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Abstract. The hardness of Entropic LWE has been studied in a number
of works. However, there is not work study the hardness of algebraical-
ly structured LWE with entropic secrets. In this work, we conduct a
comprehensive study on establishing hardness reductions for Entropic
Module-LWE and Entropic Ring-LWE. We show an entropy bound that
guarantees the security of arbitrary Entropic Module-LWE and Entropic
Ring-LWE, these are the first results on the hardness of algebraically
structured LWE with entropic secrets. One of our central techniques is a
new generalized leftover hash lemma over ring and a new decomposition
theorem for continuous Gaussian distribution on KR, which might be of
independent interests.
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1 Introduction

1.1 Background

The learning with errors (LWE) problem, introduced by Regev [Reg05], is used
as a core computational problem in lattice-based cryptography. For a given di-
mension n, modulus q and error distribution χ, samples of the LWE distribution
are constructed as (a, b = 1

q 〈a, s〉 + e mod 1), where a, s ∈ Znq are chosen uni-
formly at random and e is drawn from the distribution χ. Distinguishing the
LWE distribution from uniform is known as the decision LWE problem, whereas
finding the secret s is known as the search LWE problem.

One primary attraction of LWE is that it can be supported by worst-case
to average-case reductions from conjectured hard problems on general lattices
[Reg05, LPR10, LS15, PRS17]. But while constructions based on LWE can have
reasonably good asymptotic efficiency, they are often not as practically efficient
as one might like, especially in terms of key and ciphertext sizes. To circumvent
this inherent inefficiency, several works have introduced and studied a host of
algebraically structured LWE variants.
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Inspired by the early NTRU cryptosystem [HPS98] and Micciancio’s initial
worst-case to average-case reductions for “algebraically structured” lattices over
polynomial rings [Mic02], Lyubashevsky et al. [LPR10] introduced Ring-LWE to
improve the asymptotic and practical efficiency of LWE. Ring-LWE is parame-
terized by the ring of integers in a number field, and supported the hardness of
Ring-LWE by a reduction from conjectured worst-case hard problems on lattices
corresponding to ideals in the ring. Informally, for Ring-LWE we first choose a
ring R, modulus q and error distribution χ over space KR. Then, to sample the
Ring-LWE distribution, we sample a ∈ R/qR, s ∈ R∨/qR∨ uniformly and error
e according to χ. Then we output (a, b = 1

qa · s+ e mod R∨) as the Ring-LWE

sample, where R∨ denotes the dual of the ring R. Similar to the case of plain
LWE, distinguishing the Ring-LWE distribution from uniform is known as the
decision Ring-LWE problem, whereas finding the secret s is known as the search
Ring-LWE problem.

Later, Brakerski et al. [BGV12,LS15] introduced Module-LWE, Module-LWE
comes with hardness guarantees given by lattice problems based on module
lattices. Since module lattices have more complicated algebraic structures than
ideal lattices, Module-LWE might be able to offer a better level of security than
Ring-LWE, while still offering performance advantages over LWE. Informally,
for Module-LWE we first choose a ring R, dimension d, modulus q and error
distribution χ over space KR. Then, to sample the Module-LWE distribution, we
sample a ∈ (R/qR)d, s ∈ (R∨/qR∨)d uniformly and error e according to χ. Then
we output (a, b = 1

q 〈a, s〉 + e mod R∨) as the Moudle-LWE sample, where R∨

denotes the dual of the ring R. Similar to the case of Ring-LWE, distinguishing
the Moudle-LWE distribution from uniform is known as the decision Module-
LWE problem, whereas finding the secret s is known as the search module-LWE
problem.

Goldwasser et al. [GKP+10] initiated a study on the hardness of LWE when
s is not chosen uniformly at random. This study was motivated by the desire
to achieve an entropic notion of security that will allow to guarantee that the
problem remains hard even if some information about s is leaked. They show
that if s is sampled from a binary distribution (i.e. supported over {0, 1}n), then
LWE remains hard so long as s has sufficient entropy. Recently, Brakershi et
al. [BD20] show that LWE is also hard so long as s has sufficient entropy.

Within the NIST standardization process, several candidates rely on the
hardness of algebraically structured LWE, e.g., the key encapsulation mecha-
nism Kyber [BDK+18] from the CRYSTALS suite. However, the question of
hardness of algebraically structured LWE on imperfect secret distributions has
not been studied. To fully enjoy the efficiency brought from the ring structure,
it is necessary to determine whether the additional structure would weaken the
underlying hard problem. Thus the hardness result for the entropic Moudle-LWE
and entropic Ring-LWE is a natural question, and this work aims to conduct a
systematic study on these problems.
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1.2 Contributions and Technical Overview

Here we give an overview of our contributions. Our first main contribution is a
reduction from primal Module LWE (primal Ring-LWE) to Entropic Module-
LWE (Section 4). By this we can get the hardness of Entropic Module-LWE. To
complete the reduction, we also bring in a new generalized leftover hash lemma
over ring and a new decomposition theorem for continuous Gaussian distribution
on KR, which might be of independent interest (Section 3). Our second main
contribution is a reduction from Entropic Module-LWE to Entropic Ring-LWE
(Section 5). By combining the result in Section 4, we can also get the hardness
of Entropic Ring-LWE. To the best of our knowledge, these are the first results
on the hardness of algebraically structured LWE with entropic secrets. Besides,
in [BBP+19] Bolboceanu et al. think high entropy of secrets alone is insufficient
to argue Entropic Ring-LWE security. But in this paper, we solve this problem,
we prove that high entropy of secrets is enough for the hardness of Entropic
Ring-LWE.

Hardness of Entropic Module-LWE. We first give an overview of how to
prove the hardness of Entropic Module-LWE. At a high level, we prove the
hardness of Entropic Module-LWE by following the structure of the hardness
proof of Entropic LWE from Brakerski et al. [BD20]. Their proof framework can
be summarized as the following.

– 1. First replace A by a lossy matrix BC+Z, and then replace e = Fe1 +e2;
– 2. Show that high noise lossiness H̃∞(s | s + e) lead to hardness of Entropic

LWE;
– 3. Show that high min-entropy H̃(s) implies noise lossiness.

In the ring setting, by the hardness of primal Module-LWE we can also replace
A by BC + Z. But since the error term is in KR and the matrix multiplication
in the ring is different from which in Rn, we need to create a new decomposition
theorem for continuous Gaussian distribution on KR first. We note that, if K
is a number field which has exactly s1 real embeddings and s2 pairs complex
embeddings, then when F is a fixed matrix in Rm×d, e1 ← (Dr1(KR))d and
ẽ = Fe1, we have σHi

(ẽ) and σHj
(ẽ) are independent where i 6= j and |i−j| 6= s2.

Thus, we can sample e2 in blocks and make the random variable Fe1 + e2 is
distribution according to (Dr(KR))m. We refer the details in Section 3.2.

Besides, in step 2, when we prove the hardness of decision Entropic Module
LWE, we need a generalized leftover hash lemma in the ring. We note that,
when K = Q(α) is a number field, where α is an algebraic integer, f(x) is the
minimum polynomial of α and f(x) is an irreducible polynomial in Zq[x], then
we have Rq is a finite field. By this we can prove a new generalized leftover hash
lemma over ring. We refer the details in Section 3.1.

The step 3 are portable to the ring setting, but we also need to take care of
some mathematical subtleties in the ring. For the complete analysis and formal
statement of the result, see Section 4.
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Hardness of Entropic Ring-LWE. When work with Entropic Ring-LWE,
we cannot get any leftover hash lemma in k = 1. Thus, the above method does
not work. But we find that the reduction from Module LWE to Ring LWE
[AD17] can be used to get the hardness of Entropic Ring-LWE. We note that if
G = (1, q, · · · , qd−1) ∈ R1×d, then the map hG : (R∨q )d 7→ R∨qd given by hG = Gs

is a bijection. Therefore, if s is a random variable on (R∨q )d, then hG(s) is a

random variable on R∨qd and H̃∞(s) = H̃∞(hG(s)). By this and the result from

[AD17], we can prove the hardness of Entropic Ring-LWE. For decision Entropic
Ring-LWE, we need to show a reduction from decision Entropic Module-LWE
to decision Entropic Ring-LWE first, and this reduction can be derived by a
similar technique used in the work [PRS17]. For the complete analysis and formal
statement of the result, see Section 5.

1.3 Paper Organization

Section 2 contains preliminaries and definitions. In Section 3, we prove two prob-
ability lemmas over ring. The Entropic Module-LWE problem is formally defined
in Section 4, where the hardness result is proved as well. Finally, we give the
definition of Entropic Ring-LWE and prove the hardness result in Section 5.

2 Preliminaries

In this section we review some basic notions and mathematical notations used
throughout the paper. We denote the security parameter by λ, and we say a func-
tion f(λ) is negligible if f(λ) ∈ λ−ω(1). For any positive integer n, we represent
the set {1, · · · , n} by [n].

We denote column vectors over Rn or Cn by bold lower case letters (a, b,
etc.). Matrices over Rm×n or Cm×n are denoted by bold upper-case letters (A, B,
etc.). For a vector x over Rn or Cn, define the `2 norm as ‖x‖2 = (

∑
j |xj |2)1/2,

define the `∞ norm as ‖x‖∞ = maxj |xj |. We denote the identity matrix in n
dimensions using In. The transpose of a matrix or vector will be denoted by
(·)T, the conjugate transpose of a matrix or vector will be denoted by (·)† and
the complex conjugate of z ∈ C will be written as z̄.

