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Abstract

Authenticated dictionaries (ADs) are a key building block of many cryptographic systems, such as transparency

logs, distributed �le systems and cryptocurrencies. In this paper, we propose a new notion of cross-incremental
proof (dis)aggregation for authenticated dictionaries, which enables aggregating multiple proofs with respect to

di�erent dictionaries into a single, succinct proof. Importantly, this aggregation can be done incrementally and can

be later reversed via disaggregation. We give an e�cient authenticated dictionary construction from hidden-order

groups that achieves cross-incremental (dis)aggregation. Our construction also supports updating digests, updating

(cross-)aggregated proofs and precomputing all proofs e�ciently. �is makes it ideal for stateless validation in

cryptocurrencies with smart contracts. As an additional contribution, we give a second authenticated dictionary

construction, which can be used in more malicious se�ings where dictionary digests are adversarially-generated,

but features only “one-hop” proof aggregation (with respect to the same digest). We add support for append-only
proofs to this construction, which gives us an append-only authenticated dictionary (AAD) that can be used for

transparency logs and, unlike previous AAD constructions, supports updating and aggregating proofs.
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1 Introduction
An authenticated dictionary (AD) scheme securely outsources storage of a set of keys-value pairs to an untrusted
prover. In this se�ing, the prover can convince any veri�er, who has a succinct digest of the dictionary, that a

key has a particular value in the outsourced dictionary by sending him a lookup proof for that key. Authenticated

dictionaries are a fundamental building block of numerous applications, including authenticated �le systems [15],

privacy-preserving web applications [9, 11], cryptocurrencies [30], stateless validation in cryptocurrencies [6, 14]

and transparency logs [7, 17, 23, 29]. In this paper, we enhance authenticated dictionaries in two ways.

ADs for Stateless Validation. In Section 4.2, we propose a new updatable authenticated dictionary (UAD) which

supports a new notion of cross-incremental proof (dis)aggregation. Speci�cally, our UAD supports aggregating many

lookup proofs, even if those proofs are with respect to di�erent dictionaries with di�erent digests. Importantly,

such a cross-aggregated proof can also be disaggregated to recover the original lookup proofs. Cross-incremental

aggregation generalizes previous notions of incremental aggregation of proofs with respect to the same digest [4]

and one-hop, cross-commitment aggregation of proofs with respect to di�erent digests [10]. Furthermore, our UAD

o�ers e�ciently updatable proofs and digests as well as e�cient proof pre-computation. We prove our UAD satis�es

weak key binding (see De�nition B.2), which assumes digests are honestly generated.

Our UAD can be used for stateless, smart contract-based cryptocurrencies. In such systems, the memory of each

smart contract is just a dictionary that maps memory locations from {0, 1}256
to their value, and can thus be authen-

ticated using our UAD. Because previous work cannot authenticate dictionaries with large key space, it restricts the

smart contract memory to be much smaller ({0, 1}10
) and authenticates it using a vector [10]. Our work naturally

overcomes this limitation. Furthermore, using cross-incremental aggregation, miners can now incrementally build

a block’s cross-aggregated proof as proofs for di�erent smart contract executions arrive. �is makes block proposal

faster, as miners do not have to wait for all proofs before starting to aggregate. It also opens up opportunities for

aggregating proofs inside the P2P network of the cryptocurrency, reducing communication in the network.

Beyond Stateless Validation. In Section 4.3, we modify our UAD to have stronger security so it can be used in more

malicious se�ings. Speci�cally, our new construction satis�es strong key binding (see De�nition 4.3), which means

security holds even when digests are maliciously constructed by the adversary. �is is the case in many applications,

such as transparency logs, authenticated �le systems and privacy-preserving web applications. For the transparency

log se�ing, we show our construction supports e�cient append-only proofs [29] that one dictionary is a subset of

another. Furthermore, we add support for non-membership proofs of keys that are not in the dictionary. As a result,

we obtain an append-only authenticated dictionary (AAD) which, unlike previous schemes [27,29], supports updating

proofs and one-hop proof aggregation.

New Techniques for RSA Accumulators. As a building block for our AAD, we develop techniques for computing and

aggregating RSA non-membership witnesses across di�erent-but-related RSA accumulators [2]. We also develop a

faster algorithm for witness extraction in Boneh et al.’s proof-of-knowledge of co-prime roots (PoKCR) protocol (see

Section 2.2). We believe these techniques could be of independent interest.

1.1 Related Work
We survey recent work that builds authenticated dictionaries from group-theoretic assumptions, rather than tradi-

tional Merkle-based techniques, which are inherently expensive to aggregate.

Streaming Authenticated Data Structure (SADS). Papamanthou et al. [20] present an elegant la�ice-based con-

struction that generalized Merkle trees using an algebraic hash function. However, their construction does not sup-

port aggregating proofs nor append-only proofs, making it ill-suited both for stateless validation and transparency

logs.

Authenticated Hash Tables (AHTs). Papamanthou et al. [21] build authenticated hash tables (AHTs) from both

bilinear accumulators [18] and RSA accumulators [2]. �eir tree-based approach uses an accumulator rather than

a normal collision-resistant hash function for authentication. However, their construction assumes digests are gen-

erated honestly and is thus only secure under weak key binding. Also, they do not support proof updates, proof

aggregation, nor append-only proofs.
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AD scheme

Aggrega-

table π’s?

Binding

Updata-

bility?

Update

hint-free?

Non-memb.

π’s?

Append-

only π’s?

Prove

all fast?

Merkle tree × Strong I × X × X
SADS [20] × Strong DI X X × X
AHTs [21] × Weak × n/a X × X
KVC1 [3] One-hop Strong DI × X × X
KVC2 [3] One-hop Weak DI × X × X
AAD [27] × Strong × n/a X X X
Aardvark [14] One-hop Weak DI × X × ×
KVaC [1] One-hop Weak DI X × × ×
Our UAD Cross-incr. Weak ADIX × X∗ X X
Our AAD One-hop Strong aDI × X X X

∗
Our UAD supports non-membership proofs, but they can only be “one-hop” aggregated.

Table 1: Comparison of our AD with other ADs based on la�ices, pairing-friendly or hidden-order groups. In

“Updatability”, we indicate updatability of: individual lookup proofs (I), aggregated lookup proofs (A), aggregated

lookup proofs, but only a�er changes to existing keys (a), cross-aggregated lookup proofs (X) and digests (D).

Key-Value Commitments (KVC). Boneh et al. [3] brie�y describe two AD constructions from their RSA-based

vector commitment scheme. �eir �rst construction, which we dub KVC1, satis�es strong key binding (see De�ni-

tion 4.3) while their second construction, KVC2, relaxes security to weak key binding for e�ciency gains. Unlike

our UAD construction, they do not support incremental (dis)aggregation, nor cross-aggregation of proofs. Also, they

cannot update aggregated proofs and do not support append-only proofs.

AADs. Tomescu et al. [29] give an append-only authenticated dictionary (AAD) construction from bilinear accumu-

lators [18]. Later on, Tomescu [27] generalizes this construction to RSA accumulators. Both constructions support

append-only proofs and non-membership proofs and can be used, in theory, for transparency logs. �ey also use an

amortization technique [19] to precompute all lookup proof and all append-only proofs in quasilinear time and sup-

port appending to the dictionary in amortized polylogorithmic time. Importantly, their AAD supports pre-computing

all non-membership proofs. Unfortunately, neither construction supports proof aggregation, nor proof updates (in-

dividual or aggregated). Also, their RSA-based AAD requires O(λ) more exponentiations per key-value pair added

to the dictionary than ours.

Aardvark. Leung et al. [14] propose Aardvark, an authenticated dictionary built on top of the cross-aggregatable

VC by Gorbunov et al [10]. Aardvark supports one-hop aggregation of proofs and relies on pairing-friendly groups.

As a result, Aardvark is fast in practice and has aggregated proof sizes of only 48 bytes. In contrast, our UAD’s

aggregated proof, consisting of two hidden-order group elements, is at least 512 bytes. However, Aardvark has a few

drawbacks. First, the digest’s size is non-constant: n/B group elements, where B is a construction-speci�c bucket

size and n is the dictionary size. Second, Aardvark is only secure under weak key binding, by assuming dictionary

digests are generated honestly. �ird, although an Aardvark dictionary proof is built by cross-aggregating VC proofs,

Aardvark does not explore further cross-aggregating their dictionary proofs themselves. Even if cross-aggregation

were possible in Aardvark, it would not be incremental and it would not support proof disaggregation. Last, Aardvark

does not support fast pre-computation of proofs.

KVaC. Agrawal and Raghumaran also introduced an authenticated dictionary from the RSA assumption, which

they dub KVaC. �eir elegant construction also builds on top of [4,5,13] and has the advantage of not requiring any

auxiliary information (i.e., update hints) for updating proofs and digests. Furthermore, KVaC also supports one-hop

proof aggregation. �is makes KVaC very useful for stateless validation. However, their construction has a few

drawbacks. First, they do not support incremental (dis)aggregation nor cross-commitment aggregation, which helps

with smart contract based validation [10]. Second, they do not discuss updating aggregated proofs, which helps with

stateless validation in the smart contract se�ing. �ird, they do not explore fast proof pre-computation, which is a

necessary ingredient for proof-serving nodes in stateless cryptocurrencies [6, 28]. Fourth, their construction only

satis�es weak key binding (see De�nition B.2), which is su�cient in the stateless cryptocurrency se�ing, but not

in other se�ings, such as transparency logs. Fi�h, their construction does not support non-membership proofs for

keys that were never inserted in the dictionary, which is also necessary for transparency logs. We believe it would
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ShamirTrick
((
g1/xi

)
i∈[n]

,x
)
→ g1/x∗

if n = 1, then
return x1, g

1/x1

else
Split [n] into halves L and R

gL ← [g1/x1 , . . . , g1/xn/2 ],

gR ← [g1/xn/2+1 , . . . , g1/xn ]

(xL, g
1
xL )← ShamirTrick (gL,xL)

(xR, g
1
xR )← ShamirTrick (gR,xR)

(a, b)→ EEA(xL, xR)
. i.e., axL + bxR = 1.

g
1

xL·xR →
(
g

1
xL

)b (
g

1
xR

)a
return

(
xL · xR, g

1
xL·xR

)
endif

RootFactor(g,x)→
(
gx
∗/xi

)
i∈[n]

if n = 1, then return g, else
Split [n] into halves L and R

gL ← g
∏
i∈L xi

gR ← g
∏
i∈R xi

L← RootFactor(gL,xR)
R← RootFactor(gR,xL)
return L||R

endif

MultiRootExp(α,x)→ y

if n = 1, then return α1, else
Split [n] into halves L and R

αL ← g
∏
i∈L xi

αR ← g
∏
i∈R xi

x∗L ←
∏
i∈L xi

x∗R ←
∏
i∈R xi

L← MultiRootExp(αL,xR)
R← MultiRootExp(αR,xL)

return Lx
∗
R ·Rx∗L

endif

Figure 1: We frequently rely on these algorithms, where x = [x1, . . . , xn], n = 2k, x∗ =
∏
i∈[n] xi and |xi| = O(`)

bits.

be interesting to see to what extent our techniques can enhance KVaCs and vice-versa.

