IDi = IDS , B aborts.

12 Leixiao Cheng 1

Secret value query: B maintains a list LE2
of tuple (IDi, xIDi

, PIDi
). This

list is initially empty. Given a query on IDi, B responds as follows:
1. If (IDi, xIDi , PIDi) is already in LE2 , B responds A with xIDi .
2. Otherwise, B picks a random xIDi ∈R Z∗q as a secret value and com-

putes PIDi
= xIDi

P , then adds the tuple (IDi, xIDi
, PIDi

) into LE2
and

responds A with xIDi
.

Public key query: Given a query on IDi, B retrieves RIDi
and PIDi

from
LE1 and LE2 , then returns the public key PKIDi = (RIDi , PIDi) to A.

Replace public key query: Given a query tuple (IDi, RIDi , P
′
IDi

), B sets
PIDi

= P ′IDi
, dIDi

= ⊥, xIDi
= ⊥. Note that A is prohibited from replacing

the public key of IDS before the challenge phase.
Ciphertext Oracle OC : Given a ciphertext query (KWi, ID

′
S , ID

′
R), B re-

trieves the tuple (KWi, ID
′
S , ID

′
R, ui, ci, Hi) from LH . If ci = 0, it aborts

the game and outputs a random bit θ′ as the guess of θ. Otherwise, it picks
r1, r2 ∈R Z∗p, and responds A with the ciphertext Ct = (C1, C2, C3), where

C1 = r1(dID′S + βID′SxID′S)uiP + r2P,

C2 = r2(RID′R + αID′RPpub + βID′RPID′R),

C3 = r1(dID′S + βID′SxID′S)P.

(6)

Trapdoor Oracle OT : Given a trapdoor query (KWi, ID
′
S , ID

′
R), B retrieves

the tuple (KWi, ID
′
S , ID

′
R, ui, ci, Hi) from LH . If ci = 0, it aborts the game

and outputs a random bit θ′ as the guess of θ. Otherwise, it picks r′ ∈R Z∗p,
and responds A with the trapdoor Tr = (T1, T2, T3), where

T1 = r′(dID′R + βID′RxID′R)uiP,

T2 = r′(RID′R + αID′RPpub + βID′RPID′R),

T3 = r′P.

(7)

• Challenge: A chooses two keyword sets {KW i∗
0 }i∈[1,I] and {KW i∗

1 }i∈[1,I]
with the restriction that no element of (KW i∗

j , IDS , IDR)j∈[0,1],i∈[1,I] has
been queried on OC or OT . There are rI duplicated keywords in the set
{KW i∗

j }j∈[0,1],i∈[1,I]. B retrieves (KW i∗

j , ID
′
S , ID

′
R, u

i∗

j , c
i∗

j , H
i∗

j)j∈[0,1],i∈[1,I]
from LH and generates the challenge trapdoors as follows:
1. If, for each i ∈ [1, I], ci∗0 = ci∗1 = 1, B aborts the game and outputs a random

bit θ′ as the guess of θ.
2. Otherwise, there exist a t ∈ [1, I] such that ct∗0 = 0 or ct∗1 = 0. For i 6= t,
B generates the challenge trapdoor Tr∗i as Phase 1; for i = t, B picks a bit

θ̂ ∈ {0, 1} such that c∗
θ̂

= 0. Then, it picks r′ ∈R Z∗p, and generates the

challenge trapdoor Tr∗t = (T ∗1 , T
∗
2 , T

∗
3) for A as:

T1 = r′(dIDR
+ βIDR

xIDR
)yP = r′(RIDR

+ αIDR
Ppub + βIDR

PIDR
)yP = r′ZP,

T2 = r′(RIDR
+ αIDR

Ppub + βIDR
PIDR

) = r′xP,

T3 = r′P.

(8)

CLPAEKS with MCI and MTP 13

For i 6= t, Tr∗i is random in the view of A. For i = t, Tr∗t is a valid trapdoor,
if Z = xyP ; otherwise, Z = R ∈R G0 so that T ∗1 is a random element in
G0 and Tr∗t is random in the view of A.

