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Abstract. Differential power analysis (DPA) is a form of side-channel analysis (SCA)
that performs statistical analysis on the power traces of cryptographic computations.
DPA is applicable to many cryptographic primitives, including block ciphers, stream
ciphers and even hash-based message authentication code (HMAC). At COSADE
2017, Dobraunig et al. presented a DPA on the fresh re-keying scheme Keymill to
extract the bit relations of neighbouring bits in its shift registers, reducing the internal
state guessing space from 128 to 4 bits. In this work, we generalise their methodology
and combine with differential analysis, we called it differential analysis aided power
attack (DAPA), to uncover more bit relations and take into account the linear or
non-linear functions that feedback to the shift registers (i.e. LFSRs or NLFSRs).
Next, we apply our DAPA on LR-Keymill, the improved version of Keymill designed
to resist the aforementioned DPA, and breaks its 67.9-bit security claim with a 4-bit
internal state guessing. We experimentally verified our analysis. In addition, we
improve the previous DPA on Keymill by halving the amount of data resources
needed for the attack. We also applied our DAPA to Trivium, a hardware-oriented
stream cipher from the eSTREAM portfolio and reduces the key guessing space from
80 to 14 bits.

Keywords: SCA · Power analysis · LFSR · NLFSR · Fresh re-keying scheme · Keymill
· LR-Keymill · Stream cipher · Trivium

1 Introduction
There are two major families of cryptanalysis — mathematical attack and physical at-
tacks, including SCA and fault attacks. Mathematical attacks study the structure of
a cryptographic primitive to find exploitable mathematical structures and utilise them
to recover sensitive information from the primitive, for example the differential crypt-
analysis [BS90] and linear cryptanalysis [Mat93]. Physical attacks, on the other hand,
studies the hardware or software implementation of a primitive and tackles it through other
physical means, for example observing the timing of the algorithm computation [Koc96]
(timing attack), the power consumption [KJJ99] (power analysis) or injecting faults to the
implementation [BS97] (fault attack).

Resource-constrained or low-cost devices such as Radio-Frequency IDentification (RFID)
tags, wireless sensors nodes and smart cards, have always been in an ever-increasing
demand and usage in this information era. These devices could be operating in hostile
environments and are especially susceptible to SCA, in particular, the differential power
analysis [CLK+03, MAK15].
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2 DAPA on (N)LFSRs

First proposed by Kocher et al. [KJJ99] in 1999, DPA involves statistical analysis of
the power traces of cryptographic computations obtained using devices like oscilloscopes.
It had been used to target cryptographic algorithms that handles sensitive information,
including block ciphers [ÖGOP04, SSA14], stream ciphers [FGKV07, QGGL13] and even
hash-based message authentication code (HMAC) [BBD+13] and had proven to be practical
with high success rate. Thus posting a serious threat to embedded implementation of
cryptographic primitives.

DPA typically involves power modelling and key hypothesis to recover secret infor-
mation, for instance the DPA on linear feedback shift register (LFSR) based stream
ciphers [QGGL13, FGKV07]. In 2017, Dobraunig et al. [DEKM17] showed that DPA can
also be used on shift registers to extract the bit relations of neighbouring bits, allowing
attacker to significantly reduce the internal state guessing space. More specifically, with
the knowledge that two neighbouring bits have the same or different values, guessing the
value for one of them would determine the value of the other. In other words, it reduces
the entropy by 1 bit for every known bit relation. Inspired by their work, we generalised
their analysis methodology and combine with differential analysis, we call it Differential
Analysis aided Power Attack (DAPA), to uncover more bit relations from a shift register
and also taking into account the linear or non-linear feedback function.

In the rest of the paper, we use power attack and power analysis interchangeably.
Moreover, as shown in our experiments, the leakage can also be captured through elec-
tromagnetic channel. For simplicity, we still refer it to as power attack as the exploited
leakage arises from power consumption activity.

1.1 Related Work
The vulnerability of LFSR to side-channel attacks was first reported by Burman et
al. [BMV07]. They exploited the fact that power consumption difference between two
consecutive clock cycles, which is observable by simple power analysis (SPA), reveals
information about the LFSR. They exploited this vulnerability to show recovery of secret
key dependent internal state and later few countermeasures were proposed [BPMV16]. This
attack was further extented to NLFSR by Zadeh et al. [ZH14], by exploiting the relations
between neighbouring bits in the internal state using simple power analysis. Chakraborty
et al. [CMM14] studied the susceptibility of Galois and Fibonacci construction of NLFSR
to power attacks and showed that Galois NLFSR are more vulnerable. These observations
were then further extented to attack GRAINv1 cipher [CMM17], which was an improvement
over an chosen IV power attack on GRAINv1 by Fischer et al. [FGKV07]. The power
attack in [CMM17] was enhanced by machine learning based classifiers as compared to
previous approaches. NLFSR were previously exploited in real world attacks on KEELOQ
code hopping scheme [EKM+08], widely used for access control purposes such as garage
openers or car door systems.

In 2017, Dobraunig et al. [DEKM17] proposed an attack on shift registers by inserting
controlled differences into the IV and observing power differences of shift register update
when the difference is introduced. This attack was finally extended to show practical
attack on Keymill, where the NLFSRs are treated as black boxes with a small assumption
that the newest bit position is not one of the feedback bits.

The main difference between the SPA on shift registers like [BMV07, ZH14] and the
DPA on shift registers by [DEKM17] is the length of consecutive power difference to be
collected. The former requires a collection of n consecutive power differences, where n
is the length of the shift register, to recover the entire internal state in one shot. Any
missing or misinformation of just a single power difference could lead to attack failure.
On the other hand, [DEKM17] introduces difference into the internal state to recover one
pair of neighbouring bit relations at a time. This drops the need for (relatively) long
period of high precision measurements. In addition, even if full internal state recovery
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is unsuccessful, the guess space for the entire internal state is significantly reduced by
the bits and pieces of bit relations. In this work, we take a step further by incorporating
differential patterns into the power analysis1.

To the best of our knowledge, none of the aforementioned attacks are applicable to
LR-Keymill because multiple NLFSRs are updated in parallel, while our DAPA practically
breaks LR-Keymill.

1.2 Our Contributions
In this work, our main results are summarised as follows:

• We extend the [DEKM17] observation beyond analysing the first clock cycle when the
difference is injected, and we present a complete analysis on the power consumption
changes of shift registers for various cases.

• We propose DAPA on (N)LFSRs taking into account the feedback function2.
• We present a DAPA on LR-Keymill, an improved version of Keymill designed to

resist the [DEKM17] attack, breaking their 67.9-bit side-channel security claim with
4-bit internal state guessing.
• We reduce the attack complexity on Keymill by halving the amount of data resources
needed to perform the key-recovery attack.

• We conduct the experiments and verified our analysis on LR-Keymill.
• We present a DAPA on lightweight stream cipher Trivium, recovering the 80-bit

key with just 14-bit key guessing.

1.3 Structure of this paper
We describe the generic analysis on (N)LFSRs in Section 2, followed by some toy examples
to illustrate our attack strategy in Section 3. Next, we give the specification of LR-Keymill
and Keymill in Section 4, present the DAPA on LR-Keymill and Keymill in Section 5,
and present our experimental results in Section 5.5. Lastly, we apply our DAPA on
Trivium in Section 6 and conclude our work in Section 7.

