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Abstract. We study information-theoretic multiparty computation (MPC)
protocols over rings Z/pkZ that have good asymptotic communication
complexity for a large number of players. An important ingredient for such
protocols is arithmetic secret sharing, i.e., linear secret-sharing schemes
with multiplicative properties. The standard way to obtain these over
fields is with a family of linear codes C, such that C, C⊥ and C2 are
asymptotically good (strongly multiplicative). For our purposes here it
suffices if the square code C2 is not the whole space, i.e., has codimension
at least 1 (multiplicative).
Our approach is to lift such a family of codes defined over a finite field F
to a Galois ring, which is a local ring that has F as its residue field and
that contains Z/pkZ as a subring, and thus enables arithmetic that is
compatible with both structures. Although arbitrary lifts preserve the
distance and dual distance of a code, as we demonstrate with a coun-
terexample, the multiplicative property is not preserved. We work around
this issue by showing a dedicated lift that preserves self-orthogonality (as
well as distance and dual distance), for p ≥ 3. Self-orthogonal codes are
multiplicative, therefore we can use existing results of asymptotically good
self-dual codes over fields to obtain arithmetic secret sharing over Galois
rings. For p = 2 we obtain multiplicativity by using existing techniques of
secret-sharing using both C and C⊥, incurring a constant overhead. As a
result, we obtain asymptotically good arithmetic secret-sharing schemes
over Galois rings.
With these schemes in hand, we extend existing field-based MPC protocols
to obtain MPC over Z/pkZ, in the setting of a submaximal adversary
corrupting less than a fraction 1/2 − ε of the players, where ε > 0 is
arbitrarily small. We consider 3 different corruption models. For passive
and active security with abort, our protocols communicate O(n) bits per
multiplication. For full security with guaranteed output delivery we use a
preprocessing model and get O(n) bits per multiplication in the online
phase and O(n logn) bits per multiplication in the offline phase. Thus,
we obtain true linear bit complexities, without the common assumption
that the ring size depends on the number of players.



1 Introduction

A secret-sharing scheme is a mathematical object that disperses a secret element
into n shares. Combined, the shares determine the secret, but individual shares,
and limited subsets of them, contain no information about the secret. In linear
secret-sharing schemes (LSSS), given several secret-shared elements, linear opera-
tions on the secrets correspond to linear operations on the shares. LSSS are the
cornerstone of information-theoretic multiparty computation (MPC) protocols,
but they also have applications in other domains of cryptography.

LSSS and MPC are typically defined over finite fields (e.g., the secret and the
shares are elements of the same finite field), which have a rich algebraic structure.
A natural question is whether we can extend some of these techniques to other
structures, such as rings Z/pkZ where k > 0 is an integer and p is a prime. This
question is not only motivated in theory: some results [17,2] show that MPC
over Z/2kZ with k = 32 or k = 64 can offer many practical benefits compared to
fields, partly due to the compatibility of binary arithmetic in modern hardware.
Feasibility of LSSS and MPC over these rings, as well as theoretical benefits,
were already demonstrated back in 2003 based on black-box secret sharing [13].

Recently, MPC directly over these rings has been shown, in both the cryp-
tographic dishonest majority setting [11] as well as the information-theoretic
setting [1], by extending and generalizing existing techniques over fields. Both of
these approaches use a single LSSS defined over Z/pkZ: additive secret sharing
and a variant of Shamir’s secret sharing, respectively. It is natural to wonder
whether techniques for other LSSS can be extended to these rings, to obtain
desirable properties such as good asymptotic complexity.

In this work, we study the lifting of linear codes defined over finite fields to
Galois rings, which are a natural generalization of both finite fields and our rings
of interest Z/pkZ. In a way, Galois rings are analogues of finite fields: informally,
a Galois ring is to Z/pkZ, what a finite field is to the prime field Fp. Therefore,
to extend existing techniques over finite fields to work over Z/pkZ, it is necessary
to consider Galois rings. As shown in Section 3, lifting preserves the essential
properties of linear codes (distance, dual distance) that make them suitable as
LSSS.

However, extending the theory of LSSS to Galois rings is not straightforward,
due to the reduced structure and the presence of non-invertible elements. Thus, a
priori it is not clear if properties of LSSS over fields carry over when considering
these constructions over Galois rings. The above leads to the following question:
Can we obtain “good” LSSS over a Galois ring? More precisely, we focus on
realizing families of LSSS indexed by n, the number of shares, with privacy and
reconstruction thresholds arbitrarily close to n/2, and with the information rate
tending to a positive constant. The most widely known construction of LSSS over
fields, Shamir secret sharing, does not satisfy the rate condition as it is based on
polynomial interpolation and therefore the shares have to be at least log(n) in
length. This issue was addressed over fields in the work of [9], using non-trivial
results on random codes.
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The above question is relevant for MPC that is asymptotically optimal, i.e.,
secure multiplication that has a total communication complexity linear in the
number of players [15]. For information-theoretic MPC we typically care about
arithmetic secret-sharing schemes, or synonymously, LSSS with multiplicativity:
given two secret-shared elements, their product is a linear function of the pairwise
products of shares. However, as we shall demonstrate with a counterexample in
Section 3, multiplicativity is not straightforward to achieve over Galois rings.

True linear complexity is hard to achieve, and in fact conjectured to be
impossible in the maximal adversary case n = 2t + 1 for the single-circuit
setting.6 Many state-of-the-art protocols such as [4,20] state a linear complexity,
but the complexity is given in the number of field elements communicated. If
the field is fixed and the number of players tends to infinity, this obscures a
log(n) factor in the bit-complexity of the protocol. Over fields, this asymptotic
factor does not affect the complexity for practical ranges of parameters, since
the field size is usually much larger than the number of players. However, for
our rings Z/pkZ this issue is more pressing, since the comparable requirement is
that p > n rather than pk > n [1], thus leading to a log(n) factor immediately
if for example p = 2. Removing this log(n) overhead is thus worthwhile and in
fact highly desired, since it would achieve a constant complexity per party: even
if more parties join the computation, the communication per party does not
increase.

1.1 Our Contributions

We show that some of the results for LSSS over a finite field F also hold over a
Galois ring R that contains F as a residue field, by arbitrarily lifting the associated
code over F to R, and showing that certain relevant properties are preserved.

First, in Section 3, we show that we can obtain explicit good families of linear
codes over Galois rings. In what follows, R is a large enough Galois ring.

Theorem 1 (informal). There exists an explicit family of R-linear codes over
R with |R| = Oε(1) such that its relative distance is at least 1

2 − ε and relative
dual distance is at least 1

2 − ε. In particular, there exists an explicit family of
self-dual codes over R with relative distance at least 1

2 − ε.

It is well-known that any linear code over a field with good parameters yields a
good linear secret-sharing scheme [24], and it is straightforward to show this also
holds over Galois rings. However, to get the arithmetic secret-sharing schemes
that we need, we also need good parameters for the square of the code. We
demonstrate with a counterexample that these parameters are not preserved by
arbitrary lifts.

