
On the Existence of Weak Keys for QC-MDPC
Decoding

Nicolas Sendrier1 and Valentin Vasseur12

1 Inria, Paris, France
FirstName.LastName@inria.fr,
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Abstract We study in this work a particular class of QC-MDPC codes
for which the decoding failure rate is significantly larger than for typical
QC-MDPC codes of same parameters. Our purpose is to figure out whether
the existence of such weak codes impacts the security of cryptographic
schemes using QC-MDPC codes as secret keys. A class of weak keys
was exhibited in [DGK19]. We generalize it and show that, though their
Decoding Failure Rate (DFR) is higher than normal, the set is not large
enough to contribute significantly to the average DFR. It follows that
with the proper semantically secure transform [HHK17], those weak keys
do not affect the IND-CCA status of key encapsulation mechanisms, like
BIKE, which are using QC-MDPC codes.

1 Introduction

Weak keys generally refer to a subset of valid keys of a cryptographic scheme,
which presents a vulnerability or triggers a bad behavior of the primitives
involved. Their density is usually very small, but occasionally they may lead to
an attack. Anyway, weak keys are an undesirable feature and they are worth
being studied and understood. For instance, some weak keys were found for
LEDAcrypt [APRS20] which defeat the CPA security claims.

Taking QC-MDPC codes [MTSB13], some weak keys were studied in [BDLO16],
whose particular algebraic properties allow retrieval of the secret key by solving
a rational reconstruction problem. The density of those keys is small, of order
2−λ where λ the security parameters of the system (e.g. λ = 128), and do not
represent a direct threat.

A recent work by Drucker, Gueron and Kostic [DGK19] has revealed the
existence of weak keys on the decoder side. They are weak in the sense that
they have a Decoding Failure Rate (DFR) higher than average. These keys are
more prevalent but they do not allow a direct recovery of the secret key. Still, in
conjonction with reaction attacks as in [GJS16] and amplification techniques as
in [NJS19], decoding failures may lead to a key recovery attack.

In a Key Encapsulation Mechanism (KEM) based on QC-MDPC, like BIKE
[AABB+19], those attacks may hinder IND-CCA claims. However, using an
appropriate transform, as in [HHK17], the IND-CCA security only requires the
average DFR to be under 2−λ, for a claim of λ security bits. A more intuitive
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understanding is that, with the proper randomization of the KEM, a set of weak
keys whose DFR δ is larger than the security requirements, δ > 2−λ, do not affect
the IND-CCA security claims as long as its density τ is such that δ · τ < 2−λ.

As mentioned in [DGK19] there is a link between the proposed weak keys
and the distance spectrum of the secret key, as introduced in [GJS16]—here
distances are the difference between any two indices of nonzero coordinates in a
sparse vector. We also observe that this is related to the maximal multiplicity
of a distance in the spectrum, and to the existence in the (secret) sparse parity
check matrix of columns with many 1’s in common coordinates.

Our Contribution: We analyze the effect of the weak keys of [DGK19] on decoding,
relating the bad decoding behavior to distance spectrum properties, namely high
multiplicity. This allows us generalize weak keys as the set of all keys with a given
maximal multiplicity in their distance spectrum. We give a count of those keys,
allowing us to compute their density, and provide an algorithm to generate them,
allowing us to make simulation and estimate their DFR using the methodology
developed in [SV20]. Finally, we show that the estimated contribution of the
weak keys in the average DFR, is, by a comfortable margin, below the security
requirement and do not affect the IND-CCA security claims of KEMs based on
QC-MDPC codes, as long as an appropriate tranform, for instance as in [HHK17],
is used.

Notation

We denote by |·| the Hamming weight and by ? the componentwise product, both
for vectors and polynomials. Vectors and polynomials are denoted in roman type
(e.g. h) and matrices in bold, (e.g. H).

2 QC-MDPC Codes

2.1 Definition and Polynomial Representation

Definition 1. A circulant matrix is a matrix where each row vector is rotated
one element to the right relative to the preceding row vector

H =



h0 hr−1 . . . h2 h1
h1 h0 hr−1 h2
... h1 h0

. . .
...

hr−2
. . .

. . . hr−1
hr−1 hr−2 . . . h1 h0

 .