1The preliminary study of this work is posted on Cryptology ePrint Archive, Report 2020/349 [Sim20].
2[DEKM17] did not exploit the feedback function for their attack.
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2 Generic DPA on (N)LFSRs

2.1 Preliminary
In [ZH14], Zadeh and Heys exploited the well known fact that at the rising edge of a clock,
a D flip-flop consumes more power when there is a state change, either 0 −→ 1 or 1 −→ 0.
In a nutshell, they analysed D flip-flop that is constructed from 6 NAND gates and showed
that 3 of the gates changes when the D flip-flop changes its state, as compared to 1 gate
change when there is no change its state.

By the nature of a shift register, say left-shift, the state of a register bit (current bit
value) will be updated to the state in the register bit on its right (succeeding bit value) at
the rising edge of a clock. In other words, the power consumption of the register bits in a
shift register is dependent on the value of the current and succeeding bit values. More
precisely, if the succeeding bit is the same as the current bit value, the register bit consumes
lesser power compared to the case when the bits are different and it has to change its state.

As there are many other activities happening concurrently with the updating of a
register bit at the rising edge of a clock, it is difficult to identify and isolate power
consumption of a particular register bit to uncover the relation between the current and
succeeding bit values from a single power trace. However, if we can introduce a bit
difference to that targeted register bit while keeping all other computations constant,
we can gain information about some bit relations by comparing the power consumption
differences between the original computation and the instance with the bit difference.

2.2 Power Consumption Differences and Bit Relations
Shift registers are often part of a linear feedback shift register (LFSR) or non-linear
feedback shift register (NLFSR). We will address the feedback function in Section 2.3. For
the moment, let us focus only on the shift registers.

Let [x]y denote a register bit of interest in the square parenthesis with bit value x, and
y is the succeeding bit value. A bar symbol x denote having a difference, which is simply
flipping of the bit value.

We define the power consumption difference the subtraction of the original power
trace from the power trace with some differences. If a register bit has an increase in
power consumption difference, we denote it as +1, −1 if it is decrement, and 0 if there
is no difference in the power consumption difference. In practice, the power trace is the
summation of the power consumption of all the register bits. Hence, we can apply simple
arithmetic to compute the combined power consumption difference.

2.2.1 Power consumption difference of a register bit

For a register bit, we only need to consider the current (x) and succeeding bit value (y),
denoted as [x]y. There are 3 possible differential patterns:

Case 1.1: [x]y vs [x]y. If x = y, then the register bit does not have to change its state.
On the other hand, the second instance has x 6= y and more power is consumed to
change its state. Therefore, the latter instance consumes more power (+1). Inversely,
if x 6= y, then the power consumption for [x]y is lower than [x]y (−1). To summarise:

• x = y, rise in power consumption. Difference: +1.
• x 6= y, drop power consumption. Difference: −1.

Remark: This is the main observation used in [DEKM17] attack to recover bit
relations. We generalise this result further to different cases shown below.
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Case 1.2: [x]y vs [x]y. This case is essentially the same as Case 1.1, if x = y, then x 6= y
consumes more power. Inversely, if x 6= y, then x = y consumes lesser power.

• x = y, rise power consumption. Difference: +1.
• x 6= y, drop power consumption. Difference: −1.

Case 1.3: [x]y vs [x]y. If x = y, we have x = y which for both instances the register
bit maintains its state. On the other hand, if x 6= y, then so does x 6= y and both
instances will consume more power to change its state. Thus regardless of the relation
between x and y, both instances have the same power consumption traces.

• For both x = y and x 6= y, no change in power consumption. Difference: 0.

2.2.2 Power consumption difference of multiple register bits

Using Case 1 as the building blocks, we look at the combined power consumption of
multiple register bits in Table 1. The middle two columns are the sub-cases considering
individual register bits, and the right column denote the obtained relation and expected
power consumption difference.

Table 1: Power consumption differences and relations of multiple register bits

Case Sub-cases Sub-case Possible Power
pow. diff. outcomes diff.

2.1: 1.1: +1/− 1 x = y, y = z +2
[x]y vs [x]y x = y, y 6= z 0

[x][y]z vs [x][y]z 1.2: +1/− 1 x 6= y, y = z
[y]z vs [y]z x 6= y, y 6= z −2

2.2: 1.1: +1/− 1 x = y +1[x]y vs [x]y

[x][y]z vs [x][y]z 1.3: 0 x 6= y −1[y]z vs [y]z
3: 1.1: +1/− 1 x0 = x1, xi = xi+1 +2

[x0][x1] . . . [xi−1][xi]xi+1
[x0]x1 vs [x0]x1
1.3: for 1 ≤ j < i 0 x0 = x1, xi 6= xi+1 0vs [xj ]xj+1 vs [xj ]xj+1 x0 6= x1, xi = xi+1

[x0][x1] . . . [xi−1][xi]xi+1
1.2 +1/− 1 x0 6= x1, xi 6= xi+1 −2[xi]xi+1 vs [xi]xi+1

From Table 1, we can have the following observations.
Observation 2.1: The change in power consumption in Case 2.1 is always a multiple of
2, {−2, 0, 2}.
Observation 2.2: Observing power level +2 or −2 gives a clear indication of the relations
of (x, y) and (y, z). Otherwise there is an ambiguity when the observed power level is 0,
nevertheless knowing one of the relations determines the relation of the other pair to be
the opposite.
Observation 2.3: As seen in Case 3, if there is consecutive register bits with difference,
the intermediate register bits do not contribute to the power consumption differences and
the analysis can be reduced to the leading and ending register bits ([x0]x1 vs [x0]x1 and
[xi]xi+1 vs [xi]xi+1).

2.2.3 Summary Table for Power Consumption Differences and Bit Relations

We denote a power consumption difference the subtraction of the original power trace from
the power trace with injected difference. The following Table 2 summarises the necessary
and sufficient conditions of the power consumption differences and deduced bit relations.
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Table 2: Power Consumption Differences and Bit Relations. ‘∆’ indicates there is difference
while ‘-’ is no difference.

Current bit x Succeeding bit y Rise/Drop Relation obtained
- - - -
- ∆ Rise x = y

- ∆ Drop x 6= y

∆ - Rise x = y

∆ - Drop x 6= y

∆ ∆ - -

Although a bit relation does not reveal the actual value of the related bits, it reduces
the guessing space by 1 bit because guessing the value for one register bit determines the
value of the related bit too.

Observation of the power consumption differences. A natural question is whether such
power consumption differences {−2,−1, 0, +1, +2} (which we refer to as 5-class difference
in the following) can be observed in practice. Observing multi-class differences has been
practically demonstrated in previous works. For instance, Saha et al. [SJB+18] were able
to report 5- and 9-class differences in a different context to break fault-hardened imple-
mentation of PRESENT and AES respectively on an 8-bit microcontroller. Our analysis
typically only require observing a rise, no change, drop in power consumption differences,
as seen in Section 3. This intuitively might seem easier than reported in [SJB+18] where
the value of change was required for the analysis. However [SJB+18] do not need to know
the sign (or polarity) of change, which as is crucial for the success of our attack. In
Section 5.5, we conduct practical analysis on a 32-bit ARM Cortex-M3 microcontroller to
confirm our hypothesis.

2.3 On (non-)linear feedback functions
When targeting (N)LFSRs, we need to consider the actual specification of the feedback
function to determine how the differential propagates. A feedback function typically
consists of 6 basic binary operations — AND (∧), NAND (∧), OR (∨), NOR (∨), XOR (⊕) and
NXOR (⊕). The truth table and differential table of these operations are listed in Table 3.