We work around this issue by showing a dedicated lift for p > 2 that preserves
self-orthogonality in Section 3.1. For p = 2 we secret-share elements using both

6 LSSS with these parameters are equivalent to MDS codes, hence if the MDS conjecture
if true, then the field size has to grow with the number of players. When evaluating
a circuit multiple times in parallel, this can be mitigated [8].

3



C and C⊥, at the expense of increasing the share size by a factor of two. Both of
these approaches rely on techniques from [12] to obtain arithmetic secret sharing
via a code and its dual, and we demonstrate in Section 4 that these extend to
Galois rings. We capture the asymptotic result in the following theorem.

Theorem 2 (informal). There exists a family of R-arithmetic secret-sharing
schemes Σ1, Σ2, . . . over R with |R| = Oε(1) such that the number of players
n(Σi)→∞, and the schemes have t(Σi) ≥ (1/2− ε)n(Σi)-privacy and r(Σi) ≥
(1/2− ε)n(Σi)-reconstruction.

To illustrate the power of our results on arithmetic secret sharing, we apply
them to the problem of communication-efficient honest-majority MPC over
Z/pkZ. This problem has only recently been studied in [1], but the authors were
more concerned with feasibility rather than achieving optimal communication
complexity. In particular, their protocol is based on the (no longer state-of-the-
art) protocol of [3], which has O(n2 log(n)) complexity in the number of parties.
Here, the log(n) factor comes from polynomial interpolation, as discussed above.
Plugging in our LSSS we immediately remove this log(n) factor and obtain true
quadratic complexity for the adversary regime of t < (1/2− ε)n, analogously to
the work of [9] over fields.

We further improve the complexity, for three different regimes:

1. (Section 5) For passive security, we present a protocol that obtains an
amortized communication complexity of O(n) bits per multiplication gate.

2. (Section 5.3) We discuss how to extend the protocol above to the setting of
active security with abort, achieving an amortized communication complexity
of O(n) bits per multiplication gate.

3. (Section 6) For full active security with guaranteed output delivery, we obtain
an amortized communication complexity of O(n log(n)) bits for the offline
phase and O(n) bits for online phase. This solves the open problem from [1].

The last protocol is the most involved, since we adapt the protocol of [5] to
work over Galois rings. Here we achieve linear complexity only in the online phase,
as we still rely on polynomial interpolation to efficiently verify multiplication
triples in the preprocessing phase. This matches the state-of-the-art over fields
until the very recent result of [21]. However, since their protocol also uses the
constructions of [5], our techniques can be combined with theirs to achieve linear
complexity for the preprocessing phase.7

1.2 Overview of our Techniques

We mainly use elementary (arbitrary) liftings from codes C over a finite field F to
a Galois ring that contains F as its residue field, and Z/pkZ as a subring. This way
we leverage results from codes over fields directly. For example, since there exist
explicit families of codes with asymptotically good distance and dual distance

7 Ignoring terms that are sublinear in the circuit size.
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over a finite field F, we also obtain explicit families of codes with asymptotically
good distance and dual distance over R.

Once we obtain arithmetic secret sharing over R we can use it to get MPC
over Z/pkZ. Our general template to obtain an MPC protocol is to first develop
protocols over R itself, and since Z/pkZ is a subring of R, we can supply inputs
in Z/pkZ and then evaluate a circuit over R to securely obtain the correct output
in Z/pkZ.89

Our passively secure protocol over R follows the template of [16], which
consists of preprocessing so-called “double-sharings” and then using them to
compute secure multiplications in the online phase. Since our construction of
arithmetic secret sharing does not come directly from a code, we abstract the
underlying technique to work on arbitrary arithmetic secret-sharing schemes. We
do not have access to Vandermonde matrices over R directly, but we fix this by
moving to an extension of Galois rings without amortized overhead using the
“tensoring trick” from [8] together with the interpolation theorems from [1].

To get our actively secure protocol with abort, we make the simple but
powerful observation that our protocol above is already actively secure up to
additive attacks, i.e., the only attack that an adversary may carry out is to add a
chosen value to the outputs of multiplications that is independent of the inputs.
We obtain our actively secure protocol with abort by compiling our passively
secure protocol with the recent work of [2], preserving linear complexity.10

Finally, for our actively secure protocol with guaranteed output delivery we
use our arithmetic secret-sharing scheme as a building block and extend the
protocol of [5], which is defined over a field in the t < n/2 regime. We show the
check of authentication tags generalizes to our setting, and show how to compute
the authentication tags (based on “twisted sharings”) using our secret-sharing
scheme. We also adapt the batch verification of triples.

1.3 Related Work

Honest majority MPC over rings has been already studied in [13] via black-box
secret sharing, but their computational overhead is rather large. This problem
was not revisited until very recently, with the work of [1], which presented
efficient constructions using Galois rings, showing their potential benefits in the
theory of MPC. They provide a protocol for multiplication with O(n log n) bits of
total communication per gate, for the t < n/3 setting. This log(n) factor comes
from using Shamir’s scheme, and removing it requires codes with good distance

8 One may think initially that R is more general than Z/pkZ and thefore computation
over Z/pkZ is implied trivially by computation over R by taking the degree of the
extension to be 1. However, note that the degree of the extension is constrained to be
Ω(logp(ε

−1)), which is constant for a fixed ε > 0, but it is not necessarily equal to 1.
9 For passive security the condition on the inputs is trivial to satisfy, but for active

security some extra check needs to be added, which was already addressed in [1] for
the case of Galois rings.

10 Although their compiler is described for Z/pkZ, it also applies to arbitrary Galois
rings.
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of the square, or asymptotically good families of reverse multiplication-friendly
embeddings, which as we illustrate in Example 2 are out of reach of our elementary
lifting methods. Both were very recently claimed by [14], and illustrated with
protocols for the t < n/3 setting. The tools developed in the present work enable
up to honest majority, so are therefore complementary. Also, the recent work of
[2] considers honest majority MPC over Z/2kZ, but they achieve only security
with abort and they do so with a communication complexity of O(n log(n)) for
both online and offline phases.

On the other hand, there are several other works in the context of honest-
majority MPC over fields. We have already mentioned the work of Ben-Sasson et
al. [5], that proposes a protocol in the honest-majority setting with guaranteed
output delivery and near-linear communication complexity, and constitutes the
basis of our protocol in Section 6. More recently, the protocol of [21] improves upon
the protocol in [5] by introducing a novel method for verifying the correctness of
multiplication triples. In the setting of security with abort the line of research is
richer, with many protocols proposed in the last few years that aim at providing
concrete practical efficiency. For example, an efficient general compiler from
active security up to additive attacks to active security is presented in [10], which
improves upon the methods built in [23]. The work of [25] also improves upon
[23] by extending it using similar ideas as the batch triple check presented in
[5]. Also, very recently, an efficient method to achieve actively secure three party
computation was presented [7], building on top of the distributed zero knowledge
proof techniques introduced in [6]. Although the authors of this work do consider
an extension of their protocol to the ring Z/2kZ, this technique is unlikely to be
efficient in practice as it uses a Galois ring of a degree that is roughly equal to
the security parameter.