• Phase2: This phase is the same as Phase 1.
• Guess: A outputs a guess bit θ′′ of θ̂. If θ′′ = θ̂, B guesses θ = 0 which

indicates that Z = xyP in the above game. Otherwise, B guesses θ = 1 i.e.,
Z = R.

If Z = R, then Tr∗t is random from the view of A. Hence, B’s probability to
guess θ correctly is

Pr [B (P, xP, yP,Z = R) = 1] =
1

2
. (9)

Else Z = xyP , then Tr∗t is an available trapdoor and A′s advantage of
guessing θ′ is ε. Therefore, B’s probability to guess θ correctly is

Pr [B (P, xP, yP,Z = xyP) = 0] =
1

2
+ ε. (10)

The adversary A may issue at most qH , qC , qT queries to the hash oracle OH ,
the ciphertext oracle OC and the trapdoor oracle OT . We make some necessary
restriction: qH , qC , qT are polynomial; A isn’t allowed to repeat a query to the
hash oracle OH and may repeat rC queries to OC and rT queries to OT ; A
couldn’t issue a ciphertext query (IDS , IDR,KW) to OC or a trapdoor query
to OT before issuing the hash query (IDS , IDR,KW) to OH . Now, we donate
the event B aborts in the above game by E0 and compute the probability of E0.
Then, B aborts the game in the following two cases:
1. ci = 0 in the simulation of OC or OT in phase 1 and phase 2. We denote this

event by E1 and the probability E1 doesn’t occur is that

Pr
[
E1

]
= (1− δ)qC+qT−rC−rT .

2. For each i ∈ [1, I], ci∗0 = ci∗1 = 1 challenge phase. We denote this event by E2

and the probability E2 doesn’t occur is that

Pr
[
E2

]
= 1− (1− δ)2I−rI .

We sets δ = 1− 2I−rI

√
qC+qT−rC−rT
qC+qT−rC−rT+1 , then B doesn’t abort in the above game

is that

Pr
[
E0

]
= Pr

[
E1

]
· Pr

[
E2

]
= (

qC + qT − rC − rT
qC + qT − rC − rT + 1

)
qC+qT−rC−rT

2I−rI · 1

qC + qT − rC − rT + 1

≈ 1

(qC + qT − rC − rT + 1) · e
1

2I−rI

.

(11)

Hence, B doesn’t abort with a non-negligible probability.

14 Leixiao Cheng 1

In conclusion, B’s probability to win the above security game is

Pr [θ′ = θ] = Pr [θ′ = θ ∧E0] + Pr
[
θ′ = θ ∧E0

]
= Pr [θ′ = θ‖E0] · Pr [E0] + Pr

[
θ′ = θ‖E0

]
· Pr

[
E0

]
=

1

2
· Pr [E0] + (

1

2
+ ε) · Pr

[
E0

]
=

1

2
+ ε · Pr

[
E0

]
.

(12)

Game 2 (type2 adversary):

• Setup: A chooses the challenge sender’s identity IDS and challenge receiv-
er’s identity IDR. B randomly chooses s ∈R Z∗q , sets Ppub = sP ,PIDS

=
yP ,PIDR

= xP , and adds (IDS ,⊥, PIDS
) and (IDR,⊥, PIDR

) to LE2
. Then,

it sends PP = (e,G0,GT , q, P, Ppub, H, h1, h2), s, PIDS
, PIDR

to A.

• Phase1: Most queries issued by the adversary A are defined as same as those
in Game 1, except the following queries:

Extract partial private key query: B maintains a list LE1
of tuple (IDi, RIDi

, dIDi
).

This list is initially empty. Given a query on IDi, B responds as follows:

1. If (IDi, RIDi , dIDi) is existed in the LE1 , B responds A with dIDi .

2. Otherwise, if (IDi, RIDi
, αIDi

) is already in Lh1
, B retrieves αIDi

from
Lh1

; otherwise B randomly chooses rIDi
, αIDi

∈R Z∗q , sets RIDi
= rIDi

P ,
and adds the tuple (IDi, RIDi

, rIDi
, αIDi

) into Lh1
. Then, B computes

dIDi = rIDi + sαIDi(mod q), adds the tuple (IDi, RIDi , dIDi) into LE1

and responds A with dIDi .