Definition 2. A QC-MDPC code is a code whose parity check matrix consists
of n0 circulant blocks of size r × r and row weight d = O(

√
r).

Equivalently, the parity check matrix H = (H0, . . . ,Hn0−1) can be written
as a tuple of polynomials, using the following isomorphism.
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Proposition 1. The application

H 7→ h0 + h1x+ · · ·+ hr−2x
r−2 + hr−1x

r−1

is an isomorphism between the circulant r × r matrices with coefficients in F2

and the quotient F2[x]/(xr − 1).

Proposition 2. For all δ ∈ Z×r , the endomorphism φδ of (F2[x]/(xr − 1),+,×)
induced by

x 7→ xδ

is an isomorphism and an isometry for the Hamming distance.

In this paper we consider BIKE [AABB+19], a key encapsulation mechanism
based on QC-MDPC codes. It uses two blocks, n0 = 2, a binary alphabet, and
the block size r is prime. It is required that 2 is primitive mod r to ensure that
all non zero elements of F2[x]/(xr − 1) are invertible. To illustrate our results,
we will use the parameters (r, d) = (11779, 71) where d is the Hamming weight

of both components of the secret key (h0,h1) ∈ (F2[x]/(xr − 1))
2
.

2.2 Decoding

Decoding MDPC codes is achieved with variants of the bitflipping algorithm (see
Algorithm 1).

Definition 3. Let (h0, . . . ,hn0−1) be an MDPC parity check matrix. For all
i ∈ {0, . . . , n0 − 1} and j ∈ {0, . . . , r − 1}, we call counter, the quantity

σi,j =
∣∣xjhi ? s

∣∣ .
The counter of a position (i, j) of H (the j-th column of the i-th block) is the
number of parity check equations (rows of H) involving that position and which
are unsatisfied. If the number of unsatisfied parity check equations is high, the
coordinate on that position is likely to be erroneous.

Finding (e0, . . . , en0−1) from the syndrome s = h0e0 + · · ·+ hn0−1en0−1 and
the sparse parity check matrix (h0, . . . ,hn0−1) such that |e0|+ · · ·+ |en0−1| = t
is possible by exploiting the bias in the counters. Figure 1 gives the number of
positions with given counter values, the smaller Gaussian shape curve on the
right stands for the erroneous positions. The decoder knows the counters but not
the errors location (i.e. it knows only the sum of the two curves). So Algorithm 1
chooses a sensible threshold T and flips all positions with a counter above it, the
syndrome is recomputed, then the counters again. This process is repeated and
the error weight usually decreases after each iteration until all errors have been
removed and the syndrome is zero.

Remark 1. If the counters of erroneous positions become comparatively smaller
(for instance when the block size decreases or when the error weight increases),
the small Gaussian shaped curve in Figure 1 will move left and the detection of
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errors will become more difficult—even if the threshold is adjusted—as they will
be overwhelmed by the sheer mass of correct positions. Any effect that moves the
small curve left or the big curve right will affect negatively the decoder behavior.
As we will see later in this paper, this is precisely what happens with weak keys.
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Figure 1. Average counters distribution for r = 11 779, d = 71 and t = 137

Algorithm 1 Bitflipping algorithm

Input: h0, . . . , hn0−1 ∈ F2[x]/(xr − 1); y0, . . . , yn0−1 ∈ {0, 1}r

while y0h0 + · · ·+ yn0−1hn0−1 6= 0 do
s← y0h0 + · · ·+ yn0−1hn0−1

T ← threshold(context)
for i ∈ {0, . . . , n0 − 1} do

for j ∈ {0, . . . , r − 1} do
if

∣∣xjhi ? s
∣∣ ≥ T then

yi,j ← 1− yi,j
return y0, . . . , yn0−1
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3 Distance Spectrum

In [GJS16] the notion of spectrum for a circulant matrix was introduced. We
recall its definition and significance here and show its close relashionship with
the intersections between two columns in the same circulant block.

Definition 4. We define the distance between two positions i, j ∈ {0, . . . , r − 1}
in a circulant block as

d(i, j) = min((r + j − i) mod r, (r + i− j) mod r) .