2 Preliminaries

Notation. Let λ denote our security parameter. Let ` denote the length (in bits) of vector elements and of dictionary

values. Let G? denote a hidden-order group and g be a random group element in G?. Let H : {0, 1}∗ → Primes`+1

be a collision-resistant hash function that outputs (`+ 1)-bit primes. We typically use bolded variables x to denote

vectors [x1, x2, . . . , xn] of elements. We also use xI = (xi)i∈I to denote an I-subvector of x with only the values

at indices in I .

2.1 Algorithms
Our work makes frequent use of the following algorithms.

Extended Euclidean Algorithm (EEA). Given two integers x, y such that gcd(x, y) = 1, (a, b) ← EEA(x, y)
returns Bézout coe�cients (a, b) such that ax + by = 1 in O(m log2m log logm) bit operations [25], where m =
max(|x|, |y|). Importantly, the returned coe�cients satisfy a ≤ y and b ≤ x.

Shamir’s trick. For any g ∈ G?, given integers x, y and g
1
x , g

1
y , this classic algorithm by Shamir [26] e�ciently

computes g
1
xy as

(
g1/x

)b (
g1/y

)a
where a, b are Bézout coe�cients such that ax + by = 1. If ` = max{|x|, |y|},

the cost is dominated by O(`) group operations. Shamir’s trick can be extended to n > 2 inputs {xi, g1/xi}i∈[n] by

building a binary computation tree whose leaves are the individual (xi, g
1/xi)’s (see Fig. 1). Next, if a node’s le� and

right children store (xL, g
1/xL) and (xR, g

1/xR), respectively, then that node computes and stores (xL ·xR, g
1

xLxR ).

�is way, the root will compute the desired (
∏
i∈[n] xi, g

1∏
i∈[n] xi ). Shamir’s (recursive) trick on n inputs takes

T (n) = 2T (n/2) + O(`n) = O(`n log n) group operations which, in practice, dominate the cost of EEAs and

integer multiplications.

RootFactor. Given g ∈ G? and integers x = [x1, . . . , xn], outputs gx
∗/xi

for all xi, where x∗ =
∏
i∈[n] xi. �is

algorithm takes O(`n log n) group operations, where ` = maxi |xi|, and was introduced by Sander et al [24].
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MultiRootExp. Given group elements α = [α1, . . . , αn] and integers x = [x1, . . . , xn], outputs y =
∏
i∈[n] α

x∗/xi
i

where x∗ =
∏
i∈[n] xi. �is algorithm takes in O(`n log n) group operations, where ` = maxi |xi|, and was intro-

duced by Boneh et al. [3] (but under the name MultiExp).

2.2 Proofs of Knowledge of Co-prime Roots (PoKCR)
�e PoKCR protocol by Boneh et al. [3] proves knowledge of wi’s such that wxii = αi to a veri�er that has the αi’s
and xi’s. In other words, the protocol proves the following relation holds:

RPoKCR = {[α1, . . . , αn] ∈ Gn? , [x1, . . . , xn] ∈ Gn? : wxii = αi,∀i ∈ [n]} (1)

To prove the relation holds, PoKCR.Prove(α,x,w) simply returnsW =
∏
i∈[n] wi. To verify, PoKCR.Ver(α,x,W )

�rst computes x∗ =
∏
i∈[n] xi and then checks if W x∗ ?

= MultiRootExp(α,x) =
∏
i∈[n] α

x∗/xi
i .

Knowledge soundness. Boneh et al. [3] argue the PoKCR protocol is a proof of knowledge by showing the veri�er

can extract any wi’s given a W , x and α as follows. Let zi = x∗/xi and zi,j = x∗/(xixj). Since W is valid,

W x∗ =
∏
i∈[n] α

zi
i . �is means W x∗ = (

∏
j∈[n]\{i} α

zj
j )αzii = (

∏
j∈[n]\{i} α

zi,j
j )xiαzii

def
= Axij α

zi
i . Also note that

W zi = (W x∗)1/xi = (Axij α
zi
i )1/xi = Aj(α

zi
i )1/xi

. �us, we can let u = W zi/Aj = (αzii )1/xi = (α
1/xi
i )zi . Next,

note that a ShamirTrick(u, αi, xi, zi) on u = (α
1/xi
i )zi = (α

x∗/xi
i )1/xi

and αi = (α
x∗/xi
i )1/zi

, gives exactly α
1/xi
i .

Time to extract. Assume eachxi is at most ` bits. Note thatAj =
∏
j∈[n]\{i} α

zi,j
j = MultiRootExp(α[n]\{i},x[n]\{i})

can be computed in O(`n log n) group operations. �is dominates the time to compute W zi
and to do the Shamir

trick.

2.3 Proofs of Knowledge of Exponent (PoKE)
�e PoKE protocol by Boneh et al. [3] proves knowledge of an x ∈ Z such that w = ux to a veri�er who has w and

u. In other words, it proves that the relation RPoKE = {w ∈ G?, u ∈ G? : w = ux} holds. �e protocol makes use

PoKE.Prove(w = ux, u ∈ G?, x ∈ Z)→ πPoKE

g ← HG?
(u,w) and z = gx

`← HPrimes2λ(u,w, z) and α← H2λ(u,w, z, `)
Let q ∈ Z, r ∈ [0, `) s.t. x = q`+ r.

Let Q = (ugα)q and πPoKE = (z,Q, r).

PoKE.Ver(w ∈ G?, u ∈ G?, π
PoKE)→ {0, 1}

Parse (z,Q, r)← πPoKE

g ← HG?
(u,w)

`← HPrimes2λ(u,w, z) and α← H2λ(u,w, z, `)

return Q`(ugα)r
?
= wzα

Figure 2: Non-interactive proof-of-knowledge of exponent (PoKE) protocol [3].

of three di�erent hash functions HG?
: G2

? → G?, HPrimes2λ : G3
? → Primes2λ and H2λ : G3

? × {0, 1}2λ → {0, 1}2λ
modeled as random oracles. Correctness holds because:

Q`urgαr = (uqgαq)`urgαr = uq`gαq`urgαr = uq`+rgαq`+αr = uxgαx = wzα (2)

Knowledge soundness holds in the generic group model (see [3, Proof of �m. 3 in Appendix C.2]). A PoKE proof

contains two elements in G? and a 2λ-bit number r and can be computed in O(|x|) group operations.

2.4 RSA Accumulators
RSA accumulators were introduced by Benaloh and de Mare [2]. Given a set T = {e1, e2, . . . , en} of unique, `-bit

prime elements, an RSA accumulator is a commitment c = g
∏
ei∈T

ei
to the set T . Here, g is a random element of G?.

RSA accumulators support proving membership of any ei, as well as non-membership of any e /∈ T . Furthermore,

RSA accumulators support proving subset relations S ⊆ T as well as disjointness relations X ∩ T = ∅.
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2.4.1 Membership and subset witnesses

To prove that ei ∈ T w.r.t. the accumulator c, the prover computes a membership witness wi = g
∏
ej∈T,ej 6=ei = c1/ei .

�e veri�er checks the witness as weii
?
= c. Sander et al. [24] showed that all of T ’s membership witnesses can

be computed in O(`n log n) time as (wi)i∈[n] ← RootFactor(g, [e1, e2, . . . en]) (see Fig. 1). Furthermore, a subset

witness for several elements S ⊆ T can be computed as wS = g
∏
ej∈T,ej /∈S = c1/

∏
ej∈S

. �e veri�er checks

the witness as w

∏
ej∈S

i
?
= c. Note that such a witness can be aggregated from the individual witnesses c1/ej ’s as

wS = ShamirTrick((c1/ej )j∈S , (ej)j∈S).

Cross-accumulator aggregation. Boneh et al. [3] show it is possible to cross-aggregate membership witnesses

(and thus subset witnesses too) with respect to di�erent accumulators, under the restriction that the elements being

witnessed are pairwise co-prime. Recall that, given n witnesses wi, each for an element ei w.r.t. a di�erent accu-

mulator ai, a cross-aggregated witness should prove that weii = ai,∀i ∈ [n]. But, as Boneh et al. observe, this is

equivalent to proving the PoKCR relation from Eq. (1) holds with xi = ei and αi = ai. �us, assuming all pairs

of ei’s are co-prime, a PoKCR proof can be used to aggregate all wi’s into a single w =
∏
i∈[n] wi and veri�ed

using PoKCR.Ver(a,x, w). In Section 3.1, we give a faster algorithm for extracting all witnesses wi from such a

cross-aggregated witness w.

2.4.2 Non-membership and disjointness witnesses

Li et al. [16] introduced non-membership witnesses for RSA accumulators. A non-membership witness for e w.r.t. to

accumulator c = gu is (a,B = gb) where (a, b) = EEA(u, e), such that au + be = 1. �e witness is veri�ed by

checking if caBe = g in O(`) group operations. Li et al. also show how to update non-membership witnesses a�er

additions or deletions to the accumulator (see Fig. 3).

Acc.NonMemWitUpdAdd (c, a,B, x, x′)

Let (s, t) = EEA(x, x′)
Let q ∈ Z, r ∈ [0, x) s.t. at = qx+ r

return (a′, B′) = (r, cqx
′+asB)

Acc.NonMemWitUpdDel (c, c′, a, B, x, x′)

. Note that c′ = c1/x
′

is the updated accumulator without x′.
Let q ∈ Z, r ∈ [0, x) s.t. x′a = qx+ r
return (a′, B′) = (r, (c′)qB)

Figure 3: Algorithms by Li et al. [16] for updating an RSA non-membership witness in O(`) group operations. For

an intuitive explanation, see Appendix A.

Boneh et al. [3] give algorithms for aggregating several non-membership witnesses (ai, Bi)i∈[n] for ei w.r.t.

the same accumulator c into a single disjointness witness for all ei’s, which we describe in Fig. 4. Speci�cally,

Acc.NonMemWitAgg∗ returns an O(`n)-sized disjointness witness and Acc.NonMemWitAgg returns a constant-
sized disjointness witness by using a PoKE proof.

2.5 Incrementally Aggregatable Vector Commitments from RSA
Our work builds upon Catalano and Fiore’s RSA-based vector commitment (VC) scheme [5], which was later en-

hanced by Lai and Malavolta [12] with subvector proofs and by Campanelli et al. [4] with proof (dis)aggregation,

e�cient proof pre-computation and constant-sized auxiliary information for updates.

Public parameters. Let ei = H(i) be distinct primes corresponding to each position i ∈ [n] in the vector. We

o�en use eI =
∏
i∈I ei for any set I ⊆ [n]. Let S = g

∏
j∈[n] ej and Si = S1/ei = g

∏
j∈[n]\{i} ej . Note that S can

be regarded as an RSA accumulator [2] and Si as an RSA membership witness for ei. Also note that the vector can

be extended with new positions by adding more primes (en+1, en+2, . . . ) to S (and thus to the Si’s too). �e public

parameters consist of a proving key prk = (g,H) and a veri�cation key vrk = (g,H). �e Si’s are called update keys
since they serve as auxiliary information when updating digests and proofs.