Secret value query: B maintains a list LE2
of tuple (IDi, xIDi

, PIDi
). This

list is initially empty. Given a query on IDi, B responds as follows:

1. If IDi 6= IDS and IDi 6= IDR. If (IDi, xIDi
, PIDi

) is already in LE2
, B

responds A with xIDi ; otherwise, B picks a random xIDi ∈R Z∗q as a secret
value and computes PIDi = xIDiP , then adds the tuple (IDi, xIDi , PIDi)
into LE2

and responds A with xIDi
.

2. If IDi = IDS or IDi = IDR, B aborts.

• Challenge: A chooses two keyword sets {KW i∗
0 }i∈[1,I] and {KW i∗

1 }i∈[1,I]
with the restriction that no element of (KW i∗

j , IDS , IDR)j∈[0,1],i∈[1,I] has
been queried on OC or OT . There are rI duplicated keywords in the set
{KW i∗

j }j∈[0,1],i∈[1,I]. B retrieves (KW i∗

j , ID
′
S , ID

′
R, u

i∗

j , c
i∗

j , H
i∗

j)j∈[0,1],i∈[1,I]
from LH and generates the challenge trapdoors as follows:

1. If, for each i ∈ [1, I], ci∗0 = ci∗1 = 1, B aborts the game and outputs a random
bit θ′ as the guess of θ.

2. Otherwise, there exist a t ∈ [1, I] such that ct∗0 = 0 or ct∗1 = 0. For i 6= t,
B generates the challenge trapdoor Tr∗i as Phase 1; for i = t, B picks a bit

θ̂ ∈ {0, 1} such that c∗
θ̂

= 0. Then, it picks r′ ∈R Z∗p, and generates the

CLPAEKS with MCI and MTP 15

challenge trapdoor Tr∗t = (T ∗1 , T
∗
2 , T

∗
3) for A as:

T1 = r′(dIDR
+ βIDR

xIDR
)yP = r′(dIDR

+ βIDR
x)yP = r′βIDR

ZP + r′dIDR
βIDR

xP,

T2 = r′(RIDR
+ αIDR

Ppub + βIDR
PIDR

) = r′dIDR
P + r′βIDR

xP,

T3 = r′P.

(13)

For i 6= t, Tr∗i is random in the view of A. For i = t, Tr∗t is a valid trapdoor,
if Z = xyP ; otherwise, Z = R ∈R G0 so that C∗1 is a random element in
G0 and Tr∗t is random in the view of A.

• Phase2: This phase is the same as Phase 1.

• Guess: A outputs a guess bit θ′′ of θ̂. If θ′′ = θ̂, B guesses θ = 0 which
indicates that Z = xyP in the above game. Otherwise, B guesses θ = 1 i.e.,
Z = R.

If Z = R, then Tr∗t is random from the view of A. Hence, B’s probability to
guess θ correctly is

Pr [B (P, xP, yP,Z = R) = 1] =
1

2
. (14)

Else Z = xyP , then Tr∗t is an available trapdoor and A′s advantage of
guessing θ′ is ε. Therefore, B’s probability to guess θ correctly is

Pr [B (P, xP, yP,Z = xyP) = 0] =
1

2
+ ε. (15)

The adversary A may issue at most qH , qC , qT queries to the hash oracle OH ,
the ciphertext oracle OC and the trapdoor oracle OT . We make some necessary
restriction: qH , qC , qT are polynomial; A isn’t allowed to repeat a query to the
hash oracle OH and may repeat rC queries to OC and rT queries to OT ; A
couldn’t issue a ciphertext query (IDS , IDR,KW) to OC or a trapdoor query
to OT before issuing the hash query (IDS , IDR,KW) to OH . Now, we donate
the event B aborts in the above game by E0 and compute the probability of E0.
Then, B aborts the game in the following two cases:

1. ci = 0 in the simulation of OC or OT in phase 1 and phase 2. We denote this
event by E1 and the probability E1 doesn’t occur is that

Pr
[
E1

]
= (1− δ)qC+qT−rC−rT .