The multiplicity of a distance is defined as the number of times it appears as the
difference of degrees of nonzero monomials of a polynomial h ∈ F2[x]/(xr − 1)

µ(δ, h) =
∣∣∣{(i, j)

∣∣∣ 0 ≤ i ≤ j < r, hi = hj = 1 and d(i, j) = δ
}∣∣∣ .

The spectrum of h is defined as the set of all nonzero distances with their
multiplicity:

Sp(h) =
{

(δ, µ(δ, h))
∣∣∣ δ ∈ {1, 1, . . . , br/2c}} .

The spectral polynomial of h is defined as:

s(h) =

br/2c∑
δ=1

µ(δ, h)xδ .

It is shown in [GJS16] that the knowledge, even partial, of the distance spectrum
of a sparse polynomial allows its complete recovery. It is also shown that the
statistical analysis of error patterns leading to failures of the QC-MDPC decoder
provides information on the secret key spectrum and eventually allows a key
recovery attack.

3.1 New Properties of the Distance Spectrum

Proposition 3. Let h ∈ F2[x]/(xr−1). We write hᵀ = φ−1(h) =
∑
i∈Supp(h) x

−i

for any h ∈ F2[x]/(xr−1), this operation corresponds to transposing the circulant
block. We have

hh
ᵀ

= |h|+ s(h) + s(h)
ᵀ

where the above product of polynomials is considered in Z[x]/(xr − 1).



6

Proof.

hh
ᵀ

=

 ∑
i∈Supp(h)

xi

 ∑
j∈Supp(h)

x−j


=

∑
i,j∈Supp(h)

i=j

xi−j +
∑

i,j∈Supp(h)
i>j

xi−j +
∑

i,j∈Supp(h)
i<j

xi−j

=
∑

i,j∈Supp(h)
i=j

xi−j +
∑

i,j∈Supp(h)
i<j

xmin(i−j,r+i−j) +
∑

i,j∈Supp(h)
i<j

xmax(i−j,r+i−j)

= |h|+ s(h) + s(h)
ᵀ

There is a one-to-one correspondence between the spectrum of a polynomial
h and the number of common bits between h and its δ-shift xδh

Corollary 1. For all h ∈ F2[x]/(xr − 1) and all δ ∈ {1, 2, . . . , br/2c}, we have

(i) µ(δ, h) =
∣∣h ? xδh∣∣;

(ii) µ(1,h) = µ(δ, φδ(h)).

Proof. Considering coefficients indices modulo r:

µ(δ, h) = (hh
ᵀ
)δ =

r−1∑
i=0

hihi−δ =
∣∣h ? xδh∣∣ .

The second identity easily derives from φδ(xh) = xδφδ(h) and the fact that φδ is
an isometry for the Hamming distance.

Remark 2. Sp(h) = Sp(x`h) for all ` ∈ {0, . . . , r − 1}.

Proposition 4.

Sp(h)→ Sp(φa(h))

(δ,m) 7→ (δ′,m)

with δ′ = min(aδ mod r, r − (aδ mod r)), is a bijection.

Proof.
φδ(hh

ᵀ
) = φδ(h)φδ(h)

ᵀ

3.2 Distance Spectrum Statistics

Definition 5. Let h ∈ F2[x]/(xr − 1). Viewed as a binary vector, we assume
h starts with 0 and ends with 1, using run-length encoding it can be uniquely
described as a sequence of strictly positive integers (z1, o1, z2, o2, . . . , zs, os): it
starts with z1 zeros followed by o1 ones, followed by z2 zeros, etc.

We will write h ∼ (z1, o1, z2, o2, . . . , zs, os).
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Proposition 5. If h ∼ (z1, o1, z2, o2, . . . , zs, os), then

µ(1,h) =

s∑
i=1

(oi − 1) .

Proof. Counting the multiplicity of δ = 1 in h is simply counting the number
of times there are two consecutive ones. In a block of oi consecutive ones, this
happens (oi − 1) times.

The following proposition reduces the problem of fixing a multiplicity in a
vector to splitting |h| ones into s nonempty segments interleaved with s nonempty
segments of zeroes of total length (r − |h|).

Proposition 6. Let h ∈ F2[x]/(xr − 1). Suppose h ∼ (z1, o1, z2, o2, . . . , zs, os),
then {

o1 + o2 + · · ·+ os = |h| ;

z1 + z2 + · · ·+ zs = r − |h| .

and
µ(1,h) = m if and only if s = |h| −m.