2 Preliminaries

2.1 Linear codes over finite fields

Let Fq be the finite field with q elements, and let Fnq be the Fq-vector space
consisting of n copies of Fq. A code C ⊆ Fnq is a set of row vectors in Fnq . The

rate of C is defined as
logq |C|

n . For a (row) vector x = (x1, . . . , xn) its Hamming
weight is the number of nonzero coordinates: wH(x) = |{i ∈ [n] | xi 6= 0}|,
where we write [n] := {1, . . . , n}. If y = (y1, . . . , yn) ∈ Fnq is another vector, the
Hamming distance between x and y is the number of coordinates in which they
differ d(x,y) = |{i ∈ [n] | xi 6= yi}| = wH(x − y). The minimum distance of a
code C is defined as d(C) = minx6=y∈C d(x,y).

In the following, let C ⊆ Fnq be a linear subspace; we then say C is a linear
code. The dimension of C is the dimension of C as a vector space. If C has
k = dim(C) and d = d(C), we say C is a [n, k, d]-linear code over Fq. A matrix
G is a generator matrix for C if its rows form a basis for C. The dual code of
C is defined as C⊥ = {x ∈ Fnq | ∀y ∈ C : xyT = 0}. One can see that C⊥ is a
linear code with dimension n− dimFq(C). The dual distance of C is defined as
the minimum distance of C⊥, and is denoted as d⊥(C).

6



In this paper, we are mostly concerned with the minimum distance d and dual
distance d⊥ of a linear code C. For applications to secret sharing, we want both of
these to be large, since they imply (n−d+1)-reconstruction and (d⊥−1)-privacy
for secret-sharing scheme associated to the code. There is a large body of works
dedicated to determining the achievable distance and dual distance of a code. In
this work, we are particularly interested in the asymptotic behavior of d and d⊥.
To characterize this asymptotic behavior, we look at the relative distance δ = d

n

and relative dual distance δ⊥ = d⊥

n .

Definition 1. A family C1, C2, . . . of linear codes over a fixed finite field, where
each Ci has parameters [ni, ki, di] and dual distance d⊥i , is said to have relative
distance δ and relative dual distance δ⊥ if the following holds:

1. lim
i→∞

ni =∞

2. lim inf
i→∞

di
ni
≥ δ, lim inf

i→∞

d⊥i
ni
≥ δ⊥.

We stress that we study this asymptotic behaviour only for a family of codes
defined over the same finite field.

In general, there are two ways to construct a family of codes with large relative
distance and relative dual distance. One way is through a random argument
that gives a family of codes reaching the Gilbert-Varshamov bound. For a finite
field Fq with q < 49, this Gilbert-Varshamov Bound is the best lower bound
known. When q ≥ 49 is a square, there exists an explicit construction of algebraic
geometric codes outperforming the random codes, i.e., there exists a family of
algebraic geometric codes attaining the celebrated Vlăduţ-Drinfeld bound [18].
We skip the details of these codes and refer the interested reader to [27]. The
family of algebraic geometric codes attaining the celebrated Vlăduţ-Drinfeld
bound meets the following condition.

Proposition 1. Let q be any prime power. Then there exists an explicit family
of codes over a fixed finite field Fq2 with relative distance δ and relative dual
distance δ⊥ as long as δ and δ⊥ satisfy

δ + δ⊥ ≤ 1− 2

q − 1
. (1)

A similar result holds for self-dual codes [26], i.e., there exists an explicit
family of self-dual codes reaching the Vlăduţ-Drinfeld bound.

Proposition 2. Let ε > 0 be any small constant. Then, for any q ≥ 2/ε there
exists an explicit family of codes over a fixed finite field Fq2 such that its relative
distance δ ≥ 1

2 − ε and its relative dual distance δ⊥ ≥ 1
2 − ε. Moreover, there

exists an explicit family of self-dual codes over a fixed finite field Fq2 with relative
distance δ ≥ 1

2 − ε.
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2.2 Galois Rings

Galois rings are a natural analogue to finite fields: roughly, Galois rings are to
Z/pkZ what finite fields are to prime-order fields Fp. As such, these rings have
rich structure and they share many properties with finite fields. In fact, Galois
rings are a strict generalization of finite fields, since setting k = 1 one obtains
exactly the finite fields.

Definition 2. Let p be a prime number and let k be a positive integer. Let
g(Y ) ∈ (Z/pkZ)[Y ] be a monic polynomial such that its reduction modulo p is an
irreducible polynomial in Fp[Y ]. The ring

R := (Z/pkZ)[Y ]/ (g(Y ))

is called a Galois ring.

Proposition 3. R has the following properties:

1. It is a local ring, i.e. it has a unique maximal ideal (p) ( R. We have that
R/(p) ∼= F := Fph , where h denotes the degree of g.

2. The Lenstra constant of R is ph, which gives the maximum number of
interpolation points in Shamir’s (because the pairwise differences must be
invertible)

3. For any prime p, positive integer k, and positive integer h there exists a
Galois ring as defined above, and any two of them with identical parameters
p, k, h are isomorphic. We may therefore write R = GR(pk, h).

4. If e is any positive integer, then R is a subring of R̂ = GR(pk, h ·e). There is a
polynomial ĝ ∈ R[X] that is irreducible modulo p, such that R̂ = R[X]/(ĝ(X)).
There is a natural R-module isomorphism Re → R̂.

Remark 1. Also, we have a natural ring embedding Z/pkZ ↪→ R, given by
mapping x 7→ x mod g(Y ). Moreover, there is another way to uniquely represent
the elements of R. Since R/(p) ∼= F, let ξ be a non-zero element of order ph − 1
in R and define the subset

I = {0, 1, ξ, . . . , ξp
h−2} ⊂ R . (2)

Then, any element a ∈ R can be uniquely written as

a = a0 + a1p+ a2p
2 + · · ·+ ak−1p

k−1 where a0, . . . , ak−1 ∈ I .

This decomposition also allows us to define “division by powers of p”. Indeed,
notice that given an element a = a0+a1p+a2p

2+· · ·+ak−1pk−1 ∈ R and a positive
integer u, we have that pu divides a if and only if ai = 0 for all i < u. If this is
the case, we then define a/pu := au + au+1p+ · · ·+ ak−1p

k−u−1 ∈ GR(pk−u, h);
notice that a/pu ≡ au (mod p). If u is maximal and a is non-zero in R, then
a/pu ∈ R∗.