An n-dimensional lattice is a discrete subgroup of Rn. Any lattice Λ can
be seen as the set of all integer linear combinations of a set of basis vectors
{b1, · · · ,bj}. The lattices we will be considering will have full rank i.e. j = n.

We use the matrix B = [b1, · · · ,bn] to denote a basis. B̃ is used to denote the
Gram-Schmidt orthogonalization of columns in B (from left to right), ‖B‖ is
the length of the longest vector in `2 norm of the columns of B and ‖B‖∞ is
the length of the longest vector in `∞ norm of the columns of B. The dual of a
lattice Λ is defined as Λ∗ = {x ∈ span(Λ) : ∀y ∈ Λ, 〈x,y〉 ∈ Z}.

2.1 Algebraic Number Theory

Let K be some algebraic number field. The degree of K is equal to the dimension
of K as a vector space over Q. For any field element α ∈ K, multiplication by α
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is a Q-linear transformation of K into itself, i.e.

mα : K 7→ K given by mα(x) = αx.

The trace of α, denoted by Tr(α), is defined as the trace of this linear trans-
formation. An element α ∈ K is said to be integral if it is the root of a monic
polynomial with integer coefficients. The set of all integral elements R forms the
ring of integers of K . Let R∨ = {x ∈ K | Tr(xR) ⊂ Z} be the dual of R. R
is a free Z-module of rank n (the degree of K), i.e. it is the set of all Z-linear
combinations of some basis B = {b1, · · · , bn} ⊂ R. Also let KR := K ⊗Q R and
define TR∨ := KR/R

∨.
An ideal I ⊂ R is a nontrivial additive subgroup that is closed under mul-

tiplication by R. Two ideal I, J ⊂ R are said to be coprime if I + J = R. A
fractional ideal I ⊂ K is a set such that dI ⊂ R is an integral ideal for some
d ∈ R. The product ideal IJ is the set of all finite sums of terms ab for a ∈ I,
b ∈ J . Multiplication extends to fractional ideal in the obvious way, and the
set of fractional ideals forms a group under multiplication; in particular, every
fractional ideal I has a (multiplicative) inverse ideal, written I−1.

The (absolute) discriminant ∆K of a number field K is defined to be the
square of the fundamental volume of σ(R), the embedded ring of integers. E-
quivalently, ∆K = |det(Tr(bi · bj))| where b1 · · · , bn is any integral basis of R.

When working with number fields and ideal lattices, it is convenient to work
with the space H ⊂ Rs1 × C2s2 for some number s1 + 2s2 = n, defined as

H = {(x1, · · · , xn) ∈ Rs1 × C2s2 : xs1+s2+j = xs1+j , ∀j ∈ [s2]} ⊂ Cn.

For j ∈ [s1], we set hj = ej , and for j ∈ {s1 + 1, · · · , s1 + s2}, we set hj =√
2

2 (ej + ej+s2) and hj+s2 =
√

2i
2 (ej − ej+s2), where ej ∈ Cn is the vector with

1 in its j-th coordinate and 0 elsewhere, i is the imaginary number such that
i2 = −1. The set {hj}j∈[n] forms an orthonormal basis of H as a real vector space.

Let UH = [h1,h2, · · · ,hn]†, we can easily get a field isomorphic σH : H 7→ Rn
where σH(x) = UH · x. Thus H ∼= Rn as an inner product space. And we will
also equip H with the `2 and `∞ norm induced on it from Cn.

We will often use canonical embeddings to endow field elements with a ge-
ometry. A number field K := Q(ζ) of degree n has exactly n = s1 + 2s2 field
homomorphisms σj : K 7→ C fixing each element of Q. Let σ1, · · · , σs1 be the
real embeddings and σs1+1, · · · , σn be complex. The complex embeddings come
in conjugate pairs, so we have σj = σj+s2 for j = s1 + 1, · · · , s1 + s2 if we use
an appropriate ordering of the embeddings. The canonical embedding is defined
as σC : K → H where

σC(x) := (σ1(x), · · · , σn(x))T.

We can also represent σC(x) via the real vector σH(x) ∈ Rn through the change
described above. So for any x ∈ K, σH(x) = UH · σC(x).

For the ring of integer R of the field K, we define the canonical embedding
of the module Rd into the space Hd in the obvious way, i.e. by embedding each
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component of Rd into H separately. It is well known that the dimension of ring
of integers R as a Z-module is equal to the degree of K over Q, that means the
lattice σH(R) is of full rank. We often refer to the ring of integer R as a lattice.
Whenever we do this, we are really referring to the lattice σH(R).

2.2 Probability

The uniform probability distribution over some finite set M will be denoted by
U(M). If s is sampled from a distribution D, we write s ← D. Also, let s =
(s1, · · · , sm)T ← Dd denote the act of sampling each component si according to
D independently. We also write Supp(D) to mean the support of the distribution
D. For a continuous random variable X, denote the probability density function
of X by PX(·) and denote the probability density of X conditioned on an event
E by PX|E(·).

The statistical distance is a widely used measure of distribution closeness.

Definition 1 (Statistical distance). Let X and Y be two discrete probability
distributions on a discrete domain E. Their statistical distance is defined as

∆(X;Y ) =
1

2

∑
x∈E
|Pr(X = x)− Pr(Y = x)|.

Likewise, if X and Y are two continuous random variables defined on a measur-
able set E. Their statistical distance is defined as

∆(X;Y ) =
1

2

∫
x∈E
|PX(x)− PY (x)|dx.

The following is the definition of min-entropy and conditional min-entropy.

Definition 2 (Min-entropy). Given a discrete random variable X over X ,
the min-entropy of X, denoted by

H̃∞(X) = − log(max
x∈X

Pr[X = x]).

Definition 3 (Conditional min-entropy). Let X be a discrete random vari-
able over X , Z be a random variable over Z, define the conditional min-entropy
of X given Z, denoted by

H̃∞(X | Z) = − log(Ez[max
x∈X

Pr[X = x | Z = z]]).

We now state some fundamental properties of the conditional min-entropy.

Lemma 1 (Lemma 2.2 in [DOR+08]). Let X,Y, Z be random variables, and
Y has at most 2λ possible values, then

H̃∞(X | (Y,Z)) ≥ H̃∞(X | Z)− λ.
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Lemma 2 (Adapted from Lemma 5.1 in [BD20]). Let R be the ring of
integers of a field K with degree n, R∨ be the dual of R. Let q, d be positive
integers. Let s be a random variable over (R∨q )d with min-entropy H̃∞(s), χ be

a random variable over (KR)d and e← χ. Set y = s
q +e mod R∨ be the random

variable over (TR∨)d. Then it holds that

H̃∞(s | y) ≥ H̃∞(s)− log[

∫
(TR∨ )d

max
s∗

pe(y − s∗

q
+ (R∨)d)dy].

2.3 Gaussian Measures

Definition 4 (Continuous Gaussian distribution). The Gaussian function
of parameter r and center c is defined as

ρr,c(x) = exp(−π(x− c)2/r2),

and the Gaussian distribution Dr,c is the probability distribution whose probabil-
ity density function is given by 1

rρr,c.

A matrix Σ ∈ Rn×n is called positive definite, if it holds for every x ∈ Rn\{0}
that xTΣx > 0. For every positive definite matrix Σ there exists a unique
positive definite matrix

√
Σ such that (

√
Σ)2 = Σ.

Definition 5 (Multivariate Gaussian distribution). Let Σ ∈ Rn×n be a
positive definite matrix. The multivariate Gaussian function with covariance ma-
trix Σ centred on c ∈ Rn is defined as

ρ√Σ,c(x) = exp(−π(x− c)TΣ−1(x− c)),

and the corresponding multivariate Gaussian distribution denoted D√Σ,c is de-

fined by the density function 1√
det(Σ)

ρ√Σ,c.

Notice that the matrix Σ differs from the standard covariance matrix by a
factor of 2π. However, for convenience, we refer to Σ as the covariance matrix
throughout. Note that if the centre c is omitted, it should be assumed that c = 0.
If the covariance matrix is diagonal, we describe it using the vector of its diagonal
entries. For example, suppose that Σij = (ri)

2δij and let r = (r1, · · · , rn)T. Then
we would writeDr to denote the centred Gaussian distributionDΣ. Furthermore,
if r1 = · · · = rn = r, we would write Dr to denote this centred Gaussian
distribution.

Using the identification of H as Rn, we can extend the definition of mul-
tivariate Gaussian distribution on Rn to H as follows. Let Σ ∈ Rn×n be a
positive definite matrix, a sample from DΣ on H is given by

∑
i∈[n] xihi, where

x = (x1, · · · , xn)T ← DΣ over Rn.
We also have discrete Gaussian distributions i.e. normalised distributions

defined over some discrete set (typically lattices or lattice cosets). The notation
for a discrete Gaussian distribution over some n-dimensional lattice Λ and coset
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vector u ∈ Rn with parameter r isDΛ+u,r. This distribution has probability mass

function ρr(y)
ρr(Λ+u) , where ρr(Λ+u) =

∑
x∈Λ+u ρr(x). For the ring of integers R of

a number field K and any x ∈ K, we define DR+x,r to be the discrete Gaussian
over the coset R + x of the lattice R, i.e. over the lattice coset σH(R) + σH(x)
of the lattice σH(R).

Next we recall the definition and some lemmas of the smoothing parameter
of a lattice that we will make use of.

