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Abstract

In this paper, we investigate the use of machine learning classifiers to assess block

cipher security from the perspective of differential cryptanalysis. The models

are trained using the general block cipher features, making them generalizable

to an entire class of ciphers. The features include the number of rounds, per-

mutation pattern, and truncated differences whereas security labels are based

on the number of differentially active substitution boxes. Prediction accuracy is

further optimized by investigating the different ways of representing the cipher

features in the dataset. Machine learning experiments involving six classifiers

(linear and nonlinear) were performed on a simplified generalized Feistel cipher

as a proof-of-concept, achieving a prediction accuracy of up to 95%. When pre-

dicting the security of unseen cipher variants, prediction accuracy of up to 77%

was obtained. Our findings show that nonlinear classifiers outperform linear

classifiers for the prediction task due to the nonlinear nature of block ciphers.

In addition, results also indicate the feasibility of using the proposed approach

in assessing block cipher security or as machine learning distinguishers1.
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1. Introduction

Block ciphers are symmetric-key encryption algorithms, using a single secret

key for both encryption and decryption tasks. A plaintext undergoes multiple

rounds of key-dependent transformations to produce the resulting ciphertext.

Block ciphers are designed using a variety of well-studied and security proven5

structures such as substitution-permutation networks (SPN), generalized Feistel

structure (GFS) and Addition-Rotation-XOR (ARX). Recently, the design of

compact lightweight block ciphers has become the focus of the cryptographic

community due to the prevalence of highly constrained Internet of things de-

vices [2, 3]. Block cipher security is usually evaluated on a trial-by-fire basis,10

whereby newer ciphers will be subjected to various attacks by cryptanalysts to

ascertain their security levels. Resistance against differential cryptanalysis has

become one of the de facto requirements when it comes to block cipher secu-

rity. Cryptanalysts use searching algorithms [4] or mathematical solvers [5] to

identify differential trails that occur with sufficiently high probability. These15

trails are then used as distinguishers in a key recovery attack. However, these

algorithms or solvers become more computationally intensive as the number of

rounds or block size increases.

As an alternative, researchers have explored the use of machine learning mod-

els for cryptanalytic purposes. Early applications mainly consist of training ma-20

chine learning models to emulate the behaviour of ciphers given the assumption

of a fixed secret key. For example in [6], a neural network was trained to encrypt

data as simplified DES (SDES). Then, the cryptanalyst would be able to ex-

tract secret key information given plaintext-ciphertext pairs. A similar attempt

using neural networks was used to perform known plaintext attacks on DES25

and Triple-DES in [7], whereby the neural networks were capable of decrypting

ciphertexts without knowledge of the secret key. However, this approach has

limited practicality as the neural networks were trained using plaintexts and

ciphertexts corresponding to a specific key. If a different key is used, the model

would have to be retrained using a separate dataset.30
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The same approach was used to cryptanalyze lightweight block ciphers, FeW

and PRESENT [8, 9] with limited success. Neural networks were trained, vali-

dated and tested using plaintexts, ciphertexts and intermediate round data all

generated using the same encryption key. The trained networks were unable to

learn the behaviour of the block ciphers, achieving an accuracy of approximately35

50%. Generally, the use of machine learning algorithms to cryptanalyze ciphers

in a straightforward manner were only successful in older, classical ciphers. As

an example, [10] trained a neural network to extract the encryption keys of Cae-

sar, Vignere poly-alphabetic and substitution ciphers. Generative adversarial

networks were also used to crack these classical ciphers in [11]. Both approaches40

achieved accuracies of up to 100%.

A more practical approach is the use of machine learning algorithms as

cryptographic distinguishers. The classification capabilities of machine learning

algorithms have been used to identify cryptographic algorithms from ciphertexts

[12]. Classifiers were trained using known ciphertexts generated from a set of45

five commonly used cryptographic algorithms. A high identification rate of 90%

was achieved if the same key was used for both training and testing ciphertexts.

Another approach compared the performance of five different machine learning

algorithms when distinguishing encrypted from unencrypted traffic [13]. They

found that the C4.5 decision tree-based classification algorithm performed the50

best, achieving a detection rate of up to 97.2%.