Corollary 2. There are exactly
(

d−1
d−m−1

)(
r−d−1
d−m−1

)
polynomials h ∈ F2[x]/(xr−1)

of weight d starting with a zero and ending with a one such that µ(1,h) = m.

Proof. The equivalence of the previous proposition gives s = d−m, and patterns
following the two other conditions are counted using the ”stars and bars” principle.

To count the number of general patterns h such that µ(1,h) = m, circular
shifts of patterns starting with a zero and ending with a one have to be considered.
However not all shifts are possible as we need to avoid counting several times the
same configuration. For example shifting h ∼ (z1, o1, z2, o2, . . . , zs, os) by (z1 +o1)
positions would give x−(z1+o1)h ∼ (z2, o2, . . . , zs, os, z1, o1).

For the sake of clarity, let us generalize our ∼ notation for any pattern h.

Definition 6. Let h ∈ F2[x]/(xr − 1) and let ` be the smallest integer such that
x−`h starts with a 0 and ends with a 1. We write

h ∼ (z1, o1, . . . , zs, os)
`

if and only if
x−`h ∼ (z1, o1, . . . , zs, os) .

Proposition 7. For any pattern h ∈ F2[x]/(xr − 1) of weight d such that
µ(1,h) = m, there is a unique representation

h ∼ (z1, o1, . . . , zs, os)
` with


s = d−m ;

o1 + · · ·+ os = d ;

z1 + · · ·+ zs = r − d ;

` ∈ {0, . . . , z1 + o1 − 1} .
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Corollary 3. For given integers m, 0 ≤ m < d, and δ, 1 ≤ δ ≤ br/2c, there are

Nm =

{
r if m = d− 1∑r−d−s+1
z1=1

∑d−s+1
o1=1 (z1 + o1)

(
d−o1−1
s−2

)(
r−d−z1−1

s−2
)

otherwise.

polynomials h ∈ F2[x]/(xr − 1) of weight d such that µ(δ, h) = m.

Proof. When δ = 1 the result derives from Proposition 7. The generalization
derives from the identity µ(1,h) = µ(δ, φδ(h)) of Corollary 1.

Corollary 4. We assume the independence of the multiplicities of the spectrum.
Let m be an integer such that 0 ≤ m < d, δ be such that 1 ≤ δ ≤ br/2c and
h ∈ F2[x]/(xr − 1),

πm = Pr[µ(δ, h) = m] =
Nm(
r
d

) ,
p≥m = Pr

[
max

δ∈{1,...,br/2c}
µ(δ, h) ≥ m

]
= 1− (1− πm)br/2c ,

and

p=m = Pr

[
max

δ∈{1,...,br/2c}
µ(δ, h) = m

]
= p≥m − p≥m+1 .

Example. We give in Table 1, for (r, d) = (11779, 71), the probabilities p=m to
reach a target mutiplicity m for any given distance, and the probablity πm for
the maximum over all distances to reach a specific value m. We observe that this
maximum is typically low. Though this assumption is false, we believe that the
approximation is good enough.

4 Weak Keys: Constructions and Properties

4.1 IND-CCA Security and Weak Keys for KEMs

BIKE uses the FO 6⊥ transformation analysed in [HHK17]. A key encapsulation
mechanism (Gen,Encaps,Decaps) is said to be δ-correct if

Pr[Decaps(sk, c) 6= K | (pk, sk)← Gen; (K, c)← Encaps(pk)] ≤ δ .

The left hand side term above is the average DFR over all messages and all
keys. If A is an IND-CCA adversary for any version of BIKE in the ROM, with
parameters such that the KEM is δ-correct, running in time T and issuing at
most qRO queries to the random oracle then

AdvIND-CCA
KEM (A) ≤ qRO · δ + ε.



