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Abstract. The Schnorr signature is one of the representative signature schemes and its security was widely
discussed. In the random oracle model (ROM), it is provable from the DL assumption, whereas there is
a negative circumstantial evidence in the standard model. Fleischhacker, Jager and Schröder showed that
the tight security of the Schnorr signature is unprovable from a strong cryptographic assumption, such as
the One-More DL (OM-DL) assumption and the computational and decisional Diffie-Hellman assumption,
in the ROM via a generic reduction as long as the underlying cryptographic assumption holds. However,
it remains open whether or not the impossibility of the provable security of the Schnorr signature from a
strong assumption via a non-tight and reasonable reduction. In this paper, we show that the security of the
Schnorr signature is unprovable from the OM-DL assumption in the non-programmable ROM as long as
the OM-DL assumption holds. Our impossibility result is proven via a non-tight Turing reduction.

Keywords: Schnorr signature · Non-programmable random oracle model · Impossibility result · One-more
DL assumption

1 Introduction

The Schnorr signature is one of the representative signature schemes and its security was discussed in several
literatures. Pointcheval and Stern [PS00] showed that it is provable to be strongly existentially unforgeable
against the chosen message attack (seuf-cma) in the random oracle model (ROM) from the discrete logarithm
(DL) assumption. Abdalla, An, Bellare and Namprempre [AABN08] expands their result to cover other signa-
tures which can be obtained via the Fiat-Shamir transformation [FS87] as well as the Schnorr signature.

On the other hand, there is a negative circumstantial evidence for the provable security of the Schnorr sig-
nature in the standard model. The Schnorr signature is unprovable to be secure from the DL assumption in the
standard model via an algebraic reduction as long as the One-More DL (OM-DL) assumption holds [PV05].
The OM-DL assumption [BNPS03] is parameterized by a polynomial T . It intuitively states that any probabilis-
tic polynomial-time (PPT) adversary A cannot find the DLs (x1, x2, . . . , xT+1) of given T + 1 group elements
(y1, y2, . . . , yT+1), even when A adaptively obtains at most T DLs of arbitrary elements. We occasionally call
such a OM-DL assumption T-OM-DL assumption explicitly.

For the provable security of the Schnorr signature, the affirmative results were given in the ROM, whereas
the impossibility result was given in the standard model. The ROM is different from the standard model in the
feature that the hash value is a truly random string in the ROM. This feature enables a reduction in a security
proof to simulate the random oracle which involves the programming technique [PS00]. The programming
technique allows a reduction R, which is constructed in the security proof, to simulate the random oracle by
setting hash values itself. By employing this technique, many cryptographic schemes e.g. [Cor02,KK12] were
proven to be secure in the ROM. Especially, the forking lemma [PS00] can be realized by using this technique
to construct security proofs of several cryptographic schemes including the Schnorr signature.

On the theoretical cryptography, one of the interests is how one can relax the property of the ROM on prov-
ing the security of cryptographic schemes. For this purpose, intermediate security models between the ROM
and the standard model were proposed. One of these is a Non-programmable ROM (NPROM). The concept
of the NPROM was introduced by Nielsen [Nie02] to give the impossibility result on a non-interactive non-
committing encryption. They defined the notion in the simulation-based security model. Fischlin, Lehmann,
Ristenpart, Shrimpton, Stam and Tessaro [FLR+10] formalized the NPROM for the game-based security proof,

⋆ The preliminary version of this paper appeared in [FH17].



Table 1. The affirmative results on proving the security of the Schnorr signature.

Model Security Tight Assumption Forger
[AABN08,PS00] ROM seuf-cma DL
[FPS20] ROM euf-cma

√
DL AGM

[PV05] Standard ukb-cma
√

OM-DL

and discussed the security of a trapdoor-permutation-based key-encapsulation and a full-domain hash in the
NPROM. Most recently, Fischlin, Harasser and Janson [FHJ20] evaluated the security of several OR proofs
in this model. In the NPROM, the random oracle is dealt with the independent party, and any parties in the
security proof such as a reduction R and an adversary obtain hash values from the external random oracle as
well as the ROM. However, R is prohibited to simulate it, namely R cannot set the hash values and hence we
cannot use the programming technique.

The security of the Schnorr signature in the NPROM was also discussed. Fischlin and Fleischhacker [FF13]
first gave a negative circumstantial evidence. They showed that the Schnorr signature is unprovable to be euf-
cma from the DL assumption in the NPROM via a single-instance (SI) reduction as long as the OM-DL as-
sumption holds. Subsequently, their impossibility result was extended to cover other signatures or assump-
tions [FH16,FH18,ZCC+15]. In particular, Fukumitsu and Hasegawa [FH16] proved that the DL assumption
is incompatible with the euf-cma security of the Schnorr signature in the NPROM via a sequentially multi-
instance (SMI) reduction. In other words, the Schnorr signature may be unprovable to be euf-cma from the DL
assumption in the NPROM as long as the DL assumption holds. The SMI reduction is a reduction such that it
can invoke an adversary of the target cryptographic scheme polynomially many times, although it is prohibited
to invoke the clones of the adversary concurrently.