In [14], a neural network was used to distinguish between right and wrong

subkey guesses, similar to how a differential or linear distinguisher would be

used for key recovery in traditional cryptanalysis. When the neural network is

trained using plaintext-ciphertext pairs generated from a wrong key guess, it55

will produce random outputs that greatly differ from a cipher’s actual outputs,

whereas training using data generated from a correct key guess will lead to

outputs with fewer errors. This allows a cryptanalyst to distinguish between

right and wrong key guesses. The approach was tested on a hypothetical Feistel

cipher as a proof of concept. [15] later introduced an attack on Speck32/6460

using deep learning. A neural network model was trained using input and
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output differences corresponding to random keys, then used as a distinguisher.

The proposed method outperforms existing differential attacks in terms of time

complexity. However, it is unknown if the inclusion of other block cipher features

could make the attack more efficient.65

So far, the machine learning approaches are cipher-specific rather than being

generalizable. To overcome this problem, we propose a generalizable approach

to assess a block cipher’s resistance against differential cryptanalysis using ma-

chine learning2. Rather than predicting or extracting key information, we in-

vestigate the capability of linear and nonlinear machine learning classifiers in70

determining if a block cipher is secure or insecure based on the number of active

s-boxes. These classifiers are trained using various cipher features that include

truncated input and output differences, permutation pattern, and the number

of rounds. Data was generated using a modified Matsui’s branch-and-bound al-

gorithm [4]. Apart from determining the most suitable machine learning model75

and hyperparameters for the security prediction task, we also look into how data

representation can affect prediction accuracy. Experiments are performed on a

4-branch GFS cipher, making the proposed approach generalizable to an entire

class of block ciphers rather than a specific one. An in-depth comparison of six

classifiers (linear and nonlinear) is performed. Our findings show that nonlin-80

ear classifiers outperform linear classifiers due to the nonlinear transformation

involved in block ciphers, achieving a prediction accuracy of up to 95% when

predicting seen cipher variants and up to 77% when predicting unseen cipher

variants.

The rest of this paper is structured as follows: Section 2 introduces prelim-85

inary information required to understand the proposed work. Section 3 then

provides the detailed steps and experimental setup involved in the proposed

work. This is followed by experimental results in Section 3. Section 4 provides

a discussion of our findings and its significance. The paper is concluded in

2Supplementary code for this paper is available at https://github.com/trlee/

ml-block-cipher
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Section 5 which includes some future directions of this work.90

2. Preliminaries

2.1. Differential Cryptanalysis and Active S-boxes

∆X = X ′ ⊕X” (1)

∆X = [∆X0,∆X1, ...,∆Xi−1], (2)

where X ′ and X” are two individual plaintexts. An output difference is sim-

ilarly defined where Y ′ and Y ′′ are the corresponding ciphertexts. The pair,

{∆X,∆Y } is known as a differential pair. For an ideal cipher, given any partic-95

ular input difference ∆X, the probability of any particular ∆Y occurring will

be exactly 1
2b

where b is the block size. A successful differential attack require

a differential, ∆X → ∆Y with a probability far greater than 1
2b

.

An s-box is defined to be differentially active if its input is a non-zero dif-

ference. Rather than computing the concrete differential probability for a given100

differential pair, resistance against differential cryptanalysis can be estimated

by calculating the number of active s-boxes. The estimated probability that

input differences will be mapped to output differences can then be calculated

based on the s-box’s differential distribution table. The mapping of differences

holds with a certain probability, 2−p. By taking into consideration the best-case105

(from the attacker’s perspective) s-box differential probability, a block cipher is

considered to be secure if 2AS×p ≥ 2b, where AS denotes the total number of

active s-boxes. Figure 1 depicts an example of s-box activation for a 4-branch

GFS cipher, whereby the left s-box is active.

An interesting property of differential cryptanalysis that we leverage upon110

in this work is the effect of round keys, rki being negated through the use of

differences. Any random key can be used to generate differential pairs, thus the

resulting dataset for machine learning experiments is not catered to a specific

secret key. In addition, we are also able to generate an exhaustive dataset by
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Figure 1: 1 round of a 4-branch GFS with 4-bit s-box

taking advantage of truncated differentials [16]. We can truncate the input dif-115

ferences based on the size of the s-box. For example, plaintext or ciphertext

differences for a b-bit block cipher with s-bit s-boxes can be truncated to t-bit

differences, where (t = b
s ). Thus, each bit in the truncated difference denotes a

non-zero difference corresponding to each s-bit word in the plaintext (or cipher-

text) block. An example of how a differential pair (∆X,∆Y ) is mapped to a120

truncated differential pair (∆X̂,∆Ŷ ) is shown in Figure 1. However, the use of

such a truncated difference would only be applicable to block ciphers that use

a word-based permutation rather than bitwise permutation.