9

m πm p≥m p=m

0 0.654 1.0 0.0
1 0.279 1.0 0.0
2 0.058 1.0 0.0
3 0.00779 1.0 0.0112
4 0.000762 0.989 0.7
5 5.79 · 10−5 0.289 0.268
6 3.55 · 10−6 0.0207 0.0196
7 1.81 · 10−7 0.00107 0.00102
8 7.85 · 10−9 4.62 · 10−5 4.45 · 10−5

9 2.93 · 10−10 1.72 · 10−6 1.67 · 10−6

10 9.5 · 10−12 5.6 · 10−8 5.44 · 10−8

11 2.71 · 10−13 1.6 · 10−9 1.56 · 10−9

12 6.87 · 10−15 4.05 · 10−11 3.96 · 10−11

13 1.55 · 10−16 9.15 · 10−13 8.96 · 10−13

14 3.15 · 10−18 1.85 · 10−14 1.82 · 10−14

Table 1. Numerical application of the multiplicity probabilities given in Corollary 4
for (r, d) = (11779, 71).

The term ε relates to the CPA security and is not our concern here. The scheme
is IND-CCA secure and ensures λ bits of security as long as for any adversary
A running in time T , AdvIND-CCA

KEM (A)/T ≤ 2−λ. Since qRO > T , it is enough
that δ ≤ 2−λ, up to a constant factor, to ensure that the CCA security is not
compromised by decoding failures.

The weak keys we consider first are mentioned in [DGK19] and relate to the
DFR, that is to the δ term in the advantage upper bound. If there exists a subset
of keys W of density τ such that the average DFR, say DFR(W), is such that
τ · DFR(W) > 2−λ then we also have δ ≥ τ · DFR(W) > 2−λ and the scheme
cannot claim λ bits of IND-CCA security.

In the sequel, we will analyze and generalize as much as possible those weak
keys, count them and compute their DFR using the extrapolation techniques of
[SV20]. Those estimates will allow us to discard the possibility of a vulnerability
stemming from them.

4.2 Type I

In [DGK19], weak keys are specified as (h0,h1) with

h0 = (1 + x+ . . .+ xf−1) + h′0

such that |h′0| = d− f and
∣∣(1 + x+ . . .+ xf−1) ? h′0

∣∣ = 0 for f in a range from
0 to 40. Authors observe that the correcting capability deteriorates as f grows.
Values as high as 40 always lead to a decoding failure in simulation.

The reason for this degradation comes from the fact that, compared to a
typical key, a weak key admits column pairs with a larger intersection in its private
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parity check matrix. This can be seen by computing the spectral polynomial of
h0:

s(h0) = h0h0
ᵀ

= (1 + x+ . . .+ xf−1)(1 + x−1 + . . .+ x−(f−1)) + s′

= f + (f − 1)x+ . . .+ xf−1 + s′

where s′ has nonnegative coefficients. So any column xjh0 has at least (f − 1)
intersections with its two neighbours xj±1h0, at least (f − 2) intersections with
xj±2h0, etc. The typical largest column intersection of BIKE keys is small: for
(r, d) = (11779, 71) less than half of the keys have a maximal column intersection
of 5 (see Table 1). More intersections between columns mean higher correlations
between their counters. In Figure 2 we measure the difference between type I
weak keys of parameter f = 20 and random keys. With a weak key, an erroneous
position tends to have lower counter when its neighbour is erroneous. Conversely,
always with a weak key, a non erroneous position tends to have higher counter
when its neighbour is erroneous. Intuitively, this means (1) that neighbours that
are both erroneous tend to hide each other and (2) that an erroneous position will
contaminate its correct neighbours. Both effects negatively impact the (threshold-
based) decoder (see Figure 1 and Remark 1). Indeed a higher counter on average
for correct positions implies that more of them are above the threshold and are
thus being flipped, adding errors. A lower counter for errors implies that more of
them are below the threshold and are thus left unchanged, not decreasing the
error weight.
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Figure 2. Typical key (horizontal lines); Weak key with f = 20 (filled)

As the decoding degradation is explained by the abnormal distribution of
multiplicities in the spectrum of a block, we can generalize the construction
of the weak keys. Using Remark 2 and Proposition 4, from one key defined as
in [DGK19] we derive many more with the same multiplicity distribution (up to
a permutation of the distance values in the spectrum).

Definition 7. We call weak key of Type I and parameter f , a key h = (h0,h1)
such that

hi = φδ(x
`(1 + x+ . . .+ xf−1) + h′i)
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for some i ∈ {0, 1}, ` ∈ {0, . . . , r − 1}, with |h′i| = d− f and |hi| = d.

Algorithm 2 gives a generation algorithm for Type I weak keys.