Finally, Item 1 of Proposition 3 gives rise to the canonical map π : R → F
(“reduction modulo p”), which we shall frequently use. It is easy to see that π|I
is a bijection, and in particular we have a one-to-one correspondence between I
and Fph . Given x ∈ R we shall also write x = π(x).
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2.3 Arithmetic Secret Sharing Schemes

Our definition of an arithmetic secret sharing scheme over a Galois ring is inspired
by the notion a a general linear secret-sharing scheme from [8]. Let U be an
R-algebra, [n] be a finite set, and Z be an R-algebra. Suppose we have an R-
submodule C ⊆ Un and a surjective R-module homomorphism ψ : C → Z. For
any subset A ⊆ [n] we have projection homomorphisms πA : Un → U |A| onto the
coordinates indexed by A. For i ∈ [n] we write πi := π{i}.

Let A ⊆ [n] be a subset. Then we say:

1. A is a reconstructing set for ψ if kerπA|C ⊆ kerψ.

2. A is a privacy set for ψ if the product of morphisms 〈πA|C , ψ〉 : C →
πA(C)× Z is surjective.

A is a reconstructing set for ψ iff any set of A-coordinates uniquely determines
the corresponding value in Z. Also, A is a privacy set for ψ if given x ∈ C, the
A-coordinates πA(x) are independent of ψ(x).

Definition 3. An R-arithmetic secret-sharing scheme (or: R-ASSS) Σ consists
of the following data:

– A number of players n.

– A finite commutative R-algebra U , the share space.

– A finite commutative R-algebra Z, the secret space.

– An R-submodule C ⊆ Un, the defining module.

– The defining map: a surjective R-module homomorphism ψ : C → Z such
that [n] is a reconstructing set for ψ.

For x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Un, define x∗y as the coordinatewise
product (x1y1, . . . , xnyn). We require that the following criteria are satisfied:

1. [n] is a reconstructing set for (C,ψ).

2. There is a unique surjective R-module homomorphism ψ : C∗2 → Z such
that ψ(x ∗ y) = ψ(x)ψ(y), and such that [n] is a reconstructing set for ψ.

We may refer to Σ as the 5-tuple (n,U, Z,C, ψ). We also say Σ is an R-
arithmetic secret-sharing scheme of Z over U with n players.

We define the following terminology:

– Σ has t-privacy if all subsets A ⊆ [n] of cardinality |A| = t are privacy sets
for ψ.

– Σ has r-reconstruction if all subsets A ⊆ [n] of cardinality |A| = r are
reconstructing sets for ψ.
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3 Codes over Galois Rings

We now show how to obtain codes over Galois rings; although there is a large
body of works dedicated to linear codes, most of it only deals with codes over
finite fields. For the purpose of asymptotically good secret-sharing schemes, we
need a family of codes over Galois rings whose rate and relative distance tends
to a positive constant.

We obtain such codes by arbitrarily lifting linear codes defined over some
finite field F, such as the ones from Proposition 1, to a Galois ring whose residue
field is F. We show that the lifted codes have at least the same distance and dual
distance as the original codes, hence using Proposition 1 we obtain a good family
of codes over Galois rings of arbitrary characteristic pk.

For the particular case of self-orthogonal codes defined over a field of charac-
teristic not equal to 2, we give an explicit lift that preserves self-orthogonality
in Section 3.1. Self-orthogonal codes satisfy a multiplicative property that is
needed for arithmetic secret sharing. In Section 4 we show how to extend existing
techniques to obtain multiplication for p = 2, but this comes at the cost of
doubling the share size.

Let R = GR(pk, h) be a Galois ring with residue field F = Fph . We define a
linear code C of length n over R to be a free R-submodule of Rn. We define
its dimension as dim(C) = rankR(C). Recall the canonical homomorphism
π : R→ F. For convenience we will also write π for the induced map on vectors
or matrices defined over R, and write x := π(x) for x ∈ Rn and M = π(M) for
a matrix M over R.

Proposition 4. Let C be a linear code over R. Then the following statements
hold:

1. rankR C = dimF C, where C = π(C) ⊆ Fn is the reduction of C modulo p.
2. If c 6= 0 ∈ C we may write c = pmy, for 0 ≤ m < k and π(y) 6= 0 ∈ C.

Proof. Let us prove the first claim. Since C ⊆ Rn is a linear code, it has an
R-basis e1, . . . , et ∈ Rn. Then, it is clear that C is an F-linear code spanned by
π(e1), . . . , π(et). If we can show that π(e1), . . . , π(et) are linearly independent
over F, then we are done. Assume this is false, so there exist λ1, . . . , λk ∈ F not
all equal to 0 such that

∑t
i=1 λiπ(ei) = 0. Let λ′i = π−1(λi) ∈ I ⊆ R, then it

holds that
∑t
i=1 λ

′
iei ∈ pR, since

π

(
t∑
i=1

λ′iei

)
=

t∑
i=1

λiπ(ei) = 0.

It follows that
∑t
i=1 p

k−1λ′iei = 0 and pk−1λ′1, . . . , p
k−1λ′t are not all zero. This

contradicts the claim that e1, . . . , et form a basis of C.
We turn to the second claim. Let G be a t × n matrix over R whose rows

form a basis e1, . . . , et of C. We may represent C = {xG : x ∈ Rt}. We call G
the generator matrix of C, which gives a linear isomorphism between Rt and
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C. Let c = xG be any nonzero codeword in C. Since G is an isomorphism, x is
also a nonzero vector. By Remark 1, we write x = pmx1 with 0 ≤ m < k and
x1 6= 0 ∈ It. This follows that c = pmx1G. Let y = x1G and the desired result
follows as π(y) = π(x1)π(G) ∈ C is a nonzero codeword. ut

Lemma 1. Let C ⊆ Rn be a linear code. We have d(C) ≥ d(C).

Proof. Let G be the generator matrix of C. Since C is a linear code, it suffices
to bound the weight of its codewords. For any c 6= 0 ∈ C, by Proposition 4 we
can write c = pmy for some y 6= 0 ∈ C and m < k. Note that y is a nonzero
codeword of C. Thus, wH(c) ≥ wH(y) ≥ d(C). The proof is completed. ut

Example 1. To control the minimum distance, we need that C is a free module.
Consider the code C := 〈(1, 1, . . . , 1)〉 of two elements code over (F2)n, with
distance n. We can lift the code to Z/22Z as C := 〈(1, 1, . . . , 1), (2, 0, . . . , 0)〉 which
is non-free, because of the bad element (2, 0, . . . , 0). Then d(C) = 1� d(C) = n.

Like for codes over a field, we can similarly define the dual code over R. The
dual code of C is defined as C⊥ = {c ∈ Rn | cyT = 0 for all y ∈ C}.

Lemma 2. Assume that C ⊆ Rn is a t-dimensional R-linear code. Then, C⊥ ⊆
Rn is a (n− t)-dimensional R-linear code. Moreover, the minimum distance of
C⊥ is lower bounded by the minimum distance of the dual code of C.

Proof. Let G be the generator matrix of C. Every element in C⊥ is a solution to
the linear equation GxT = 0 over R, and vice versa. This implies that C⊥ is the
kernel ker(G) of the R-linear map GxT . The image im(G) of GxT is C, a free
module of Rn with rank t. The homomorphism theorem of modules states that
Rn/ ker(G) ∼= im(G). Thus, the kernel is also free and has rank n − t. By our
definition, ker(G) is a linear code of dimension n− t over R.