2. For each i ∈ [1, I], ci∗0 = ci∗1 = 1 challenge phase. We denote this event by E2

and the probability E2 doesn’t occur is that

Pr
[
E2

]
= 1− (1− δ)2I−rI .

16 Leixiao Cheng 1

We sets δ = 1− 2I−rI

√
qC+qT−rC−rT
qC+qT−rC−rT+1 , then B doesn’t abort in the above game

is that

Pr
[
E0

]
= Pr

[
E1

]
· Pr

[
E2

]
= (

qC + qT − rC − rT
qC + qT − rC − rT + 1

)
qC+qT−rC−rT

2I−rI · 1

qC + qT − rC − rT + 1

≈ 1

(qC + qT − rC − rT + 1) · e
1

2I−rI

.

(16)

Hence, B doesn’t abort with a non-negligible probability.
In conclusion, B’s probability to win the above security game is

Pr [θ′ = θ] = Pr [θ′ = θ ∧E0] + Pr
[
θ′ = θ ∧E0

]
= Pr [θ′ = θ‖E0] · Pr [E0] + Pr

[
θ′ = θ‖E0

]
· Pr

[
E0

]
=

1

2
· Pr [E0] + (

1

2
+ ε) · Pr

[
E0

]
=

1

2
+ ε · Pr

[
E0

]
.

(17)

Theorem 2. Our scheme is semantically MCI secure against inside keyword
guessing attacks in the random oracle model under the DDH assumption.

Proof. Supposed that a PPT adversary A can break the MCI security of our
scheme with a non-negligible advantage ε > 0, then there exists a PPT simulator
B that can distinguish a DDH tuple from a random one with a non-negligible
probability. The DDH challenger C selects x, y ∈R Z∗p, θ ∈ {0, 1}, R ∈R G0

at random. Let Z = xyP , if θ = 0, R else. Next, C sends B the DDH tuple
〈P, xP, yP,Z〉. Then, B plays the role of simulator in the following security game.

Game 3 (type1 adversary):
• Setup: A chooses the challenge sender’s identity IDS and challenge receiver’s

identity IDR. The new public key to replace PIDR
is P ′IDR

. B randomly chooses

αIDS
, βIDS

, αIDR
, βIDR

∈R Z∗q , RIDS
, RIDR

∈R G0, computes Ppub = 1
αIDS

(x·
P −βIDS

P ′IDS
−RIDS

), and adds (IDS , RIDS
, αIDS

) and (IDR, RIDR
, αIDR

)
to the list Lh1

, adds (IDS , RIDS
,⊥, βIDS

) and (IDR, RIDR
,⊥, βIDR

) to list
LE1 . Then, it sends PP = (e,G0,GT , q, P, Ppub, H, h1, h2) to A.

• Phase1: Most queries issued by the adversary A are the same as those of
Game 1, except the H query:
H query OH : B maintains a list LH of tuple (KWi, ID

′
S , ID

′
R, ui, ci, Hi).

This list is initially empty. Given a query tuple (KWi, ID
′
S , ID

′
R), B re-

sponds as follows:
1. If (KWi, ID

′
S , ID

′
R, ui, ci, Hi) is in the LH , B respondsA withH(ID′S , ID

′
R,KWi) =

Hi.
2. Otherwise, B flips a random coin ci ∈ {0, 1} with the probability Pr[ci =

0] = δ.
3. B picks a random ui ∈R Z∗p and sets H(ID′S , ID

′
R,KWi) = Hi = (1 −

ci)uiyP + ciuiP .