Definition 6 (Smoothing parameter). For a lattice Λ and any ε > 0, the
smoothing parameter ηε(Λ) is defined as the smallest s > 0 s.t. ρ1/s(Λ

∗\{0}) ≤ ε.

Lemma 3 (Lemma 3.1 in [GPV08]). For any ε > 0 and n-dimensional
lattice Λ with basis B,

ηε(Λ) ≤ ||B̃||
√

log(2n(1 + 1/ε))/π.

Lemma 4 (Lemma 2.9 in [MR07]). For any lattice Λ, positive real s > 0
and vector c, ρs,c(Λ) ≤ ρs(Λ).

2.4 Ring-LWE and Module-LWE

Let K be a number field of degree n, R be the ring of integers of K, and
R∨ be the dual of R. Also let KR := K ⊗Q R and define TR∨ := KR/R

∨.
Note that the distribution over KR are sampled by choosing an element of the
space H according to the distribution and then mapping back to KR via the
isomorphism H ∼= KR. For example, sampling a distribution D over KR is done
by samplingD over H ∼= Rn and then mapping back toKR. LetRq = R/(qR) and
R∨q = R∨/(qR∨) for some modulus q ∈ Z, and let χ be a family of distributions
over KR.

The ring variant of LWE was introduced by Lyubashevshy et al. in [LPR10].
The search problem RLWE(K, q,m, χ) is given (a, 1

q (a · s) + e mod R∨), to find

s ∈ R∨q , where a ← U((Rq)
m), s ← U(R∨q ) and e ← χm. The decisional ver-

sion problem DRLWE(K, q,m, χ) asks to distinguish between the distributions
(a, 1

q (a · s) + e mod R∨) and (a,u), where a, s and e are as in the search version

and u← U((TR∨)m).
The module variant of LWE was first introduced by Brakerski et al. [BGV12],

and thoroughly studied by Langlois and Stehlé [LS15]. The search problem
MLWE(K, d, q,m, χ) is to find s ∈ (R∨q )d given (A, 1

q (A · s) + e mod R∨),

where A ← U((Rq)
m×d), s ← U((R∨q )d) and e ← χm. The decisional version

problem DMLWE(K, d, q,m, χ) asks to distinguish between the distributions
(A, 1

q (A · s) + e mod R∨) and (A,u), where A, s and u are as in the search

version and u← U((TR∨)m).
As pointed out by Lyubashevsky et al. [LPR13], sometimes it can be more

convenient to work with a discrete variant, where χ is a discrete error distribution
over R∨. Langlois et al. [LS15] showed that DMLWE(K, d, q,m,DR∨,

√
2qα) is at

least as hard as DMLWE(K, d, q,m,Dα) using discretization technique. Here the
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DMLWE(K, d, q,m,DR∨,
√

2qα) problem asks to distinguish between the distribu-

tions (A,A·s+e mod qR∨) and (A,u), where A← U((Rq)
m×d), s← U((R∨q )d),

e ← (DR∨,
√

2qα)m and u ← U((R∨q )m). By the same way, we can also get that
DRLWE(K, q,m,DR∨,

√
2qα) is at least as hard as DRLWE(K, q,m,Dα).

Furthermore, Rosca et al. also considered primal-RLWE in [RSW18]. The
primal-DRLWE(K, q,m,DR,α) problem asks to distinguish between the distri-
butions (a,a · s + e mod qR) and (a,u), where a ← U((Rq)

m×1), s ← U(Rq),
e← (DR,α)m and u← U((Rq)

m). In [RSW18] Rosca et al. showed a reduction
from RLWE to primal-RLWE with a limited error growth. Later, in [WW18]
Wang et al. showed that when the field K is a cyclotomic field, the growth
in the error term does not exceed O(n log log n). Likewise, we can also consid-
er primal-MLWE. The primal-DMLWE(K, d, q,m,DR,α) problem asks to dis-
tinguish between the distributions (A,A · s + e mod qR) and (A,u), where
A ← U((Rq)

m×d), s ← U((Rq)
d), e ← (DR,α)m and u ← U((Rq)

m). By the
same way, we can also get the reduction from MLWE to primal-MLWE.

We also consider the hardness of solving primal-DRLWE and primal-DMLWE
for any m = poly(n log q), which are denoted by prime-DRLWE(K, q,DR,α) and
prime-DMLWE(K, d, q,DR,α) separately. The matrix version of prime-DRLWE
asks to distinguish between the distribution (a,a · s + E mod qR) and (a,U),
where a← U((Rq)

m×1), s← U((Rq)
1×d), E← (DR,α)m×d and U← U(Rq)

m×d).
The hardness of the matrix version for any d = poly(n) can be established
from prime-DRLWE(K, q,m,DR,α) via a routine hybrid argument. Likewise, the
matrix version of prime-DMLWE asks to distinguish between the distribution
(A,A ·S+E mod qR) from (A,U), where A← U((Rq)

m×k), S← U((Rq)
k×d),

E ← (DR,α)m×d and U ← U((Rq)
m×d). The hardness of matrix version for

any d = poly(n) can also be established from DMLWE(K, k, q,m,DR,α) via a
routine hybrid argument. For technical reasons, we use primal-DMLWE form in
the proof in Section 4.

3 Probability Lemmas

In this section we give two results in probability theoretic. First, in Section 3.1
we give a generalized leftover hash lemma over R∨q . Then, in Section 3.2 we give
a decomposition theorem for Continuous Gaussian on KR.

3.1 Leftover Hash Lemma

Here we show a generalized leftover hash lemma over R∨q . We are interested in the
case of K = Q(α) being the number field, where α is an algebraic integer, f(x)
is the minimum polynomial of α over Q and f(x) is an irreducible polynomial
in Zq[x].1 In this case, we will prove that, Cs is statistically close to uniform
distribution, as long as s has high min-entropy, where C← U(Rk×dq ) and s is a

1 Notice that if α is an algebraic integer, then we have f(x) ∈ Z[x]. This proof can be
found in [AW04].
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random variable over (R∨q )d. We will first prove in this case Rq is a field, then
show generalized leftover hash lemma over Rq. And finally, we get our generalized
leftover hash lemma over R∨q .

Now let us recall definition of universal hash function and some lemmas.

Definition 7 (Universal Hash Function Family). A set H of functions
D 7→ R is a universal hash function family, if for every distinct x1, x2 ∈ D,
the hash function family H satisfies the following constraint:

Pr[h(x1) = h(x2) : h← H] =
1

|R|
.

Lemma 5 (Adapted from Lemma 2.4 in [DOR+08]). Assume a set H
of function D 7→ R is a universal hash function family. Then for any random
variables X over D and Y , it holds that

∆((h, h(X), Y ); (h, u, Y )) ≤ 1

2

√
|R| · 2−H̃∞(X|Y ),

where h← H, u← U(R).

Lemma 6 (Adapted from Lemma 2.14 in [LPR10]). Let K be a number
field of degree n, R be the ring of integers of K. Let I and J be ideals in R. Then
there exists t ∈ I such that the ideal t · I−1 ⊂ R is coprime to J . And let M be
any fractional ideal in K. Then the function θt : K 7→ K defined as θt(x) = t · x
induces an isomorphism from M/JM to IM/IJM.

Lemma 7. Let K = Q(α) be a number field of degree n, where α is an algebraic
integer, f(x) be the minimum polynomial of α over Q. Let R be the ring of
integers of K. If f(x) is an irreducible polynomial in Zq[x], where q is a prime,
then we have Rq is a finite field.

Proof. Since f(x) is an irreducible polynomial in Zq[x], Zq[x]/(f(x)) is a finite
field. It is easy to see that Zq[x]/(f(x)) ∼= Z[x]/(q, f(x)), hence (q, f(x)) is a
maximal ideal of Z[x]. Thus we only need to show that R/qR ∼= Z[x]/(q, f(x)).
Let us consider the ring homomorphism Φ : Z[x] 7→ R/qR, defined by

g(x) 7→ g(α) mod qR.

Clearly, g(α) mod qR ∈ Rq, and ker(Φ) contains ideal (q, f(x)). Since ker(Φ) is
also an ideal of Z[x], we have ker(Φ) = (q, f(x)). And by isomorphism theorem
for rings we have Z[x]/(q, f(x)) ∼= Im(Φ) ⊂ R/qR. Since |Zq[x]/(f(x))| = qn

and |R/qR| = qn, we have |Im(Φ)| = |Z[x]/(q, f(x))| = |R/qR|. Thus, we have
Im(Φ) = R/qR. Consequently, we can get R/qR ∼= Z[x]/(q, f(x)). ut

Remark 1. The requirement that α is an algebraic integer is trivial. Since for any
algebraic number field K, we can find an algebraic integer θ such that K = Q(θ).
This proof can also be found in [AW04]. Besides, the requirement in Lemma 7
is also a necessary condition for Rq to be a field. The proof is similar, we also
consider ring homomorphism Φ : Z[x] 7→ R/qR, and then use isomorphism
theorem.
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We now prove the following variant of the leftover hash lemma over Rq.

Theorem 1. Let K = Q(α) be a number field of degree n, where α is an alge-
braic integer, f(x) be the minimum polynomial of α over Q. Let R be the ring
of integers of K. Let q be a prime such that f(x) is an irreducible polynomial in
Zq[x], d, k be positive integers with d > k. Let s be a random variable defined on
(Rq)

d and let C← U((Rq)
k×d) be chosen uniformly random. Furthermore let Y

be a random variable possibly correlated with s. Then it holds that

∆((C,Cs, Y ); (C,u, Y )) ≤ 1

2

√
qnk · 2−H̃∞(s|Y ),

where u← U(Rq)
k.