It remains to lower bound the minimum distance of C⊥. Given any codeword
c 6= 0 ∈ C⊥, we have GcT = 0. Moreover, by Remark 1, we can write c = pmy
for 0 ≤ m < k and y 6= 0 ∈ It. Reducing modulo p gives GyT = 0 over Fph . This

implies that y is a nonzero codeword in the dual code of C. Then, the desired
result follows. ut

We now define the square of a linear code C over R. Given x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ Rn denote their componentwise (Schur) product as x ∗
y = (x1y1, . . . , xnyn) ∈ Rn. The square code C∗2 is defined as spanR{x ∗ y ∈
Rn | x,y ∈ C}. We emphasize that this square code C∗2 is an R-module but not
necessarily a free R-module. We say C is t-strongly multiplicative if the minimum
distance d(C), its dual distance d⊥(C) and the distance of the square d(C∗2) are
at least t.

One may wonder whether strong multiplication is preserved when lifting.
Unfortunately, our next example shows that we can have poor distance of the

square code C∗2 even if C
∗2

is a square code with large distance.
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Example 2. Let C1 and C2 be linear code over Fph such that C∗21 and C∗22
have distance d1 and d2 respectively. Let S = GR(p3, h) and C be a code
over S defined as C =

{(
π−1(c1), p π−1(c2)

) ∣∣ c1 ∈ C1, c2 ∈ C2

}
. It is clear that

C = {(c1, 0) | c1 ∈ C1} whose square code has minimum distance d1. On the
other hand, since C∗22 has distance d2, let y2 ∈ C∗22 be a codeword with weight
d2. Then, we have that (0, p2π(y2)) ∈ C∗2, and therefore the minimum distance
of C∗2 is at most d2. The desired result follows if we pick d2 to be a small number
and d1 to a big number.

Unlike the distance and dual distance of the lifted code, strong multiplication
does not automatically carry over. We now give a brief argument for uniformity,
which shall be important when using our codes for secret sharing later on.

Lemma 3. Let C ⊆ Rn be a submodule, and let U ⊆ [n] be an index set with
|U | ≤ d(C⊥)− 1. Then the projection CU of C onto the coordinates of U equals
the whole space R|U |.

Proof. We argue by contradiction. Note that CU is also an R-module, so we may
write CU =

∑t
i=1Rxi with t ≤ |U |. Here, CU may be non-free. Let M be an

t× |U | matrix whose rows are x1, . . . ,xt. Recall M = π(M) is the reduction of
M modulo p.

We first show that if |CU | < R|U |, then the rank of M is less than |U |. It
is obvious if t < |U |. When t = |U |, since |CU | < R|U |, x1, . . . ,xt are linearly
dependent over R. Therefore, there exist λ1, . . . , λt ∈ R, not all equal to 0, such
that

∑t
i=1 λixi = 0. Let m be maximal such that pm divides all of λ1, . . . , λt.

Then, we have
∑t
i=1

λi
pmxi = 0. This implies that

∑t
i=1 π( λipm )π(xi) = 0 over

F where π( λ1

pm ), . . . , π( λtpm ) ∈ F are not all zero. Therefore, π(x1), . . . , π(xt) are

linearly dependent and the rank of M is less than |U |.
Let cT be the nonzero solution toMcT = 0 over F. Then, we haveMpk−1π−1(c)T =

0 over R. Extend pk−1π−1(c)T to a vector c′ in Rn by setting i-th component
with i /∈ U to be zero. Clearly, c′ is a codeword of the dual code C⊥. However,
wH(c′) = wH(c) ≤ |U | and a contradiction occurs. ut

3.1 Constructing A Self-Orthogonal Code over R

By a judicious choice of lift, we show that for p ≥ 3 we can preserve self-
orthogonality of a code over F when lifting to R.

Theorem 3. Assume that there is a [n, t, d] self-orthogonal code C over the finite
field Fph with dual distance d⊥ and p ≥ 3. Then, there is a [n, t, d] self-orthogonal
code Ck with dual distance d⊥ over the Galois ring GR(pk, h) for any positive
integer k. Moreover, given an explicit generator matrix of C the generator matrix
of Ck is explicit.

Proof. We lift the self-orthogonal code C increasing k step by step. For each
step, we specify the lifted code by its generator matrix. Define Rk := GR(pk, h).
By Definition 2, Rk contains Z/pkZ as a subring, and its residue field is Fph .

12



Our first step is to lift self-orthogonal code from Fph to R2 = GR(p2, h). Let

C be an [n, t, d] self-orthogonal code over Fph and G =
(
I A
)

11 be the generator
matrix of C. Due to the bijection between I and Fph , we can find a matrix

G =
(
I A
)

with G ∈ π−1(G) whose entries are in I. Self-orthogonality of C
implies that

GGT = AAT + I = A×AT + I = 0 (mod p).

That means that all the entries in GGT are elements in the ideal pR. By Remark
1, we can find a matrix S1 over I such that I +AAT = pS1 (mod p2). It is clear
that we can choose S1 to be symmetric. Note that 2 is a unit in Rk as p 6= 2
and we can define A1 = A+ 2−1pS1A. Let G1 =

(
I A1

)
and let C1 be the code

whose generator matrix is G1. Obviously, G1 is defined over R2. Next, we show
that C1 is indeed a self-orthogonal code over R2. To see this, we have

G1G
T
1 = I +AAT +

p

2
(S1AA

T +AATS1)

= pS1 +
p

2
S1(pS1 − I) +

p

2
(pS1 − I)S1

= pS1 − pS1 = 0 (mod p2).

The first equality follows from the fact that S1 is a symmetric matrix. It remains
to bound the minimum distance of C1. Observe that the reduced code of C1 is C.
By Lemma 1, the distance of C1 is lower bounded by that of C. We can apply
the same argument to its dual distance by observing that the generator matrix of
C⊥1 is

(
−AT1 I

)
, whose reduction modulo p, the matrix

(
−AT I

)
, is the generator

matrix of C⊥, and therefore C1 is free. Now, C2 is a self-orthogonal code over
R2 satisfying all the claims in our theorem. In the same manner, we can the lift
code C2 to a code C3 over R3. By induction, we obtain a code Ck over Rk for
any k ≥ 1 satisfying all the claims in our theorem. ut

Note that a self-dual code is also a self-orthogonal code. Theorem 3 together
with Proposition 2 gives the following.

Corollary 1. Let ε > 0 be any small constant, k any positive integer and ph ≥ 4
ε2

be any square with p an odd prime. Then there exists an explicit family of self-dual
codes over Galois ring GR(pk, h) with relative distance δ ≥ 1

2 − ε.