Algorithm 2 Type I weak keys generation

Require: r, d, f
Ensure: h ∈ F2[x]/(xr − 1) with |h| = d and f δ-consecutive positions

(p1, p2, . . . , pf )← (0, 1, . . . , f − 1)
Sample (d− f) values (pf+1, . . . , pd) in {f, . . . , r − 1}
δ

$← {1, . . . , br/2c}; ` $← {0, . . . , r − 1}
h← 0
for k ∈ {1, . . . , d} do

hδ(`+pk) ← 1 . Coordinate transformation to directly compute φδ(h)

return h

Proposition 8. We denote WI(f) the set of weak keys of Type I of parameter
f with blocks of weight d and length r.

|WI(f)| ≤ 2r
⌊r

2

⌋(r − f
d− f

)
.

In Definition 7, the constructed keys are such that µ(δ, hi) ≥ f−1, µ(2δ,hi) ≥
f − 2, . . . , µ((f − 1)δ,hi) ≥ 1.

4.3 Type II

Instead of having several high multiplicities at the same time, Type II weak keys
only increase the multiplicity of a single distance. We will see that they have a
lower impact on DFR for a given multiplicity, but a higher density.

Definition 8. We call weak key of Type II and parameter m, a key h = (h0, h1)
such that µ(δ, hi) = m for some i ∈ {0, 1} and some distance δ ∈ {1, . . . , br/2c}.

Thanks to Corollary 3 of §3.2 we may obtain an upper bound for the number of
type II weak keys.

Proposition 9. We denoteWII(m) the set of patterns h of weight d and length r
for which one distance at least of its spectrum has multiplicity m.

– If m = d− 1,

|WII(m)| ≤ 2r
⌊r

2

⌋
.

– If m < d− 1⇒ s > 1,

|WII(m)| ≤ 2
⌊r

2

⌋ r−d−s+1∑
z1=1

d−s+1∑
o1=1

(z1 + o1)

(
d− o1 − 1

s− 2

)(
r − d− z1 − 1

s− 2

)
.
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We only have an upper bound because, for a given m, the sets {h ∈ F2[x]/(xr−1) |
µ(δ,h) = m} are not disjoint when δ varies. But in practice, when m is above
the typical values (5 or 6), the intersections are very small and the bound is
very tight. Algorithm 3 derives from the combinatorial analysis of §3.2 and gives
a generation algorithm for Type II weak keys. Its correctness is guaranteed by
Proposition 7 and Corollary 1.

Algorithm 3 Type II weak keys generation

Require: r, d, m
Ensure: h ∈ F2[x]/(xr − 1) with |h| = d and ∃δ, µ(δ,h) = m
s← d−m
a0 ← 0; as ← d; b0 ← 0; bs ← r − d
Sample (s− 1) values (a1, . . . , as−1) in {1, . . . , d− 1}
Sample (s− 1) values (b1, . . . , bs−1) in {1, . . . , r − d− 1}
(o1, . . . , os)← (a1, . . . , as)− (a0, . . . , as−1) . Componentwise subtraction
(z1, . . . , zs)← (b1, . . . , bs)− (b0, . . . , bs−1)

δ
$← {1, . . . , br/2c}; ` $← {0, . . . , z1 + o1 − 1}

h← 0; i← −`
for j ∈ {1, . . . , s} do

i← i+ zj
for k ∈ {0, . . . , oj − 1} do

hδ(i+k) ← 1 . Coordinate transformation to directly compute φδ(h)

i← i+ oj

return h

Remark 3. With BIKE, the suggested decoders are parallel: the syndrome is only
computed once for each iteration and flips are chosen independently of the order
in which positions are considered in an iteration. Therefore the decoders are such
that

Decode(φδ(s), φδ(h0), φδ(h1)) = φδ(Decode(s,h0,h1)) .

This means that all the patterns with a forced multiplicity m in their spectrum
have exactly the same contribution to the DFR regardless of the distance δ such
that µ(δ, h) = m.

4.4 Type III

Weak keys of Type I and II have properties that concern only one block of the
parity check matrix. We can also define weak keys that have many intersection
between two columns of two different blocks.