Commitment. A commitment to v = (vi)i∈[n] consists of S = ge[n] and c =
∏
i∈[n] S

vi
i . �e commi�ing time is

dominated by computing all Si’s in O(`n log n) group operations via RootFactor(g, [e1, . . . , en]). �e commitment
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Acc.NonMemWitAgg∗
(
c, (ai, Bi, ei)i∈[n]

)
→ (a,B)

if n = 1, then return (a1, B1), else
Split [n] into two halves L and R
(aL, BL)← Acc.NonMemWitAgg∗ (c, (ai, bi, ei)i∈L)
(aR, BR)← Acc.NonMemWitAgg∗ (c, (ai, bi, ei)i∈R)
Let eL =

∏
i∈L ei and eR =

∏
i∈R ei

(s, t)← EEA(eL, eR)
a′ ← t · aL · eR + s · aR · eL
Let q ∈ Z, r ∈ [0, eLeR) s.t. a′ = q · (eLeR) + r

return (r, cq(BL)t(BR)s)

Acc.NonMemWitAgg
(
c, (ai, Bi, ei)i∈[n]

)
→ π

(a,B)← Acc.NonMemWitAgg∗(c, (ai, Bi, ei)i∈[n])
return π = (ca, πPoKE

a = PoKE.Prove(ca, c, a), B)

Acc.NonMemWitAggVer
(
c, π, (ei)i∈[n]

)
→ {0, 1}

Let eI =
∏
i∈[n] ei

Parse (w, πPoKE
a , B)← π

return
1

?
= PoKE.Ver(w, c, πPoKE

a ) ∧

g
?
= wBeI

Figure 4: Algorithms by Boneh et al. [3] for aggregating RSA non-membership witnesses. (For intuition, see [3, pg.

18]).

can be updated a�er extending the vector with a new position vn+1 as S′ = Sen+1
and c′ = cen+1Svn+1

. Note that

the vector can be extended with multiple positions by applying this update sequentially.

�e commitment can also be updated a�er changing any set of values (vj)j∈J by δj , if the individual Sj ’s

are given. �en, the commitment is updated as S′ = S and c′ = c ·
∏
j∈J S

δj
j . If b = |J |, this takes O(`b)

group operations. Alternatively, if an aggregated update key SJ = S1/eJ
is given, each Sj is �rst computed via

RootFactor(SJ , (ej)j∈J) in O(`b log b) group operations.

Subvector proofs. An I-subvector proof πI for vI = (vi)i∈I , I ⊆ [n] consists of (1) SI = S
1
eI and (2) ΛI =(∏

j∈[n]\I S
vj
j

)1/eI
=
∏
j∈[n]\I S

vj
I,j , where SI,j = S

1/eI
j . Let b = |I|. �e prover computes (1) SI = g

∏
i∈[n]\I ei

and (2) allSI,j ’s viaRootFactor(g, (ei)i∈[n]\I). �e prover time is dominated by theO(`(n−b) log (n− b)) group op-

erations from RootFactor. To verify πI , one checks if (SI)
eI = S, computes (Si)i∈I via RootFactor(SI , (ei)i∈I) and

checks if c = ΛeII
∏
i∈I S

vi
i . �e veri�cation time is dominated by theO(`b log b) group operations from RootFactor.

If |I| = 1, then an I-subvector proof is referred to as an individual proof. A useful fact to notice is that πI is

simply the commitment to a vector “without positions I in it,” since SI = S1/eI
and ΛI =

(
c/
∏
i∈I S

vi
i

)1/eI
. We

o�en use this observation in Section 4.

(Dis)aggregating proofs. Campanelli et al. introduce incremental (dis)aggregation of subvector proofs (see Fig. 5).

Speci�cally, they show how to aggregate πI , πJ for vI and vJ into a subvector proof πI∪J for vI∪J via CFG.Agg.

�ey also show how to disaggregate any proof πI into a proof πI\K for a smaller subvector via CFG.Disagg. Lastly,

they give a CFG.AggManyToOne algorithm that aggregates individual proofs for vi’s, i ∈ I , into a subvector proof

for vI Fig. 5 summarizes these algorithms as well asCFG.Agg∗, a relaxed version ofCFG.Agg that assumes I∩J = ∅.

Let b = max{|I|, |J |}. �en,CFG.Agg∗ takesO(`b log b) group operations. CFG.AggManyToOne usesCFG.Agg∗

recursively and takes T (b) = 2T (b/2) +O(`b log b) = O(`b log2 b) group operations. CFG.Disagg takes O(`(|I| −
|K|) log(|I| − |K|)) group operations. Since the worst-case time to disaggregate πI and πJ is O(`b log b) group

operations, CFG.Agg is also O(`b log b).

Updating I-subvector proofs A proof πI = (SI ,ΛI) for (vi)i∈I can be updated to π′I = (S′I ,Λ
′
I) a�er the vector

changes. Previous work [4, 5] shows how to update proofs if (1) several vj ’s change or if (2) the vector is extended

with extra positions n+ 1, n+ 2, . . . , n+ ∆. In Section 4.2, we show how to handle the case where positions in the

vector are “removed,” which is necessary for dictionaries.

Case 1: Extending vector with new values vn+1, . . . , vn+∆: In this case, we have:

S′I = S
∏
j∈[∆] en+j

I Λ′I = Λ
∏
j∈[∆] en+j

I

∏
j∈[∆]

(
(S′I)

1/en+j

)vn+j

(3)

Note that this takesO(`∆) group operations if done sequentially (as described in the commitment update paragraph

above) rather than using RootFactor to compute all S
′1/en+j

K ’s.
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CFG.Agg∗ (I, J,vI ,vJ , πI , πJ)→ πI∪J
. Assume proofs verify against digest d = (c, S = g

∏
i∈[n] ei )

Parse (SI ,ΛI)← πI and (SJ ,ΛJ)← πJ
. where SeI

I = S, ΛI =
∏

j∈[n]\I S
vj
I,j , Λ

eI
I

∏
i∈I S

vi
i = c

SI∪J ← ShamirTrick(SI , SJ , eI , eJ), s.t. SeIeJI∪J = S

(SI,j)j∈J ← RootFactor(SI∪J , (ej)j∈J), s.t. SI,j = S
1/ej
I

(SJ,i)i∈I ← RootFactor(SI∪J , (ei)i∈I), s.t. SJ,i = S
1/ei
J

Λ∗I ←
ΛI∏

j∈J S
vj
I,j

=

∏
j∈[n]\I S

vj
I,j∏

j∈J S
vj
I,j

=
∏
j∈[n]
j /∈I∪J

S
vj
I,j

Λ∗J ←
ΛJ∏
i∈I S

vi
J,i

=

∏
i∈[n]\J S

vi
J,i∏

i∈I S
vi
J,i

=
∏
i∈[n]
i/∈I∪J

SviJ,i

ΛI∪J ← ShamirTrick(Λ∗I ,Λ
∗
J , eI , eJ) =

∏
k∈[n]
k/∈I∪J

SvkI∪J,k

return πI∪J = (SI∪J ,ΛI∪J)

CFG.AggManyToOne (I,vI , (πi)i∈I)→ πI
if |I| = 1, then return π1, else

Split I into two halves L and R
πL ← CFG.AggManyToOne(L, vL, (πi)i∈L)
πR ← CFG.AggManyToOne(R, vR, (πi)i∈R)
πI ← CFG.Agg∗(L,R, vL, vR, πL, πR)
return πI

endif

CFG.Disagg(I,K,vI , πI = (SI ,ΛI))→ πK

SK ← S
eI\K
I = S

eI/eK
I = S1/eK

(SK,i)← RootFactor(SI , (ei)i∈I\K)

ΛK ← Λ
eI\K
I

∏
i∈I\K S

vi
K,i

return πK = (SK ,ΛK)

CFG.Agg (I, J,vI ,vJ , πI , πJ)→ πI∪J
πJ\I → CFG.Disagg(J, J \ I,vJ , πJ)
πI∪J ← CFG.Agg∗(I, J \ I,vI ,vJ\I , πI , πJ\I)
return πI∪J

Figure 5: Algorithms by Campanelli et al. [4] for incrementally (dis)aggregating proofs. CFG.Agg∗ assumes I ∩ J =
∅, CFG.Disagg assumes K ⊂ I,K 6= ∅, CFG.Agg assumes I 6⊆ J and J 6⊆ I and CFG.AggManyToOne assumes

|I| = 2k .

Case 2: Changing each (vj)j∈J by δj : If J ⊆ I , then π′I = πI . Otherwise, S′ = SI and Λ′I = ΛI
∏
j∈J\I(SI,j)

δj
. In

order to compute all SI,j ’s, we must be given either the aggregate update key SJ or the individual Sj ’s (from which

SJ can be computed), First, computes SJ\I = S
eJ/eJ\I
J = S1/eJ\I in O(`|J |) group operations. Second, computes

SI∪J = ShamirTrick(SI , SJ\I , eI , eJ\I). �ird, computes all SI,j , j ∈ J \ I’s via RootFactor(SI∪J , (ej)j∈J\I).

Precomputing all proofs. All individual proofs can be computed fast inO(`n log2 n) time via proof disaggregation
in a recursive manner [4] by disaggregating the proof for the full vector v (i.e., π[n] = (g, 1G?

)) into a subvector

proof for its le� half vL and a subvector proof for its right half vR. �en, this can be repeated recursively to obtain

all individual proofs (see VC.DisaggOneToMany in [4, Fig. 1]).

3 Enhancements to RSA Accumulators
In this section, we give a new technique for performing faster witness extraction in the PoKCR protocol by Boneh

et al. [3] from Section 2.2. �is helps us verify cross-aggregated proofs faster in our UAD from Section 4.2. �en, we

show how to compute all RSA non-membership witnesses (ai, Bi)i∈I for ei w.r.t. its own accumulator c1/ei , which

we use to precompute proofs fast in our AAD from Section 4.3. Lastly, we also show how to aggregate such witnesses

across di�erent accumulators, which we leverage to aggregate lookup proofs in our AAD. �e ei’s are assumed to

be `-bit primes.

3.1 Faster Witness Extraction in PoKCR
Suppose we have a PoKCR proof W of xith roots of αi,∀i ∈ [m] as per Section 2.2. We know that each root

wi = α
1/xi
i can be extracted in O(`m logm) group operations, where ` is the max length in bits of the xi’s. �is

means extracting all wi’s takes O(`m2 logm) group operations, which can be slow. Here, we give an O(`m log2m)
time algorithm called PoKCR.Extract for computing all wi’s. �e key idea is to split up [m] into halves L and R

and show how to extract WL =
∏
i∈L wi =

∏
i∈L α

1/xi
i and WR =

∏
i∈L α

1/xi
i . �en, the algorithm can recurse,

eventually extracting all individual wi’s.
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Let xL =
∏
i∈L xi, xR =

∏
i∈R xi and x∗ = xLxR. Since W veri�es, we have:

W x∗ =
∏
i∈[m]

α
x∗/xi
i =

(∏
i∈L

α
x∗/xi
i

)(∏
i∈R

α
x∗/xi
i

)
⇔ (4)

W xLxR =

(∏
i∈L

α
1/xi
i

)xLxR (∏
i∈R

α
1/xi
i

)xRxL
⇒ (5)

W xR = (WL)
xR (WR)

xR andW xL = (WL)
xL (WR)

xL
(6)

Note that the following terms are computable in O(`m logm) group operations:

(WL)xL =

(∏
i∈L

α
1/xi
i

)xL
= MultiRootExp(αL,xL) (7)

(WR)xR =

(∏
i∈R

α
1/xi
i

)xR
= MultiRootExp(αR,xR) (8)

Next, W xL
and W xR

can be computed in O(`m) group operations. �is means W xL
R = W xL/(WL)xL and W xR

L =
W xR/(WR)xR can be computed too! �us, we can use Shamir’s trick to obtain WL and WR in O(`m logm) group

operations.