Table 3: Truth table and differential table of various binary operations. The entries in the
differential table indicate the probability of having a difference.

x y x ∧ y x∧y x ∨ y x∨y x⊕ y x⊕y

Truth table
0 0 0 1 0 1 0 1
0 1 0 1 1 0 1 0
1 0 0 1 1 0 1 0
1 1 1 0 1 0 0 1

Differential table
∆ - 0.5 0.5 0.5 0.5 1 1
- ∆ 0.5 0.5 0.5 0.5 1 1
∆ ∆ 0.5 0.5 0.5 0.5 0 0

Linear feedback functions. The linear operations (XOR and NXOR) are rather simple, we
can trace the differential trail trivially and know that it holds with probability 1. Hence,
observing rise, no change or drop in power consumption difference will directly reveal some
bit relation or reaffirm our knowledge about some known bit relation and the differential
propagation.
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Non-linear feedback functions. For the non-linear operations (AND, NAND, OR and NOR),
half of the time the differential propagates. Despite that, using DPA we are able to know
the differential propagation which leads to knowing some information of the internal state.

Let us consider [x]y, where the state of y is uncertain (half the chance with or without
a difference), as seen in Case 1’s from Section 2.2, if the current bit x has no difference,
then we expect a rise or drop in power consumption difference if y has a difference. If
there is no change in the power consumption, we know that y has no difference too. On
the other hand, if x has a difference, then observing no change in the power consumption
indicates that y has a difference too. Otherwise, we will observe a rise or drop in power
consumption difference and we know y has no difference.

In addition to knowing if y has a difference, it could also reveal some information of
the value of other bits. For example, let y = (x0 ∧ x2)⊕ x1 ⊕ x2 and we know only x2 has
a difference, because of the non-linear operation AND, we are uncertain of the state of y. If
through the differential power analysis we deduce that y has a difference, it is necessary
and sufficient that x0 = 0. Otherwise, we know x0 = 1.

2.4 High-level Description of DAPA on (N)LFSRs
Our attack methodology can be broken down into the following three steps:

1. Determine the differential patterns
2. Perform the power measurements
3. Recover the internal state

Step 1 (Offline): Determine the differential patterns. In this preparation phase,
the goal is to choose a differential pattern that we would want to have in the shift register.
Although the choice is highly dependent on the target algorithm, there is a general strategy.

One obvious entry point is through the IV3, which essentially every (N)LFSR-based
algorithm should have. The main idea is to introduce some difference in the IV and analyse
how it would propagate throughout the internal state.

Notice from Table 2 that when we can deduce a bit relation when exactly one of the two
consecutive bits has a difference (so-called active bit) and the other is constant (inactive
bit). To reduce the number of instances to run and measure, we can choose to introduce
differences such that the differential pattern alternates between active and inactive bits as
much as possible4.

As seen in Table 3, non-linear operations can cause ambiguity in the differential pattern.
Fortunately, there is a clear distinction between having a difference or not by observing
the power consumption difference. More explanation in Step 3.

This step would take up a significant amount of time as the attack complexity depends
heavily on the selected differential patterns. Generally, there is no need to find optimal
differential patterns, so long as the execution, say introducing the different IVs, is feasible
and the attack complexity is practical, we are good to move to the next step.

Step 2 (Online): Perform the power measurements. This is the only online phase
of the attack and rather straightforward — collect the power traces of various computations
and take the difference to obtain power consumption differences.

Step 3 (Offline): Recover the internal state. In this step, we try to gather as many
pieces of bit relations to link the internal state bits together. From the rise, drop or no

3Or something equivalent that is public and preferably can be chosen.
4In the work, our main focus is to propose DAPA and present easy-to-understand analysis for demon-

stration purposes. Therefore, we did not fully exploit this strategy to optimise our attacks and do not
claim optimal attack complexities. Nonetheless, our current analysis on LR-Keymill, Keymill and Trivium
are already quite efficient and practical.
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change in power consumption (collected in Step 2) of the differential patterns (determined
in Step 1), we can deduce the bit relations.

When non-linear operations are involved, our first goal is to determine if that bit has a
difference. Recall that if both the consecutive bits have difference or both are constants,
there is no change in the power consumption, otherwise there is a rise or drop in power
consumption. Thus, depending on the preceding bit and the power consumption behaviour,
we can deduce whether there is a difference. In addition, as explained in the previous
section, it could also reveal some information of the actual value of some bits.

Finally, after gathering as many bit relations as we can, we enumerate the possible
values for the leading bit in each chained bit relation, other bits within the chain will
be defined according to the bit relations. The true internal state will be one of these
candidates.

On overcoming algorithmic noise: The (dynamic) power consumption of a (N)LFSR-
based algorithm would typically be influenced by simultaneous toggling of various compo-
nents. A conventional way is to collect more traces to filter the noise. In addition to that,
our DAPA methodology has two advantages in overcoming the algorithmic noise.

Firstly, we can allocate more resources to noise filtering. This is possible because our
attack could reduce the number of chosen IV or nonce to launch an attack, and effectively
the number of different power traces, needed to recover the same amount of bit relations
(see Section 5.4). To give a numerical example, instead of collecting 100 traces for noise
filtering for each of the 10 differential patterns (a total of 1000 traces), we could collect
200 traces for noise filtering for each of the 5 differential patterns (still a total of 1000
traces) and get the same set of bit relations.

Secondly, it is possible to choose different differential patterns that recover that same bit
relation. This allows us to have alternative ways to recover the bit relation or affirmation
that our deduction is correct should one of the attempts is inconclusive.
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3 Analysis on Toy Examples
3.1 Toy Shift Register
For the moment, let us omit the details of the feedback function and assume that we know
exactly when a difference is introduced into the shift register.

We use a simple toy example to illustrate how we can recover the bit relations. Suppose
we have a 6-bit shift register containing values ci, and xj the incoming bits in the next 5
clock cycles, denoted as

Clock cycle 0 : [c0][c1][c2][c3][c4][c5]x0x1x2x3x4,

and suppose the values are [0][0][1][1][0][1]10011.
In another instance, there are bit differences in the incoming bits x0, x1 and x3.

Clock cycle 0 : [c0][c1][c2][c3][c4][c5]x0x1x2x3x4

and the corresponding values are [0][0][1][1][0][1]01001.
After executing both computations and collecting their power traces, we can compare

the power trace and deduce 4 bit relations as seen in Table 4.

Table 4: Toy shift register example: Power consumption difference and bit relations
obtained. Second and third columns are the register state of the original and with some
difference, “Orig. dist.” and “∆ dist.” indicates the Hamming distance between the
previous and current state, “Power diff.” indicates the numerical power consumption
differences, “Rise/Drop” is the observation of the power consumption difference at the
rising edge of the clock, and last column is the bit relation obtained.
Clock Original shift ∆ shift Orig. ∆ Power Rise/ Relation
cycle register register dist. dist. diff. Drop obtained
0 [0][0][1][1][0][1]1 [0][0][1][1][0][1]0 - - - - -
1 [0][1][1][0][1][1]0 [0][1][1][0][1][0]1 3 4 +1 Rise c5 = x0
2 [1][1][0][1][1][0]0 [1][1][0][1][0][1]0 4 5 +1 - -
3 [1][0][1][1][0][0]1 [1][0][1][0][1][0]0 3 5 +2 Rise x1 = x2
4 [0][1][1][0][0][1]1 [0][1][0][1][0][0]1 4 5 +1 Drop x2 6= x3
5 [1][1][0][0][1][1] [1][0][1][0][0][1] 3 5 +2 Rise x3 = x4

Suppose that the attacker’s goal is to recover the internal state at any clock cycle, the
values of ci and xj are unknown to the attacker but he knows the differential positions in
xj . From there, he is able to deduce the following relations c5 = x0, x1 = x2 6= x3 = x4,
and guess the shift register state at clock cycle 5 as one of the following:

[c5][x0][x1][x2][x3][x4] ∈ {[0][0][0][0][1][1],

[0][0][1][1][0][0],

[1][1][0][0][1][1],

[1][1][1][1][0][0]}

To summarise, if the attacker is able to obtain noiseless measurement for these 2
computation instances, he is able to reduce the guessing complexity from the naive 26 = 64
to just 4 guesses (third combination is the correct internal state).