As described above, it seems to be hard for the Schnorr signature to prove the security under the DL
assumption without the programming technique. One can consider the possibility of security proofs with a
cryptographic assumption which is stronger than the DL assumption, such as the OM-DL assumption and the
computational and decisional Diffie-Hellman assumption [Bon98]. This question was also discussed and the
affirmative results are collected in Table 1. Paillier and Vergnaud [PV05] showed that the Schnorr signature
is provable to be unkeybreakable against the chosen-message attack (ukb-cma) from the OM-DL assumption
in the standard model. Although it was proven via a tight reduction, the ukb-cma is a weaker notion than
the ordinary euf-cma. Fuchsbauer, Plouviez and Seurin [FPS20] prove the euf-cma security of the Schnorr
signature in the ROM with the tight security by restricting a computational model of a forger to the algebraic
group model (AGM).

Not only the affirmative result, but also the negative circumstantial evidences were given in several lit-
eratures. Fleischhacker, Jager and Schröder [FJS14] showed that the Schnorr signature is unprovable to be
universally unforgeable against the key only attack (uuf-koa) from some cryptographic assumption, such as not
only the DL assumption, but also the OM-DL assumption, in the ROM via a tight and generic reduction as
long as the underlying cryptographic assumption holds. Recall that Paillier and Vergnaud [PV05] also gave the
impossibility result from the DL assumption via a tight and algebraic reduction. It should be noted that their im-
possibility results do not contradict to the affirmative results by [AABN08,PS00]. This is because the results by
[AABN08,PS00] considered a non-tight reduction for the security proofs, whereas these impossibility results
hold only for tight and some constrained reductions like generic or algebraic reductions. For the impossibility
result which concerns a non-tight reduction, Fukumitsu and Hasegawa [FH20] showed that the generalized OM
assumption [ZZC+14], which is a generalization of the OM-DL assumption, seems not to imply the euf-cma
security of several Fiat-Shamir-type signature schemes. Non-tight reductions are considered in their result,
however, they only considered a vanilla reduction which only can invoke a forger once and is prohibited to
rewind it. Eventually, it remains open whether or not the impossibility holds on the provable security of the
Schnorr signature in the NPROM via a non-restricted reduction. The impossibility results mentioned above are
collected in Table 2. Note that “only” in the Tight column means that the corresponding impossibility result
excludes a tight reduction only.

1.1 Our Contributions

In this paper, we aim to extend the impossibility results concerning the security of the Schnorr signature via a
non-restricted reduction. We give an impossibility result on the provable security of the Schnorr signature from
the OM-DL assumption in the NPROM via a Turing reduction. It is given by the following theorem.



Table 2. The impossibility results on proving the security of the Schnorr signature

Assumed reduction R Resulting meta-reductionM
Model Security Tight Assumption Type Assumption

[PV05] ROM uuf-koa only DL algebraic OM-DL
[GBL08] ROM uuf-koa only DL algebraic OM-DL
[Seu12] ROM uuf-koa only DL algebraic OM-DL
[FJS14] ROM uuf-koa only DL generic DL
[FJS14] ROM uuf-koa only OM-DL generic OM-DL
[ours] NPROM-PROM uuf-koa OM-DL Turing OM-DL
[FF13] NPROM-NPROM euf-cma DL SI OM-DL
[FH16] NPROM-NPROM suf-sma [BJLS16] DL SMI DL
[FH20] NPROM-NPROM euf-cma generalized OM Vanilla generalized OM
[PV05] Standard uuf-koa DL algebraic OM-DL

Theorem 4. (Informal) The Schnorr signature is unprovable to be uuf-koa from the OM-DL assumption in
the NPROM via a Turing reduction as long as the OM-DL assumption holds. The considered situations are
explained below.

Theorem 4 is proven intuitively as follows. Assume that there exists a PPT Turing reduction algorithm R
which solves the OM-DL problem by invoking a uuf-koa forger F of the Schnorr signature in the NPROM. We
shall construct a PPT meta-reduction algorithm [BV98]M which solves the OM-DL problem by running R.
This means that the OM-DL assumption is broken if there exists such a reduction R. The theorem follows from
the contraposition.M aims to make the assumed reduction R to solve the OM-DL problem by simulating F .

There are three matters to be considered in the proof of Theorem 4. The first one is that we focus on the uuf-
koa security [GMR88]. The uuf-koa security informally states that any PPT forger F cannot find a signature
σ of m on a given pair (pk,m) of a public key pk and a message m. In the uuf-koa security, a forger F makes
no signing oracle query. Since uuf-koa is weaker than euf-cma [GMR88], putting together with Theorem 4, the
impossibility of the ordinary euf-cma security also follows.

The second one is the hypothetical uuf-koa forger F̃ which is provided to R. R is assumed to solve the
OM-DL problem no matter what the description of F̃ is. We consider the specific uuf-koa forger F̃ which is
deterministic and makes only one query to the external random oracle. Since F̃ performs the key only attack,
F̃ makes no query to the signing oracle. And the hash value cannot be controlled by R because we consider the
NPROM setting. Therefore the behavior of F̃ is determined totally by the input (pk,m) which is given from
R when R invokes F̃ , and the output σ of F̃ is also fixed. Thus R cannot affect F̃ even if R rewinds F or
invokes it concurrently, and then the meta-reductionM can simulate the hypothetical uuf-koa forger F̃ against
the Turing reduction R. The way of simulating F̃ inM is described below.