ShamirTrick(wxLL , wxRL , xR, xL) = ShamirTrick(w
x∗/xR
L , w

x∗/xL
L , xR, xL) = w

x∗/xLxR
L = wL (9)

ShamirTrick(wxLR , wxRR , xR, xL) = ShamirTrick(w
x∗/xR
R , w

x∗/xL
R , xR, xL) = w

x∗/xLxR
R = wR (10)

�us, all roots wi = α
1/xi
i can be obtained via recursion. Note that our �nal PoKCR.Extract(W,α,x) algorithm

runs in time T (m) = 2T (m/2) +O(`m logm) = O(`m log2m) group operations, where m = |α| = |x|.

3.2 Computing All Non-membership Witnesses Across Di�erent, Related Accumula-
tors

In this section, we give an algorithm called Acc.NonMemWitCrossProve that, on input g and (ei)i∈[n], computes all

RSA non-membership witnesses (ai, Bi)’s for each ei w.r.t. ci = ge
∗/ei

where e∗ =
∏
i∈[n] ei. Later on, we use this

algorithm in Section 4.3 to precompute all lookup proofs in our AD construction.

First, the algorithm computes a non-membership witness (a,B = gb) for e∗ w.r.t. to the empty accumulator g1
,

where a · 1 + b · e∗ = 1. Next, let eL =
∏
i∈[1,n/2] ei and eR =

∏
i∈(n/2,n] ei such that e = eLeR. �e algorithm

recursively updates (a,B) into two witnesses: (aL, BL) for eL w.r.t geR , and (aR, BR) for eR w.r.t. geL . As a result,

at the bo�om of this recursion tree, the algorithm outputs all non-membership witnesses (ai, Bi) for ei w.r.t. ge
∗/ei

.

We show how to compute (aL, BL) and note (aR, BR) follows by symmetry. �e algorithm computes Bézout

coe�cients (s, t) such that s · eL + t · eR = 1⇒ a = as · eL + at · eR. �en, note that:

g = gaBe = gas·eL+at·eR(BeR)eL (11)

= (gas)eL(geR)at(BeR)eL = (geR)at(gasBeR)eL (12)

We could now set aL = at and BL = (gasBeR) as the witness, but |aL| = |at| = |eLeR| + |eL| is too large for

e�cient recursion. To �x this, we reduce at modulo eL by writing it as at = q · eL + r for some integers (q, r), with

r < eL.

g = (geR)at(gasBeR)eL = (geR)r+q·eL(gasBeR)eL (13)

= (geR)r(geR)q·eL(gasBeR)eL = (geR)r(gqeRgasBeR)eL (14)

Now, we can set aL = at mod eL = r and BL = (gqeRgasBeR). Note that |aL| = |eL| = O(`n/2) and BL is a

group element. Both (aL, BL) can be computed in O(`n) group operations. Our �nal Acc.NonMemWitCrossProve
recursive algorithm will take T (n) = 2T (n/2) +O(`n) = O(`n log n) group operations.
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3.3 Aggregating Non-membership Witnesses Across Di�erent, Related Accumulators
In this subsection, we give an algorithm called Acc.NonMemWitCrossAgg that aggregates n witnesses (ai, Bi)i∈[n]

for ei w.r.t. c1/ei into a single non-membership witness (a,B) for e∗ =
∏
i∈[n] ei w.r.t. c′ = c1/e

∗
. Later on,

we use this algorithm in Section 4.3 to aggregate lookup proofs in our AD construction. We �rst describe how

Acc.NonMemWitCrossAgg algorithm works when n = 2 and then de�ne it recursively for n > 2.

Case n = 2: Suppose we are given just two witnesses π0 = (a0, B0) for e0 w.r.t. c1/e0 , and π1 = (a1, B1) for e1

w.r.t. c1/e1 , where:

(c1/e0)a0(B0)e0 = g (c1/e1)a1(B1)e1 = g (15)

We want to aggregate them into a disjointness witness π = (a,B) for e0 ·e1 w.r.t. c′ = c
1

e0·e1 , such that (c′)aBe0·e1 =
g. First, we update the witness for e0 w.r.t. c1/e0 into a witness w.r.t c′, which removed e1, as (a′0, B

′
0) =

Acc.NonMemWitUpdDel(c1/e0 , c′, a0, B0, e0, e1). Second, we update the witness for e1 w.r.t. c1/e1 into a witness

w.r.t c′, which removed e0, as (a′1, B
′
1) = Acc.NonMemWitUpdDel(c1/e1 , c′, a1, B1, e1, e0). Now, we have two

non-membership witnesses for e0 and e1 w.r.t. c′:

(c′)a
′
0(B′0)e0 = g (c′)a

′
1(B′1)e1 = g (16)

Next, we can aggregate these witnesses as (a,B) = Acc.NonMemWitAgg∗(c′, a′0, B
′
0, e0, a

′
1, B

′
1, e1) such that

(c′)aBe0e1 = g. �e time complexity of this is O(`) group operations. Note that |a| = |e0e1|, but we reduce it

next.

Case n > 2: Suppose we are given an arbitrary number of witnesses n. �en, we lay out a computation tree with

the (ai, Bi)’s in the leaves such that every node runs the aggregation explained above on its two children. �is

results in the root computing a non-membership witness (a,B) for e∗ w.r.t c′ = c1/e
∗
. Finally, we compute a PoKE

proof πPoKE
a = PoKE.Prove((c′)a, c′, a) to “compress” a, which is of size |a| = |e∗|. �e �nal aggregated disjointness

witness will be π = ((c′)a, πPoKE
a , B) and veri�es via Acc.NonMemWitAggVer(c′, π, (ei)i∈[n]) (see Fig. 4). �us, our

�nal Acc.NonMemWitCrossAgg algorithm will take T (n) = 2T (n/2) +O(`n) = O(`n log n) group operations.

4 Authenticated Dictionaries from Hidden-Order Groups
In this section, we �rst formalize authenticated dictionaries. �en, we give two constructions from hidden-order

groups, both built on top of the VC scheme from Section 2.5. Our �rst construction is an updatable authenticated
dictionary (UAD) for stateless validation in the smart contract se�ing (see Section 4.2). Our UAD supports a new

notion of cross-incremental proof (dis)aggregation, which generalizes the notion of cross-commitment aggregation by

Gorbunov et al. [10]. Our second construction is an append-only authenticated dictionary (AAD) for applications

with stronger security requirements, such as transparency logs (see Section 4.3). Our AAD additionally supports

non-membership proofs of keys that are not in the dictionary and append-only proofs to prove a dictionary has only

been extended with new key-value pairs. However, our AAD’s stronger security comes at the cost of downgrading

from cross-incremental (dis)aggregation to “one-hop” proof aggregation [3].

Notation. We use k ∈ D to indicate key k is in the dictionary with some value v 6= ⊥. When k is not in the

dictionary, we say it has value v = ⊥. We also use (k, v) ∈ D to indicate key k has value v 6= ⊥ in the dictionary.

We o�en denote a subset of a dictionary as a pair (K,V ) where V (k) stores the value of each key k ∈ K .

4.1 De�nitions
�e following APIs capture the essential operations in an AD scheme and are useful for formalizing security.

AD.Setup(1λ)→ (prk, vrk). Returns the AD’s proving key and veri�cation key.

AD.Commit(prk, D)→ d. Returns a digest d of the dictionary d.

AD.ProveLookup(prk, D,K)→ π. Returns a lookup proof π that each k ∈ K has value D(k).
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AD.VerLookup(vrk, d,K, V, π) → {0, 1}. Veri�es the proof π that each k ∈ K has value V (k) in the dictionary

with digest d.

AD.CrossAgg((vrki, di,Ki, Vi, πi)i∈[m]) → π. Given lookup proofs πi for each k ∈ Ki having value Vi(k) w.r.t.

digest di built using the public parameters from vrki (with all vrki 6= vrkj ), returns a succinct, cross-aggregated
proof π.

AD.CrossVerLookup((vrki, di,Ki, Vi)i∈[m], π)→ {0, 1}. Veri�es the cross-aggregated proof π that each k ∈ Ki has

value Vi(k) in the dictionary with digest di, for all i ∈ [m]. Whenm = 1, simply returnsAD.VerLookup(vrk1, d1,

K1, V1, π). In other words, proofs cross-aggregated amongst m = 1 digests are just normal aggregated proofs.

AD.ProveAppendOnly(prk, D,D′)→ π. Returns an append-only proof π that the dictionary D is a subset of D′.

AD.VerAppendOnly(vrk, d, d′, π) → {0, 1}. Veri�es the proof π that the dictionary with digest d is a subset of the

dictionary with digest d′.

De�nition 4.1 (Correctness). An authenticated dictionary scheme is correct if, ∀ public parameters (prk, vrk) ←
AD.Setup(1λ), ∀ dictionaries D with digest d← AD.Commit(prk, D), the following hold:

Lookup correctness: ∀ sets of keys K , if π = AD.ProveLookup(prk, D,K) and V (k) = D(k),∀k ∈ K , then

AD.VerLookup(vrk, d,K, V, π) = 1.

Append-only correctness: ∀ dictionaries D′ such that D ⊆ D′ and d′ ← AD.Commit(prk, D), if π =
AD.ProveAppendOnly(prk, D,D′), then AD.VerAppendOnly(vrk, d, d′, π) = 1.

De�nition 4.2 (Cross-lookup Correctness). An authenticated dictionary scheme has cross-lookup correctness if,

∀m, ∀
(
(prki, vrki)← AD.Setup(1λ)

)
i∈[m]

, ∀ dictionaries (Di)i∈[m], each with digest di = AD.Commit(prki, Di),

∀ sets of keys (Ki)i∈[m] with values Vi(k) = Di(k), k ∈ Ki, if πi ← AD.ProveLookup(prki, Di,Ki), ∀i ∈ [m] and

π ← AD.CrossAgg((vrki, di,Ki, Vi, πi)i∈[m]), then AD.CrossVerLookup((vrki, di,Ki, Vi)i∈[m], π) = 1.

De�nition 4.3 (Strong Key Binding). ∀ adversaries A running in time poly(λ), there exists negligible function

negl(·), such that:

Pr


(prk, vrk)← AD.Setup(1λ),

(d,K,K ′, V, V ′, π, π′)← A(1λ, prk, vrk) :
AD.VerLookup(vrk, d,K, V, π) = 1 ∧

AD.VerLookup(vrk, d,K ′, V ′, π′) = 1 ∧
∃k ∈ K ∩K ′ s.t. V (k) 6= V ′(k)

 ≤ negl(λ)

Observation: In some applications, such as stateless validation for cryptocurrencies, a weaker de�nition where the

adversary outputs a dictionary and the digest is correctly computed from it su�ces (see De�nition B.2).