CLPAEKS with MCI and MTP 17

4. B adds the tuple (KWi, ID
′
S , ID

′
R, ui, ci, Hi) into LH and responds A

with Hi.
• Challenge: A chooses two keyword sets {KW i∗

0 }i∈[1,I] and {KW i∗
1 }i∈[1,I]

with the restriction that no element of (KW i∗
j , IDS , IDR)j∈[0,1],i∈[1,I] has

been queried on OC or OT . There are rI duplicated keywords in the set
{KW i∗

j }j∈[0,1],i∈[1,I]. B retrieves (KW i∗

j , ID
′
S , ID

′
R, u

i∗

j , c
i∗

j , H
i∗

j)j∈[0,1],i∈[1,I]
from LH and generates the challenge ciphertexts as follows:
1. If, for each i ∈ [1, I], ci∗0 = ci∗1 = 1, B aborts the game and outputs a random

bit θ′ as the guess of θ.
2. Otherwise, there exist a t ∈ [1, I] such that ct∗0 = 0 or ct∗1 = 0. For i 6= t, B

generates the challenge ciphertext Ct∗i as Phase 1; for i = t, B picks a bit

θ̂ ∈ {0, 1} such that c∗
θ̂

= 0. Then, it picks r1, r2 ∈R Z∗p, and generates the

challenge ciphertext Ct∗t = (C∗1 , C
∗
2 , C

∗
3) for A as:

C∗1 = r1(dIDS
+ βIDS

xIDS
)uiyP + r2P = r1uiZ + r2P,

C∗2 = r2(RIDR
+ αIDR

Ppub + βIDR
PIDR

),

C∗3 = r1(dIDS
+ βIDS

xIDS
)P = r1xP.

(18)

For i 6= t, Ct∗i is random in the view of A. For i = t, Ct∗t is a valid trapdoor,
if Z = xyP ; otherwise, Z = R ∈R G0 so that C∗1 is a random element in
G0 and Ct∗t is random in the view of A.

• Phase2: This phase is the same as Phase 1.
• Guess: A outputs a guess bit θ′′ of θ̂. If θ′′ = θ̂, B guesses θ = 0 which

indicates that Z = xyP in the above game. Otherwise, B guesses θ = 1 i.e.,
Z = R.

If Z = R, then Ct∗t is random from the view of A. Hence, B’s probability to
guess θ correctly is

Pr [B (P, xP, yP,Z = R) = 1] =
1

2
. (19)

Else Z = xyP , then Ct∗t is an available trapdoor and A′s advantage of
guessing θ′ is ε. Therefore, B’s probability to guess θ correctly is

Pr [B (P, xP, yP,Z = xyP) = 0] =
1

2
+ ε. (20)

The adversary A may issue at most qH , qC , qT queries to the hash oracle OH ,
the ciphertext oracle OC and the trapdoor oracle OT . We make some necessary
restriction: qH , qC , qT are polynomial; A isn’t allowed to repeat a query to the
hash oracle OH and may repeat rC queries to OC and rT queries to OT ; A
couldn’t issue a ciphertext query (IDS , IDR,KW) to OC or a trapdoor query
to OT before issuing the hash query (IDS , IDR,KW) to OH . Now, we donate
the event B aborts in the above game by E0 and compute the probability of E0.
Then, B aborts the game in the following two cases:
1. ci = 0 in the simulation of OC or OT in phase 1 and phase 2. We denote this

event by E1 and the probability E1 doesn’t occur is that

Pr
[
E1

]
= (1− δ)qC+qT−rC−rT .

18 Leixiao Cheng 1

2. For each i ∈ [1, I], ci∗0 = ci∗1 = 1 challenge phase. We denote this event by E2

and the probability E2 doesn’t occur is that

Pr
[
E2

]
= 1− (1− δ)2I−rI .

We sets δ = 1− 2I−rI

√
qC+qT−rC−rT
qC+qT−rC−rT+1 , then B doesn’t abort in the above game

is that

Pr
[
E0

]
= Pr

[
E1

]
· Pr

[
E2

]
= (

qC + qT − rC − rT
qC + qT − rC − rT + 1

)
qC+qT−rC−rT

2I−rI · 1

qC + qT − rC − rT + 1

≈ 1

(qC + qT − rC − rT + 1) · e
1

2I−rI

.

(21)

Hence, B doesn’t abort with a non-negligible probability.