2.2. Matsui’s Branch-and-Bound Differential Search

Matsui’s branch-and-bound is an algorithm used for deriving the best differ-125

ential or linear paths for differential and linear cryptanalysis. It is applicable to

block ciphers that have s-box-like tables. The algorithm goes through all possi-

ble iterations of the differential paths, then prunes paths that have probabilities
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less than Bn. Bn is defined as the best probability the running algorithm has

found so far. An initial value has to be set for Bn and it should be as close130

to the actual probability Bn as possible to eliminate more non-promising paths

earlier on. The Bn is constantly updated according to the best probability of

the paths found so far which effectively reduces the potential search space. The

process is repeated until the all the possible paths with respect to the branching

rules and bounding criteria have been enumerated.135

In the proposed work, we use a variant of Matsui’s algorithm as described

in [4]. We further simplify the algorithm as we only need the number of differ-

entially active s-boxes rather than the concrete differential probability for our

experiments. This greatly increases the speed of the search, which allows us

to remove all bounding restrictions to generate large datasets for training and140

testing purposes.

2.3. 4-branch GFS Cipher

As a proof-of-concept, our proposed work is applied to a 4-branch GFS

cipher, similar to the one in Figure 1. By using a GFS cipher with a word-

based permutation, we can use truncated differences in our experiments. The145

4-branch GFS effectively represents ultralightweight block ciphers with 16- or

32-bit blocks depending on whether 4-bit or 8-bit s-boxes are used. Regardless,

experiments can be conducted under the assumption that both the 4-bit and

8-bit s-box would have a best differential probability of 2−2. For example,

PRESENT and AES s-boxes both have the best differential probability of 2−2.150

2.4. Machine Learning Classifiers

The proposed work investigates the performance of linear and nonlinear

classifiers when predicting the security of block ciphers. Essentially, the goal is

to have the classifiers learn the best hypothesis function (i.e. linear or nonlinear)

to segregate the secure and insecure classes. A machine learning model refers155

to a trained classifier with specific features, machine learning algorithm and

hyperparameters. This section describes the three linear and nonlinear classifiers

used in our experiments.
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Figure 2: Linear Classification Problem

2.4.1. Linear Classifiers

As its name suggests, linear classifiers solve classification tasks based on a160

linear combination of features. In Figure 2 where X and Y are sample classes,

the goal of linear classifiers is to segregate, as accurately as possible, the training

data into their respective classes using a linear function (i.e., a straight line).

We utilize three linear classifiers in our experiments: Tensorflow (TF) Linear

classifier, and sklearn’s logistic regression and single-layer perceptron.165

Linear models predicts the probability of a discrete value/label, otherwise

known as class, given a set of inputs. For the context of binary classification, the

possible labels for the problem will only be 0 or 1. The linear model computes

the input features with weights and bias. The weights indicate the direction of

the correlation between the input features and the output label, whereas the170

bias acts as the offset in determining the final value of the label, should its

conditions be fulfilled.

Logistic regression models the probabilities of an observation belonging

to each class using linear functions and is generally considered more robust than

regular linear classifiers. Unlike a linear function used by a linear classifier, the175

logistic regression model uses what is referred to as a sigmoid function (Fig. 3),
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Figure 3: Sigmoid Function

and maps any real value of a problem into another value between the boundary

of 0 and 1. For the case of machine learning, sigmoid functions are typically

used for mapping the predictions of a model to probabilities. This structure

is shared by both TF’s linear classifier and sklearn’s logistic regression180

models. Both models differ in terms of how the data is represented and used for

training. In TF’s linear classifier, training samples are pooled from the training

dataset randomly in batches, and steps are defined by the total number of

batch sampling that has to be performed before moving to the next epoch while

sklearn’s logistic regression model fits the data directly and trains its model185

throughout the epochs.