3.2 Toy Non-linear Feedback Shift Register
Here, we use another toy example to illustrate how an analysis can be performed on
NLFSR. Suppose we have a 4-bit maximum period NLFSR (from [Dub12]) defined as
follows:

[xi+1
0 ][xi+1

1 ][xi+1
2 ][xi+1

3 ]← [xi
1][xi

2][xi
3][xi

0 ⊕ xi
1 ⊕ xi

2 ⊕ xi
1xi

2], (1)
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where X0 = x0
0‖x0

1‖x0
2‖x0

3 is the initial state and xi
1xi

2 = xi
1 ∧ xi

2, for brevity we omit the
AND notation when there is no ambiguity.

Let the initial values be [0][0][1][0] and another instance with a bit difference at x0
3,

i.e. [0][0][1][1]. After executing both computations and collecting their power traces,
we can compare the power trace and deduce 4 bit relations as seen in Table 5.

Table 5: Toy NLFSR example: Power consumption difference and bit relations obtained.
Second and third columns are the register state of the original and with some difference,
“Orig. dist.” and “∆ dist.” indicates the Hamming distance between the previous and current
state, “Power diff.” indicates the numerical power consumption differences, “Rise/Drop” is
the observation of the power consumption difference at the rising edge of the clock, and
last column is the information obtained.
Clock Original ∆ Orig. ∆ Power Rise/ Information
cycle NLFSR NLFSR dist. dist. diff. Drop obtained
0 [0][0][1][0]1 [0][0][1][1]1 - - - - -
1 [0][1][0][1]1 [0][1][1][1]1 3 1 −2 big drop x1

1 6= x1
2, x1

2 6= x1
3

2 [1][0][1][1]0 [1][1][1][1]0 3 1 −2 - x2
3 6= ∆, x1

1 = 1
3 [0][1][1][0] [1][1][1][0] 3 1 −2 - x3

3 6= ∆, x2
2 = 1

Starting from a difference X0 = (0, 0, 0, ∆), we know the difference in the next cycle is
X1 = (0, 0, ∆, 0). Here, we observed a big drop5 in the power consumption difference. As
seen in Case 2.1 of Section 2.2, it indicates that the differential bit is different from both
its neighbours, thus we have x1

1 6= x1
2 and x1

2 6= x1
3.

For the next update (to clock cycle 2), it could be X2 = (0, ∆, 0, 0) or X2 = (0, ∆, 0, ∆).
Since we observe no change in the power consumption difference, we know that the
succeeding bit x2

3 has no difference. In addition, from Equation 1, we have

x1
0 ⊕ x1

1 ⊕ x1
2 ⊕ x1

1x1
2 = x1

0 ⊕ x1
1 ⊕ x1

2 ⊕ x1
1x1

2

⇒ x1
1(x1

2 ⊕ x1
2) = x1

2 ⊕ x1
2

which implies that x1
1 = 1.

From X2 = (0, ∆, 0, 0), it could propagate to X3 = (∆, 0, 0, 0) or X3 = (∆, 0, 0, ∆).
Since we again observe no change in power consumption difference, we know that x3

3 has
no difference and deduce that x2

2 = 16.
Combining all these information, we reduced the possible states of X2 from 24 = 16 to

just 2 states as shown in the following:

[x2
0][x2

1][x2
2][x2

3] ∈ {[1][0][1][0],

[1][0][1][1]}

In fact, with information obtained up to clock cycle 2, it is sufficient to arrive at this same
conclusion.

5This drop in power consumption difference that was due to two register bits difference is relatively
“big” compared to a drop caused by a single register bit.

6From the knowledge that x1
1 6= x1

2 6= x1
3 and x1

1 = 1, it is already sufficient to deduce that x2
2 = x1

3 = 1.
This observation reassured that our gathered information and observations are accurate.
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4 Fresh Re-keying Schemes — Keymill and LR-Keymill

4.1 Fresh re-keying scheme
Although there are countermeasures [BLGT05, CPM06, NRR06, PR11] like masking,
hiding and threshold implementation to protect against DPA, they are generally costly
to implement on the encryption algorithms, unless the primitives are designed to be
side-channel protection efficient, for example Pyjamask [GJK+] and CRAFT [BLMR19].

Fresh re-keying schemes were proposed by Medwed et al. [MSGR10] as a countermeasure
against side-channel analysis for low-cost devices. Low-cost devices like RFID tags have
very constrained physical space to implement the cryptographic algorithms, there may
not be enough resources to implement effective side-channel protections like masking
or threshold implementation. Instead, the idea of fresh re-keying scheme is to have a
lightweight function g that derives session keys SK from given secret master key MK and
nonce IV , denoted as g(IV, MK) = SKIV , and use the fresh session keys for block cipher
encryption E.

Under the nonce-respecting scenario, a fresh re-keying scheme helps to protect the
block cipher encryption against DPA since each encryption uses a different encryption
key. However, the re-keying scheme now becomes the target of SCA. One can perceive a
re-keying scheme as an encryption cipher, encrypting different nonces (plaintexts) using
a same master key. While a re-keying scheme does not need very strong mathematical
properties like block ciphers, it should have the following 6 properties given by [MSGR10]:

1. Good diffusion of the master key MK.
2. No synchronization between parties. Hence, g should be stateless.
3. No need for additional key material.
4. Little hardware overhead. Total costs lower than protecting E alone.
5. Easy protection against side-channel attacks.
6. Regularity.

Keymill [TRS16] is a NLFSR-based re-keying scheme designed by Taha et al. to be
side-channel resilient at algorithmic level and not rely on the side-channel countermeasures
to protect against SCA. However, Dobraunig et al. [DEKM17] found a DPA using the
Case 1.1 analysis (Section 2.2), breaking the scheme with 4-bit internal state guessing and
128 chosen nonces7.

LR-Keymill [TRS17]8 is an improved version of Keymill by the same designers, the
idea was to update all 4 NLFSRs simultaneously with the same IV bits, making it non-
trivial for the attacker to deduce which NLFSR consumes higher or lower amount of power,
thus increasing the search space. Based on this argument, the designers claimed 67.9-bit
security against DPA.

Remark on LR-Keymill implementation: We note that the designers of LR-Keymill
have recommended the implementation should update all 4 NLFSRs in parallel to generate
algorithmic noise. A basic serial implementation of LR-Keymill where only one of the
NLFSRs is updated in each clock cycle will defeat its purpose and be vulnerable to the
original [DEKM17] attack.

In this section, we give the specification of LR-Keymill and Keymill. In Section 5, we
show that by exploiting the feedback functions of LR-Keymill, we can still recover the
secret internal state with just 4-bit internal state guessing. Also, we can half the amount
of nonces (hence, power traces) needed to attack Keymill (Section 5.4).

7Assuming noiseless measurements. Otherwise, the attacker could vary the last few bits of the nonce to
collect more power traces. More details in Section 3.4 of [DEKM17].