In conclusion, B’s probability to win the above security game is

Pr [θ′ = θ] = Pr [θ′ = θ ∧E0] + Pr
[
θ′ = θ ∧E0

]
= Pr [θ′ = θ‖E0] · Pr [E0] + Pr

[
θ′ = θ‖E0

]
· Pr

[
E0

]
=

1

2
· Pr [E0] + (

1

2
+ ε) · Pr

[
E0

]
=

1

2
+ ε · Pr

[
E0

]
.

(22)

Game 4 (type2 adversary):

• Setup: A chooses the challenge sender’s identity IDS and challenge receiv-
er’s identity IDR. B randomly chooses s ∈R Z∗q , sets Ppub = sP ,PIDS

=
yP ,PIDR

= xP , and adds (IDS ,⊥, PIDS
) and (IDR,⊥, PIDR

) to LE2
. Then,

it sends PP = (e,G0,GT , q, P, Ppub, H, h1, h2), s, PIDS
, PIDR

to A.

• Phase1: Most queries issued by the adversary A are the same as those of
Game 2, except the H query. B simulates the H query by the same way as in
Game 3.

• Challenge: A chooses two keyword sets {KW i∗
0 }i∈[1,I] and {KW i∗

1 }i∈[1,I]
with the restriction that no element of (KW i∗

j , IDS , IDR)j∈[0,1],i∈[1,I] has
been queried on OC or OT . There are rI duplicated keywords in the set
{KW i∗

j }j∈[0,1],i∈[1,I]. B retrieves (KW i∗

j , ID
′
S , ID

′
R, u

i∗

j , c
i∗

j , H
i∗

j)j∈[0,1],i∈[1,I]
from LH and generates the challenge ciphertexts as follows:

1. If, for each i ∈ [1, I], ci∗0 = ci∗1 = 1, B aborts the game and outputs a random
bit θ′ as the guess of θ.

2. Otherwise, there exist a t ∈ [1, I] such that ct∗0 = 0 or ct∗1 = 0. For i 6= t, B
generates the challenge ciphertext Ct∗i as Phase 1; for i = t, B picks a bit

θ̂ ∈ {0, 1} such that c∗
θ̂

= 0. Then, it picks r1, r2 ∈R Z∗p, and generates the

CLPAEKS with MCI and MTP 19

challenge ciphertext Ct∗t = (C∗1 , C
∗
2 , C

∗
3) for A as:

C∗1 = r1(dIDS
+ βIDS

xIDS
)uiyP + r2P = r1dIDS

uiyP + r1βIDS
uiZ + r2P,

C∗2 = r2(RIDR
+ αIDR

Ppub + βIDR
PIDR

) = r2dIDS
P + r2βIDR

xP,

C∗3 = r1(dIDS
+ βIDS

xIDS
)P = r1dIDS

P + r1βIDS
yP.

(23)

For i 6= t, Ct∗i is random in the view of A. For i = t, Ct∗t is a valid trapdoor,
if Z = xyP ; otherwise, Z = R ∈R G0 so that C∗1 is a random element in
G0 and Ct∗t is random in the view of A.

• Phase2: This phase is the same as Phase 1.

• Guess: A outputs a guess bit θ′′ of θ̂. If θ′′ = θ̂, B guesses θ = 0 which
indicates that Z = xyP in the above game. Otherwise, B guesses θ = 1 i.e.,
Z = R.

If Z = R, then Ct∗t is random from the view of A. Hence, B’s probability to
guess θ correctly is

Pr [B (P, xP, yP,Z = R) = 1] =
1

2
. (24)

Else Z = xyP , then Ct∗t is an available trapdoor and A′s advantage of
guessing θ′ is ε. Therefore, B’s probability to guess θ correctly is

Pr [B (P, xP, yP,Z = xyP) = 0] =
1

2
+ ε. (25)

The adversary A may issue at most qH , qC , qT queries to the hash oracle OH ,
the ciphertext oracle OC and the trapdoor oracle OT . We make some necessary
restriction: qH , qC , qT are polynomial; A isn’t allowed to repeat a query to the
hash oracle OH and may repeat rC queries to OC and rT queries to OT ; A
couldn’t issue a ciphertext query (IDS , IDR,KW) to OC or a trapdoor query
to OT before issuing the hash query (IDS , IDR,KW) to OH . Now, we donate
the event B aborts in the above game by E0 and compute the probability of E0.
Then, B aborts the game in the following two cases:

1. ci = 0 in the simulation of OC or OT in phase 1 and phase 2. We denote this
event by E1 and the probability E1 doesn’t occur is that

Pr
[
E1

]
= (1− δ)qC+qT−rC−rT .