Single-layer perceptron is a linear classifier based on a threshold function

f(x) = w(x) + b, (3)

where f(x) is the output value, x is a real-valued input vector, w is the weight

of the vector and b is the bias. When it comes to a binary classification task,

the threshold function classifies x as either a positive or negative instance, with

the weight and vector being the primary variable in determining the label, and190

bias is an additional paramter that can possibly adjust the label.

All aforementioned linear classifiers are tuned with respect to the following

hyperparameters for optimal performance. The range of hyperparameter values
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Figure 4: Nonlinear Classification Problem

that were tested is also denoted:

• Stopgap (Value range: [250,1000]): The total number of iterations that195

the model needs to undergo with no improvements before stopping the

training process early.

• Epochs (Value range: [500,1000]): The total number of passes the model

has to undergo throughout the training data batches.

2.4.2. Nonlinear Classifiers200

Not all data can be segregated naturally using a straight line as shown in

Figure 2. A nonlinear classifier allows the machine learning model to learn a

nonlinear function or decision boundary to best separate the training data into

two classes. The nonlinear classifiers used in this study are sklearn’s k-nearest

neighbors, decision tree and multi-layer perceptron.205

k-nearest neighbor (KNN) is a type of instance-based learning that clas-

sifies new data based on majority voting of k number of training instances closest

to it. Hyperparameters that can be tuned to optimize performance include:
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• NN (Value range: {2,3,4}): The value of k as explained earlier. NN refers

to the number of neighbors to be used for the k-neighbors query.210

• Distance: This is measure used to determine the distance between two

neighbours. The default Minkowski distance is used for all experiments.

• Algo (kd tree or ball tree): Algorithm used to compute the nearest neigh-

bors for the model.

• LeafS (Value range: {20,40}): Leaf size passed to the KD or Ball Tree,215

which can affect the speed of the tree construction and query, as well as

memory required.

Decision tree classifiers are used to predict a class or value of the target

variable by learning simple decision rules inferred from the training data. The

model operates on the basis of “branching” from one decision node to another220

one deeper down until it finally reaches its desired output. Its parameters in-

clude:

• Split : The strategy used to choose the split on each node, which can be

either best or random.

• LeafN (Value range: [1000,5000] or unlimited): Maximum number of leaf225

nodes.

• Sample Split : Minimum amount of samples required to split an internal

node. A default value of 2 is used.

Multi-layer perceptron (MLP) is a derivation of the perceptron model

as described in Section 2.4.1, with added functions such as error functions and230

backpropagation to further improve performance of the model. The hyperpa-

rameters that are tuned to optimize the model are as follows:

• Stopgap (Value range: [250,1000])

• Epochs (Value range: [500,1000])
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• Activation: The function that determines the outputs of the nodes. The235

default rectified linear function is used for all experiments.

• Hidden layers (Value range: [2,4]): The number of hidden layers of the

neural network.

• Nodes per hidden layer : The number of nodes per hidden layer. We use a

default value of 100 nodes per hidden layer for all experiments.240

3. Experimental Setup

3.1. Dataset Generation

Each sample in the dataset used to train the machine learning classifiers

consist of block cipher-related features. They are labelled as secure or insecure

depending on the number of active s-boxes associated with the particular sam-245

ple. For the target 4-branch GFS cipher, the features include the truncated

input difference X̂, truncated output difference Ŷ , number of rounds, r and

a word-based permutation pattern, P , X̂, Ŷ and r are features shared by any

block cipher whereas P is commonly used in GFS ciphers. Each training sample

is essentially describes a truncated differential trail from X̂ to Ŷ for r number250

of rounds that goes through a GFS cipher with P permutation pattern. In our

experiments, we use all 4! = 24 possible permutation patterns for a 4-branch

GFS. This also implies that there are 24 possible variants of the GFS cipher.

Each cipher variant can generate a large set of data samples which consists of

its truncated differential paths for different number of rounds.255

We utilize the branch-and-bound algorithm described in Section 2.2 to auto-

matically generate the dataset. The output of the branch-and-bound algorithm

is the number of active s-boxes, AS which will be used alongside a security

margin threshold, α to calculate the data labels (secure - 1, insecure - 0). If

AS > rα, the input sample is considered to be secure (labelled as 1) whereas260

if AS ≤ rα, the input sample is considered to be insecure (labelled as 0). In

other words, α dictates the minimum number of active s-boxes per round for a
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block cipher to be considered secure. α can be configured based on the desired

security margin that the cryptanalyst or designer requires.