8Nominated best paper [Tah].
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4.2 Specification of Keymill and LR-Keymill

4.2.1 Overview

The internal state S of LR-Keymill and Keymill consists of 4 NLFSRs — with shift
registers R0, R1, R2 and R3 of length 31, 32, 32, 33 bits and feedback functions F 0, F 1, F 2
and F3 respectively.

At the initialisation phase, a 128-bit master key MK will be loaded into these registers.
Next, a 128-bit initialisation vector IV is introduced to update the internal state. After
some preprocessing phase, it will start releasing arbitrary amount of keystream bits as the
session keys.

4.2.2 Feedback functions

The bits in the registers are indexed from 0 and in ascending order Rx = s0s1 . . . s|Rx|−1.
When the clock cycle matters, we denote Rxc[i] as the i-th leftmost bit in register Rx at
clock cycle c, where c = 0 denote the initial state right after loading the master key. For a
range of bit registers from i-th to j-th bits inclusive, we denote it as Rxc[i ∼ j].

During an update, the feedback function Fx draws the information from Rx and
feedback to Ry, where y = x+ c mod 4. Each registers does a left-shift, drops the leftmost
bit s0 and takes in the new bit into the rightmost position of the register.

The feedback functions are defined as follow:

F0(R0) = s0 ⊕ s2 ⊕ s5 ⊕ s6 ⊕ s15 ⊕ s17 ⊕ s18 ⊕ s20 ⊕ s25 ⊕ s8s18

⊕ s8s20 ⊕ s12s21 ⊕ s14s19 ⊕ s17s21 ⊕ s20s22 ⊕ s4s12s22

⊕ s4s19s22 ⊕ s7s20s21 ⊕ s8s18s22 ⊕ s8s20s22 ⊕ s12s19s22

⊕ s20s21s22 ⊕ s4s7s12s21 ⊕ s4s7s19s21 ⊕ s4s12s21s22

⊕ s4s19s21s22 ⊕ s7s8s18s21 ⊕ s7s8s20s21 ⊕ s7s12s19s21

⊕ s8s18s21s22 ⊕ s8s20s21s22 ⊕ s12s19s21s22

F1(R1) = F2(R2) = s0 ⊕ s3 ⊕ s17 ⊕ s22 ⊕ s28 ⊕ s2s13 ⊕ s5s19 ⊕ s7s19

⊕ s8s12 ⊕ s8s13 ⊕ s13s15 ⊕ s2s12s13 ⊕ s7s8s12 ⊕ s7s8s14

⊕ s8s12s13 ⊕ s2s7s12s13 ⊕ s2s7s13s14 ⊕ s4s11s12s24

⊕ s7s8s12s13 ⊕ s7s8s13s14 ⊕ s4s7s11s12s24 ⊕ s4s7s11s14s24

F3(R3) = s0 ⊕ s2 ⊕ s7 ⊕ s9 ⊕ s10 ⊕ s15 ⊕ s23 ⊕ s25 ⊕ s30 ⊕ s8s15

⊕ s12s16 ⊕ s13s15 ⊕ s13s25 ⊕ s1s8s14 ⊕ s1s8s18 ⊕ s8s12s16

⊕ s8s14s18 ⊕ s8s15s16 ⊕ s8s15s17 ⊕ s15s17s24 ⊕ s1s8s14s17

⊕ s1s8s17s18 ⊕ s1s14s17s24 ⊕ s1s17s18s24 ⊕ s8s12s16s17

⊕ s8s14s17s18 ⊕ s8s15s16s17 ⊕ s12s16s17s24 ⊕ s14s17s18s24

⊕ s15s16s17s24

The key observation here is that when a new bit is introduced to R0 (resp. R1, R2, R3),
it is at position s30 (resp. s31, s31, s32). After 5 (resp. 3, 3, 2) clock cycles, this new
bit is extracted to its feedback function for the first time in monomial term s25 (resp.
s28, s28, s30). Although a new bit is introduced to all 4 NLFSRs at the same clock, the
clock cycle that the new bits are fed back differs.
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4.2.3 LR-Keymill internal state update

For the first 128 updates, all 4 registers are updated with a nonce bit IV [c].

Ryc+1 = Ryc[1 ∼ |Ry| − 1] ‖ Fx(Rxc)⊕ IV [c]

where y = x + c mod 4 and c ∈ {0, . . . , 127}.
After the IV is completely absorbed, it is clocked for another 33 updates.

Ryc+1 = Ryc[1 ∼ |Ry| − 1] ‖ Fx(Rxc)

where y = x+c mod 4 and c ∈ {128, . . . , 160}. So far, no keystream bit is being outputted.
Lastly, in each clock cycle, the leftmost bit from each register is XORed to form the

output keystream bits KS.

Ryc+1 = Ryc[1 ∼ |Ry| − 1] ‖ Fx(Rxc)
KS[i] = R0c[0]⊕R1c[0]⊕R2c[0]⊕R3c[0]

where y = x + c mod 4, i = c− 161 and c ≥ 161.

4.2.4 Keymill internal state update

For the first 32 updates, each register is updated with a nonce bit IV [4c + x].

Ryc+1 = Ryc[1 ∼ |Ry| − 1] ‖ Fx(Rxc)⊕ IV [4c + x]

where y = x + c mod 4 and c ∈ {0, . . . , 31}.
After the IV is completely absorbed, it is clocked for another 33 updates.

Ryc+1 = Ryc[1 ∼ |Ry| − 1] ‖ Fx(Rxc)

where y = x + c mod 4 and c ∈ {32, . . . , 64}. So far, no keystream bit is being outputted.
Lastly, in each clock cycle, the leftmost bit from each register is outputted as keystream

bits KS (4 keystream bits per cycle).

Ryc+1 = Ryc[1 ∼ |Ry| − 1] ‖ Fx(Rxc)
KS[4i ∼ 4i + 3] = R0c[0] ‖ R1c[0] ‖ R2c[0] ‖ R3c[0]

where y = x + c mod 4, i = c− 65 and c ≥ 65.
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5 DAPA on LR-Keymill and Keymill

5.1 DAPA on LR-Keymill
In a nutshell, we analyse how a differential propagates through the internal state and
extract sufficient information for us to reduce the internal state guessing complexity to the
minimum of 4 bits.

When there is a difference in IV [c − 1], it is introduced to the rightmost position
of all 4 NLFSRs, namely R0c[30], R1c[31], R2c[31], R3c[32]. Here, we obtain a combined
power consumption of all the 4 NLFSRs and may not be able to deduce conclusive bit
relations. But we can gain more information if we observe the power trace from the
next few clock cycles. After 2 clock cycles, we see that these differences are now at
R0c+2[28], R1c+2[29], R2c+2[29], R3c+2[30], and R3c+2[30] is the first and only difference to
get extracted by the feedback function. In addition, in F3 the variable s30 is a monomial
term, this difference will propagate to some NLFSR deterministically, updating only a
single NLFSR. Exploiting this fact allows us to obtain a definitive bit relation. By letting
the differences propagate further and choosing bit difference at different positions in the
nonces, we are able to obtain sufficient bit relations to deduce the relations of all the
neighbouring bits in the internal state. We denote the bit relation of Rxc[j] and Rxc[j + 1]
as Rxc[(j, j + 1)].

Since feedback bit mapping (y = x + c mod 4) has a cycle of period 4, we consider the
nonce differences in 4 different positions, namely 4i, 4i + 1, 4i + 2 and 4i + 3.

5.1.1 Difference introduced at IV [4i].

Let the only difference in the nonce be at bit position 4i, the differential propagation can
be seen in Figure 1-9, where differential bits are coloured in blue.