Proof. Let {hC : (Rq)
d 7→ (Rq)

k} be a family of hash functions given by
hC(s) = Cs. In order to show that the statistical distance between (C,Cs, Y )
and (C,u, Y ), we only need to show {hC} is a universal hash function family,
and then apply Lemma 5.

Since f(x) is an irreducible polynomial in Zq[x], by Lemma 7, we have Rq
is a field. Thus, for every distinct s1, s2 ∈ (Rq)

d, without loss of generality, we
assume their first components are not equal, i.e. s1

1 6= s2
1. In this case, we have

s1
1− s2

1 is an invertible element. Therefore, we have that Cs1 = Cs2 holds if and

only if C satisfies that ci1 = (s1
1 − s2

1)−1 · [
∑d
j=2(s1

j − s2
j )cij ]. Therefore, we can

easily get that

Pr[Cs1 = Cs2 : C← U((Rq)
k×d)] =

1

qnk
=

1

|(Rq)k|
.

Consequently, we have {hC} is a universal hash function family, and according
to Lemma 5, we have

∆((C,Cs, Y ); (C,u, Y )) ≤ 1

2

√
qnk · 2−H̃∞(s|Y ).

ut

Remark 2. It seems necessary that we restrict f to be an irreducible element in
Zq[x], and in this case Rq is a field. If Rq is not a field, since we do not have
any requirements for the distribution of s, we can consider an extreme case, s
is an uniform distribution on an ideal I of Rq. In this case Cs will be some
distribution on Ik, and the statistical distance will not be negligible.

We now prove our generalized leftover hash lemma over R∨q as follows.

Theorem 2. Let K = Q(α) be a number field of degree n, where α is an alge-
braic integer, f(x) be the minimum polynomial of α over Q. Let R be the ring
of integers of K, R∨ be the dual of R. Let q be a prime such that f(x) is an
irreducible polynomial in Zq[x], d, k be positive integers with d > k. Let s be a
random variable defined on (R∨q )d and let C← U((Rq)

k×d) be chosen uniformly
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random. Furthermore let Y be a random variable possibly correlated with s. Then
it holds that

∆((C,Cs, Y ); (C,u, Y )) ≤ 1

2

√
qnk · 2−H̃∞(s|Y ),

where u← U(R∨q )k.

Proof. Let I = (R∨)−1 and J = qR be ideals in R, then by Lemma 6, there
exists t ∈ (R∨)−1 such that tR∨ is coprime to qR. Let M = R∨ be a fractional
ideal, then by Lemma 6, multiplication by t induces a R-module isomorphism
from R∨q to Rq.

Likewise, let {h̃C : (R∨q )d 7→ (R∨q )k} be a family of hash functions given

by h̃C(s) = Cs. For every distinct s1, s2 ∈ (R∨q )d, we have that Cs1 = Cs2

holds if and only if Cts1 = Cts2, where ts1, ts2 ∈ (Rq)
d. Therefore, by the proof

in Theorem 1, we have {h̃C} is also a universal hash function family. And by
Lemma 5, the statement follows. ut

3.2 Gaussian Decomposition

In this section, we show a new decomposition theorem for continuous Gaussian
distribution on KR. We show that there exists an efficient sampling algorithm
D(F, r, r1), such that the random variable e = Fe1 +e2 is distribution according
to (Dr(KR))m, where e1 ← (Dr1(KR))d, e2 ← D(F, r, r1) and F ← Dm×d

R,γ . We
first recall the definitions and lemmas of matrix norm and subgaussian distribu-
tions. Then, we prove an upper bound of spectral norm of a discrete Gaussian
matrix. And finally, we prove our generalized decomposition theorem for contin-
uous Gaussian distribution.

Definition 8. For a matrix X over Rm×n, the largest singular value of matrix
is defined by

s1(X) = sup
u6=0

‖Xu‖2

‖u‖2
.

Subgaussian distributions are those on R which have tail dominated by Gaus-
sians [Ver10]. An equivalent formulation is through the moment-generating func-
tion of the distribution, and this definition is commonly used throughout lattice-
based cryptography [MP12].

Definition 9. A real random variable X is subgaussian with parameter s ≥ 0 if
for all t ∈ R,

E(e2πtX) ≤ eπs
2t2 .

More generally, we say that a random vector x is subgaussian with parameter
s ≥ 0 if for all unit vectors u ∈ R, the random variable 〈x,u〉 is subgaussian
with parameter s.

The subgaussian distribution admits the following properties.
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Lemma 8 (Theorem 4.4.5 in [Ver18]). Let X ∈ Rm×d be a random matrix
with entries drawn independently from a subgaussian distribution with parameter
s ≤ 0. Then, there exists some universal constant C ≥ 0 such that for any t ≥ 0,
with probability at least 1− 2e−t

2

we have

s1(X) ≤ C · s · (
√
m+

√
d+ t).

Lemma 9 (Adapted Lemma 2.8 in [MP12]). Let Λ ⊂ Rn be a lattice, then
for any s > 0, DΛ,s is subgaussian with parameter s.

Assume a number field K of degree n with ring of integers R has exactly
s1 real embeddings and s2 pairs complex embeddings. Then for any matrix
F = (fij) ∈ Rm×d, for any j ∈ [s1], we set2

Fj =

 σj(f11) · · · σj(f1d)
...

...
σj(fm1) · · · σj(fmd)

 ,

and for j ∈ {s1 + 1, · · · , s1 + s2}, we set

Fj =


√

2Re(σj(f11)) · · ·
√

2Re(σj(f1d))
...

...√
2Re(σj(fm1)) · · ·

√
2Re(σj(fmd))

 ,

Fj+s2 =


√

2Im(σj(f11)) · · ·
√

2Im(σj(f1d))
...

...√
2Im(σj(fm1)) · · ·

√
2Im(σj(fmd))

 .

We will be interested in F← Dm×d
R,γ , and we will give an upper bound of spectral

norm of Fj in the following.

Lemma 10. Let K be a number field of degree n which has exactly s1 real
embeddings and s2 pairs complex embeddings. Let R be the ring of integers of
K. Let F← Dm×d

R,γ , assume for convenience that m ≥ d. Then with all but 2−m

probability it holds that s1(Fj) ≤ C · γ ·
√
m for all j ∈ [n], where C is a global

constant.

Proof. In order to show s1(Fj) ≤ C · γ ·
√
m, we only need to show that Fj is a

random matrix with entries drawn independently from a subgaussian distribu-
tion, and then apply Lemma 8.

We first recall that F← Dm×d
R,γ means that samples each component fkl ac-

cording toDR,γ independently, and fkl ← DR,γ means that σH(fkl)← DσH(R),γ ,

2 Here d could be 1, and in this case F would be a vector.
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where

σH(fkl) =



σ1(fkl)
...

σs1(fkl)√
2Re(σs1+1(fkl))

...√
2Re(σs1+s2(fkl))√
2Im(σs1+1(fkl))

...√
2Im(σs1+s2(fkl))


.

Clearly, we have that for any j ∈ [n], the entries of Fj are sampled from the
same distribution independently.

Since σH(R) is a lattice in Rn, then by Lemma 9, σH(fkl) is subgaussian
with parameter γ. So by definition, we have 〈σH(fkl), ej〉 is also subgaussian
with parameter γ.

Thus for any j ∈ [n], we have Fj is a random matrix with entries drawn
independently from a subgaussian distribution with parameter γ. Therefore, by
Lemma 8 and set t =

√
m, we have s1(Fj) ≤ 3Cγ ·

√
m with probability at least

1− 2e−m. Finally, we take a union bound over all j. This give us

Pr[∃j ∈ [n] : s1(Fj) ≥ 3Cγ ·
√
m)] ≤ n · 2e−m ≤ 2−m.

Set C = 3C and the proof is established. ut

We now show and prove a generalized decomposition theorem for continuous
Gaussian distribution over KR. To avoid confusion, in the following proof, we
use Dr(KR) to denote the Gaussian distribution over KR, and for j ∈ {s1 +
1, · · · , s1 + s2}, we set

F̃
j

=

√
2

2

(
Fj −Fj+s2

Fj+s2 Fj

)
.

Theorem 3. Let K be a number field of degree n which has exactly s1 real
embeddings and s2 pairs complex embeddings. Let R be the ring of integers of
K. Let F ∈ Rm×d be a matrix with s1(Fj) ≤ η for any j ∈ [n]. Let r, r1 > 0
be positive real numbers where r >

√
2η · r1. Let e1 ← (Dr1(KR))d and e2 be

the random variable in (KR)m obtained in the following way: for j ∈ [s1], set
ej2 ← D√

Σj
where Σj = r2Im − r2

1Fj(Fj)T; for j ∈ {s1 + 1, s1 + s2}, set

((ej2)T, (ej+s22 )T)T ← D√
Σj

where Σj = r2I2m − r2
1F̃

j
(F̃

j
)T. Then the random

variable e = Fe1 + e2 is distribution according to (Dr(KR))m.