De�nition 4.4 (Strong Cross Binding). ∀M = poly(λ), ∀ adversaries A running in time poly(λ), there exists

negligible function negl(·), such that:

Pr



(
(prki, vrki)← AD.Setup(1λ)

)
i∈[M ]

,

((di,Ki, Vi)i∈I , (d
′
j ,K

′
j , V

′
j )j∈J , π, π

′)← A(1λ, (prki, vrki)i∈[M ]) :
AD.CrossVerLookup((vrki, di,Ki, Vi)i∈I , π) = 1 ∧
AD.CrossVerLookup((vrkj , d

′
j ,K

′
j , V

′
j )j∈J , π

′) = 1 ∧
∃i ∈ I, j ∈ J, k ∈ Ki ∩K ′j such that

vrki = vrkj ∧ di = d′j ∧ Vi(k) 6= V ′j (k)

 ≤ negl(λ)

Observation: Note that I, J are subsets of [M ]. Also note that this de�nition requires the public parameters of the

dictionaries whose proofs are being cross-aggregated to be di�erent. An ideal cross-aggregation scheme should also

work for dictionaries built using the same public parameters.
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De�nition 4.5 (Append-only Security). ∀ adversaries A running in time poly(λ), there exists negligible function

negl(·), such that:

Pr


(prk, vrk)← AD.Setup(1λ),

(d, d′,K,K ′, V, V ′, π, π′, π⊆)← A(1λ, prk, vrk) :
AD.VerAppendOnly(vrk, d, d′, π⊆) = 1∧
AD.VerLookup(vrk, d,K, V, π) = 1 ∧

AD.VerLookup(vrk, d′,K ′, V ′, π′) = 1 ∧
∃k ∈ K ∩K ′ s.t. V (k) 6= ⊥ ∧ V (k) 6= V ′(k)

 ≤ negl(λ)

Observation: �is de�nition can be generalized to work with cross-aggregated proofs too.

4.2 Updatable Authenticated Dictionary for Stateless Validation
At a high level, we obtain an updatable authenticated dictionary (UAD) by mapping keys k to primes ek = H(k) in the

VC from Section 2.5 (instead of mapping vector indices i to primes ei). �is idea was developed concurrently in [1],

however, our work extends it in a di�erent direction. First, we add cross-incremental (dis)aggregation of proofs, which

allows incrementally cross-aggregating multiple lookup proofs across di�erent digests as well as disaggregating

such cross-aggregated proofs. �is is useful for stateless validation in the smart contract se�ing [10]. Second, our

construction supports updating aggregated proofs and proof pre-computation. One important caveat is that our

cross-aggregation requires that the digests were built using di�erent public parameters. Although this is di�erent

than previous work [10], which allows the public parameters to be the same, it can still be used in the smart contract

se�ing, since each contract can easily use its own (constant-sized) public parameters.

We prove our UAD has weak key binding (see De�nition B.2) in Appendix B.3 under the Strong RSA assumption

(see De�nition B.1). Similar to previous work [3, 4], our UAD can update proofs and digests, but requires auxiliary
information related to the keys k ∈ K that changed. Although eliminating the need for such auxiliary information

is important [1], we believe it is worth the cost given that it enables our UAD to support cross-incremental proof

(dis)aggregation with the ability to update even cross-aggregated proofs! Furthermore, in the stateless validation

se�ing, this auxiliary information is not too problematic, since it can be easily included in the transaction or served

by proof-serving nodes [28].

Public parameters. �e public parameters remain prk = vrk = (g,H), where g is a generator for the hidden-order

group G? and H is a CRHF that maps keys (not vector indices) to `+ 1 bit primes. Values in the dictionary must be

`-bit numbers.

Digest. Let D be a dictionary and K be the set of keys with a value D(k) 6= ⊥ in the dictionary. We o�en use

eK =
∏
k∈K ek to denote the product of the prime representatives of all keys in K . Let S = geK and Sk = S

1
ek .

�e digest d = (c, S) of our UAD resembles the VC from Section 2.5, where c =
∏

(k,v)∈D (Sk)
v
.

Lookup proofs. Similar to Section 2.5, a proof πk for k having value v 6= ⊥ in the dictionary D with digest

d = (c, S) consists of two parts. �e �rst part is a commitment Λk to D without (k, v) in it, where Λk =∏
(k′,v)∈D,k′ 6=k ((Sk′)

v
)

1
ek . �e second part, is an RSA membership witness Sk for k w.r.t. the RSA accumulator

S in the digest, where Sk = S
1
ek . As before, to verify the proof, one checks if S = (Sk)ek and if c = (Sk)v(Λk)ek .

(Dis)aggregating lookup proofs. �e incremental proof (dis)aggregation from Fig. 5 carries over to our construc-

tion. �is because the CFG.Agg, CFG.Disagg and CFG.AggManyToOne algorithms by Campanelli et al. [4] are

agnostic to whether ei = H(i) is obtained from the hash of a vector index i or a dictionary key i. �us, our aggre-

gated lookup proofs resemble the I-subvector proofs from Section 2.5. Speci�cally, given lookup proofs (πk)k∈K ,

for each key k having value vk 6= ⊥, we can aggregate them as (SK ,ΛK) ← CFG.AggManyToOne(K, (vk)k∈K ,

(πk)k∈K), such that they verify as S = (SK)eK and c = (ΛK)eK
∏
k∈K(Sk)vk .

Updating the digest. �e digest d = (c, S) can be easily updated given additions of new key-value pairs or changes

to existing keys in the dictionary, similar to how the VC is updated in Section 2.5. Additionally, we also show how to

update the digest a�er removing keys from the dictionary. �is might be useful in the stateless cryptocurrency se�ing,

for example, to delete users whose balance is zero. Speci�cally, we observe that, given the proof πk = (Sk,Λk) for

the removed key k w.r.t. the old digest d = (c, S), we simply set the new digest to be d′ = (c′, S′) with c′ = Λk and
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S′ = Sk . �is is because the proof for the removed key k is exactly the digest of the dictionary without key k in it

(see Section 2.5)! Lastly, to update the digest a�er multiple keys k ∈ K were removed, we �rst aggregate the proofs

into a (ΛK , SK) via CFG.Agg or CFG.AggManyToOne and let the new digest d′ = (ΛK , SK).

Updating proofs. Let πK = (SK ,ΛK) be either an individual or an aggregated lookup proof for all k ∈ K having

value vk w.r.t. digest d = (c, S). Updating πK a�er adding new key-value pairs or a�er changing existing keys’

values works the same as in the VC from Section 2.5. As in the VC, updating a�er changing existing keys k̂ ∈ K̂
requires at least the aggregate update key SK̂ (or the individual Sk̂’s).

We show how to update πK to π′
K\K̂ a�er removing several keys k̂ ∈ K̂ . We stress that the updated proof

π′
K\K̂ has to be for keys K \ K̂ since that is the subset of K le� in the dictionary a�er removing all keys in K̂ . One

consequence of this is that, when K = K̂ , the updated proof π′
K\K̂ would need to be a non-membership proof for

all k ∈ K . While our UAD does not support this, our AAD in Section 4.3 does. �us, we only care about the case

when K 6= K̂ .

In this case, assume we are given an aggregated proof πK̂′ for each k̂ having value vk̂ (or individual proofs

πk̂ which can be aggregated into πK̂ ). Note that we can aggregate πK∪K̂ = (SK∪K̂ ,ΛK∪K̂) via CFG.Agg(K, K̂ ,

(vk)k∈K , (vk̂)k̂∈K̂ , πK , πK̂), obtaining a valid proof for all keys K ∪ K̂ w.r.t. the old digest d. Interestingly, we

observe that πK∪K̂ is also a valid proof for all keys K \ K̂ w.r.t. the new digest d′ = (c′, S′) = (ΛK̂ , SK̂). (Recall

from above that the new digest d′ is just the aggregated proof πK̂ for the removed keys.) We explain how this works

next.

First, partition K ∪ K̂ into K \ K̂ and K̂ so that eK∪K̂ = eK\K̂eK̂ . Second, to see how SK∪K̂ veri�es against

S′, note that, since SK∪K̂ veri�es against S andK∪K̂ , we have S = (SK∪K̂)eK\K̂eK̂ ⇔ S1/eK̂ = (SK∪K̂)eK\K̂ ⇔
S′ = (SK∪K̂)eK\K̂ �ird, to see how ΛK∪K̂ veri�es against c′ and K \ K̂ , note that, since ΛK∪K̂ veri�es against c

and and K ∪ K̂ , we have:

c = (ΛK∪K̂)eK\KeK̂
∏

k∈K\K̂

(Sk)vk
∏
k∈K̂

(Sk)vk ⇔ (17)

c
/ ∏
k∈K̂

(Sk)vk = (ΛK∪K̂)eK\KeK̂
∏

k∈K\K̂

(Sk)vk ⇔ (18)

c/ ∏
k∈K̂

(Sk)vk

1/eK̂

= (ΛK∪K̂)eK\K

 ∏
k∈K\K̂

(S1/ek)vk

1/eK̂

⇔ (19)

ΛK̂ = (ΛK∪K̂)eK\K
∏

k∈K\K̂

(
(S1/eK̂ )vk

)1/ek
⇔ (20)

c′ = (ΛK∪K̂)eK\K̂
∏

k∈K\K̂

((S′)1/ek)vk (21)

�us, we can set π′
K\K̂ = πK∪K̂ as the new updated proof for all keys in K \ K̂ .

Cross-incremental (dis)aggregation. Suppose we are given m aggregated proofs πi for keys k ∈ Ki with values

v = Vi(k), where each πi is w.r.t. its own digest di. We would like to cross-aggregate [10] these proofs into a single,

constant-sized proof π that veri�es against these m digests and the (Ki, Vi)’s. Let di = (ci, Ai) and πi = (Wi,Λi)

where Wi = A
1/eKi
i .

Our �rst di�culty is that we must cross-aggregate all of the RSA subset witnesses Wi into a single witness that

veri�es w.r.t. to them di�erentAi accumulators. �is seems possible using a PoKCR proof (see Section 2.2), similar to

how RSA accumulator witnesses were cross-aggregated in Section 2.4.1. Unfortunately, these techniques require that

gcd(eKi , eKj ) = 1,∀i, j, which is not necessarily the case when the Ki’s share common keys. Our key observation

is that we can ensure this GCD property holds by requiring that all keys in Ki’s be hashed with a Ki-speci�c hash

function Hi. �is ensures that the same k ∈ Ki ∩Kj gets mapped to two di�erent prime representatives, which in

turn ensures gcd(eKi , eKj ) = 1,∀i, j. Put di�erently, the public parameters for the ith AD with digest di must have

its own, unique hash function Hi.
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We are now le� with cross-aggregating the Λi’s. Recall that each Λi would verify as ci = Λ
eKi
i

∏
k∈Ki(Ai,k)Vi(k) ⇔

ci/
∏
k∈Ki(Ai,k)Vi(k) = Λ

eKi
i . �us, checking all the Λi’s is equivalent to checking a PoKCR relation holds (i.e., set

wi = Λi, xi = eKi and αi = ci/
∏
k∈Ki(Ai,k)Vi(k)

in Eq. (1)). As a result, we can aggregate the Λi’s using a PoKCR,

just like the Wi’s. Finally, the cross-aggregated proof π = (W,Λ) can be computed in O(m) group operations as

W =
∏
i∈[m]Wi and Λ =

∏
i∈[m] Λi.