Figure 1: S4i
IV [4i] Figure 2: S4i+1

IV [4i] Figure 3: S4i+2
IV [4i]

Figure 1. The difference from IV is introduced to all the NLFSRs. As shown by [TRS17],
the relation between neighbouring bits in the 4 NLFSRs are collectively observed, namely
R04i+1[(29, 30)], R14i+1[(30, 31)], R24i+1[(30, 31)] and R34i+1[(31, 32)].
Figure 2. In the coming update, the rightmost register bit of each NLFSRs has the same
differential pattern as Case 2.1. By Observation 2.2, we are able to obtain a collective bit
relations of the next neighbouring bits, R04i+2[(29, 30)], R14i+2[(30, 31)], R24i+2[(30, 31)]
and R34i+2[(31, 32)].
Figure 3. Here, we expect no change in the power consumption difference.

Figure 4: S4i+3
IV [4i] Figure 5: S4i+4

IV [4i] Figure 6: S4i+5
IV [4i]
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Figure 4. This is where things start to get interesting. Notice that the difference is fed
back to R2, introducing with a new difference, which is like Case 1.1. By observing the
rise or drop of the power consumption difference, we can unambiguously determine the bit
relation R24i+4[(30, 31)].

Figure 5. Another 2 differences are fed back, namely to R1 and R2. For R2, the update is
the same as Case 2.2, thus this does not result in any rise or drop in the power consumption
difference. For R1, we can determine the bit relation R14i+5[(30, 31)].

Figure 6. No new difference will be introduced to the internal state in the coming update.
The rightmost register bit of R1 and R2 are the same as Case 1.2, but the observable power
consumption difference is the combined result of R14i+6[(30, 31)] and R24i+6[(30, 31)]. If
we are lucky and observed a rise or drop in the power consumption difference, we know
the bit relation for both registers. Otherwise, we know exactly one relation is equal while
the other is not equal, but not the order. Nevertheless, this information is still useful to us
when we consider a nonce difference to be at 4i + 1 (see analysis of Figure 14).

Figure 7: S4i+6
IV [4i] Figure 8: S4i+7

IV [4i] Figure 9: S4i+8
IV [4i]

Figure 7. From this update, we can determine the bit relation of R24i+7[(30, 31)].

Figure 8. Lastly, the most involved relation to unravel. Like in Figure 6, we have
a Case 1.1 and 1.2 at R1 and R2 respectively. While this gives us a combined result
of the relation R14i+8[(30, 31)] and R24i+8[(30, 31)], we could still deduce the relation
deterministically through another power trace. When we consider another instance and
introduce a difference at IV [4(i + 1)], as seen in Figure 4, we can recover the bit relation
R24(i+1)+4[(30, 31)], which is the latter relation of the combined bit relations. Therefore,
we can determine the relation R14i+8[(30, 31)] too.

Figure 9 (Summary). By introducing a single difference at IV [4i] and IV [4(i + 1)]
on 2 separate nonces, we can learn 4 bit relations (in red) over the course of 8 cycles:
R24i+8[(26, 27)], R14i+8[(27, 28)], R24i+8[(29, 30)] and R14i+8[(30, 31)]. In addition, we
know a combined relation R14i+6[(30, 31)] and R24i+6[(30, 31)].

5.1.2 Difference introduced at IV [4i + 1].

We repeat the analysis with difference in IV [4i+1] and observe how the differential pattern
propagates. See Figure 10-15.

Figure 10: S4i+1
IV [4i+1] Figure 11: S4i+2

IV [4i+1] Figure 12: S4i+3
IV [4i+1]
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Figure 10-12. No difference is introduced at clock cycle 4i since the difference in the
nonce is at IV [4i + 1]. From clock cycle 4i + 1 to 4i + 3, the same differential pattern and
similar bit relation information is obtained as seen in Figure 1-3.

Figure 13: S4i+4
IV [4i+1] Figure 14: S4i+5

IV [4i+1] Figure 15: S4i+6
IV [4i+1]

Figure 13. Here, we see that the feedback difference is sent to R3 as defined by the cycle
period of the LR-Keymill. As before, we can determine the relation R34i+5[(31, 32)].

Figure 14. Similar analysis as Figure 5, we can determine the relation of R24i+6[(30, 31)].
Recall in the analysis of Figure 6, we have the combined result of R14i+6[(30, 31)] and
R24i+6[(30, 31)], hence, we can also determine the bit relation R14i+6[(30, 31)].

Figure 15 (Summary). By introducing a single difference at IV [4i + 1], we can learn
2 bit relations (in red) over the course of 6 cycles: R34i+6[(30, 31)] and R24i+6[(30, 31)],
plus an additional relation (in blue) R14i+6[(30, 31)] when combined with another power
trace analysis.

5.1.3 Difference introduced at IV [4i + 2] and IV [4i + 3].

The analysis for the other 2 bit positions are pretty much the same, thus for brevity we
present the differential propagations (see Figure 16-20 and Figure 21-25) and the summary
of the analysis.

Figure 16: S4i+5
IV [4i+2] Figure 17: S4i+6

IV [4i+2] Figure 18: S4i+7
IV [4i+2]

Figure 19: S4i+8
IV [4i+2] Figure 20: S4i+9

IV [4i+2]

Figure 20 (Summary). By introducing a single difference at IV [4i + 2], we can learn
3 bit relations (in red) over the course of 9 cycles: R04i+9[(26, 27)], R34i+9[(29, 30)] and
R04i+9[(29, 30)].
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Figure 21: S4i+6
IV [4i+3] Figure 22: S4i+7

IV [4i+3] Figure 23: S4i+8
IV [4i+3]

Figure 24: S4i+9
IV [4i+3] Figure 25: S4i+10

IV [4i+3]

Figure 25 (Summary). By introducing a single difference at IV [4i + 3], we can learn 3
bit relations (in red) over the course of 10 cycles: R14i+10[(27, 28)], R04i+10[(27, 28)] and
R14i+10[(30, 31)].

5.2 Key-recovery on LR-Keymill

Recall that besides the aforementioned new bit relations, we can obtain the combined
relations for all 4 NLFSRs. Thus if we know 3 of the 4 relations, we can fully determine
all the bit relations for a particular column of register bits.

Table 6: Bit relations learnt from introducing differences at IV [4i + j] where j = {0, . . . , 4}. The
first column denotes the indices of each shift registers. (j) denotes the relations obtained from
having difference at IV [4i + j]. (!), (?) and (*) denote derived relation from multiple sources.
The “Combined” column denotes the difference position in the IV to obtain the 4 combined bit
relations.

Clock cycle c = 4i + 10
Rc[(x, x + 1)] R3c R2c R1c R0c Combined
(25,24,24,23) (0) IV [4i + 3]
(26,25,25,24) (1) (0) IV [4i + 4]
(27,26,26,25) (*) (1) (!) (2) IV [4i + 5]
(28,27,27,26) (2) (0) (3) (*) IV [4i + 6]
(29,28,28,27) (?) (3) IV [4i + 7]
(30,29,29,28) (2) IV [4i + 8]
(31,30,30,29) (3) IV [4i + 9]

In Table 6, (!) denotes the bit relation obtained from the effort of IV [4i] and IV [4i+1],
(?) denotes the information coming from IV [4i] and IV [4(i+1)], and (*) denotes the derived
information after knowing 3 out of 4 bit relations. One can see that we can already determine
the relations of both the neighbouring bits of R04i+10[26], R14i+10[27], R24i+10[27] and
R34i+10[28].

When we extend the analysis for another period of 4 cycles, we can determine the bit
relations between 7 consecutive bits in all 4 NLFSRs, see Table 7.