The third one is the treatment of the random oracle. Recall that the reduction R in the NPROM is modeled
to obtain any hash value from the external random oracle to inhibit the programming by R. According to the
use of the random oracle by a meta-reductionM, the construction of conventional meta-reductions is divided
into the following two types. The former is thatM also obtains any hash value from the external random oracle
model. The impossibility results by [FF13,FH16,FH18,FH20] are categorized in this type. We refer to this type
of meta-reductions as the NPROM-NPROM model. The latter is thatM can simulate the random oracle. This
type is referred to as the NPROM-PROM model. In fact, Fischlin, Harasser, and Janson [FHJ20] succeeded
in the construction ofM by considering the NPROM-PROM model implicitly. In Theorem 4, we employ the
NPRO-PROM model to construct our meta-reduction. It remains open whether or not the impossibility result
holds in the NPROM-NPROM model via a non-restricted Turing reduction.

In the construction ofM,M aims to make the assumed reduction R to solve the OM-DL problem. Since R
may invoke a uuf-koa forger F with a pair (pk,m),M is required to simulate it. Namely,M needs to return a
valid signature σ of m under pk. In order to simulate F , we utilize the honest-verifier zero-knowledge property
of Schnorr signature and the feature of the NPROM-PROM model. The honest-verifier zero-knowledge prop-
erty derives from the underlying ID scheme of Schnorr signature and this property states that the distribution of
transcripts by the underlying ID scheme can be simulated without the secret key. By cooperating this property
with the programming of the random oracle by M, we can succeed in simulating the uuf-koa forger in the
meta-reduction.



1.2 Related Works

Pass [Pas11] gave the impossibility result of the provable security on the Schnorr ID scheme [Sch91] from
which the Schnorr signature is derived via the Fiat-Shamir transformation. They showed that the Schnorr ID
is unprovable to be secure against the impersonation under the active attack (imp-aa secure) from several
interactive assumptions such as the OM-DL assumption. Note that the imp-aa security of the Schnorr ID was
proven from the OM-DL assumption in [BP02]. The difference between these two results is due to the parameter
T of the OM-DL assumption. Bellare and Palacio [BP02] considered the case where T is equivalent to the
number of the access to the oracle in the imp-aa game, whereas Pass considered that T is asymptotically smaller
than the number of the oracle access. It is known that the T1-OM-DL assumption may be strictly weaker than
the T2-OM-DL assumption when T2 > T1 [BMV08]. These imply that the Schnorr ID may be unprovable to be
secure from the T -OM-DL assumption where the parameter T is strictly smaller than the number of the oracle
access.

Although they focused on the provable security of the Schnorr ID, their result seems not to directly elucidate
the question on the provable security of the Schnorr signature from the OM-DL assumption in the NPROM.
This is because the relationship between the security of the Schnorr signature in the NPROM and the security
of the Schnorr ID has not been known so far. Therefore, we consider this question by directly observing the
relationship between the security of the Schnorr signature and the OM-DL assumption.

1.3 Differences from Proceedings Version

The earlier version of this paper appeared in [FH17]. In the proceeding version, we showed the impossibility
result concerning the selectively unforgeability against the chosen message attack (suf-cma), whereas we show
in this paper the impossibility on the uuf-koa security. The difference is due to the new proof technique by
[FHJ20]. By employing the new proof technique and the NPROM-PROM model, we can strengthen the result
from the impossibility on the suf-cma security to the one on the uuf-koa security.

2 Preliminaries

For any natural number n, let Zn denote the residue ring Z/nZ. The notation x ∈U X means that an element x
is sampled uniformly at random from the finite set X. For a finite set X, let U(X) be the uniform distribution
over X. And, x ∈D X means that x is sampled according to the distribution D. We denote by x := y that x is
defined or substituted as y. For any algorithm A, we define by y ← A(x) that A takes x as input and then
outputs y. WhenA is probabilistic, we write y ← A(x; r) to denote thatA takes x as input with a randomness
r and then outputs y, and A(x) is the random variable on the fixed input x, where the probability is taken over
the internal coin flips of A. A function ϵ is negligible if for any polynomial ν, there exists a natural number
λ0 such that for any λ > λ0, ϵ(λ) < 1/ν(λ). For any ensembles
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Let L denote a key-value list. For any key string x ∈ {0, 1}∗, L[x] stands for the value of x. For a string x,

L[x] = ⊥ means that the value of x is not defined. For any list L, any algorithm or distributionD and any string
x, we denote by yfD L[x] the lazy sampling fromD, in a sense that y := L[x] if L[x] , ⊥, or y := L[x]← D(x)
otherwise.