Proof. We first prove that Σj is positive definite for any j ∈ [s1 + s2]. For any
j ∈ [s1] and any x ∈ Rm/{0}, we have

xTΣjx ≥ r2‖x‖22 − r2
1 · s1(Fj)2‖x‖22 ≥ (r2 − r2

1η
2) · ‖x‖22 > 0,
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as r ≥
√

2η · r1 and s1(Fj) = s1((Fj)T).
For any j ∈ {s1 +1, · · · , s1 +s2} and any x = (yT, zT)T ∈ R2m/{0}, we have

‖(F̃
j
)Tx‖22 =

1

2
[‖(Fj)Ty + (Fj+s2)Tz‖22 + ‖(Fj)Tz− (Fj+s2)Ty‖22]

≤ 1

2
[(‖(Fj)Ty‖2 + ‖(Fj+s2)Tz‖2)2 + (‖(Fj)Tz‖2 + ‖(Fj+s2)Ty‖2)2]

≤ η2(‖y‖2 + ‖z‖2)2 ≤ 2η2(‖y‖22 + ‖z‖22) = 2η2‖x‖22.

So for any j ∈ {s1 + 1, · · · , s1 + s2} and any x = (yT, zT)T ∈ R2m/{0}, we also
have

xTΣjx ≥ r2‖x‖22 − r2
1 · 2η2‖x‖22 > 0.

Since we have (KR)m ∼= Rmn, σH(e1), σH(e2) are independent Gaussian
vectors, and therefore σH(e) is also a Gaussian vector. Since σH(e1), σH(e2)
have expectation 0, then so does σH(e).

Now let us calculate the covariance matrix for σH(e). We use σHj
(ei), σHj

(e1i)
and σHj

(e2i) to denote the j-th component of σH(ei), σH(e1i) and σH(e2i) sep-
arately, where ei, e1i and e2i is the i-th coordinate of e, e1 and e2 separately,
and we use f jkl to denote the entry that appears in the k-th row and l-th column

of matrix Fj . Since ei =
∑d
k=1 fike1k + e2i, for any j ∈ [s1] we have

σHj (ei) =

d∑
k=1

f jikσHj (e1k) + σHj (e2i).

For any j ∈ {s1 + 1, · · · , s1 + s2} we have

σHj (ei) =
√

2Re[

d∑
k=1

σj(fik)σj(e1k) + σj(e2i)]

=
1√
2

d∑
k=1

[f jikσHj
(e1k)− f j+s2ik σHj+s2

(e1k)] + σHj
(e2i),

σHj+s2
(ei) =

√
2Im[

d∑
k=1

σj(fik)σj(e1k) + σj(e2i)]

=
1√
2

d∑
k=1

[f jikσHj+s2
(e1k) + f j+s2ik σHj (e1k)] + σHj+s2

(e2i).

Therefore, according to the sampling method of e1 and e2, we have for any
j ∈ [s1], j′ ∈ [n] which satisfies j′ 6= j, and any i, i′ ∈ [m], we have σHj (ei)
and σHj′ (ei′) are independent. For any j ∈ {s1 + 1, · · · , s1 + s2}, any j′ ∈ [n]
which satisfies j′ 6= j, j′ 6= j + s2, and any i, i′ ∈ [m], we have σHj

(ei) and
σHj′ (ei′) are independent. For any j ∈ {s1 + s2 + 1, · · · , n}, any j′ ∈ [n] which
satisfies j′ 6= j, j′ 6= j− s2, and any i, i′ ∈ [m], we have σHj

(ei) and σHj′ (ei′) are
independent.
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And by a direct calculation, for any j ∈ [s1], we have ej = Fjej1 +ej2; for any
j ∈ {s1 + 1, · · · , s1 + s2}, we have(

ej

ej+s2

)
=

√
2

2

(
Fj −Fj+s2

Fj+s2 Fj

)(
ej1
ej+s21

)
+

(
ej2
ej+s22

)
.

Therefore, for any j ∈ [s1], the covariance matrix of ej is:

E(ej(ej)T) = E(Fjej1(ej1)T(Fj)T) + E(ej2(ej2)T) = r2
1Fj(Fj)T + Σj = r2Im.

Likewise, for any j ∈ {s1 + 1, · · · , s1 + s2}, the covariance matrix of

(
ej

ej+s2

)
is:

E

[(
ej

ej+s2

)
· ((ej)T, (ej+s2)T)

]
= r2

1F̃
j
(F̃

j
)T + Σj = r2I2m.

Consequently, e = Fe1 + e2 is the distribution according to (Dr(KR))m. ut

By combining Theorem 3 and Lemma 10, we can easily obtain the following
corollary.

Corollary 1. Let C be a global constant, K be a number field, R be a ring of
integers of K. Let F← Dm×d

R,γ , assume for convenience that m > d. Let r, r1 > 0

be positive real numbers which satisfies that r >
√

2C · r1 · γ ·
√
m. Let e1 ←

(Dr1(KR))d be the random variable in (KR)d. If for any j ∈ [n], we have s1(Fj) ≤
Cγ
√
m, then there exists an efficient sampling algorithm D(F, r, r1), such that

the random variable e = Fe1 +e2 is distribution according to (Dr(KR))m, where
e2 ← D(F, r, r1).

4 Entropic Module Learning With Error

In this section we give the definition of Entropic Module Learning With Error
problem (E-MLWE) first, we consider dual forms because this form is the most
widely used in practice. Then to prove the hardness of E-MLWE, we show a
reduction from primal-DMLWE problem to E-MLWE problem and a reduction
from primal-DMLWE problem to E-DMLWE problem. Finally, we compute the
noise lossiness for general high min-entropy distributions over KR. Our proof
follows the proof structure of Brakerski et al. [BD20].

4.1 Definition of the Entropic M-LWE

Definition 10 (Entropic M-LWE). Let K be some number field with degree
n = poly(λ), R be the ring of integers of K and R∨ be the dual of R. Let q = q(λ)
be a modulus, d = d(λ) be a dimension and m = poly(λ) be a sample size. Let χ
be an error distribution on KR and S = S(λ,K, d, q,m) be a secrets distributions
on (R∨q )d. Let MLWEK,d,q,m,χ(S) be the distribution over (Rq)

m×d × (TR∨)m
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obtained by choosing A ← U((Rq)
m×d), s ← S, e ← χm, and outputting the

pair (A, 1
q (A · s) + e mod R∨).

We say that the search problem E-MLWE(K, d, q,m,S, χ) is hard, if it holds
for every PPT adversary A that

Pr[A(A,
1

q
(A · s) + e mod R∨) = s] ≤ negl(λ),

where A← U((Rq)
m×d), s← S and e← χm.

Likewise, we say that the decisional problem E-DMLWE(K, d, q,m,S, χ) is
hard, if it holds for every PPT distinguisher D that

|Pr[D(A1,b1) = 1]− Pr[D(A2,b2) = 1]| ≤ negl(λ),

where (A1,b1)← MLWEK,d,q,m,χ(S) and (A2,b2)← U((Rq)
m×d × (TR∨)m).

4.2 Hardness of E-MLWE

In this section we will establish the hardness of entropic search MLWE with
continuous gaussian noise. Using discretization technique, see Lyubashevsky et
al. [LPR13] for more details, we can easily get that entropic search MLWE with
discrete gaussian noise is also hard.

Theorem 4. Let C be the global constant from Corollary 1. Let R be the ring
of integers of some algebraic number field K of degree n and R∨ be the dual
of R. Let q, d,m be positive integers where m > d > 1 and r, γ, r1 > 0. Let
s be a random variable on (R∨q )d distributed according to some distribution S,

e1 ← Dr1(KR)d be an error term. Let r >
√

2C
√
mγr1. Further assume that

H̃∞(s | s

q
+ e1 mod R∨) ≥ nk log(q) + ω(log(λ)).

Then the search problem E-MLWE(K, d, q,m,S, Dr) is hard, provided that primal-
DMLWE(K, k, q,DR,γ) is hard.

Proof. LetA be a search adversary against E-MLWE(K, d, q,m,S, Dr). Through-
out this proof, C is the global constant from Corollary 1, D(F, r, r1) is the effi-
cient sampling algorithm from Corollary 1. Consider the following hybrid MLWE
distributions:

– H0: Let s ← S, A ← U((Rq)
m×d) and e ← Dr(KR)m, and then output

(A, 1
q (A · s) + e mod R∨);

– H1: Let s ← S, B ← U((Rq)
m×k), C ← U((Rq)

k×d), F ← Dm×d
R,γ , set

A = BC+F mod qR, e← Dr(KR)m, and output (A, 1
q (A ·s)+e mod R∨);

– H2: Let s ← S, B ← U((Rq)
m×k), C ← U((Rq)

k×d), F ← Dm×d
R,γ , if there

exists j ∈ [n] s.t. s1(Fj) > Cγ
√
m output ⊥. Else, let A = BC+F mod qR,

e← Dr(KR)m, and output (A, 1
q (A · s) + e mod R∨);
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– H3: Let s ← S, B ← U((Rq)
m×k), C ← U((Rq)

k×d), F ← Dm×d
R,γ , if there

exists j ∈ [n] s.t. s1(Fj) > Cγ
√
m output ⊥. Otherwise, let e1 ← Dr1(KR)d,

e2 ← D(F, r, r1), and set A = BC + F mod qR, e = Fe1 + e2, and then
output (A, 1

q (A · s) + e mod R∨).

First note that H0 is identical to the E-MLWE(K, d, q,m,S, Dr) experiment.
Second, it follows directly by the hardness of primal-DMLWE(K, k, q,DR,γ) that
H0 and H1 are computationally indistinguishable. Then, if we have for any
j ∈ [n], s1(Fj) ≤ Cγ

√
m, H1 and H2 are identically distributed. Thus we can

bound the statistical distance between H1 and H2 by Pr[∃j ∈ [n] : s1(Fj) ≥
Cγ ·

√
m)]. By Lemma 10, we have with all but 2−m probability it holds that

s1(Fj) ≤ C · γ ·
√
m for all j ∈ [n]. Therefore, the statistical distance between

H1 and H2 is at most 2−m. Finally, we claim that H2 and H3 are identically
distributed by Corollary 1.