When we perform the analysis for j = {0, . . . , 35} and a fixed i ∈ {0, . . . , 22}9, it is
sufficient for us to obtain bit relations of 33 consecutive bits for all 4 NLFSRs. This gives

9We bound the choice of i so that 4i + j + 3 ≤ 128, the length of the nonce.
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Table 7: Bit relations learnt from introducing differences at IV [4i + j] where j = {0, . . . , 7}. The
first column denotes the indices of each shift registers. (j) denotes where the relation is obtained,
(!), (?) and (*) denote derived relation from multiple sources. The “Combined” column denotes
the difference position in the IV to obtain the 4 combined bit relations.

Clock cycle c = 4i + 14
Rc[(x, x + 1)] R3c R2c R1c R0c Combined
(21,20,20,19) (0) IV [4i + 3]
(22,21,21,20) (1) (0) IV [4i + 4]
(23,22,22,21) (*) (1) (!) (2) IV [4i + 5]
(24,23,23,22) (2) (0) (3) (*) IV [4i + 6]
(25,24,24,23) (*) (4) (?) (3) IV [4i + 7]
(26,25,25,24) (5) (*) (4) (2) IV [4i + 8]
(27,26,26,25) (*) (5) (3) (6) IV [4i + 9]
(28,27,27,26) (6) (4) (7) (*) IV [4i + 10]
(29,28,28,27) (7) IV [4i + 11]
(30,29,29,28) (6) IV [4i + 12]
(31,30,30,29) (7) IV [4i + 13]

us all the bit relations within each shift register in the internal state at a particular clock
cycle. All that is left is to guess one key bit from each shift register and we can roll back
the updates to recover the master key.

In summary, we need noiseless measurements of 36 chosen nonces and and 4-bit key
guessing to recover the master key.

5.3 Remark on filtering the noise
From a practical perspective, we expect some noise during the computation and power
measurement. To filter the noise, one could vary the latter bits of the nonce to collect and
average out the traces. This is because the internal state of LR-Keymill only depends on
the nonce bits that are already absorbed. Let i = 0, we only need the first 47 nonce bits
to be fixed10, there are still 81 bits of freedom to generate different nonces giving similar
power traces to filter the noise.

5.4 Improved attack on Keymill

In [DEKM17], the authors recover 1 bit relation (x, y) per chosen nonce using the in-
formation gained from Case 1.1. In fact, as seen in Case 2.1, if one observes the power
consumption difference in the next cycle, one could deduce another bit relation (y, z)
because (x, y) is already known. Thus, every chosen nonce with a single bit input can
actually recover 2 bit relations, effectively halving the number of nonces (and corresponding
power traces) needed to launch the attack11

There are better choices of IV differences that could further reduce the number of
nonces needed. But we do not go further into improvement on the attack as the attack
complexity is already very low.

5.5 Experimental Results
The leakage and attack on NLFSR was previously validated on an FPGA platform by
Dobraunig et al. [DEKM17], targeting Keymill. In this paper, we validate our proposed

10First 36 bits for introducing differences in the nonce and next 11 bits to be constant to avoid affecting
the differential trails.

11Since [DEKM17] performed their experiments on an FPGA and ours are on ARM Cortex-M3, direct
comparison is not possible. Given the exact same SNR and platform, our attack has complexity exactly
half as explained.
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attack on LR-Keymill. The target design is implemented on ARM Cortex-M3 microcon-
troller mounted on the Arduino Due board. The microcontroller has 512KB flash, 96KB
SRAM and 84 MHz operating frequency. The measurements are captured using RF-U
5-2 near-field electromagnetic (EM) probe from Langer on a Lecroy WaveRunner 610zi
oscilloscope at a sampling frequency of 1.25 GSamples/s. A 30 dB pre-amplifier is also
used for better measurement quality.

For the implementation itself, we adopted bitslice approach, written in assembly. In this
scenario, four bits, one from every NLFSR, will be updated simultaneously. The four bits
are grouped together from the Least Significant Bits (LSBs) to allow more efficient state
update. Updating multiple registers together in the bitslice implementation also result in
algorithmic noise from all NLFSR as suggested by designers of LR-Keymill [TRS17].

As described, the target of the attack is the Hamming Distance (HD) of the internal
states as the IV difference propagates. We then target the operation in which the register
is updated, which is typically implemented as MOV Rd,Rs, where Rd and Rs being the
destination and source registers respectively. In this case, if we targeted the register storing
the LSBs, the leakage is expected to be HD between the previous state and the updated
state, which matches the theoretical model.

5.5.1 Profiling and Results

We first conducted the profiling to identify area and point of interest. For the profiling,
we implement a simple single state update. We send random 2 input data, in which we
can calculate the HD between them. In total, we measure 20, 000 traces, each is averaged
100× to minimize the effect of noise. The data is then split and subtracted to obtain
10, 000 traces of ∆HD. From these traces, we can build a profile of 9 different ∆HD
{−4,−3, ..., 3, 4} as plotted in Figure 26. ∆HD classes can be clearly distinguished.

Figure 26: Mean for each class of HD differ-
ence

0       -1        +2         +1

Figure 27: Investigating ∆HD to distin-
guish sign of the difference

5.5.2 Identifying Differences

Previous results show that the classes have distinct power consumption and can be identified.
However same difference with opposite polarity (like −1, 1) can be hard to distinguish on
a real measurement. To this end, we investigate if ∆HD of opposite polarity (sign) can
be recognised in a captured EM measurement. The experiment is done on the previously
described bitslice implementation of LR-Keymill running on the ARM Cortex-M3. We
executed two IV sequences so as to have a sequence of ∆HD = 0,−1, +2, 1 over 4 clock
cycles and measured two (averaged) EM traces. The difference of the two EM traces is
then checked to recognise ∆HD. The results are plotted in Figure 27. While ∆HD of
0, 1 and 2 are easily distinguishable, it is expected that it would be hard to distinguish
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1 from −1. Nevertheless, one could easily check the polarity and magnitude of the peak
to distinguish the two cases, which also matches the previous profiles. The peaks also
matches the timing, which according to operating frequency and sampling frequency of the
scope, must be separated by around 208 samples. Moreover, we choose the pair (−1, 1) for
this experiment as being low consuming pair it is worst affected by noise, still we are able
to distinguish them.
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Figure 28: Investigating ∆HD difference for a sequence of changes

Finally, we experiment to recognise a longer sequence generated from a LR-Keymill
simulation on a real measurement. The initial state of LR-Keymill was randomly fixed
and with a pair of IVs with difference in the first bit and executed on ARM Cortex-M3
and corresponding two (averaged) EM traces were measured. The averaging was done
by repeating the IV 1000 times, which remains well within the adversary model and
noise filtering capability. The results are shown in Figure 28. The top half of the figure
(generated from Python simulation) shows the power traces generated by the two IVs and
their difference in dotted blue line. The corresponding EM trace difference is shown in
the bottom half of the figure showing observed differences, which perfectly matches the
expected values and pattern as discussed in Section 5.1.1. The peaks again match the
expected separation of 208 samples.

Practical Challenges: The practical recovery of value and sign for an observed difference
is demonstrated in Figure 28. However, often the difference recovery can be erroneous in
value or sign or both due to its high sensitivity to noise. In our experiments, we observed
that the sign has lower resistance to noise in traces. In the event that a sign of a particular
difference bit is inconclusive, the adversary can still continue to perform the attack, with
slightly higher complexity, by either of the following techniques:

1. discard noisy traces and repeat the experiment, say with a new pair of nonce with
the same differential bit,

2. try to recover the bit relation from other power analysis instances, as there could be
overlapping bit relations that can be recovered, or

3. guess that sign which increases the final key-recovery complexity by 1 bit for each
inconclusive sign.