We want to ensure that α is selected to be as strict as possible, while still265

allowing us to generate a balanced dataset for training purposes. α = 1 is a loose

bound, whereby a 16-bit and 32-bit cipher will require at least 8 rounds and

16 rounds respectively to be considered secure. On the other hand if α = 2, a

16-bit and 32-bit cipher will require at least 4 rounds and 8 rounds respectively

to be considered secure. Having α = 2 is too restrictive as it requires all s-270

boxes to be active in every round. Thus, to ensure that the security bound

is sufficiently strict while capable of generating a balanced dataset, we have

selected α = 1.5. Some samples from the dataset are shown in Table 1 (note

that AS is not actually used for training).

Our experiments can be divided into three main phases: baseline setup,275

permutation feature representation, and generalization. In Phase 1, a balanced

dataset (50:50) of 500000 samples are generated from all 24 variants of the

GFS cipher. Note that the 500000 examples are randomly sampled from the

exhaustive dataset using a single integer to represent the permutation pattern.

We denote this method of representation as rep1.280

We compare the effect of the permutation representation on model perfor-

mance in Phase 2. rep1 is compared with rep2 which represents the permutation

as four separate features (one integer to map each truncated difference bit). As

an example, the permutation pattern shown in Figure 1 can be represented by

rep1 = {1230} or by rep2 = {1, 2, 3, 0}. For Phase 2, we use the same 500000285

samples from all 24 variants of the GFS cipher but created a second version of

the dataset with permutation feature transformed into rep2.

The third phase involves generalizing to unseen cipher variants. This phase

reflects upon the capability of the trained machine learning classifiers to predict

the security level of these unseen ciphers. We define an unseen cipher variant as290

a block cipher whose data was not used to train the machine learning classifiers.

Thus, predicting the security of these unseen ciphers is analogous to predicting

the security of newly proposed ciphers. In Phase 3, we test the classifiers’
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Table 1: Sample Dataset where α = 1.5

X̂ Ŷ P r AS Label

1010 1010 0123 8 16 Secure

0111 1101 1203 11 17 Secure

1111 0100 3021 12 9 Secure

0010 0010 0123 5 5 Insecure

1111 0101 3021 12 6 Insecure

1101 1100 3120 11 6 Insecure

performance on three different unseen block cipher variants, which we denote

as BC1, BC2 and BC3. For each of these block ciphers, we generate a dataset295

consisting of 80000 samples, each. The difference between these datasets is

the ratio of the number of secure to insecure samples (1:0). The ratios are

summarized as:

• BC1 - 1:3 (20000 to 60000)

• BC2 - 1:1 (40000 to 40000)300

• BC3 - 3:1 (60000 to 20000)

BC1 represents an insecure block cipher design, BC2 represents a moderately

secure block cipher design whereas BC3 represents a secure block cipher design.

In order to generate sufficient samples that fulfil these ratios, four block cipher

variants are used, P = {0321, 1320, 2013, 3012}. Thus, the training dataset305

consists of 500000 samples generated from only 20 out of the 24 variants of the

GFS cipher.

3.2. Experiments

Assessing block cipher security based on its features is a supervised learning

problem which we framed as a binary classification task (1 for secure, 0 for inse-310

cure). We limit the scope of this paper to linear and nonlinear classifiers, where

Tensorflow’s (TF) linear classifier model, sklearn’s single-layer perceptron and
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logistic regression models were selected as linear classifiers, and KNN, decision

tree and MLP were selected as nonlinear classifiers. To optimize performance,

various parameter combinations for each classifier will be tested. We also inves-315

tigate the effect of data representation on prediction accuracy, specifically how

the permutation patterns are represented. The experiments can be divided into

three main phases which are detailed as follows:

• Phase 1 - Baseline Setup - The goal of this phase is to identify clas-

sifiers that are best suited for the prediction task. An 80:20 train-test320

split is performed on the dataset. Apart from the six classifiers, we also

include a dummy classifier as a baseline model for performance compari-

son. Intuitively, the dummy classifier should have a prediction accuracy of

50% as it is a randomly guessing model that does not have any advantage

in predicting security margins. For all classifiers, we investigate various325

hyperparameter combinations to maximize prediction performance. rep1

is used as the permutation representation.