We now show that for any search adversary A, we have

Pr[A(A,
1

q
(A · s) + e mod R∨) = s] < negl(λ),

where (A, 1
q (A · s) + e mod R∨)← H3. Consequently, by the above we can then

argue that the same holds for (A, 1
q (A ·s)+e mod R∨)← H0, which means that

the search problem E-MLWE(K, d, q,m,S, Dr) is hard, concluding the proof for
the theorem. To do so, we will bound the conditional min-entropy of s given
(A, 1

q (A · s) + e mod R∨) ← H3. We can compute y = 1
q (A · s) + e mod R∨

given B ∈ (Rq)
m×k, Cs mod qR∨ ∈ (R∨q )k, F ∈ Rm×d, s

q + e1 mod R∨ and

e2 ∈ (KR)m. Since we have

1

q
(A · s) +e mod R∨ =

1

q
B · (Cs mod qR∨) +F · (s

q
+e1 mod R∨) +e2 mod R∨.

And since R∨ is a free Z-module of rank n, R∨q is a free Zq-module of rank n.

Consequently, Cs mod qR∨ ∈ (R∨q )k has at most 2kn log q possible values. Then
by Lemma 1, we can get the bound:

H̃∞(s | (A, 1

q
(A · s) + e mod R∨))

≥ H̃∞(s | B,C,F,Cs mod qR∨,
s

q
+ e1 mod R∨, e2)

= H̃∞(s | C,Cs mod qR∨,
s

q
+ e1 mod R∨)

≥ H̃∞(s | C, s

q
+ e1 mod R∨)− nk log q

= H̃∞(s | s

q
+ e1 mod R∨)− nk log q.

Where the first equality follows from the fact that B, F, e2 are independent
of everything else, and the second equality follows from the fact that C is in-
dependent of everything else. The second inequality follows from Lemma 1. By
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assumption we have

H̃∞(s | s

q
+ e1 mod R∨) ≥ nk log(q) + ω(log(λ)),

it follows that

Pr[A(A,
1

q
(A · s) + e mod R∨) = s] ≤ 2−H̃∞(s|(A, 1q (A·s)+e mod R∨))

≤ 2−H̃∞(s| sq +e1 mod R∨)+nk log q

≤ 2−ω(log(λ)),

which is negligible. This concludes the proof of the theorem. ut

The hardness of primal-DMLWE assumption is only used to asserts that
BC + F mod qR is computationally indistinguishable from a uniform matrix.
Thus we can also use the hardness of primal-DRLWE assumption to get the
similar result. The proof of the following corollary is analogous, and we describe
the proof in full version of this paper.

Corollary 2. Let C be the global constant from Corollary 1. Let R be the ring
of integers of some algebraic number field K of degree n and R∨ be the dual
of R. Let q, d,m be positive integers where m > d > 1 and r, γ, r1 > 0. Let
s be a random variable on (R∨q )d distributed according to some distribution S,

e1 ← Dr1(KR)d be an error term. Let r >
√

2C
√
mγr1. Further assume that

H̃∞(s | s

q
+ e1 mod R∨) ≥ n log(q) + ω(log(λ)).

Then the search problem E-MLWE(K, d, q,m,S, Dr) is hard, provided that primal-
DRLWE(K, q,DR,γ) is hard.

4.3 Hardness of E-DMLWE

In this section we will establish the hardness of entropic decision MLWE with
continuous gaussian noise. Using discretization technique, we can also easily get
that entropic decision MLWE with discrete gaussian noise is also hard.

Theorem 5. Let C be the global constant from Corollary 1. Let K = Q(α) be a
number field of degree n, where α is an algebraic integer, f(x) be the minimum
polynomial of α over Q. Let R be the ring of integers of K and R∨ be the dual of
R. Let q be a prime such that f(x) is an irreducible polynomial in Zq[x], d,m be
positive integers where m > d > 1 and r, γ, r1 > 0. Let s be a random variable
on (R∨q )d distributed according to some distribution S, e1 ← Dr1(KR)d be an

error term. Let r >
√

2C
√
mγr1. Further assume that

H̃∞(s | s

q
+ e1 mod R∨) ≥ nk log(q) + ω(log(λ)).

Then the decisional problem E-DMLWE(K, d, q,m,S, Dr) is hard, provided that
primal-DMLWE(K, k, q,DR,γ) and DMLWE(K, k, q,m,Dr) are hard.
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Proof. Throughout this proof, C is the global constant from Corollary 1 and
D(F, r, r1) is the efficient sampling algorithm from Corollary 1. We assume D
be a PPT distinguisher which distinguishes E-DMLWE(K, d, q,m,S, Dr) with
non-negligible advantage. Consider the following hybrid MLWE distributions:

– H0: Let s ← S, A ← U((Rq)
m×d) and e ← Dr(KR)m, and then output

(A, 1
q (A · s) + e mod R∨);

– H3: Let s ← S, B ← U((Rq)
m×k), C ← U((Rq)

k×d), F ← Dm×d
R,γ , if there

exists j ∈ [n] s.t. s1(Fj) > Cγ
√
m output ⊥. Otherwise, let e1 ← Dr1(KR)d,

e2 ← D(F, r, r1), and set A = BC + F mod qR, e = Fe1 + e2, and then
output (A, 1

q (A · s) + e mod R∨).

– H4: Let s ← S, s∗ ← U((R∨q )d), B ← U((Rq)
m×k), C ← U((Rq)

k×d),

F← Dm×d
R,γ , if there exists j ∈ [n] s.t. s1(Fj) > Cγ

√
m output ⊥. Otherwise,

let e1 ← Dr1(KR)d, e2 ← D(F, r, r1), and set A = BC + F mod qR, and
then output (A, 1

qBs∗ + F( s
q + e1 mod R∨) + e2 mod R∨).

– H5: Let s ← S, s∗ ← U((R∨q )k), B ← U((Rq)
m×k), C ← U((Rq)

k×d),

F← Dm×d
R,γ , if there exists j ∈ [n] s.t. s1(Fj) > Cγ

√
m output ⊥. Otherwise,

let e ← Dr(KR)m, set A = BC + F mod qR, and then output the pair
(A, 1

q (Bs∗ + Fs) + e mod R∨).

First, we have H0 and H3 are computationally indistinguishable by the proof
in Theorem 5. Then, we will show that H3 and H4 are statistically close via the
Theorem 2. Note that the only difference between H3 and H4 is that in H4

we have replaced Cs by a uniformly random s∗. Moreover, the only other term
depending on s is s

q + e1 mod R∨. Consequently, we can bound the statistical
distance between H3 and H4 by

∆(H3;H4) ≤ ∆((C,Cs,
s

q
+ e1 mod R∨); (C, s∗,

s

q
+ e1 mod R∨))

≤ 1

2

√
qnk · 2−H̃∞(s| sq +e1 mod R∨)

≤ 1

2

√
2nk·log(q) · 2−(nk·log(q)+ω(log(λ)))

= 2−ω(log(λ)),

which is negligible. The second inequality follows by the Theorem 2. Note that
we can apply the leftover hash lemma whenever f(x) is an irreducible polynomial
in Zq[x].

Next, we claim that H4 and H5 are identically distributed. To see this, note
that all we did was reversing the decomposition of e = Fe1 + e2.

Thus, by the above argument, distinguisher D also have non-negligible ad-
vantage in distinguishing (A,y) from (A,u), where (A,y)← H5, u← (TR∨)m.
From such a distinguisher D we can construct a distinguisher D′ which dis-
tinguishes DMLWE(K, k, q,m,Dr) with non-negligible advantage as follows. D′
gets as input B ∈ (Rq)

m×k and z ∈ (TR∨)m, and proceeds as follows:
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– Let s← S, C← U((Rq)
k×d), F← Dm×d

R,γ , if there exists j ∈ [n] s.t. s1(Fj) >

Cγ
√
m output ⊥. Otherwise, set A = BC+F mod qR, y = z+ 1

qFs mod R∨,

and then output D(A,y).

We claim that D′ has the same advantage as D. First consider the case
that the input of D′ is a pair of the form (B, z = 1

qBs∗ + e mod R∨), where

B← U((Rq)
m×k), s∗ ← U((R∨q )k) and e← Dr(KR)m. Then it holds that

y = z +
1

q
Fs mod R∨ =

1

q
(Bs∗ + Fs) + e mod R∨.

Thus, (A,y) is distributed according to H5.
On the other hand, if the input of D′ is distributed according to (B, z), where

z ← U((TR∨)m). Then it holds that y = z + 1
qFs mod R∨ is also a uniformly

random variable.
Therefore, D′ has the same advantage as D, which contradicts the hardness

of DMLWE(K, k, q,m,Dr). This concludes the proof. ut

By the same way, we can also get a reduction from primal-DRLWE problem
to E-DMLWE problem.