2. For each i ∈ [1, I], ci∗0 = ci∗1 = 1 challenge phase. We denote this event by E2

and the probability E2 doesn’t occur is that

Pr
[
E2

]
= 1− (1− δ)2I−rI .

20 Leixiao Cheng 1

We sets δ = 1− 2I−rI

√
qC+qT−rC−rT
qC+qT−rC−rT+1 , then B doesn’t abort in the above game

is that

Pr
[
E0

]
= Pr

[
E1

]
· Pr

[
E2

]
= (

qC + qT − rC − rT
qC + qT − rC − rT + 1

)
qC+qT−rC−rT

2I−rI · 1

qC + qT − rC − rT + 1

≈ 1

(qC + qT − rC − rT + 1) · e
1

2I−rI

.

(26)

Hence, B doesn’t abort with a non-negligible probability.
In conclusion, B’s probability to win the above security game is

Pr [θ′ = θ] = Pr [θ′ = θ ∧E0] + Pr
[
θ′ = θ ∧E0

]
= Pr [θ′ = θ‖E0] · Pr [E0] + Pr

[
θ′ = θ‖E0

]
· Pr

[
E0

]
=

1

2
· Pr [E0] + (

1

2
+ ε) · Pr

[
E0

]
=

1

2
+ ε · Pr

[
E0

]
.

(27)

6 Conclusion

In this paper, we initially propose a CLPAEKS scheme with both MCI secu-
rity and MTP security simultaneously. We provide formal proof of our scheme in
the random oracle model. The trapdoor generation algorithms of our CLPAEKS
scheme is all probabilistic. By combining our scheme and [15], it would be able
to design a secure designated CLPAEKS scheme with both MCI security and
MTP security. For the compact of this paper, we leave it as a further work.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consistency
properties, relation to anonymous ibe, and extensions. In: Shoup, V. (ed.) Advances
in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 14-18, 2005, Proceedings. Lecture Notes
in Computer Science, vol. 3621, pp. 205–222. Springer (2005)

2. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C. (ed.) Advances in Cryptology - ASIACRYPT 2003, 9th International Conference
on the Theory and Application of Cryptology and Information Security, Taipei,
Taiwan, November 30 - December 4, 2003, Proceedings. Lecture Notes in Computer
Science, vol. 2894, pp. 452–473. Springer (2003)

3. Al-Riyami, S.S., Paterson, K.G.: CBE from CL-PKE: A generic construction and
efficient schemes. In: Vaudenay, S. (ed.) Public Key Cryptography - PKC 2005,
8th International Workshop on Theory and Practice in Public Key Cryptography,
Les Diablerets, Switzerland, January 23-26, 2005, Proceedings. Lecture Notes in
Computer Science, vol. 3386, pp. 398–415. Springer (2005)

CLPAEKS with MCI and MTP 21

4. Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology
- EUROCRYPT 2004, International Conference on the Theory and Applications
of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings.
Lecture Notes in Computer Science, vol. 3027, pp. 506–522. Springer (2004)

5. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: TCC 2007. pp. 535–554 (2007)

6. Byun, J.W., Rhee, H.S., Park, H., Lee, D.H.: Off-line keyword guessing attacks
on recent keyword search schemes over encrypted data. In: SDM 2006. pp. 75–83
(2006)

7. Chen, R., Mu, Y., Yang, G., Guo, F., Wang, X.: Dual-server public-key encryption
with keyword search for secure cloud storage. IEEE Trans. Inf. Forensics Secur.
11(4), 789–798 (2016)

8. Fei MENG, Leixiao CHENG, M.W.: Abdks: Attribute-based encryption with dy-
namic keyword search in fog computing. Frontiers of Computer Science