• Phase 2 - Permutation Feature Representation - In this phase, we

investigate the effect of rep1 and rep2 on prediction accuracy. We select

the best performing linear and nonlinear models (along with the optimal330

hyperparameter values) from Phase 1 and repeat the train-test procedure

using the dataset generated from rep2.

• Phase 3 - Generalizability to Unseen Cipher Variants - This phase

consists of three separate experiments. In each one, we first train the

machine learning classifiers using 500000 samples from the 20 seen cipher335

variants. Then, we separately test the performance of the models using

the dataset from BC1, BC2 and BC3. Unlike Phase 1, the training dataset

will not contain a single sample from these unseen cipher variants. Thus,

the test results will indicate if the classifiers are able to generalize to “new”

ciphers with varying levels of security. For this experiment, the type of340

permutation representation will be selected based on results obtained in

Phase 2.
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Let S, TP , TN , FP , and FN represent the total number of samples, true

positives, true negatives, false positives and false negatives respectively. The

following metrics are used to evaluate the performance of each classifier in which345

secure is the positive class and insecure is the negative class:

• Accuracy (Acc): The sum of true positives and true negatives divided

by the total number of samples, TP+TN
S . Accuracy refers to the fraction

of predictions that the model has correctly made.

• Precision (Pre): True positives divided by the sum of true and false350

positives, TP
TP+FP . Precision refers to the percentage of correctly classified

samples out of the total number of predictions made. We record the

precision for both positive and negative classes as they are both equally

important from the cryptographic perspective.

• Recall (Rec): True positives divided by the sum of true positives and355

false negatives, TP
TP+FN . It represents the percentage of correctly classi-

fied samples out of the total number of actual samples that belong to a

particular class. Similar to precision, we record the recall for both positive

and negative classes.

• F1 score (F1): The harmonic mean of precision and recall, F1 = 2 ×360

Pre×Rec
Pre+Rec . It is an accuracy measure that takes both precision and recall

into consideration.

We analyze the performance of the proposed models based on accuracy and F1

score. Accuracy reflects upon how well the models generally perform in the

prediction task whereas the F1 scores for each of the classes provide deeper365

insights into prediction bias.

4. Results and Discussion

4.1. Baseline Setup

The prediction accuracy of the dummy classifier (50%) is used as a base-

line to determine which models have truly learnt to perform the classification370
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task. In general, all classifiers outperformed the dummy classifier with nonlin-

ear classifiers outperforming linear ones. The majority of classifiers performed

well, achieving accuracy values ranging from 66% to 98%. Although TF linear

classifier managed to achieve an accuracy of up to 66%, a closer examination

of its precision and recall values indicate that the classifier makes highly biased375

predictions, i.e. predicting all samples as insecure as indicated by a zero F1

score for secure predictions. Although TF linear classifier and logistic regres-

sion are both based on the same machine learning algorithm, the difference in

their data sampling methods lead to a significant difference in prediction results.

As for nonlinear classifiers, decision tree and KNN have less biased predictions380

as compared to MLP, which is biased towards the insecure class.

Overall, the best performing models are logistic regression for linear classi-

fiers, and KNN and decision tree for nonlinear classifiers. A summary of the

results is shown in Table 2 for which the optimal hyperparameters are listed

below:385

• All linear classifiers:

Stopgap = 1000

Epochs = 1000

• MLP:

Stopgap = 1000390

Epochs = 1000

HiddenLayers = 4

• Decision Tree Classifier:

Split = random

LeafN = unlimited395

SampleSplit = 2

• KNN:

NN = 2

Algo = kd tree
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LeafS = 40400