2.1 Signature Scheme

A signature scheme Sig consists of a tuple (KGen,Sign,Ver) of three polynomial-time algorithms. KGen is
a probabilistic polynomial-time (PPT) key generator which takes a security parameter 1λ as input, and then
outputs a pair (sk, pk) of a secret key and a public key. Sign is a PPT signing algorithm which takes a key pair
(sk, pk) and a message m as input, and then outputs a signature σ. Ver is a deterministic verification algorithm
which takes a public key pk, a message m and a signature σ as input, and then outputs 1 if σ is a valid signature
on the message m under the public key pk.

We now introduce for Sig := (KGen,Sign,Ver), the notions of the existential unforgeability against the
chosen message attack (euf-cma) and the universal unforgeability against the key-only attack (uuf-koa). Let Qs

be a polynomial in a security parameter λ. The Qs-euf-cma game is defined in the following way: on a security
parameter λ,



EF Init A forger F is given a public key pk where a challenger C generates (sk, pk)← KGen(1λ).
Signing Oracle When F hands an i-th message mi to C, C replies its signature σi ← Sign(sk, pk,mi). Note

that F can access this phase at most Qs times.
EF Challenge When F finally returns a pair (m∗, σ∗), C outputs 1 if m∗ < {mi}Qs

i=1 and Ver(pk,m∗, σ∗) = 1.

In a similar manner, the uuf-koa game is defined in the following way: on a security parameter λ,

UF Init A forger F is given a public key pk and a message m where a challenger C generates (sk, pk) ←
KGen(1λ) and samples m.

UF Challenge When F finally returns a signature σ, C outputs 1 if Ver(pk,m, σ) = 1.

Let sec ∈ {Qs-euf-cma, uuf-koa}. Then F is said to win the sec game of Sig if C outputs 1 in the corresponding
game. The signature scheme Sig is said to be sec if any PPT forger F wins the corresponding game with a
negligible probability. The probability is taken over the internal coin flips of KGen and F , and the choices of
m only for the uuf-koa game. On the relationship between these two security notions, the following proposition
holds.

Proposition 1 ([GMR88]). Let Sig be a signature scheme, and let Qs be a polynomial in a security parameter
λ. If there exists a PPT forger algorithm which wins the uuf-koa game of Sig, then there exists a PPT forger
algorithm which wins the Qs-euf-cma game of Sig.

2.2 Cryptographic Assumption

We now introduce the One-More DL (OM-DL) assumption. Let ℓp be a polynomial in λ. We write GGen to
denote a PPT group parameter generator which takes a security parameter 1λ as input, and then outputs a group
parameter (G, p, g) of a group description G which is of prime order p such that p < 2ℓp with a generator g.
For any group parameter (G, p, g) ← GGen(1λ) and any element y ∈ G, an element x ∈ Zp is said to be the
discrete logarithm (DL) of y if it holds that y = gx in G.

Let T be a polynomial in λ. An algorithmA is said to solve the T-OM-DL problem if a challenger C outputs
1 in the T-OM-DL game that is defined in the following way: on a security parameter λ,

OM Init A is given a tuple (G, p, g, y1, y2, . . . , yT+1) whereC generates a group parameter (G, p, g)← GGen(1λ),
and then samples T + 1 distinct instances y1, . . . , yT+1 ∈U G.

DL Oracle A is allowed to access the DL oracle. Namely, when A sends a t-th query yt ∈ G, A receives the
DL xt ∈ Zp of yt.

OM Challenge WhenA eventually outputs a tuple (x1, x2, . . . , xT+1), C outputs 1 ifAmade at most T queries
to the DL oracle in DL Oracle phase, and for any 1 ≤ t ≤ T + 1, xt is the DL of yt.

The T-OM-DL assumption states that any PPT algorithm A solves the T -OM-DL problem with negligible
probability.

3 Impossibility on Schnorr Signature in NPROM

In this section, we show the impossibility of proving that the Schnorr signature is uuf-koa from the T -OM-DL
assumption in the NPROM.

3.1 Schnorr Signature

We now introduce the Schnorr signature [Sch91].

KGen(1λ) outputs (sk, pk), where (G, p, g)← GGen(1λ), sk ∈U Zp, y := gsk, and pk := (G, p, g, y).
Sign(sk, pk,m) outputs a signature σ := (cmt, res) on the message m ∈ {0, 1}ℓm , where ℓm is a polynomial in λ,

under the public key pk. The procedure is as follows:
(1) st ∈U Zp and then cmt := gst,
(2) cha := H(cmt,m), where H : {0, 1}∗ → {0, 1}2ℓp ,
(3) res := st + sk · cha.

Ver(pk,m, σ) outputs 1 if we have cmt = gresy−Hpk(cmt,m).

Note that we consider the hash function H : {0, 1}∗ → {0, 1}2ℓp instead of H′ : {0, 1}∗ → Zp. This is because
the uniform distribution over {0, 1}2ℓp can be seen as the one over Zp regardless of the order p by the following
lemma.



Fig. 1. The overview of a reduction R(G, p, g, y1, y2, . . . , yT+1)

Lemma 2. Let ℓp be a polynomial in λ, and let p < 2ℓp . Then, the distribution of z mod p for z ∈U {0, 1}2ℓp is
statistically close to U(Zp).