Verifying cross-aggregated proofs. Let e∗ =
∏
i∈[m] eKi where eKi =

∏
k∈Ki Hi(k). One �rst veri�es the cross-

aggregated RSA subset witness W via W e∗ ?
=
∏
i∈[m]A

e∗/eKi
i = MultiRootExp((Ai)i∈[m], (eKi)i∈[m]) (similar to

Section 2.4.1). Second, the veri�er extracts allWi’s fromW such thatW
eKi
i = Ai via PoKCR.Extract(W, (Ai)i∈[m],

(eKi)i∈[m]) from Section 3.1. Importantly, this takes O(`bm log2 (bm)) group operations (rather than O(`bm2), if

done naively). �ird, the veri�er computes, for all i ∈ [m], (Ai,k)k∈Ki ← RootFactor(Wi, (Hi(k))k∈Ki), where

Ai,k = W
eKi/Hi(k)

i = A
1/Hi(k)
i . Last, the veri�er checks if Λe

∗
=
∏
i∈[m](αi)

e∗/eKi = MultiRootExp(α,

(eKi)i∈[m]), where αi = ci/
∏
k∈Ki(Ai,k)Vi(k)

. �e total veri�cation time is dominated by the O(`bm log2 `bm)
group operations from PoKCR.Extract.

Soundness of cross-aggregation. Recall that all the aggregated lookup proofs πi = (Wi,Λi)’s can be extracted from a

cross-aggregated proof (W,Λ) via PoKCR.Extract. �is means that, two cross-aggregated proofs π and π′ that are

inconsistent for some k ∈ Ki ∩K ′j can be used to obtain two inconsistent aggregated lookup proofs πi and π′j for

Ki and K ′j , respectively, w.r.t. the same digest di = d′j . As a result, the security reduction from Appendix B.3 can

be used to break the Strong RSA assumption.

Incremental (dis)aggregation. Since the Wi’s and Λi’s can be recovered from the cross-aggregated proof (W,Λ)
via PoKCR.Extract, our construction also supports disaggregation of cross-aggregated lookup proofs. Furthermore,

cross-aggregation can be done incrementally as follows. Assume we are given two cross-aggregated proofs π, π′ that

verify against (vrki, di,Ki, Vi)i∈[m] and (vrk′i, d
′
i,K

′
i, V

′
i )i∈[m′], we can combine them as follows. If vrki 6= vrk′j ,∀i ∈

[m], j ∈ [m′], then we can simply multiply the two proofs together. Otherwise, for each i, j where vrki = vrk′j and

di = d′j , we extract πi from π and π′j from π′ via PoKCR.Extract and remove them from π and π′. (Since we cannot

cross-aggregate across di�erent digests with the same vrk, we require that di = d′j .) �en, we aggregate πi and π′j
together via CFG.Agg into a πi,j . Finally, we add πi,j back into either π or π′ (but not both). A�er repeating this for

all i, j where vrki = vrk′j , π and π′ will not share any veri�cation keys and can be aggregated by multiplying them

as before.

Updatability. As a consequence of disaggregation, our cross-aggregated proofs can be updated by disaggregating

them, updating the aggregated proof and re-aggregating them.

4.3 Append-only Authenticated Dictionary for Transparency Logs
In this subsection, we extend our updatable authenticated dictionary (UAD) from Section 4.2 with strong key bind-

ing, non-membership proofs, and append-only proofs. An append-only proof [29] can convince any veri�er that a

dictionary D is a subset of D′, meaning all key-value pairs in D are also in D′. �is gives us an append-only authen-
ticated dictionary (AAD), which can be used for transparency logging [7, 17, 23, 29] as well as any other application

with stronger security requirements, where our UAD’s weak binding does not su�ce.

However, adding strong key binding comes at a cost. First, our AAD no longer supports incremental (dis)aggregation

of proofs nor cross-aggregation. Instead, it only supports “one-hop” proof aggregation [3], or aggregating b individual

lookup proofs into a constant-sized, aggregated proof. Second, while such aggregated proofs can still be updated

a�er changes to existing keys’ values, they can no longer be updated a�er adding keys to or removing keys from

the dictionary. Nonetheless, our AAD maintains full updatability of individual proofs, updatability of digests and

e�cient pre-computation of all proofs.

Strong binding. To prove security against adversaries that output arbitrary digests, we need to augment our lookup

proofs. Speci�cally, in addition to (Sk,Λk), we include an additional RSA non-membership witness (ak, Bk) for k
w.r.t. to Sk (since Sk can also be seen as an RSA accumulator too). To verify the proof πk = (Sk,Λk, ak, Bk) for

(k, vk) against the digest d = (c, S), the veri�er checks Sk and Λk as explained in Section 4.2 and additionally checks

that (Sk)
ak (Bk)

ek = g.
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Non-membership proofs. A non-membership proof πk for key k is a non-membership of ek in the RSA accumu-

lator S (see Section 2.4.2). Speci�cally, πk = (⊥,⊥, ak, Bk) where Sak (Bk)
ek = g. �e veri�er can easily check

the proof satis�es the equation above in O(`) group operations.

Aggregating lookup proofs. Aggregation works as before, except we must now account for the additional RSA

non-membership witnesses (ak, Bk) used for key binding or for non-membership. Given lookup proofs (πk)k∈K ,

we partition the set of keys K into two sets: (1) K1, the set of keys k with values vk 6= ⊥ in the dictionary, and (2)

K0, the set of keys that are not in the dictionary (i.e., vk = ⊥). Recall that πk = (Sk,Λk, ak, Bk), with Sk and Λk
set to ⊥, when proving non-membership.

For k ∈ K0: In this case, recall that (ak, Bk) is just an RSA non-membership witness for ek w.r.t. the accumulator S,

which we can aggregate as πK0 = Acc.NonMemWitAgg(S, (ak, Bk, ek)k∈K0) (see Fig. 4). �is does come at the cost

of using a PoKE proof (see Section 2.3), which impedes both incremental (dis)aggregation and updating aggregated

proofs when keys are removed or added to the dictionary (which changes S and thus (ak, Bk)).

For k ∈ K1: First, the (Sk,Λk)’s can be aggregated into (SK1
,ΛK1

) as explained in Section 4.2. Next, recall that

(ak, Bk) is an RSA non-membership witness for ek w.r.t. to Sk (not w.r.t. S, as was the case for k ∈ K0). We

combine all (ak, Bk)’s into a disjointness witness for eK1
w.r.t. SK1

as πK1
← Acc.NonMemWitCrossAgg((ak, Bk ,

ek, Sk)k∈K1
) (see Section 3.3). In Appendix B.3, we show this is enough for strong key binding. Note that this

aggregation also comes at the cost of using a PoKE proof.

�e �nal aggregated proof is πK = (SK1 ,ΛK1 , πK1 , πK0), and veri�es as:

S = (SK1
)eK1 (22)

Sk = S1/ek ,∀k ∈ K1, computed via RootFactor(SK1
, (ek)k∈K1

) (23)

c =
∏
k∈K1

(Sk)vk(ΛK1
)eK1 (24)

1 = Acc.NonMemWitAggVer(SK1
, πK1

, (ek)k∈K1
) (see Fig. 4) (25)

1 = Acc.NonMemWitAggVer(S, πK0
, (ek)k∈K0

) (26)

Updating individual proofs. Let πk = (Sk,Λk, ak, Bk) be an individual lookup proof for a single key-value pair

(k, v) w.r.t. digest d = (c, S). �e updated proof will be π′k = (S′k,Λ
′
k, a
′
k, B

′
k), computed as follows, based on two

cases.

Case 1: Adding a new key-value pair (k̂, v̂). If v 6= ⊥, then (S′k,Λ
′
k) are computed as before in Section 4.2, while

(a′k, B
′
k) = Acc.NonMemWitUpdAdd(Sk, ak, Bk, ek , ek̂). If v = ⊥, then (a′k, B

′
k) = Acc.NonMemWitUpdAdd(S, ak ,

Bk, ek, ek̂).

Case 2: Changing existing key k̂’s value by δ̂. If v 6= ⊥, the proof update is done as explained in Section 4.2. Otherwise,

if v = ⊥, then the non-membership proof πk remains the same (since only c, not S, changed in the digest). Note that,

in this case, our AAD also supports updating aggregated lookup proofs πK = (SK ,ΛK , aK , BK), since a change to

one or more keys k̂ does not a�ect the (aK , BK) part of the proof (which cannot be updated due to its use of PoKE

proofs).

Case 3: Removing a key k̂ with value v̂. If k = k̂, then, we must update the lookup proof for (k, v) to a non-

membership proof for k. Recall that πk contains a non-membership witness (ak, Bk) w.r.t. the RSA accumulator Sk .

Importantly, observe that the new digest d′ = (c′, S′), a�er removing k, has exactly S′ = Sk . �us, we simply set

π′k = (⊥,⊥, ak, Bk). Otherwise, if k 6= k̂, we have two cases based on whether πk is a non-membership proof.

Subcase k 6= k̂ and v = ⊥. In this subcase, we have to update the (ak, Bk) non-membership witness for ek w.r.t.

S to be a witness w.r.t. S′ = Sk̂ as (a′k, B
′
k) = Acc.NonMemWitUpdDel(S, S′, ak, Bk, ek, ek̂). If multiple keys

k̂ ∈ R are removed, then recall from Section 4.2 that the new digest has S′ = S1/eR
. �us, we can update the proof

as (a′k, B
′
k) = Acc.NonMemWitUpdDel(S, S′, ak, Bk , ek, eR). (Note that an aggregated proof πR for all k̂ ∈ R

would su�ce in this case, since it contains SR = S1/eR = S′.)

Subcase k 6= k̂ and v 6= ⊥. In this subcase, S′k and Λ′k are updated as explained in Section 4.2. �en, the (ak, Bk)
non-membership witness for ek w.r.t. Sk is updated into a witness w.r.t. Sk,k̂ = ShamirTrick(Sk, Sk̂, ek, ek̂). �is

can be done as (a′k, B
′
k) = Acc.NonMemWitUpdDel(Sk, Sk,k̂, ak, Bk, ek, ek̂). If multiple keys k̂ ∈ R are being
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removed, this is handled as in the previous subcase by computing SR,k = (SR)1/ek = ShamirTrick(SR, Sk, eR, ek)
and then se�ing (a′k, B

′
k) = Acc.NonMemWitUpdDel(Sk, SR,k, ak, Bk, ek, eR). As in the previous subcase, an

aggregate proof πR for all k̂ ∈ R su�ces.

Append-only proofs. Suppose new key-value pairs (k, vk)k∈K were added to the dictionary with digest d = (c, S),

obtaining a new digest d′ = (c′, S′). �en, note that S′ = SeK and c′ = ceK
∏
k∈K(S′)

vi
ek = ceK

∏
k∈K(SeK )

vi
ek =

ceKS
∑
k∈K vi·

eK
ek Let z =

∑
k∈K vi · eK\{k}. �e append-only proof π between d = (c, S) and d = (c′, S′) consists

of three PoKE proofs. Speci�cally, πPoKE
⊆ = PoKE.Prove(S′, S, u), πPoKE

u = PoKE.Prove(cu, c, u) and πPoKE
z =

PoKE.Prove(Sz , S, z). Note that these PoKE proofs can be further compressed via the PoKCR protocol [3]. �e �nal

append-only proof is π = (πPoKE
⊆ , U, πPoKE

u , Z, πPoKE
z ), where U = cu, Z = Sz .