3.2 Code and Dual Code over R

Self-orthogonal codes satisfy a multiplicative property that immediately gives
arithmetic secret sharing, as we will demonstrate in Section 4. However, we are
only able to preserve self-orthogonality when p ≥ 3, and the case p = 2 is also very
interesting, especially for the purposes of MPC. The existence of asymptotically
good self-orthogonal codes over these rings is not yet known. To get around this
obstacle for p = 2, we will secret-share elements using both the code C and its

11 We use bar notation to represent the fact that these matrices are defined over Fph .
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dual C⊥ at the same time. This will double the share size, and hence double
the communication complexity of the protocols we build on top of it. Since this
factor 2 is constant, it does not affect our asymptotic complexity.

The following shows we can simulatenously lift a code and its dual to R and
maintain distance and dual distance.

Theorem 4. Assume that there is a [n, t, d] linear code C over the finite field
Fph with dual distance d⊥. Then, there is a [n, t, d] linear code Ck with dual
distance d⊥ over the Galois ring GR(pk, h), for any integer k. Moreover, the
generator matrices of Ck and its dual code are explicit as long as the generator
matrix of C is explicit.

Proof. Let G and H be the generator matrix and parity check matrix, respectively,
of C. Note that H is also the generator matrix of C⊥, the dual code of C over Fph .
We have GHT = 0 (mod p) and thus GHT = pM (mod p2), for some matrix
M defined over Fph . Since G is a generator matrix of C, its rank is t. There
exists (n − t) × n matrix A1 such that GAT1 = −M (mod p). It follows that
G(H + pA1)T = GHT + pGAT1 = 0 (mod p2).

Let C2 be the linear code over GR(p2, h) with generator matrix G. We claim
that the dual code C⊥2 of C2 has generator matrix H + pA1. By Lemma 2, the
dual code C⊥2 has dimension n− t. To see this, we first note that H + pA1 has
rank rankF

ph
(H) = n−t due to Proposition 4. Moreover, any codeword generated

by H + pA1 is a solution to Gx = 0 over R2 since G(H + pA1)T = 0 (mod p2).
These two facts lead to the conclusion that H + pA1 is indeed the generator

matrix of C⊥2 over GR(p2, h). The distance and dual distance follows from Lemma
1 and Lemma 2. In the same manner, one can show that Ck is a linear code
over GR(pk, h) with generator matrix G for any k ≥ 1. In the meantime, by
Lemma 1 the minimum distance and dual distance of Ck are lower bounded by
d and d⊥ respectively. The dual code of Ck is specified by its generator matrix
H + pA1 + · · ·+ pk−1Ak−1. ut

Theorem 4 combined with Proposition 2 gives the following result.

Theorem 5. Let ε > 0 be any small constant and ph ≥ 4
ε2 be any square. There

exists an explicit family of codes over the Galois ring GR(pk, h) with relative
distance δ ≥ 1

2 − ε and relative dual distance δ⊥ ≥ 1
2 − ε for any integer k.

4 Arithmetic Secret-Sharing over Galois Rings

In this section we construct an arithmetic secret-sharing scheme over a Galois
ring R starting from an R-linear code C together with its dual C⊥, by extending
techniques from [12]. In this section, let R = GR(pk, h), and suppose C ⊆ Rn+1

is a linear code with distance d and dual distance d⊥. We first provide a brief
overview of the techniques, before fixing the slightly heavier notation in Section 4.1
that we use to write the protocols in the remaining sections of this paper.

As for nomenclature, note that the difference between arithmetic and linear
secret sharing is that the former is an LSSS with multiplication. We say an
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LSSS has multiplication if there exists a multiplication operator ∗ on shares,
such that given secrets x and y with respective share vectors (x1, . . . , xn) and
(y1, . . . , yn) then the product x · y is linearly determined by the ∗-products of
shares x1 ∗ y1, . . . , xn ∗ yn. Here we are explicit about the operator ∗ because
in the arithmetic secret-sharing scheme that we construct, the shares are not
elements of R, but rather each share is given by 2 elements in R. These pairs of
R-elements form an R-algebra with the operator ∗, which we define below.

Recall that a secret-sharing scheme has t-privacy if for any share vector,
any t coordinates are independent of the secret, and it has r-reconstruction if
any r coordinates of a share vector jointly determine the secret. Via Massey’s
construction [24] we may obtain an LSSS from a code over a field with good
parameters, and this generalizes to Galois rings, as follows. To share s ∈ R, we
sample a codeword c = (s, c1, . . . , cn) ∈ C uniformly at random and let ci be the
i-th share. Due to properties of the dual distance d⊥, we can show that for any
subset T ⊆ [n] with |T | ≤ d⊥−2 and s ∈ R, {(ci)i∈T : (s, c1, . . . , cn) ∈ C} = R|T |.
This implies (d⊥ − 2)-privacy. From the minimum distance of C it follows that
the LSSS has (n− d+ 1)-reconstruction.

To use a secret-sharing scheme for MPC, we need the multiplicative property.
The LSSS constructed above has multiplication if and only if its square code C∗2

has minimum distance d(C∗2) ≥ 1. Unfortunately, the codes from Theorem 5
do not satisfy this property. However, by simultaneously secret-sharing values
in C and in the dual code C⊥, we can obtain multiplication with the following
construction from [12].

To secret-share s ∈ R, we sample a codeword x = (s, x1, . . . , xn) ∈ C and
a codeword y = (s, y1, . . . , yn) ∈ C⊥ uniformly at random. The i-th share is
now a pair (xi, yi). The privacy of this scheme is min{d − 2, d⊥ − 2} and it
is min{n − d + 1, n − d⊥ + 1}-reconstruction. Now suppose we have another
secret-shared element u ∈ R shared as x′ = (u, x′1, . . . , x

′
n) ∈ C and y′ =

(u, y′1, . . . , y
′
n) ∈ C⊥. For the product su, we see that

∑n
i=1 xiy

′
i = −su (and also∑n

i=1 yix
′
i = −su). This can be used to construct a linear secret-sharing scheme

with multiplication, as we describe next.

4.1 Formalization

We now formalize the scheme and define the notation which we shall use in the
remaining sections. Recall C is of length n+ 1. Let C̃ ⊆ Rn denote the projection

of C onto its last n coordinates, and similarly for C̃⊥ ⊆ Rn. Let ψ : C̃ → R be
the R-module homomorphism given by ψ(x1, . . . , xn) = x where x ∈ R is the
unique element such that (x, x1, . . . , xn) ∈ C. Note that this map is well-defined

if d ≥ 2. Similarly define ψ′ : C̃⊥ → R as (x′1, . . . , x
′
n) 7→ x′. We equip R ⊕ R

with the product (a, b) ? (c, d) = (ad, bc); this defines an R-algebra which we
denote A.

Consider the R-submodule of An given by

D = {((x1, x′1), . . . , (xn, x
′
n)) | x ∈ C̃,x′ ∈ C̃⊥, ψ(x) = ψ′(x′)} ⊆ An,
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and define the map ψ : D → R by ((x1, x
′
1), . . . , (xn, x

′
n)) 7→ ψ(x)(= ψ′(x′)).