9. Fuhr, T., Paillier, P.: Decryptable searchable encryption. In: Susilo, W., Liu, J.K.,
Mu, Y. (eds.) Provable Security, First International Conference, ProvSec 2007,
Wollongong, Australia, November 1-2, 2007, Proceedings. Lecture Notes in Com-
puter Science, vol. 4784, pp. 228–236. Springer (2007)

10. Golle, P., Staddon, J., Waters, B.R.: Secure conjunctive keyword search over en-
crypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) Applied Cryptography
and Network Security, Second International Conference, ACNS 2004, Yellow Moun-
tain, China, June 8-11, 2004, Proceedings. Lecture Notes in Computer Science,
vol. 3089, pp. 31–45. Springer (2004)

11. He, D., Ma, M., Zeadally, S., Kumar, N., Liang, K.: Certificateless public key
authenticated encryption with keyword search for industrial internet of things.
IEEE Trans. Ind. Informatics 14(8), 3618–3627 (2018)

12. Huang, Q., Li, H.: An efficient public-key searchable encryption scheme secure
against inside keyword guessing attacks. Inf. Sci. 403, 1–14 (2017)

13. Huang, X., Susilo, W., Mu, Y., Zhang, F.: On the security of certificateless signa-
ture schemes from asiacrypt 2003. In: Desmedt, Y., Wang, H., Mu, Y., Li, Y. (eds.)
Cryptology and Network Security, 4th International Conference, CANS 2005, X-
iamen, China, December 14-16, 2005, Proceedings. Lecture Notes in Computer
Science, vol. 3810, pp. 13–25. Springer (2005)

14. Li, H., Huang, Q., Shen, J., Yang, G., Susilo, W.: Designated-server identity-based
authenticated encryption with keyword search for encrypted emails. Inf. Sci. 481,
330–343 (2019)

15. Liu, X., Li, H., Yang, G., Susilo, W., Tonien, J., Huang, Q.: Towards enhanced se-
curity for certificateless public-key authenticated encryption with keyword search.
In: Steinfeld, R., Yuen, T.H. (eds.) Provable Security - 13th International Con-
ference, ProvSec 2019, Cairns, QLD, Australia, October 1-4, 2019, Proceedings.
Lecture Notes in Computer Science, vol. 11821, pp. 113–129. Springer (2019)

16. Noroozi, M., Eslami, Z.: Public key authenticated encryption with keyword search:
revisited. IET Inf. Secur. 13(4), 336–342 (2019)

17. Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword
search. In: WISA 2004. pp. 73–86 (2004)

18. Qin, B., Chen, Y., Huang, Q., Liu, X., Zheng, D.: Public-key authenticated en-
cryption with keyword search revisited: Security model and constructions. Inf. Sci.
516, 515–528 (2020)

22 Leixiao Cheng 1

19. Rhee, H.S., Lee, D.H.: Keyword updatable PEKS. In: Kim, H., Choi, D. (eds.)
Information Security Applications - 16th International Workshop, WISA 2015,
Jeju Island, Korea, August 20-22, 2015, Revised Selected Papers. Lecture Notes in
Computer Science, vol. 9503, pp. 96–109. Springer (2015)

20. Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Trapdoor security in a searchable
public-key encryption scheme with a designated tester. J. Syst. Softw. 83(5), 763–
771 (2010)

21. Shao, J., Cao, Z., Liang, X., Lin, H.: Proxy re-encryption with keyword search.
Inf. Sci. 180(13), 2576–2587 (2010)

22. Shi, E., Bethencourt, J., Chan, T.H., Song, D.X., Perrig, A.: Multi-dimensional
range query over encrypted data. In: S&P 2007. pp. 350–364 (2007)

23. Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches on encrypt-
ed data. In: 2000 IEEE Symposium on Security and Privacy, Berkeley, California,
USA, May 14-17, 2000. pp. 44–55. IEEE Computer Society (2000)

24. Zheng, Q., Xu, S., Ateniese, G.: VABKS: verifiable attribute-based keyword search
over outsourced encrypted data. In: INFOCOM 2014. pp. 522–530 (2014)