To verifyπ, one checks if c′ = UZ ,PoKE.Ver(S′, S, πPoKE
⊆ )

?
= 1,PoKE.Ver(U, c, πPoKE

u )
?
= 1 andPoKE.Ver(Z, S,

πPoKE
z )

?
= 1. We stress that our UAD from Section 4.2 also supports this type of append-only proof, as highlighted

in Table 1.

Computing all lookup proofs fast. To compute all πk = (Sk,Λk, ak , Bk) e�ciently, �rst, the Sk’s and Λk’s

can be computed as before in Section 4.2. Second, each (ak, Bk) is an RSA non-membership witness for ek w.r.t.

Sk = S1/ek
and, as we have shown in Section 3.2, we can compute all of them in O(`n log n) group operations via

Acc.NonMemWitCrossAgg(g, (ek)k∈D).

5 Future Work
Our work leaves several interesting open questions. First, can we build an AD with strong key binding and cross-

incremental (dis)aggregation of proofs? Second, can we eliminate the need for auxiliary information during updates

in such an AD? �ird, can we de-amortize [19] and e�ciently pre-compute all non-membership proofs? Lastly, we

did not formalize nor prove append-only security with cross-aggregated proofs but, since cross-aggregated proofs

can be disaggregated, security follows naturally as argued in Section 4.3.
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A Updating RSA Non-membership Witnesses
In this section, we explain why the algorithms for updating RSA non-membership witnesses from Fig. 3 work.

Suppose we have an RSA accumulator c = g
∏
e∈T e = gu over a set T (of prime representatives). Suppose x - u,

so x is not in the RSA accumulator c. �en, a non-membership witness for x consists of (commitments to) Bézout

coe�cients (a, b) such that au+ bx = 1. Speci�cally, the witness is πx = (a,B = gb) and veri�es as:

caBx = g ⇒ guagbx = 1⇒ au+ bx = 1 (27)

Updates a�er adding an element x′. Next, suppose we added a new element x′ to the set, obtaining a new

accumulator c′ = cx
′

= gux
′
. We would like to update the Bézout coe�cients (a, b) from πx to (a′, B′ = gb

′
) such

that (c′)
a′

(B′)x = g. Since x and x′ are both primes, we have gcd(x, x′) = 1. �us, ∃s, t such that sx + tx′ = 1,

which implies a = asx+ atx′. Replacing in Eq. (27), we get:

casx+atx′Bx = g ⇔ (cas)x(cx
′
)atBx = g ⇔ (c′)at(casB)x = g (28)

However, note that if we let a′ = at, then a′ would be of size 2|x| and would keep ge�ing larger a�er subsequent

witness updates. �erefore, we would like to reduce its size back to |x|. We can do this easily, by reducing it modulo

x! Speci�cally, ∃q, r with r < x such that at = qx+ r. �us, we get:

(c′)qx+r(casB)x = g (29)

(c′)r(cx
′
)qx(casB)x = g (30)

(c′)r((c′)qcasB)x = g (31)

(c′)r(cqx
′+asB)x = g (32)

As a result, to update the witness for x a�er adding x′ co-prime with x such that ∃s, t, sx + tx′ = 1, we let a′ = r
and B′ = cqx

′+asB as in Fig. 3.

Updates a�er deleting an element x′. Next, suppose we deleted an element x′ from the set, obtaining a new

accumulator c′ = c1/x
′

= gu/x
′
. We would like to update the Bézout coe�cients (a, b) from πx to (a′, B′) such

that (c′)
a′

(gβ)x = g. Note that we can rewrite Eq. (27) as caBx = g ⇔ (c′)x
′aBx = g. We could let B′ = B and

a′ = x′a, but |a′| would be too large, so we would like to reduce x′a modulo x! Since ∃q, r such that x′a = qx+ r,

we can rewrite:

(c′)x
′aBx = g ⇔ (c′)qx+rBx = g ⇔ (c′)r ((c′)qB)

x
= g (33)

As a result, the updated witness is B′ = (c′)qB and a′ = r as in Fig. 3.

B Security Proofs

B.1 De�nitions and Cryptographic Assumptions
Our work o�en relies on the Strong RSA assumption, which we de�ne below.

De�nition B.1 (Strong RSA Assumption). GenHidOrdGr satis�es this assumption if, ∀ adversaries A running in

time poly(λ):

Pr

 G? ← GenHidOrdGr(1λ), g ∈R G?,
(u, e)← A(1λ,G?, g) :
ue = g and e is prime

 ≤ negl(λ)

Informally, this assumption says that no probabilistic polynomial-time (PPT) adversary can compute any eth
prime root of a random element g. �is is a generalization of the RSA assumption [22], which says that, for a �xed
e, no PPT adversary can compute an eth root of a random g.
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Weak Key Binding. Some authenticated dictionary schemes are only secure if the digest d is produced correctly,

rather than adversarially. �is security notion is called weak key binding and is modeled by having the adversary

return a dictionary D, whose commitment d is correctly computed. In contrast, in the strong key binding de�nition

(see De�nition 4.3), the adversary is allowed to output a digest d directly, which means he could maliciously generate

it.

De�nitionB.2 (Weak Key Binding). ∀ adversariesA running in time poly(λ), there exists negligible function negl(·),

such that:

Pr


(prk, vrk)← AD.Setup(1λ),

(D,K,K ′, V, V ′, π, π′)← A(1λ, prk, vrk) :
d← AD.Commit(prk, D) ∧

AD.VerLookup(vrk, d,K, V, π) = 1 ∧
AD.VerLookup(vrk, d,K ′, V ′, π′) = 1 ∧
∃k ∈ K ∩K ′ s.t. V (k) 6= V ′(k)

 ≤ negl(λ)

B.2 Warm-up: Key Binding for Individual Proofs
First, we prove our AAD construction from Section 4.3 satis�es strong key binding (see De�nition 4.3) under the

Strong RSA assumption (see De�nition B.1), when proofs are not aggregated: i.e., adversary outputs two inconsistent

proofs for an individual key k. (�is proof does not use the generic group model [8].)

Proof. Assume an adversaryA breaks strong key binding and outputs a digest d = (c, S) and two inconsistent proofs

π = (Sk,Λk, ak, Bk), π′ = (S′k,Λ
′
k, a
′
k, B

′
k) for a key k having two di�erent values v and v′. �en, we show how to

build another adversary B that breaks a random Strong RSA problem instance g by outpu�ing g1/ek
for some prime

ek . Our adversary B sets up the AD scheme with prk and vrk set to g and the hash function H . Depending on v and

v′, we have two cases.

B.2.1 Case 1: v 6= ⊥ and v′ 6= ⊥

Let ek = H(k) be the prime representative of the key k. If both proofs pass veri�cation, the following relations must

hold:

S = Sekk = (S′k)ek (34)

c = Λekk S
v
k = (Λ′k)ek(S′k)v

′
(35)

Since Sekk = (S′k)ek , it follows that Sk = S′k . �us, we can rewrite Eq. (35) as:

Λekk S
v
k = (Λ′k)ekSv

′

k ⇔ (Λk/Λ
′
k)ek = (Sk)v

′−v ⇔ (36)

Λek = (Sk)v
′−v, where Λ = Λk/Λ

′
k (37)

Recallπ contains (ak, Bk) such that (Sk)ak(Bk)ek = g. B calls (xk, Yk) = Acc.NonMemWitUpdAdd(Sk, ak, Bk, ek ,

v′ − v)1
(see Section 2.4.2). In other words, B updates the non-membership witness (ak, Bk) for ek w.r.t. the RSA

accumulator Sk into a non-membership witness (xk, Yk) for ek w.r.t. the RSA accumulator (Sk)v
′−v

. �us, we have

(Sk)(v′−v)xk(Yk)ek = g ⇔ (Sk)v
′−v = ((Yk)−ekg)

1/xk
Next, rewrite Λek = (Sk)v

′−v
from Eq. (37) as:

Λek =
(
(Yk)−ekg

)1/xk ⇔ Λxkek = (Yk)−ekg ⇔ Λxk = Y −1
k g1/ek

(38)

�us, B breaks Strong RSA by outpu�ing (ek,Λ
xkYk = g1/ek).

1
Note that since ek is an (`+ 1)-bit prime and the values v and v′ are both `-bit wide, it follows that gcd(ek, v

′ − v) = 1, which means this

witness update is possible!
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B.2.2 Case 2: v = ⊥ or v′ = ⊥

Assume without loss of generality, that v 6= ⊥ and v′ = ⊥. Recall that Sk is an RSA membership witness for ek
w.r.t. to the RSA accumulator S. Also, recall that (a′k, B

′
k) is an RSA non-membership witness for ek w.r.t. to that

same RSA accumulator S. �is clearly breaks the RSA accumulator’s security [3, Def. 6, pg. 13]. Since there exists

an adversary C that, on input the accumulator S and the two inconsistent witnesses for ek , breaks the Strong RSA

assumption, B can use C to break Strong RSA.

B.2.3 Weak Key Binding for Individual UAD Proofs

�e weak key binding security proof for our UAD construction from Section 4.2 follows in the same fashion, except

that at Eq. (37), the security reduction knows that Sk = geK\{k} where K is the set of all keys in the dictionary D,

which the adversary A now outputs. �en, Eq. (37) becomes:

Λek = (Sk)v
′−v ⇔ Λek = (geK\{k})v

′−v = geK\{k}(v
′−v)

(39)

�us, B can compute eK\{k} and �nd Bézout coe�cients (xk, yk) such that xkeK\{k}(v
′ − v) + ykek = 1. As a

result, we have:

Λek = g
1−ykek
xk ⇔ Λxkek = g/gykek ⇔ Λxkekgykek = g ⇔ Λxkgyk = g1/ek

(40)

�us, B can break Strong RSA by outpu�ing (ek,Λ
xkgyk = g1/ek).

B.3 Key Binding for Aggregated Proofs
We are now ready to prove key binding (see De�nition 4.3) holds for our AAD from Section 4.3, even with aggregated

lookup proofs, under the Strong RSA assumption (see De�nition B.1) in the generic group model [8]. Our proof

strategy is very simple: we disaggregate the inconsistent aggregated proofs into inconsistent individual proofs and

re-use our security reduction from Appendix B.2.

Proof. Assume an adversaryA breaks key binding and outputs a digest d = (c, S), and two inconsistent proofs π =
(SI1 ,ΛI1 , πI1 , πI0), π′ = (SJ1

,ΛJ1
, πJ1

, πJ0
) for I, V and J, V ′. Recall from Section 4.3 that I = I1 ∪ I0 and k ∈ I1

always has value V (k) 6= ⊥ while k ∈ I0 has value ⊥. (J1 and J0 are de�ned similarly.) Let vk = V (k),∀k ∈ I
and v′k = V ′(k),∀k ∈ J . Since A broke key binding, ∃ a key z ∈ I ∩ J with vz 6= v′z . We show how to build

another adversary B that breaks a random Strong RSA problem instance g by outpu�ing g1/e
for some prime e. Our

adversary B sets up the AD scheme with prk and vrk set to g and the hash function H . Recall that, for any set T of

keys, eT =
∏
k∈T ek .