We may think of D as the space of consistent sharings, and ψ as the map that
reconstructs the secret. For s ∈ R we write [s] to denote an element of D that
maps to s under ψ.

When we use the secret-sharing scheme in the protocol, we also occasionally
need to operate on publicly known values. Let θ ∈ ψ−1(1) ⊂ D be a fixed publicly
known sharing of 1 ∈ R. A public value x ∈ R can be associated with the
canonical sharing xθ ∈ D.

Now consider the R-module homomorphism φ : Rn → R given by φ(x) =
−
∑n
i=1 xi. Define the R-submodule of An given by

M = {((x1, x′1), . . . , (xn, x
′
n)) : φ(x) = φ(x′)} ⊆ An,

which intuitively corresponds to redundant additive shares. The reason why we
have the redundancy will be made clear in a moment, but at a high level it exists
due to the fact that additive shares of the product of two [·]-shared secrets can
be obtained in two different ways. As we did with D, we define the R-module
homomorphism φ : M → R given by ((x1, x

′
1), . . . , (xn, x

′
n)) 7→ φ(x)(= φ(x′)),

and for s ∈ R we write 〈s〉 to denote an element of M that maps to s under φ.
For x,y ∈ An we define x ∗ y as the point-wise product of these vectors

(under the product in A, which is ?). We define

D∗2 = spanR{x ∗ y | x,y ∈ D} ⊆ An,

which corresponds at a high level to the operations we performed in the previous
paragraphs to obtain additive shares of the product of two secrets.

Proposition 5. Let x,y ∈ D. Then x ∗ y ∈ M and moreover φ(x ∗ y) =
ψ(x) · ψ(y).

Proof. Write (xi, x
′
i) and (yi, y

′
i) for the i-th entry of x and y, respectively, for

i = 1, . . . , n. The i-th entry of x∗y is (xiy
′
i, x
′
iyi), via the ?-product. There exists

(x0, x1, . . . , xn) ∈ C and (y′0, y
′
1, . . . , y

′
n) ∈ C⊥, hence

∑n
i=1 xiy

′
i = −x0y′0 =

−ψ(x)ψ(y′). Similarly, there exists (x′0, x
′
1, . . . , x

′
n) ∈ C and (y0, y1, . . . , yn) ∈

C⊥, hence
∑n
i=1 x

′
iyi = −x′0y0 = −ψ(x′)ψ(y). The claim follows. ut

In terms of shares, we may write the proposition above as [x] ∗ [y] = 〈x · y〉.
We obtain the following properties.

Theorem 6. The scheme above (n − d + 2)-reconstruction and (d(C
⊥

) − 2)-
privacy.

Proof. ψ is a well-defined R-module homomorphism. Also ψ is surjective, since
by Lemma 3 the projection of C onto the zero-th coordinate (corresponding
to the secret) is surjective. The map φ : D∗2 → Z is surjective and satisfies
ψ(x ∗ y) = ψ(x)ψ(y).

If U ⊆ {0, . . . , n} is an index set of cardinality d(C
⊥

) − 2 then projecting
C onto {0} ∪ U is uniform by Lemma 3, and privacy follows. If x ∈ D has
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xU = 0 for |U | = n − d + 2 then since the only codeword in C with weight
≤ n − (n − d + 2) + 1 = d − 1 is 0, we have ψ(x) = 0, and reconstruction
follows. ut

As a corollary, by instantiating these codes with the ones we obtained in
Corollary 1, we get our main result.

Theorem 7. Let ε > 0, and let h be an integer such that ph ≥ 4
ε2 . Then there

exists a family of R-ASSS Σ1, Σ2, . . . with R = GR(pk, h), such that the number
of players n(Σi)→∞, and the schemes have t(Σi) ≥ (1/2− ε)n(Σi) privacy and
r(Σi) ≥ (1/2− ε)n(Σi) reconstruction.

We will use the family of arithmetic secret-sharing schemes from the theorem
above in the upcoming sections to obtain different multiparty computation
protocols.

5 MPC Protocol with Passive Security

In this and the upcoming sections, we fix ε > 0 and consider the Galois ring R of
degree h = Ω(logp(ε

−1)) over Z/pkZ. We consider the family of LSSS over R from
Theorem 7. We reuse the notation from Section 4.1: fixing n ∈ N, we denote by [x]
the shares of a secret element x ∈ R, and each of these shares belong to the share
space A = R2. We denote by 〈x〉 shares under the “square” secret-sharing scheme,
and recall that given [x] and [y], the parties can perform local computation on
their shares to obtain 〈x · y〉, and we denote this by 〈x · y〉 = [x] ∗ [y]. Whenever
we say that parties reconstruct a secret [x] (or 〈x〉), we mean that the parties
send their shares to P1, who uses the reconstruction function to compute x and
then sends x to all other parties.

To get a passively secure protocol with perfect security we use the standard
approach in MPC of preprocessing some data that can be used to handle multipli-
cation gates efficiently. We follow the template from [16], except that instead of
using Reed-Solomon codes, which would lead to a complexity of O(n log(n)), we
use our linear secret-sharing scheme [·], allowing us to obtain complexity linear
in the number of players.

The techniques from [16] consist, in general, of four main phases:

1. The parties generate “random double-sharings” in a preprocessing phase.
2. The parties use the preprocessed material to distribute inputs.
3. The parties compute the circuit in a gate-by-gate basis. Addition gates are

computed locally. Multiplication gates make use of the double-sharings.
4. The output wires are reconstructed towards the parties.

Most of these techniques extend seamlessly to the R setting. The biggest issue
lies in the generation of the random double-sharings, which uses a Vandermonde
matrix in order to achieve linear complexity, and although these matrices do exist
over R = GR(pk, h) if h = Ω(log(n)) [1], our goal here is to avoid this overhead.
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In Section 5.1, we show how to get around this issue by moving to a Galois ring
extension.

The protocol we describe in the next few subsections proves the following
theorem.

Theorem 8. For every n, p, k ∈ N, with p a prime, for every ε > 0 and for
every arithmetic circuit C over R = GR(pk, h) with h = Ω(logp(ε

−1)), there exists
an n-party MPC protocol that securely computes C against an unbounded semi-
honest adversary corrupting up to t <

(
1
2 − ε

)
· n players with a communication

complexity of O(k · log p · h · |C| · n).

For constant p, k, ε, and by embedding Z/pkZ in R, we obtain the following as a
simple corollary.

Theorem 9. For every n ∈ N and for every arithmetic circuit C over Z/pkZ
there exists an n-party MPC protocol that securely computes C against an un-
bounded semi-honest adversary corrupting up to t <

(
1
2 − ε

)
· n players with an

amortized communication complexity per multiplication gate of O(n).

5.1 Offline Phase

As preprocessed material the parties need many shares of the form ([r], 〈r〉),
where r ∈ R is uniformly random. The basic template used in the literature to
achieve this comes from [16], and it uses the fact that Vandermonde matrices
are good randomness extractors. However, we cannot use these matrices in our
setting since they require the prime p to be at least n, which is not the case for
us. Naively, one can use a Galois ring extension in which these matrices exist,
as in [1], but this would lose linear complexity. There are two solutions to this
problem.