Proof. To prove this lemma, we use the following fact.

Lemma 3 ([FHIS14, Lemma 3]). Let {n1(λ)}λ and {n2(λ)}λ be two sequences of natural numbers. Assume
that n2/n1 is negligible in λ. If z ∈U Zn1 , then the distribution of z mod n2 is statistically close to the uniform
distribution over Zn2 .

Since p/22ℓp < 2ℓp/22ℓp = 1/2ℓp is negligible in λ, Lemma 3 implies that the distribution of z mod p for
z ∈U {0, 1}2

ℓp is statistically close to U(Zp). ⊓⊔

We note the notation H(cmt,m). The string cha is defined as the hash value of H(cmt,m). The domain of
the hash function H is defined as {0, 1}∗, and the input pair (cmt,m) is in G× {0, 1}ℓm . We consider that the hash
value H(cmt,m) is computed on the concatication of the binary representation of cmt ∈ G and m ∈ {0, 1}ℓm .

The Schnorr signature is known to have the honest-verifier zero knowledge property. Namely, there exists
a PPT simulator which takes a public key pk = (G, p, g, y) and a string cha ∈ {0, 1}2ℓp as input, and then return
(cmt, cha, res) such that Ver(pk,m, σ) = 1. Moreover, for any (pk, sk) ← KGen(1λ) and any m ∈ {0, 1}ℓm , the
distribution of (cmt, res) is identical to that of

(
cmt, res

)
← Sign(sk, pk,m) if the distribution of cha given to the

simulator coincides with that of H(cmt,m). Note that the above property follows in the random oracle model by
sampling a string cha uniformly at random from {0, 1}2ℓp , since H(cmt,m) is uniformly distributed over {0, 1}2ℓp
in the random oracle model.

3.2 Our Impossibility Result

Let T be a polynomial in λ. We now explain the situation where the Schnorr signature is provable to be uuf-koa
from the T-OM-DL assumption. This is defined by the manner of the black-box reduction such as [PS00,FF13].
Namely, there exist a non-negligible function ϵ and a PPT reduction algorithm R such that R solves the T -OM-
DL problem with probability ϵ by invoking a forger F which wins the uuf-koa game. Here, R is allowed to
access the DL oracle at most T times, since R aims to win the T -OM-DL game.

Let (G, p, g, y1, y2, . . . , yT+1) be a T -OM-DL instance given from the T -OM-DL challenger C to the reduc-
tion R. R aims to find the solution (x1, x2, . . . , xT+1) of the instance (G, p, g, y1, y2, . . . , yT+1). For this purpose,
R would access the DL oracle at most T times and invoke a uuf-koa forger F polynomially many times. R
plays a role of a T -OM-DL adversary in the T -OM-DL game, and plays a uuf-koa challenger in the uuf-koa
game simultaneously. On a t-th DL oracle query, R sends a t-th instance yt ∈ G to receive its DL xt ∈ Zp. On
the other hand, R invokes a forger F of the Schnorr signature. Suppose that R invokes F with a pair (pk,m).
Then, F returns a forgery σ, namely a valid signature σ of m.

We consider the security in the non-programmable random oracle model (NPROM) [FF13]. In the NPROM,
R and F should obtain hash values from the random oracle in a similar manner to the ordinary ROM. However,
the random oracle is dealt with an independent party from R and F in the security proof. This means that R is
prohibited to simulate the random oracle internally, whereas such a simulation is allowed in the ordinary ROM.
Hence, R can observe all random oracle queries by F , but it is not allowed to program these values.
R is allowed to concurrently and adaptively invokeF at most I times and rewind it polynomially many times

for some polynomial I.Rwould eventually behave as follows. On a T -OM-DL instance (G, p, g, y1, y2, . . . , yT+1)
to R, R would execute the following processes concurrently:



(1) st← G(pk,m); cmt := gst.
(2) query (cmt,m) to the random oracle.
(3) after obtaining the hash value cha of (cmt,m), find the secret

key sk of pk.
(4) res := st + sk · cha.
(5) return σ = (cmt, res).

Fig. 2. uuf-koa forger F̃G(pk,m), where pk = (G, p, g, y)

Access to DL oracle When R sends a t-th instance yt to the DL oracle, it receives its DL xt.
Request to obtain the hash value When R makes a i-th pair

(
cmt,m

)
to the random oracle oracle, it receives

its hash value cha.
Invocation of F When R invokes a k-th forger F (k) on

(
pkk,mk

)
, R obtains a forgery σk := (cmtk, resk) after

F (k) obtains the hash value chak of the pair (cmtk,mk).

Finally, R outputs the solution (x1, x2, . . . , xT+1) of (G, p, g, y1, y2, . . . , yT+1) with probability ϵ. The behavior of
R are depicted as in Fig. 1. Note that R may rewind F (k) just after F (k) queries to the random oracle. This is
because R can observe the queries and the responses of F (k) in the NPROM setting.

For the input pkk = (Gk, pk, gk, yk) to F from R, we assume only that the length of the order pk is ℓp, unlike
the key-preserving reduction [PV05,FH18] which requires that each pkk must coincide the T -OM-DL instance
given to R.