Table 2: Baseline Setup Results

Model F1 (Insecure) F1 (Secure) Accuracy

Dummy Classfier 0.50 0.50 0.50

TF Linear Classifier 0.78 0 0.66

Logistic Regression 0.89 0.66 0.84

Single-layer Perceptron 0.79 0.49 0.71

MLP 0.82 0.42 0.72

Decision Tree Classifier 0.97 0.85 0.93

KNN Classifier 0.94 0.93 0.92

4.2. Permutation Feature Representation

Table 3: Comparison results for permutation feature representation

Model Perm F1 (Insecure) F1 (Secure) Accuracy

KNN
rep1 0.95 0.93 0.92

rep2 0.95 0.93 0.92

Decision Tree
rep1 0.95 0.85 0.93

rep2 0.95 0.85 0.93

MLP
rep1 0.82 0.42 0.72

rep2 0.91 0.72 0.87

Logistic Regression
rep1 0.89 0.66 0.84

rep2 0.89 0.66 0.84

Experiments were conducted on the best linear classifier (logistic regression)

and all nonlinear classifiers. The same set of optimal hyperparameter values

described in Phase 1 were used. Results in Table 3 show that only MLP classifier

has visible improvements when using rep2 rather than rep1. We conjecture that405

the use of rep2 improves upon the performance MLP due to its sensitivity to

feature scaling. rep2 reduces the scale of the feature to a single integer in the
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range of [1,4] (although the number of features is increased), allowing MLP to

converge faster and avoid being stuck in a local minimum. KNN, decision tree

and logistic regression were able to achieve optimal performance regardless of410

how the permutations were presented. Based on this finding, Phase 3 uses rep2

as it has the potential to improve the performance of certain classifiers without

having an adverse effect on the rest.

4.3. Generalizability to Unseen Cipher Variants

The third phase is the most important one as it reflects upon the practicality415

of the proposed approach. First, we expect the classifiers to perform better when

predicting unseen cipher variants that are insecure compared to secure ones.

Second, we expect the classifiers to generally perform poorer at making security

predictions on unseen cipher variants compared to cipher variants encountered

in Phase 1. As expected, all classifiers do not perform as well as in the baseline420

experiments in Phase 1. Although linear classifiers seem to be as accurate

as nonlinear classifiers, a closer inspection of the F1 scores indicate that the

predictions made by linear classifiers are highly biased. In fact, all of the linear

classifiers predict nearly every sample as insecure, showing that linear classifiers

cannot generalize well to unseen block ciphers.425

As for nonlinear classifiers, decision tree and KNN have the most unbiased

results when predicting all unseen cipher variants but their performance is in-

versely proportionate to the cipher’s security level. Both decision tree and KNN

have similar accuracy for BC1 (75% vs 77%) and BC2 (66% vs 61%) but deci-

sion tree falters when it comes to BC3 (46% vs 57%). Based on the F1 scores,430

the nonlinear classifiers are also biased towards predicting samples as insecure.

This would also explain why prediction accuracy drops when the cipher’s secu-

rity level increases (BC1 has 3 times more insecure than secure samples).

Overall, the best classifier for predicting the security of an unseen cipher

variant is KNN. A summary of the results is shown in Table 4 for which all435

models use the same hyperparameter settings in Phase 1 except for the single-

layer perceptron and decision tree. The optimal hyperparameters for the single-
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Table 4: Generalization Results

Cipher Model F1 (Insecure) F1 (Secure) Accuracy

BC1

TF Linear Classifier 0.86 0 0.76

Logistic Regression 0.86 0 0.76

Single-layer Perceptron 0.84 0.11 0.72

MLP 0.86 0 0.76

Decision Tree 0.85 0.46 0.75

KNN 0.85 0.53 0.77

BC2

TF Linear Classifier 0.75 0 0.61

Logistic Regression 0.75 0 0.61

Single-layer Perceptron 0.72 0.13 0.57

MLP 0.75 0 0.61

Decision Tree 0.77 0.36 0.66

KNN 0.66 0.52 0.61

BC3

TF Linear Classifier 0.44 0 0.28

Logistic Regression 0.44 0 0.28

Single-layer Perceptron 0.46 0.18 0.35

MLP 0.44 0 0.28

Decision Tree 0.52 0.39 0.46

KNN 0.51 0.62 0.57

layer perceptron and decision tree classifiers in Phase 3 are as follows:

• Single-layer Perceptron:

Stopgap = 750440

Epochs = 750

• Decision Tree Classifier:

Split = best

LeafN = unlimited

SampleSplit = 2445
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4.4. Discussion, Practical Applications and Future Work

Overall, the experimental results proves the feasibility of the proposed ap-

proach whereby classifiers were able to learn the relationship between block

cipher features and its security. More specifically, results show that nonlinear

classifiers are better suited for assessing the security of block ciphers compared450

to linear classifiers. Linear classifiers such as logistic regression can still be

used if security assessment is performed on seen block cipher variants but it

cannot generalize well to unseen ones. In general, we recommend the use of

nonlinear classifiers, specifically KNN as it was able to achieve a 92% prediction

accuracy for seen cipher variants. KNN was still able to generalize to unseen455

cipher variants with an accuracy of 77%, 61% and 57% for BC1, BC2 and BC3,

respectively.