Moreover, our attack is not limited in length of sequence to recover at once. Shorter
sequences can be independently recovered. Consecutive sequences with overlapping differ-
ence bits can also help in error correction for wrongly recovered differences. The attack
can be trivially extend from difference recovery of shorter sequences to full key recovery
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by repeating the analysis on different IV differences. Note that, the analysis for different
IV bit position are independent of each other and there is no snowball effect even if any of
the iterations obtains inconclusive results. Thus, the key complexity increases only by 1
bit for each inconclusive difference bit recovered. As the attack on Trivium, presented in
the following section, also require recovery of differences with sign, the same techniques
are therefore directly applicable.
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6 Application to Trivium
Trivium is one of the stream ciphers selected to eSTREAM porfolio [CP08], listed in
Profile 2 that is particularly suitable for hardware applications with restricted resources.
It is a synchronous stream cipher designed to generate up to 264 keystream bits from an
80-bit secret key K and 80-bit initial value IV . In this section, we illustrate how our
DAPA can be applied to Trivium to reduce the key guessing from 80 to 14 bits.

6.1 Specification of Trivium
Its internal state consists of 3 shift registers, denoted as Ac, Bc, Cc and some non-linear
feedback functions connecting the shift registers, where c is the clock cycle and c = 0 is
the initial state after loading the K and IV . The bits in the registers are indexed from 1
and in ascending order Xc = Xc[1] Xc[2] . . . Xc[|X|]. For a range of bit registers from
i-th to j-th bits inclusive, we denote it as Xc[i ∼ j].

Here, we only describe the key and IV setup as that is all we need to know for our
DAPA. We also use a different notation to describe the algorithm for the ease of describing
our attack. Note that, in contrast with LR-Keymill, the indexing starts from 1.

6.1.1 Loading key and initial value

First, the 80-bit secret key K = K80K79 . . . K1 is loaded flush left into the 93-bit shift regis-
ter A, while other bits are set to zero. Next, the 80-bit initial value IV = IV80IV79 . . . IV1
is loaded flush left into the 84-bit shift register B and other bits are set to zero too.
Lastly, the 111-bit shift register C is initialised as all zeroes except the last 3 bits
to be ones. The initial registers are denoted as A0[1 ∼ 93] = [K80, K79, . . . , K1, 013],
B0[1 ∼ 84] = [IV80, IV79, . . . , IV1, 04], and C0[1 ∼ 111] = [0108, 13] respectively.

6.1.2 Internal state update

After loading K and IV , the internal state is updated 4× 288 times before any keystream
output. The updating is as follows

tc
1 = Ac[66]⊕ (Ac[91] ∧Ac[92])⊕Ac[93]⊕Bc[78]

tc
2 = Bc[69]⊕ (Bc[82] ∧Bc[83])⊕Bc[84]⊕ Cc[87]

tc
3 = Cc[66]⊕ (Cc[109] ∧ Cc[110])⊕ Cc[111]⊕Ac[69]

Ac+1 = tc
3 ‖ Ac[1 ∼ 92], Bc+1 = tc

1 ‖ Bc[1 ∼ 83], Cc+1 = tc
2 ‖ Cc[1 ∼ 110]

where c ∈ {0, . . . , 1151}. Notice that the shift registers are now a right shift.

6.2 DAPA on Trivium
We consider the attack model of resynchronization attacks, where the adversary is allowed
to manipulate the value of IV . If repeating of IV is permissible, the adversary can collect
as many power traces of the same computation as he needs to filter the noise. Hence,
we consider a more constraint scenario where the adversary is not allow to repeat IV .
Nevertheless, we show that the adversary will still be able to collect thousands of power
traces of the same computation (see Section 6.3).

At clock cycle 0, the adversary knows the value of all but 80 register bits, namely
A0[1 ∼ 80] that contains the secret key K. And his goal is to guess the correct K with
significantly lesser than 80-bit key guessing.
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6.2.1 Introducing difference in IV

Suppose we introduce a difference at IV3, which correspond to a difference at B0[78].
At the rising edge of a clock, it results in some power consumption differences in shift
register B1[78] and B1[79]. Since the value of IV is known, we know the expected power
consumption difference from these register bits. For convenience of our analysis, from 2nd
point of Case 2.1 we know that if we choose IV2 6= IV4, the combined effect of these 2
registers is that there is no change in power consumption difference. Thus, we can focus
on the feedback function, in particular, the value of t0

1.
By specification, B1[1] = t0

1 = A0[66]⊕B0[78], as A0[91 ∼ 93] are initialised as zeroes
and we know t0

1 has a difference with probability 1. By observing the power consumption
difference, we are able to determine the bit relation B1[(1, 2)] (Case 1.1). If we observe the
power consumption difference for the next cycle, we can also determine the bit relation of
B2[(1, 2)] (Observation 2.2).

Since B2[3] = IV0 is known, we can determine the value of t0
1 from the bit relation.

In addition, we can deduce the value of A0[66] from the knowledge of B0[78]. The same
deduction can be repeated to recover the value of A0[65].

To summarise, by introducing a single bit difference at B0[78], we can recover 2 bit
values of the secret information A0[65], A0[66].

6.2.2 Key-recovery on Trivium

For incremental i = 0, 1, 2, . . . , 5, we can repeat the above strategy with difference at
B0[78− 2i] and recover additional 2 bits of the secret information A0[65− 2i], A0[66− 2i].
However, for i ≥ 6, this strategy no longer works because the feedback term t1 includes
unknown key bits from A0[67 ∼ 80].

The simplest way to overcome that is to guess the key bits (14 bits) at these positions.
For each key guessing of A0[67 ∼ 80], we can continue the aforementioned strategy for
i = 0, . . . , 32 and recover the rest of the key bits A0[1 ∼ 66].

In summary, we need noiseless measurements of 33 chosen initial values IV and 14-bit
key guessing to recover the 80-bit secret key K.

6.3 Remark on filtering the noise
From a practical perspective, we expect some noise during the computation and power
measurement. To filter the noise, we could vary the leftmost IV bits that are not used
to introduce differences. More specifically, the smallest index that we are introducing
difference in the shift register is B0[14], which corresponds to IV67. We can enumerate the
values of IV80, IV79, . . . , IV69 to give us 212 power traces for each chosen IV difference12.
If having 212 power traces is insufficient, we can always double the number of traces in
exchange for recovering 1 key bit lesser.

12We do not include varying IV68, because our strategy measures the power trace for 2 subsequent clock
cycle from the chosen difference.
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7 Conclusion and Future work
We presented the general DPA strategy to extract bit relation information from shift
registers through the power consumption difference. This methodology can be applied to
both LFSRs and NLFSRs. Combined with differential analysis, we applied our DAPA
methodology to break LR-Keymill security claim with 4-bit internal state guessing and
halved the resources to perform DPA on Keymill. We experimentally verified our attack
on LR-Keymill. Besides fresh re-keying schemes, we show that our methodology can also
be applied on shift register based stream ciphers like Trivium, reducing the key-recovery
to 14-bit key guessing.

The main issue with LR-Keymill security claim is that it is an upper bound assuming
the NLFSRs as black boxes. It would be interesting to find a framework to analyse and
find the lower bound to Keymill-like structures, taking the NLFSRs into account. Having
all NLFSR identical in LR-Keymill could resist our DAPA but might introduce potential
mathematical attacks due to symmetrical structure.
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