We now show the impossibility of the provable security of the Schnorr signature in the NPROM.

Theorem 4. Let ℓp, T , and I be polynomials in λ, and let ϵ be a non-negligible function. Assume that there
exist a PPT reduction algorithm R which solves the T-OM-DL problem with probability ϵ by invoking a forger
F at most I times such that F wins the uuf-koa game on a public key pkk = (Gk, pk, gk, yk) for pk < 2ℓp and
gk, yk ∈ Gk. Then there exists a PPT algorithmM which solves the T-OM-DL problem with probability ϵ−negl.

Proof. Assume that there exists a PPT Turing reduction algorithm R which solves the T -OM-DL problem
with probability ϵ by invoking a forger F that wins the uuf-koa game at most I times. As mentioned above,
R can find the solution (x1, . . . , xT+1) of a given T -OM-DL instance (G, p, g, y1, . . . , yT+1) with probability ϵ if
a forger F which can win the uuf-koa game is provided to R no matter what F executes. We first describe a
specific hypothetical uuf-koa forgers F̃ . We shall next construct a meta-reduction algorithmM which solves
the T -OM-DL problem with non-negligible probability by utilizing R and simulating F̃ .

Family
{
F̃G

}
G

of Hypothetical Forgers We consider a family of hypothetical uuf-koa forgers F̃G which are

parameterized by a deterministic random function G : {0, 1}∗ → {0, 1}2ℓp . F̃G aims to return a forgery σ =
(cmt, res) whose distribution is statistically close to that of Sign(sk, pk,m). The formal description of F̃G is
given in Fig 2. Since we now consider the security game in the NPROM, all hash values are supposed to be
obtained from the external random oracle. By Lemma 2, the distribution of st generated by the random function
G in the process (1) is statistically close to the uniform distribution over Zp. Then, we have that F generates
(cmt, cha, res) whose distribution is statistically close to that of Sign(sk, pk,m) by the description from F .
Thus F̃G can always win the uuf-koa game, and the distribution of the forgery σ is statistically close to that of
honestly generated signatures.

It should be noted that the process (3) seems not to be done in PPT, however, we will construct a meta-
reductionM which simulates the forger F̃G for R in PPT.

We fix a function G, and consider that the reduction R invokes the forger F̃G above at most I times. For any
1 ≤ k ≤ I, we explicitly denote by F̃ (k)

G the hypothetical forger F̃G which is invoked at k-th time. R may rewind
some k-th invocation F̃ (k)

G . However, F̃ (k)
G is deterministic, since st is fixed by G, any hash value is determined

by the random oracle, and pk has only one secret key. Namely, the behavior of F̃ (k)
G is identical for the same

inputs.



– sample random coins r and initialize LRO and LG. Then run R(G, p, g, y1, y2, . . . , yT+1; r). During that, proceed to the
following according to the R’s output:
Accessing DL oracle with yt ∈ G: forward yt to DL oracle, and then reply xt obtained from DL oracle.
Requesting the hash value of

(
cmt,m

)
: return chafU

(
{0,1}2ℓp

) LRO

[
cmt,m

]
.

Invoking a k-th forger F̃ (k)
G on

(
pkk,mk

)
: start to run the simulator of F̃ (k)

G , where the simulator is defined as follows:
(i) chak fU

(
{0,1}2ℓp

) LG
[
pkk,mk

]
.

(ii) resk fU
(
{0,1}2ℓp

) LG
[
pkk,mk, chak

]
.

(iii) cmtk := gresk
k y−chak

k , where pkk = (Gk, pk, gk, yk).
(iv) if LRO [cmtk,mk] < {chak,⊥}, then abort.
(v) LRO [cmtk,mk] := chak.

(vi) query (cmtk,mk) to the random oracle.
(vii) after obtaining the hash value chak, return σk := (cmtk, resk).

– When R outputs a tuple (x1, x2, . . . , xT+1), output it and then halt.

Fig. 3. Meta-reductionM(G, p, g, y1, y2, . . . , yT+1)

Meta-ReductionM We depict the meta-reductionM in Fig. 3. We explain the idea of constructing the meta-
reduction M. M aims to make R to solve the T -OM-DL problem. Recall that R can solve the T -OM-DL
problem with non-negligible probability ϵ if F̃G is provided. The main point to constructM is how to simulate
F̃G for R. We now fix a k-th invocation F̃ (k)

G on a pair
(
pkk,mk

)
. M is required to return a forgery, although

this task seems not to be in PPT in general. To overcome the difficulty, M utilizes the honest-verifier zero-
knowledge property of the Schnorr signature and the ability of simulating the random oracle which is allowed
in the NPROM-PROM model. In other words,M generates (cmtk, chak, resk) in the same way as the simulator
which is assumed in the honest-verifier zero-knowledge property does. In the forgery generation, the secret key
of pk is no longer needed. Then,M programs chak as the hash value of the pair (cmtk,mk). Thus,M succeeds
in simulating F̃ (k)

G by returning σk = (cmtk, resk) as a forgery.
We now show thatM can solve the T -OM-DL problem by ensuring thatM correctly simulates F̃ (k)

G . This
is proven by the following lemmas.