Definition 9. We call weak key of Type III and parameter m, a key h = (h0, h1)
such that

∣∣h0 ? x
`h1

∣∣ = m for some ` ∈ {0, . . . , r − 1}.
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Proposition 10. We denote WIII(m) the set of weak keys of Type III of para-
meter m with blocks of weight d and length r.

|WIII(m)| ≤ r
(
d

m

)(
r − d
d−m

)

4.5 Statistics

In Figure 3 we give the density of all types of weak keys for (r, d) = (11 779, 71).
We denote for all m > 0 and for type ∈ {I, II, III}

τtype(m) =
|Wtype(m)|(

r
d

) .

We shift the type I curve (m = f−1) to align the multiplicities. As we will observe
in §5, the type I keys have a worse effect on decoding for a given multiplicity.
We observe also that for large multiplicity (roughly above f = 20 for type I, and
above m = 26 else) the density is small enough to make those keys harmless
(assuming a target of 128 bits of security), regardless of their impact on decoding.

log2 τI(m− 1)

log2 τII(m)

log2 τIII(m)

0 10 20 30 40

−300

−200

−100

0

mutiplicity m (m = f + 1 for type I)

Figure 3. Density of weak keys versus multiplicity (log scale) for (r, d) = (11 779, 71).
Type II keys are slightly denser but their count is very close to the count for type III.

5 DFR Estimations

To estimate the DFR for weak keys, we will rely on the following assumption
and methodology from [SV20].
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Assumption 1 For a given decoder D, and a given security level λ, the function
r 7→ log(DFRD,λ(r)) is decreasing and is concave if DFRD,λ(r) ≥ 2−λ.

The DFR for actual BIKE parameters is out of reach from simulation. Assump-
tion 1 gives an upper bound on the DFR by linearly extrapolating log(DFR(r))
from values measured for two different values r = r1 and r = r2 > r1.

We will admit Assumption 1 when keys are restricted to any of the weak keys
set we have identified. In other words, the high distance multiplicity will not
have a stronger effect when the block size gets larger, but will affect the decoder
similarely for any block size.

In Table 2 and Figure 4 we give simulation results for all the types of weak
keys previously defined with several values for f or m. As these results require a
lot of computation time, the Backflip algorithm used for decoding was limited
to 20 iterations (instead of 100 hence the estimated DFR over 2−128). As a
consequence, the estimated security given in the rightmost column of Table 2
has to be compared with the estimated security of Backflip-20, that is a number
of security bits λ ≈ 97 rather than 128 with the full decoder.

Type I Type II Type III

f (a) (b) (a)+(b) m (a) (b) (a)+(b) (a) (b) (a)+(b)

6 −17.50 −97.26 −114.77 8 −13.23 −96.93 −110.16 −13.40 −97.41 −110.81
8 −32.53 −97.30 −129.84 10 −22.88 −95.90 −118.78 −23.09 −96.50 −119.59

10 −47.64 −96.25 −143.90 12 −33.26 −97.87 −131.14 −33.52 −97.80 −131.32
12 −62.85 −97.08 −159.93 14 −44.30 −97.54 −141.85 −44.61 −97.73 −142.35
14 −78.15 −96.89 −175.05 16 −55.95 −97.52 −153.47 −56.31 −97.82 −154.13
16 −93.56 −94.67 −188.23 18 −68.15 −97.05 −165.20 −68.56 −97.11 −165.68
18 −109.07 −95.28 −204.35 20 −80.88 −97.06 −177.95 −81.35 −96.47 −177.83
20 −124.68 −92.50 −217.18 22 −94.12 −96.64 −190.76 −94.64 −97.53 −192.18
21 −132.53 −90.26 −222.79 24 −107.85 −95.50 −203.35 −108.43 −96.39 −204.83
22 −140.41 −88.25 −228.66 26 −122.05 −96.92 −218.97 −122.70 −94.57 −217.28
23 −148.31 −83.05 −231.37 28 −136.73 −92.53 −229.26 −137.45 −91.01 −228.46
24 −156.25 −77.86 −234.12 29 −144.25 −70.26 −214.51 −145.00 −76.15 −221.15
25 −164.22 −71.24 −235.46 30 −151.88 −33.22 −185.11 −152.66 −38.92 −191.58
26 −172.21 −63.82 −236.04 31 −159.63 −16.96 −176.60 −160.45 −19.76 −180.22
27 −180.24 −56.04 −236.29 32 −167.50 −11.68 −179.18 −168.35 −12.62 −180.97

Table 2. Contribution of different types of weak keys to the average DFR. DFR is
estimated with a 20 iterations Backflip algorithm on the Level 1 BIKE CCA parameters.
(a) = log2(density), (b) = log2(DFR), for random keys and (r, d) = (11 779, 71)
log2(DFR) = −λ = −97.655.