As the proposed approach can achieve a high accuracy (up to 92%) when

predicting the security of seen cipher variants, it can be used to quickly iden-

tify good differential pairs for cryptanalysis. Although searching algorithms or460

mathematical solvers can also be used for this reason, determining the strength

of each differential pair requires reasonable computational effort especially for

large block sizes or number of rounds. In contrast, machine learning algo-

rithms can perform this prediction near-instantaneously albeit with longer pre-

processing time. Apart from that, high accuracy when predicting seen cipher465

variants implies that additional cipher features such as permutation pattern can

potentially be used to improve existing machine learning-based distinguishers

[15] for key recovery attacks.

The trained machine learning models can be used to quickly assess the secu-

rity margin of new block cipher designs. This capability is showcased in Phase 3470

when the classifiers were used to predict the security of unseen cipher variants.

Although the best performing KNN classifier was only able to achieve prediction

accuracy in the range of 57% to 77%, a closer inspection of F1 score indicates

that it is biased towards predicting samples as insecure rather than secure. From

another perspective, this means that KNN is more likely to classify a cipher as475

insecure, and will do so more accurately. This behaviour is more desirable than
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the inverse (higher likelihood to classify ciphers as secure) as it is essentially

a stricter filter. This is useful for block cipher designers who wish to quickly

discard poor designs without having to run computationally intensive searching

algorithms or mathematical solvers.480

The proposed work is not without its limitations. As of now, it remains to

be seen if the same approach can be applicable to other block cipher structures

such as SPN and ARX. For these structures, the use of truncated differentials

may not be feasible as these ciphers may involve bitwise permutations. Thus,

generating an exhaustive dataset for training will be more time consuming.485

Apart from that, the use of a single threshold value α is restrictive and may not

accurately reflect the security requirements of different ciphers. With a more

dynamic or flexible threshold, the performance of the models may be improved.

The proposed approach sets a precedence for future work which includes:

• Exploring the use of deep learning to maximize the prediction accuracy490

for unseen cipher variants

• Investigating the use of (and different representations of) other features

such as s-box probability or diffusion properties of the permutation pattern

to further optimise prediction accuracy

• Prediction of differential probability or the number of active s-boxes using495

regression techniques

• Improving the accuracy of existing machine learning-based distinguishers

using additional cipher features

• Training a machine learning algorithm to predict the security of a larger

block cipher using data from smaller block ciphers with the same structure500

• Predicting the security of other block cipher structures such as SPN or

ARX
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5. Conclusion

In this paper, we propose a different approach in applying machine learning

for cryptanalysis. Rather than being used to directly cryptanalyze block ci-505

phers to recover secret keys, we train machine learning classifiers using generic

block cipher features to predict if a block cipher is secure or insecure based on

the notion of differentially active s-boxes. Thus, the proposed approach is not

specific to a particular block cipher nor secret key which is the case for the

majority of existing methods. As a proof-of-concept, we perform experiments510

on a 4-branch GFS cipher which can be considered an ultralightweight 16-bit

or 32-bit block cipher depending on the s-box size. By using truncated differen-

tials, we are able to exhaustively generate the training and testing datasets by

using a modified version of Matsui’s branch-and-bound algorithm. We tested

our approach by using 3 linear and 3 nonlinear classifiers. Experimental results515

concluded that nonlinear classifiers were better suited for the security prediction

task, with KNN depicting optimal performance. When predicting seen cipher

variants, KNN was able to achieve a prediction accuracy of up to 92% whereas

when generalizing to unseen cipher variants, it achieved an accuracy of up to

77% depending on the security level of the targeted cipher. These results not520

only depict the feasibility of the proposed approach but also implies that the

trained models can be used in practice to identify strong differential pairs for

cryptanalysis and also to assess the security of new block cipher designs.
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