Lemma 5. We fix 1 ≤ k ≤ I. Assume that the simulator of F̃ (k)
G byM does not abort. The distribution of the

output by the simulator of F̃ (k)
G byM is identical to the one by the hypothetical forger F̃ (k)

G , which is given a
public key pkk = (Gk, pk, gk, yk) and a message mk, if pk < 2ℓp .

Proof. We fix an index k. Assume that the simulator of F̃ (k)
G by M does not abort. First, chak of both the

simulator and the hypothetical forger are uniformly distributed over {0, 1}2ℓp , since chak is obtained from the
random oracle in both case.

We now consider a map τh,a which maps x ∈ Zpk to
(
gx

k · h, x + a
)

for any h ∈ Gk and any a ∈ Zpk .
Observe that τh,a is bijective, since gk is a generator of Gk. Lemma 2 and pk < 2ℓp imply that for any h ∈ Gk

and any a ∈ Zpk , the distribution of τh,a(x mod pk) is statistically close to U
(
Gk × Zpk

)
, if x ∈U {0, 1}2ℓp .

Then, (cmtk, resk) of the simulator can be represented as τy−chak
k ,0(resk), whereas the one of the hypothetical

forger can be represented as τek ,skk ·chak (stk), where ek is the identity of Gk. It follows that the distribution of
(cmtk, resk) of the simulator coincides with that of the hypothetical forger. Thus, the distributions of the output
(mk, cmtk, chak, resk) by both forgers are identical. ⊓⊔

Lemma 6. For any 1 ≤ k ≤ I, the simulator of F̃ (k)
G , which is given pkk = (Gk, pk, gk, yk) and mk, aborts with

probability 2/pk + negl.



Proof. We fix an index k. The simulator F̃ (k)
G aborts when the event LRO [cmtk,mk] < {chak,⊥} occurs. The

event LRO [cmtk,mk] < {chak,⊥} means that the hash value of (cmtk,mk) is already defined as the different
value from chak before the process (iv) of the simulator of F̃ (k)

G . One can consider the two cases that the hash
value of (cmtk,mk) is defined before the process (iv).

The first one is that R finds cmtk and then makes the query (cmtk,mk) to the random oracle before cmtk
is output byM. As estimated in the proof of Lemma 5, the distribution of cmtk set by the simulator at (iii) is
statistically close to U(Gk). This implies that the probability that R can find cmtk before it is given fromM is
1/pk + negl.

The second one is that for some k′ < k, the simulator of F̃ (k′)
G defines it at (v). We focus on the situation

where R invokes F̃ (k′)
G with

(
pkk,mk

)
=

(
pkk′ ,mk′

)
. Observe that (cmtk′ , chak′ , resk′ ) = (cmtk, chak, resk), be-

cause chak′ , chak, resk′ and resk are lazily sampled. This implies that chak is already defined as the hash value
of (cmtk,mk). Thus, the simulator of F̃ (k)

G does not abort. We next focus on the opposite situation. Namely, R
invokes F̃ (k)

G with
(
pkk,mk

)
,

(
pkk′ ,mk′

)
. In this situation, the simulator of F̃ (k)

G aborts if the binary represen-
tation of (cmtk,mk) coincides with that of (cmtk′ ,mk′ ). Since the distribution of cmtk chosen in the process (iii)
is statistically close to U(Gk) for any invocation, the simulator of F̃ (k)

G sets cmtk so that the representation of
cmtk′ coincides with cmtk with the probability at most 1/pk + negl. Thus, M aborts in the process (iv) with
2/pk + negl for the k-th invocation F̃ (k)

G . ⊓⊔

It follows from Lemma 5 thatM can make R to return the solution of the given T -OM-DL instance, ifM
does not abort in the simulation of F̃ (k)

G . This is because the behavior of the simulator of F̃ (k)
G byM is identical

to that of the hypothetical one F̃ (k)
G . On the other hand, for each 1 ≤ k ≤ I, Lemma 6 and pk < 2ℓp imply

that M aborts with the probability at most 2/pk + negl > 2/2ℓp + negl on the simulation of F̃ (k)
G . By letting

P = 2/2ℓp + negl, the abort probability ofM is evaluated by 1−∏I
k=1

(
1 − (

2/pk + negl
))
< 1−∏I

k=1 (1 − P) =
1 − (1 − P)I . By the binomial expansion, we have

1 − (1 − P)I = 1 − 1 −
I∑

k=1

(
I
k

)
(−P)k

= −
⌊I/2⌋∑
k=1

((
I

2k − 1

)
(−P)2k−1 +

(
I

2k

)
(−P)2k

)
− (−P)I · (I mod 2)

=

⌊I/2⌋∑
k=1

((
I

2k − 1

)
P2k−1 −

(
I

2k

)
P2k

)
+ PI · (I mod 2)

≤
⌊I/2⌋∑
k=1

(
I

2k − 1

)
P2k−1 + PI

=

⌊I/2⌋∑
k=1

I!
(2k − 1)!(I − 2k + 1)!