Corollary 3. Let C be the global constant from Corollary 1. Let K = Q(α) be a
number field of degree n, where α is an algebraic integer, f(x) be the minimum
polynomial of α over Q. Let R be the ring of integers of K and R∨ be the dual of
R. Let q be a prime such that f(x) is an irreducible polynomial in Zq[x], d,m be
positive integers where m > d > 1 and r, γ, r1 > 0. Let s be a random variable
on (R∨q )d distributed according to some distribution S, e1 ← Dr1(KR)d be an

error term. Let r >
√

2C
√
mγr1. Further assume that

H̃∞(s | s

q
+ e1 mod R∨) ≥ n log(q) + ω(log(λ)).

Then the decisional problem E-DMLWE(K, d, q,m,S, Dr) is hard, provided that
primal-DRLWE(K, q,DR,γ) and DRLWE(K, q,m,Dr) are hard.

4.4 Noise-Lossiness for Gaussian

In this section, we will compute the gaussian noise lossiness for general high-
entropy distributions over KR.

Lemma 11. Let R be the ring of integers of a field K with degree n, R∨ be the
dual of R and BR be some known basis of R in H. Let d, q be integers and r1

be a parameter for gaussian with 1
r1
≥ ‖B̃R‖ ·

√
log(4nd)

π , then it holds for all

x ∈ (KR)d that ρr1(x + (R∨)d) ≤ 2.

Proof. Since BR is a basis of R in H, we have BRd = Id⊗BR is a basis of Rd in
Hd. Orthogonalizing from left to right, we can see that ‖B̃Rd‖ is precisely ‖B̃R‖.
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By Lemma 3, and set ε = 1, we have 1
r1
≥ η1(Rd). By definition, we obtain

ρr1((R∨)d \ {0}) ≤ 1. Thus, we have ρr1((R∨)d) ≤ 2. And by Lemma 4, we get

ρr1(x + (R∨)d) = ρr1,x((R∨)d) ≤ ρr1((R∨)d) ≤ 2.

ut

Theorem 6. Let R be the ring of integers of a field K with degree n, R∨ be the
dual of R and BR be some known basis of R in H. Let d, q be integers and r1 be

a parameter for gaussian with 1
r1
≥ ‖B̃R‖·

√
log(4nd)

π . Let s be a random variable

on (R∨q )d and e1 ← Dr1(KR)d. Then it holds that

H̃∞(s | s

q
+ e1 mod R∨) ≥ H̃∞(s)− nd log(

1

r1
) +

d

2
log(∆K)− 1.

Proof. Since 1
r1
≥ ‖B̃R‖ ·

√
log(4nd)

π , by Lemma 11, we have ρr1(x + (R∨)d) ≤ 2.

Let y = s
q + e1 mod R∨ be a random variable over (TR∨)d, then we have∫

y

max
s∗

pe1
(y − s∗

q
+ (R∨)d)dy =

1

ρr1(Rnd)

∫
y

max
s∗

ρr1(y − s∗

q
+ (R∨)d)dy

≤ 1

rnd1

·
∫

y

2dy = 2 · ( 1

r1
)nd · ( 1

∆K
)

d
2 .

Therefore, by Lemma 2, we have

H̃∞(s | s

q
+ e1 mod R∨) ≥ H̃∞(s)− log(

∫
y

max
s∗

pe1
(y − s∗

q
+ (R∨)d)dy)

≥ H̃∞(s)− nd log(
1

r1
) +

d

2
log(∆K)− 1.

ut

By combining Theorem 4 and Theorem 6, we can easily obtain the following
corollary.

Corollary 4. Let C be the global constant from Corollary 1. Let R be the ring
of integers of some algebraic number field K of degree n, R∨ be the dual of R and
BR be some known basis of R in H. Let q, d,m be positive integers with m > d > 1

and r, γ, r1 > 0. Let e1 ← Dr1(KR)d be an error term with 1
r1
≥ ‖B̃R‖·

√
log(4nd)

π

and s be a random variable on (R∨q )d distributed according to some distribution
S, with

H̃∞(s) ≥ nk log(q) + nd log(
1

r1
)− d

2
log(∆K) + ω(log(λ)).

Let r >
√

2C
√
mγr1. Then the search problem E-MLWE(K, d, q,m,S, Dr) is

hard, provided that primal-DMLWE(K, k, q,DR,γ) is hard.
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By combining Theorem 5 and Theorem 6, we can easily obtain the following
corollary.

Corollary 5. Let C be the global constant from Corollary 1. Let K = Q(α) be a
number field of degree n, where α is an algebraic integer, f(x) be the minimum
polynomial of α over Q. Let R be the ring of integers of K, R∨ be the dual of R
and BR be some known basis of R in H. Let q be a prime such that f(x) is an
irreducible polynomial in Zq[x], d,m be positive integers where m > d > 1 and

r, γ, r1 > 0. Let e1 ← Dr1(KR)d be an error term with 1
r1
≥ ‖B̃R‖ ·

√
log(4nd)

π

and s be a random variable on (R∨q )d distributed according to some distribution
S, with

H̃∞(s) ≥ nk log(q) + nd log(
1

r1
)− d

2
log(∆K) + ω(log(λ)).

Let r >
√

2C
√
mγr1. Then the decisional problem E-DMLWE(K, d, q,m,S, Dr)

is hard, provided that primal-DMLWE(K, k, q,DR,γ) and DMLWE(K, k, q,m,Dr)
are hard.

5 Entropic Ring Learning With Error

In this section we give the definition of Entropic Ring Learning With Error
problem (E-RLWE) first, we alos consider dual forms. Then to prove the hardness
of E-RLWE, we show a reduction from E-MLWE problem to E-RLWE problem
and a reduction from E-DMLWE problem to E-DRLWE problem. Our proof
follows the proof structure of Albrecht et al. [AD17].

5.1 Definition of the Entropic R-LWE

Definition 11 (Entropic R-LWE). Let K be some number field with degree
n = poly(λ), R be the ring of integers of K and R∨ be the dual of R. Let q = q(λ)
be a modulus, m = poly(λ) be a sample size. Let χ be an error distribution on
KR and S = S(λ,K, q,m) be a secrets distribution on R∨q . Let RLWEK,q,m,χ(S)
be the distribution over (Rq)

m × (TR∨)m obtained by choosing a ← U((Rq)
m),

s← S, e← χm, and outputting the pair (a, 1
q (a · s) + e mod R∨).

We say that the search problem E-RLWE(K, q,m,S, χ) is hard, if it holds for
every PPT adversary A that

Pr[A(a,
1

q
(a · s) + e mod R∨) = s] ≤ negl(λ),

where a← U((Rq)
m), s← S and e← χm.

Likewise, we say that the decisional problem E-DRLWE(K, q,m,S, χ) is hard,
if it holds for every PPT distinguisher D that

|Pr[D(a1,b1) = 1]− Pr[D(a2,b2) = 1]| ≤ negl(λ),

where (a1,b1)← RLWEK,q,m,χ(S) and (a2,b2)← U((Rq)
m × (TR∨)m).



24 Hao Lin, Yang Wang, Mingqiang Wang

5.2 Hardness of E-RLWE

In this section we will establish the hardness of entropic search RLWE with
continuous gaussian noise. Using discretization technique, we can also easily get
that entropic search RLWE with discrete gaussian noise is also hard. We will
first recall a lemma in [AD17], and then show the hardness of E-RLWE problem.

Lemma 12 (Adapted from Corollary 3 in [AD17]). Let R be the ring
of integers of some algebraic number field K of degree n, R∨ be the dual of
R and BR be some known basis of R in H. Let d, q be positive integers, and
G = (1, q, · · · , qd−1) ∈ R1×d. Let s be a random variable on (R∨q )d according
to some distribution S satisfying Prs←S [maxi,j |σi(sj)| > B] = 0. Also take

any r > 0, any ε ∈ (0, 1/2), τ ≥ 1
q‖B̃R‖ ·

√
2 ln(2nd(1 + 1/ε))/π, and define

r′ =
√
r2 + (τB(mn)1/4)2. Suppose there exists a PPT algorithm which can solve

E-RLWE(K, qd,m,GS, Dr′) with probability p. Then there is a PPT algorithm

solving E-MLWE(K, d, q,m,S, Dr) with probability at least p2

2 − (2d+ 6)εm.

We now use the above lemma to show the hardness of E-RLWE problem.

Theorem 7. Let C be the global constant from Corollary 1. Let R be the ring
of integers of some algebraic number field K of degree n, R∨ be the dual of R,
BR be some known basis of R and BR∨ be some known basis of R∨ in H. Let
q, d,m be positive integers with m > d > 1, r, γ, r1 > 0 and

τ ≥ 1

q
‖B̃R‖ ·

√
2 ln(2nd(1 + 2ω(log(λ))))/π.

Let e1 ← Dr1(KR)d be an error term with 1
r1
≥ ‖B̃R‖ ·

√
log(4nd)

π and s be a

random variable on (R∨qd) distributed according to some distribution S, with

H̃∞(s) ≥ nk log(q) + nd log(
1

r1
)− d

2
log(∆K) + ω(log(λ)).

Let r′ >
√

2C
√
mγr1, and set r2 = r′2 + (τnq‖BR∨‖∞(mn)1/4)2. Then we have

that the search problem E-RLWE(K, qd,m,S, Dr) is hard, provided the primal-
DMLWE(K, k, q,DR,γ) is hard.

Proof. Let G = (1, q, · · · , qd−1) ∈ R1×d. Then we can easily find that the map
hG : (R∨q )d 7→ R∨qd given by hG(s) = Gs is a bijection. Thus, for any s ∈ R∨qd , we

denote G−1(s) be preimage of s. And for any distribution S on R∨qd , we denote

G−1(S) be a distribution on (R∨q )d such that if s is a random variable according
to G−1(S), then Gs is a random variable according to S.