We can observe that Type I keys with f ≥ 10 and Type II and III with
m ≥ 14 have a negligible influence on the average DFR since their densities
multiplied by their DFR are well below 2−λ. For the other weak keys, with lower
mutiplicity, the estimated DFR for weak keys is within the confidence interval of
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Figure 4. DFR for type I, II, III: raw/weighted values above/below the dashed line.
Data from Table 2 for (r, d) = (11 779, 71), λ = 97.655. Density appears as watermark.

the average DFR obtained with random keys (using the methodology of [SV20]).
This means that for f < 10 and m < 14 we did not observe in our experiment a
measurable difference in the decoder’s DFR between weak keys and random keys.

While all types of weak keys that we established have at least a pair of
columns with (f − 1) (for Type I) or m (for Type II or III) intersections, some
differences explain the different DFR. In a weak key of type I and parameter f ,
a column xjhi has at least (f − 1) intersections with its two neighbours xj±δhi,
at least (f − 2) intersections with xj±2δhi, etc. In a weak key of type II and
parameter m, a column xjhi has exactly m intersections with its two neighbours
xj±δhi. In a weak key of type III and parameter m, a column xjh0 has exactly
m intersections with a single column xj

′
h1.

Data Accuracy: DFR estimations werre computed by extrapolation from two
points as described in [SV20]. The sample size for each point was between 109

and 1010 and the 95% confidence interval for each value is roughly one unit plus
or minus each entry of colums (b).

6 Filtering Weak Keys

Algorithm 4 provides a way of filtering weak keys defined in this paper. It filters
Type II weak keys (which include Type I weak keys) by computing the spectrum
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of each block and rejecting when a multiplicity is too high (over a threshold).
Type III weak keys are filtered by computing the intersection between every
column from the first block with every column from the second block. From the
statistics of §4 by setting a threshold to, say, 10, this algorithm rejects less than
one key out of several million.

Algorithm 4 Rejection algorithm for weak keys

Require: h0 = xj0,1 + xj0,2 + · · ·+ xj0,d , h1 = xj1,1 + xj1,2 + · · ·+ xj1,d , r, threshold
for i ∈ {0, 1} do

S← 0
for k ∈ {1, . . . , d} do

for ` ∈ {k + 1, . . . , d} do
δ ← d(ji,k, ji,`)
Sδ ← Sδ + 1

if maxδ∈{1,...,br/2c} Sδ ≥ threshold then
return Reject . Filter Type II

for k ∈ {1, . . . , d} do
for ` ∈ {1, . . . , d} do

if
∣∣h0 ? x

j0,k−j1,`h1

∣∣ ≥ threshold then
return Reject . Filter Type III

return Accept

7 Conclusion

We have highlighted the impact on the DFR of a high number of intersections
between two columns of the secret parity check matrix of a QC-MDPC. We
have defined three different types of weak keys. Type II includes Type I (with
m = f − 1), it has less impact on the DFR but it is denser. Type III is similar to
type II but implies two blocks instead of one.

We have seen that the impact of those weak keys on the average DFR
is negligible. Either, for large mutiplicities, because the density is too small.
Or, for smaller multiplicities, because the DFR does not increase significantly.
Throughout the range of multiplicities, the product of the density by the relative
DFR is always smaller, even much smaller, than the average DFR as estimated
in [SV20].

At this moment, the simulation for BIKE was completed for a single algorithm
and a single set of parameters. However, we believe that this reflects what would
happen in general: when the weak keys are dense enough, the impact on DFR is
measurable but not significant enough to impact the average DFR.

With the reserve that more simulation should be conducted to confirm our
observation, it seems that for any KEM based on QC-MDPC codes, equipped
by the proper semantically secure transform (as BIKE with [HHK17]), the weak
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keys studied in this paper have no impact on the average DFR and thus on the
IND-CCA claims that exist today.
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