P2k−1 + PI

=

⌊I/2⌋∑
k=1

∏2k−1
i=1 (I − 2k + 1 + i)

(2k − 1)!
P2k−1 + PI

≤
⌊I/2⌋∑
k=1

2k−1∏
i=1

I

P2k−1 + PI

=

⌊I/2⌋∑
k=1

(IP)2k−1 + PI .

Since I is polynomial and P is negligible, it holds that 0 < IP < 1. Therefore, we have

⌊I/2⌋∑
k=1

(IP)2k−1 + PI ≤
⌊I/2⌋∑
k=1

IP + PI ≤ I2

2
P + PI

Then the success probability ofM is at least ϵ−
(

I2

2 P + PI
)
= ϵ−negl. Observe thatM runs in polynomial-time.

Thus, the PPT algorithmM can solve the T -OM-DL game with probability ϵ − negl. ⊓⊔

The following is shown by Theorem 4 and Proposition 1.



Corollary 7. Let ℓp, T , I, and Qs be polynomials in λ, and let ϵ be a non-negligible function. Assume that there
exist a PPT reduction algorithm R which solves the T-OM-DL problem with probability ϵ by invoking a forger
F at most I times such that F wins the Qs-euf-cma game on a public key pkk = (Gk, pk, gk, yk) for pk < 2ℓp
and gk, yk ∈ Gk. Then there exists a PPT algorithm M which solves the T-OM-DL problem with probability
ϵ − negl.

Proof. Assume that there exist a PPT reduction algorithm R which solves the T -OM-DL problem with proba-
bility ϵ by invoking a forger F that wins the Qs-euf-cma game at most I times. Proposition 1 implies that R can
solve the T -OM-DL problem with probability ϵ even when a forger F that wins the uuf-koa game is provided.
Then it follows from Theorem 4 the construction of a PPT algorithmM which solves the T -OM-DL problem
with probability ϵ − negl. ⊓⊔

4 Concluding Remarks

In this paper, we have shown that the Schnorr signature is unprovable to be universally unforgeable against the
key-only attack (uuf-koa) from the OM-DL assumption in the NPROM via a Turing reduction as long as the
OM-DL assumption holds. We have also discussed that our impossibility result for the uuf-koa security implies
the impossibility of the ordinary euf-cma security.

Our result is shown by using the meta-reduction technique [BV98]. Namely, we have constructed a meta-
reduction M which solves the OM-DL problem with the help of an assumed reduction R which solves the
OM-DL problem with black-box access to a uuf-koa forger F of the Schnorr signature. In the proof of the
result, we employ the NPROM-PROM model [FHJ20] which allows a meta-reduction to simulate the external
random oracle. It remains open whether or not the same impossibility result holds in other model such as the
conventional NPROM-NPROM model.
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[Cor02] Jean-Sébastien Coron. Optimal security proofs for pss and other signature schemes. In Lars R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 272–287. Springer, Heidelberg, 2002.

[FF13] Marc Fischlin and Nils Fleischhacker. Limitations of the meta-reduction technique: The case of Schnorr signa-
tures. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
444–460. Springer, Heidelberg, 2013.

[FH16] Masayuki Fukumitsu and Shingo Hasegawa. Impossibility on the provable security of the Fiat-Shamir-type
signatures in the non-programmable random oracle model. In M. Bishop and A.C.A. Nascimento, editors, ISC
2016, volume 9866 of LNCS, pages 389–407. Springer, Heidelberg, 2016.



[FH17] Masayuki Fukumitsu and Shingo Hasegawa. Impossibility of the provable security of the Schnorr signature
from the One-More DL assumption in the non-programmable random oracle model. In Tatsuaki Okamoto,
Yong Yu, Man Ho Au, and Yannan Li, editors, ProvSec 2017, volume 10592 of LNCS, pages 201–218. Springer,
Heidelberg, 2017.

[FH18] Masayuki Fukumitsu and Hasegawa. Black-box separations on Fiat-Shamir-type signatures in the non-
programmable random oracle model. IEICE Trans. Fundamentals, Special Section on Cryptography and Infor-
mation Security, E101-A(1):77–87, 2018.

[FH20] Masayuki Fukumitsu and Shingo Hasegawa. One-more assumptions do not help Fiat-Shamir-type signature
schemes in nprom. In Stanislaw Jarecki, editor, Topics in Cryptology – CT-RSA 2020, pages 586–609, Cham,
2020. Springer International Publishing.

[FHIS14] Masayuki Fukumitsu, Shingo Hasegawa, Shuji Isobe, and Hiroki Shizuya. The RSA group is adaptive pseudo-
free under the RSA assumption. IEICE Trans. Fundamentals, Special Section on Cryptography and Information
Security, E97-A(1):200–214, 2014.

[FHJ20] Marc Fischlin, Patrick Harasser, and Christian Janson. Signatures from sequential-or proofs. In Anne Canteaut
and Yuval Ishai, editors, Advances in Cryptology – EUROCRYPT 2020, pages 212–244, Cham, 2020. Springer
International Publishing.

[FJS14] Nils Fleischhacker, Tibor Jager, and Dominique Schröder. On tight security proofs for Schnorr signatures. In
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