Assume there is an adversary A and a distribution S such that A has non-
negligible advantage to solve E-RLWE(K, qd,m,S, Dr), and S satisfies

H̃∞(s) ≥ nk log(q) + nd log(
1

r1
)− d

2
log(∆K) + ω(log(λ)).



Hardness of Module-LWE and Ring-LWE on General Entropic Distributions 25

Then since G−1(S) is a distribution on (R∨q )d, we have

Pr
s←G−1(S)

[max
i,j
|σi(sj)| > nq‖BR∨‖∞] = 0.

Then by Lemma 12, we can construct a PPT adversary A′ such that A′ solving
E-MLWE(K, d, q,m,G−1(S), Dr′) with probability

Adv(A′) ≥ (Adv(A))2

2
− (2d+ 6)m · 2−ω(log(λ)).

And since hG is a bijection, we have

H̃∞(G−1(S)) = H̃∞(S) ≥ nk log(q) + nd log(
1

r1
)− d

2
log(∆K) + ω(log(λ)).

Thus by Corollary 4, we have the search problem E-MLWE(K, d, q,m,S, Dr) is
hard, which contradicts to the advantage of A′. This concludes the proof. ut

5.3 Hardness of E-DRLWE

In this section we will establish the hardness of entropic decision RLWE with
continuous gaussian noise. Using discretization technique, we can also easily get
that entropic decision RLWE with discrete gaussian noise is also hard. We will
first recall some lemmas, then prove a reduction from E-DMLWE problem to
E-DRLWE problem, and finally show the hardness of E-RLWE problem.

Lemma 13 (Adapted from Theorem 1 in [AD17]). Let R be the ring of
integers of some algebraic number field K of degree n, let d, q, be positive integers,
ε ∈ (0, 1

2 ), and G ∈ R1×d. Also, fix s = (s1, · · · , sd) ∈ (R∨)d. Further, let BΛ be
some known basis of the lattice Λ = 1

qd
GTR + Rd (in Hd), BR be some known

basis of R in H and

τ ≥ max(‖B̃Λ‖,
1

q
‖B̃R‖) ·

√
2 ln(2nd(1 + 1/ε))

π
.

There exists an efficient probabilistic mapping F : (Rq)
d × TR∨ 7→ Rqd × TR∨

such that:

1. The output distribution given uniform input F(U((Rq)
d × TR∨)) is within

statistical distance 4ε of the uniform distribution over Rqd × TR∨ .
2. Let B = maxi,j |σi(sj)|, the distribution of F(a1,a

T
1 · s + e1 mod R∨) is

within statistical distance (2d + 6)ε of (a2, a2 · Gs + e2 mod R∨), where
a1 ← U((Rq)

d), e1 ← Dr and a2 ← U(Rqd), e2 ← Dr′ with (r′i)
2 = r2 +

τ2(β2 +
∑d
j=1 |σi(sj)|2) for any β satisfying β2 ≥ B2d.

Lemma 14 (Claim 7.1 in [PRS17]). Let r1, · · · , rn ∈ R+ and s1, · · · , sn ∈
R+ be such that for all i, |si/ri − 1| <

√
log n/n. Then any set A ⊂ Rn whose

measure under the Gaussian distribution Dr1 × · · · ×Drn is non-negligible, also
has non-negligible measure under Ds1 × · · · ×Dsn .
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We now show a reduction from E-DMLWE to E-DMLWE with a spherical
error distribution. Our proof follows the proof structure of Peikert et al. [PRS17].

Lemma 15. Let R be the ring of integers of some algebraic number field K
of degree n, R∨ be the dual of R and S be a distribution on R∨q . Then, there
is a randomized polynomial-time algorithm that given any η > 0 and m ≥ 1,
as well as an oracle that solves E-DRLWE(K, q,m,S, Dr) given only m sam-
ples, where r = η(nm/ log(nm))1/4, solves E-DRLWE(K, q,m,S, Dr′) for any
(possibly unknown) r′ satisfying that all r′i are in [0, η].

Proof. For e1, · · · , em ∈ T, consider the transformation mapping m samples
(ai, bi)

m
i=1 to (ai, bi+ei)

m
i=1. Then it is easy to see that for all secrets distribution

S on R∨q , error distribution χ and r̃, if we sample from RLWEK,q,m,χ(S) and
apply this transformation with e1, · · · , em ∈ T chosen independently from Dr̃,
then the output distribution is RLWEK,q,m,χ+Dr̃

(S).
The reduction repeats the following reduction a polynomial number of times.

Choose e1, · · · , em independently from Dr. Then estimate the acceptance proba-
bility of the oracle on the following two input distributions: the first is obtained
by applying the above transformation with e1, · · · , em to our input samples;
the second is the uniform distribution (Rq × T)m. If in any of these polynomi-
al number of attempts, a non-negligible difference is observed between the two
acceptance probabilities, output “non-uniform”; otherwise output “uniform”.

Notice that if our input distribution is uniform, then in each of the attempts,
the two distributions on which we estimate the oracle’s acceptance probability
are exactly the same, hence we output ”uniform” with overwhelming probability.
Assume that our input distribution is RLWEK,q,m,Dr′ (S) for some r′ satisfying
that all r′i are in [0, α]. Let B(e1, · · · , em) be the distribution on m pairs that
our reduction uses as input to the oracle. Define the vector r̃ with coordinates
r̃j = r − rj so that Dr′ + Dr̃ = Dr. By our observation above, the distribution
of B(e1, · · · , em) over e1, · · · , em ← Dr̃ is RLWEK,q,m,χ+Dr̃

(S). Let T be the
set of all tuples (e1, · · · , em) for which the oracle has a non-negligible difference
in acceptance probability on B(e1, · · · , el) and on the unifrom distribution. By
assumption, the measure of T under Dr̃ is non-negligible. Therefore by Lemma
14, we have the measure of T under (Dr)

m is also non-negligible , and we are
done. ut

We now use the above lemma to show a reduction from E-DMLWE problem
to E-DRLWE problem.

Lemma 16. Let R be the ring of integers of some algebraic number field K of
degree n, R∨ be the dual of R and BR be some known basis of R in H. Let d, q be
positive integers, and G = (1, q, · · · , qd−1) ∈ R1×d. Let s be a random variable
on (R∨q )d according to some distribution S satisfying

Pr
s←S

[max
i,j
|σi(sj)| > B] = 0.

Also take any r > 0, any ε ∈ (0, 1/2),

τ ≥ 1

q
‖B̃R‖ ·

√
2 ln(2nd(1 + 2ω(log(λ))))/π,
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and define r′ =
√
r2 + 2τ2B2d · (nm/ log(nm))1/4. Suppose there exists a PPT

algorithm solving E-DRLWE(K, qd,m,GS, Dr′) with non-negligible probability,
then there is a PPT algorithm solving E-DMLWE(K, d, q,m,S, Dr) with non-
negligible probability.

Proof. When we gets as input (A,b) ∈ (Rq)
m×d× (TR∨)m, we use the transfor-

mation in Lemma 13 to our input samples and get (a′,b′) ∈ (Rqd)m × (TR∨)m.
Then repeats the following a polynomial number of times. Estimate the accep-
tance probability of the oracle on the following two input distributions: the first
is obtained by applying transformation in Lemma 14 with e1, · · · , em to (a′,b′);
the second is the uniform distribution (Rqd)m×(TR∨)m. If in any of these polyno-
mial number of attempts, a non-negligible difference is observed between the two
acceptance probabilities, output “non-uniform”; otherwise output “uniform”.

Notice that if input distribution is MLWEK,d,q,m,Dr (S), then by Lemma 13,
the distribution of (a′,b′) is RLWEK,qd,m,Dr′

(S), where r′i ∈ [0,
√
r2 + 2τ2B2d];

if our input distribution is uniform, then (a′,b′) is also uniform. Therefore
by Lemma 15, we can solving E-DMLWE(K, d, q,m,S, Dr) with non-negligible
probability. ut

By combining Corollary 5 and Lemma 16, we can get the following theorem.
The proof of the following theorem is analogous to Theorem 7 and we describe
the proof in full version of this paper.

Theorem 8. Let C be the global constant from Corollary 1. Let K = Q(α) be a
number field of degree n, where α is an algebraic integer, f(x) be the minimum
polynomial of α over Q. Let R be the ring of integers of K, R∨ be the dual of R,
BR be some known basis of R and BR∨ be some known basis of R∨ in H. Let q
be a prime such that f(x) is an irreducible polynomial in Zq[x], d,m be positive
integers with m > d > 1, r, γ, r1 > 0 and

τ ≥ 1

q
‖B̃R‖ ·

√
2 ln(2nd(1 + 2ω(log(λ))))/π.

Let e1 ← Dr1(KR)d be an error term with 1
r1
≥ ‖B̃R‖ ·

√
log(4nd)

π and s be a

random variable on (R∨qd) distributed according to some distribution S, with

H̃∞(s) ≥ nk log(q) + nd log(
1

r1
)− d

2
log(∆K) + ω(log(λ)).

Let r′ >
√

2C
√
mγr1, and r =

√
r′2 + 2τ2n2q2‖BR∨‖2∞d · (nm/ log(nm))1/4

Then the decisional problem E-DRLWE(K, qd,m,S, Dr) is hard, provided that
primal-DMLWE(K, k, q,DR,γ) and DMLWE(K, k, q,m,Dr′) are hard.
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