B.3.1 Case 1: vz 6= ⊥ and v′z 6= ⊥

First, B can obtain (Sz,Λz) ← CFG.Disagg(I1, {z}, (vk)k∈I1 , π) (see Fig. 5) where Sz = S1/ez
. Second, B must

extract (az, Bz) from πI1 such that (Sz)
az (Bz)

ez = g. Recall that πI1 = (AI1 , π
PoKE
I1

, BI1) is a disjointness proof

for all keys in I1 (including z) such that PoKE.Ver(AI1 , SI1 , π
PoKE
I1

) = 1 and AI1B
eI1
I1

= g. Since the PoKE proof

veri�es, B extracts aI1 from the PoKE proof such that AI1 = S
aI1
I1

with non-negligible probability. �us, B now has

S
aI1
I1
B
eI1
I1

= g.

Next, B can disaggregate the RSA disjointness witness (aI1 , BI1) for eI1 not being in the accumulator SI1 into

individual non-membership witnesses (ak, Bk)k∈I1 for ek not being in accumulator Sk = S1/ek
as follows. B

gets non-membership witness (âk, B̂k)k∈I1 for each ek w.r.t. SI1 via BreakUpNonMemWit(SI1 , aI1 , BI1 , (ek)k∈I1)
from [3, Fig. 3, pg. 16]. �en, B uses Acc.NonMemWitUpdAdd(SI1 , âz, B̂z , ez, eI1/ez) to update (âz, B̂z) into a

non-membership witness (az, Bz) for ez w.r.t. to Sz .

�us, πz = (Sz,Λz, az, Bz) is an individual lookup proof for z having value vz that veri�es against d = (c, S).

In exactly the same fashion, B disaggregates π′ into an individual lookup proof π′z = (S′z,Λ
′
z, a
′
z, B

′
z) for z having

value v′z 6= vz that veri�es against d = (c, S). Finally, B can call the adversary from Appendix B.2 with d = (c, S)
and these two inconsistent proofs as input and break Strong RSA.
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B.3.2 Case 2: vz = ⊥ or v′z = ⊥

Without loss of generality, assume that vz 6= ⊥ and v′z = ⊥. As in the previous case, B can disaggregate π and

obtain Sz , which is an RSA membership witness for ez w.r.t. the accumulator S: i.e., Sz = (SI1)eI1\{z} .
Next, recall that the proof π′ contains an RSA disjointness witness πJ0

= (AJ0
, πPoKE
J0

, BJ0
) for all keys k ∈ J0

that have value ⊥ w.r.t. the accumulator S, such that AJ0
(BJ0

)eJ0 = g and PoKE.Ver(AJ0
, S, πPoKE

J0
) = 1. �us,

since the PoKE proof veri�es, B can extract aJ0
such that AJ0

= SaJ0 with non-negligible probability. �us, B now

has SaJ0 (BJ0)eJ0 = g.

Next, B can disaggregate this (aJ0 , BJ0) RSA disjointness witness for eJ0 w.r.t. S, into RSA non-membership

witnesses (ak, Bk)k∈J0
for each ek w.r.t. S viaBreakUpNonMemWit(S, aJ0

, BJ0
, (ek)k∈J0

). �erefore,B can obtain

a non-membership witness (az, Bz) for ez w.r.t. S.

B now has both a membership and a non-membership witness for ez w.r.t. S. �is clearly breaks the RSA

accumulator’s security [3, Def. 6, pg. 13]. Since there exists an adversary C that, on input S and the two inconsistent

witnesses for ez , breaks the Strong RSA assumption, B can use C to break Strong RSA.

B.3.3 Weak Key Binding for Aggregated UAD Proofs

We can use the same disaggregation-based approach as above to prove weak key binding for our UAD construction

from Section 4.2. Importantly, there is no need for the generic group model [8] when disaggregating UAD proofs,

since our UAD does not use PoKE proofs. Once the inconsistent UAD aggregated proofs are disaggregated into

inconsistent UAD individual proofs, the security reduction from Appendix B.2.3 can be invoked with the individual

proofs, which will break the Strong RSA problem.

B.4 Warm-up: Append-only Security w.r.t. Individual Proofs
Suppose an adversary A breaks append-only security (see De�nition 4.5) of our AAD from Section 4.3 and outputs

a lookup proof πk = (Sk,Λk, ak, Bk) for key k having value v 6= ⊥ w.r.t. digest d = (c, S), a lookup proof

π′k = (Sk,
′ Λ′k, a

′
k, B

′
k) for k having value v′ 6= v w.r.t. digest d′ = (c′, S′), with v′ possibly equal to ⊥, and an

append-only proof π⊆ between d and d′. �en, we show how to build another adversary B that, in the generic group

model [8], breaks the Strong RSA problem (see De�nition B.1).

Recall from Section 4.3 that π⊆ = (πPoKE
⊆ , U, πPoKE

u , Z, πPoKE
z ) where c′ = UZ , PoKE.Ver(S′, S, πPoKE

⊆ ) = 1,

PoKE.Ver(U, c, πPoKE
u ) = 1 and PoKE.Ver(Z, S, πPoKE

z ) = 1. Since the PoKE proofs verify, B can extract with

non-negligible probability (u, z) such that S′ = Su and c′ = cuSz . Next, we split into cases.

Case 1: v′ 6= ⊥. Since π′k veri�es against d′, we know that S′ = (S′k)ek , which implies that (S′k)ek = Su. But

since πk veri�es against d, we have S = (Sk)ek . �us, (S′k)ek = (Sekk )u ⇒ S′k = Suk . From the validity of π′k , we

also know that (S′k)v
′
(Λ′k)ek = c′ = cuSu. Similarly, from πk , we know that (Sk)v(Λk)ek = c. �us:

(S′k)v
′
(Λ′k)ek = ((Sk)v(Λk)ek)

u
((Sk)ek)

z
= (S′k)v(Λk)uek(Sk)zek ⇔ (41)

(S′k)v
′−v =

(Λk)uek

(Λ′k)ek
(Sk)zek ⇒ (S′k)v

′−v = Λek , with Λ =
(Λk)u

Λ′k
(Sk)z (42)

Next, we know from π′k that (a′k, B
′
k) is a non-membership witness for ek w.r.t. the RSA accumulator S′k . Since

gcd(ek, v
′ − v) = 1 (because ek is a (` + 1)-bit prime and values v and v′ are ` bits), we can update this to a non-

membership witness for the RSA accumulator (S′k)v
′−v

as (xk, Yk) = Acc.NonMemWitUpdAdd(S′k , a′k, B
′
k, ek, v

′−
v) such that

(
(S′k)v

′−v
)xk

(Yk)
ek = g ⇔ (S′k)v

′−v = ((Yk)−ekg)
1/xk

. Finally, replace (S′k)v
′−v

in Eq. (42) to get

((Yk)−ekg)
1/xk = Λek ⇔ (Yk)−ekg = Λxkek ⇔ Y −1

k g1/ek = Λxk . �us, g1/ek = ΛxkYK , and B breaks Strong

RSA on g by outpu�ing (ek,Λ
xkYK).

Case 2: v′ = ⊥. In this case, πk contains a membership witness Sk for ek in S such that (Sk)ek = S. Recall

that B extracted u from the append-only proof π⊆ such that S′ = Su. Since ((Sk)u)
ek = ((Sk)ek)u = Su = S′,

this implies (Sk)u is a membership witness for ek w.r.t. S′ as well. However, since π′k says key k is not in the new

dictionary, it includes a (contradicting) non-membership witness (a′k, B
′
k) for ek w.r.t. the accumulator S′. �is

clearly breaks the RSA accumulator’s security [3, Def. 6, pg. 13]. Since there exists an adversary C that, on input the

accumulator S′ and the two inconsistent witnesses for ek , breaks the Strong RSA assumption, B can use C to break

Strong RSA.
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B.5 Append-only Security for Aggregated Proofs
Proof. Suppose an adversaryA breaks append-only security as de�ned in De�nition 4.5 and outputs a lookup proof

π for keys k ∈ K having value vk = V (k) w.r.t. digest (c, S), a lookup proof π′ for keys k ∈ K ′ having value

v′k = V ′(k) w.r.t. digest (c′, S′), such that ∃z ∈ K ∩ K ′ with vz 6= ⊥ and vz 6= v′z , and an append-only proof

π⊆ between d and d′. �en, we show how to build another adversary B that, in the generic group model [8],

breaks the Strong RSA problem (see De�nition B.1) As with our proof for strong key binding of aggregated proofs

(see Appendix B.3), we take advantage of the fact that our construction supports disaggregating proofs. Note that

K = K1 ∪K0 and k ∈ K1 always has value vk 6= ⊥ while k ∈ K0 has value ⊥. Similarly, K ′ is also partitioned

into K ′1 and K ′0. As before, we need to consider two separate cases.

Case 1: vz 6= ⊥ and v′z 6= ⊥. In this case, B proceeds similar to Appendix B.3.1. Speci�cally, given the aggregated

lookup proof π, B disaggregates a proof πz for z having value vz w.r.t. digest (c, S). Similarly, given π′, B disag-

gregates π′z for z having value v′z 6= vz w.r.t. digest (c′, S′). Now, B calls the security reduction from Appendix B.4

with (d, d′, πz, π
′
z, z, vz, v

′
z, π⊆) as input, which breaks the Strong RSA problem.

Case 2: vz 6= ⊥ and v′z = ⊥. In this case z ∈ K1 and z ∈ K ′0. Recall that π = (SK1
,ΛK1

, πK1
, πK0

)
and π′ = (SK′1 ,ΛK′1 , πK′1 , πK′0). B proceeds as follows. B computes an RSA membership witness Sz for ez
w.r.t. the accumulator S as Sz = (SK1

)eK1\{z} . As explained in Appendix B.4, B extracts u from π⊆ such that

S′ = Su. �en, B updates Sz to a membership witness (Sz)
u

for ez w.r.t. S′. Similar to Appendix B.3.2, B ex-

tracts with non-negligible probability (aK′0 , BK′0) from πK′0 = (AK′0 , π
PoKE
K′0

, BK′0) where AK′0 = (S′)
aK′0 and

(S′)
aK′0B

eK′0
K′0

= g. In other words, B extracts an RSA disjointness witness (aK′0 , BK′0) for eK′0 w.r.t. S′. Next, B
can disaggregate this disjointness witness into individual non-membership witnesses (ak, Bk)k∈K′0 for each ek w.r.t.

S′ via BreakUpNonMemWit(S′, aK′0 , BK′0 , (ek)k∈K′0) from [3, Fig. 3, pg. 16]. �us, B obtains a non-membership

witness (az, Bz) for ez w.r.t S′ (since z ∈ K ′0). Since B now has both a membership and a non-membership witness

for ez w.r.t. S′, this clearly breaks the RSA accumulator’s security [3, Def. 6, pg. 13]. Since there exists an adversary

C that, on input the accumulator S′ and the two inconsistent witnesses for ez , breaks the Strong RSA assumption,

B can use C to break Strong RSA.
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