One solution is instead of a hyperinvertible matrix to use the generator matrix
of a [n, u, d] linear code over R, with d ≥ t+ 1. This yields u random elements at
the cost of n2 elements of R communicated, which if the rate and distance are
linear in n leads to linear complexity. By Theorem 5 we know such codes exist.

The second solution is to move to a Galois ring extension S with high enough
Lenstra constant, such that there is a non-singular n× n Vandermonde matrix.
Instead of simply embedding R ↪→ S, we use a tensor product Rs ∼= R⊗R S ∼= S,
where s is the degree of the extension [8,1]. We can take the tensor product
of the secret-sharing scheme; the result is a secret-sharing scheme that can be
interpreted as s parallel sharings of R. In this way n − t random elements of
S can be obtained at the cost of n2 elements of S communicated. Since each
random sharing of S can be interpreted as s random sharings of R, this leads to
linear communication per random sharing.

5.2 Online Phase

Now we describe how the parties can securely compute any circuit assuming they
have preprocessed enough random sharings ([r], 〈r〉).
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Online Phase

Input Phase. Pi secret-shares its input xi ∈ R as follows.
1. The parties take a preprocessed ([r], 〈r〉) and reconstruct [r] to-

wards Pi.
2. Pi broadcasts the difference xi − r to all parties.
3. The parties compute [xi] = (xi − r) + [r].

Addition Gates. The parties compute locally [x+ y] = [x] + [y].
Multiplication Gates. To multiply [x] and [y], the parties use a pre-

processed value ([r], 〈r〉) as follows.
1. The parties compute 〈x · y〉 ← [x] · [y].
2. The parties compute 〈x · y− r〉 = 〈x · y〉− 〈r〉 and reconstruct this

value.
3. The parties compute [x · y] = [r] + (x · y − r).

Output Wires. For every shared output wire [w], the parties reconstruct
w.

The complexity of the protocol above is dominated by the reconstructions in
the multiplication gates. Each such reconstruction involves sending O(n) elements
in A. Since these elements have bit-length O(k · log(p) · h), the overall complexity
of these reconstructions is O(k · log(p) · h · |C| · n).

5.3 Active Security with Abort

Even though we present an actively secure protocol with guaranteed output
delivery in Section 6, it is still worth mentioning that a much simpler protocol
can be envisioned if one is aiming for security with abort.

Our starting observation is that the online multiplication protocol presented
previously is secure up to additive attacks, as defined in [19], or, put more
precisely, the only attack that an active adversary can carry out is to cause the
result of the multiplication to be wrong by an additive amount that is known
by him and that is completely independent of the inputs. To see why this is the
case, we observe that if the preprocessed pair ([r], 〈r〉) is correctly shared, then
the only thing that the adversary can do in the online phase is broadcasting12

an incorrect difference r − xy + δ (assuming that P1 is corrupted), but the effect
of this is that the final shares the parties get are [xy + δ], which constitutes an
additive attack. Furthermore, the preprocessed pairs can be guaranteed to be
consistent by a simple extension to the preprocessing protocol in Section 5.1 that
adds a consistency check at the end (for instance as in done in [1] or in [11]).

Very recently it was shown in [2] how to compile any protocol over rings
that is secure up to additive attacks to an actively secure protocol. Given that

12 To handle the active case we must have a proper broadcast channel, that is, we
need to assume a the existence of a broadcast functionality. This is required in the
setting of honest majority setting with statistical security, that is, a statistically
secure protocol that instantiates a broadcast functionality cannot exist [22].
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our multiplication protocol satisfies this condition (and it can be verified that it
satisfies the other conditions required by the compiler), we obtain an actively
secure protocol by feeding our protocol from the previous section through the
compiler from [2]. The resulting protocol has linear communication in the number
of parties.

6 Active Security with Guaranteed Output Delivery

The main theorem we prove in this section is the following.

Theorem 10. For every n, p, k ∈ N, with p a prime, for every ε > 0 and for
every arithmetic circuit C over R = GR(pk, h) with h = Ω(logp(ε

−1)), there exists
an n-party MPC protocol that securely computes C with guaranteed output delivery
against an unbounded active adversary corrupting up to t <

(
1
2 − ε

)
· n players,

with negligible failure probability in κ ∈ N, offline communication complexity of
O(k · log p · (h · |C| · n · log(n) + n7 · κ)), and online communication complexity of
O(k · log p · h · |C| · n).

Typically, we regard p, k and ε (and therefore h) as constants, so that the
only variables are n,C and κ. In this case, we see that the amortized complexity
per multiplication is O(n) for the online phase, and O(n log(n)) for the offline
phase. Furthermore, computation over Z/pkZ can be obtained by embedding the
computation into a Galois ring R of constant degree h, and adding a check of
input correctness as in [1]. The following theorem is thus obtained as a corollary.

Theorem 11. For every constants p, k ∈ N, with p a prime, every constant
ε > 0, and for every arithmetic circuit C over Z/pkZ there exists an n-party
MPC protocol that securely computes C with guaranteed output delivery against an
unbounded active adversary corrupting up to t <

(
1
2 − ε

)
·n players, with negligible

failure probability in κ, amortized offline communication complexity of O(n log(n))
per multiplication gate and amortized online communication complexity of O(n)
per multiplication gate.

The rest of this section is devoted to proving Theorem 10. We do so by
adapting the protocol from [5] over fields, which we refer to as the BFO protocol,
to work over a Galois ring R, while also making use of our LSSS from Section
4. Due to space constraints, we only detail the most essential modifications to
the BFO protocol, and assume some of the terminology from [5] as given. An
overview of the BFO protocol and more details are provided in Section 6.1 below.

In order to extend the BFO protocol to our setting while preserving its
efficiency, we mostly need to adapt the preprocessing phase. Arguments regarding
dispute control carry over immediately, since they are essentially combinatorial
in nature. In the next sections we discuss how to adapt the preprocessing: the
verification of multiplication triples is in Section 6.6, and the computation of
the tags is sketched in Section 6.5. Additionally, the fact that these tags provide
the required authentication features when instantiated over Galois rings is not
trivial, and we discuss this thoroughly in Section 6.5.
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We stress that our goal here is not to present a full-fledged self-contained
MPC protocol, but rather to describe our novel techniques and extensions to the
BFO protocol. Hence, although we present a brief overview of the BFO protocol
below, we assume some familiarity with the work of [5] and we omit most of its
heavy machinery, especially everything that extends seamlessly to Galois rings.
We also remark that, even though we assume the existence of a broadcast channel
implicitly (as the dispute control layer requires it), our complexity analysis does
not include the cost of these broadcasts, which is equal to the corresponding cost
in [5] and is independent of the circuit size.

Finally, we notice that the techniques from [21], which improve the complexity
of the protocol from [5] by removing an additive term of n2d, where d is the depth
of the circuit, rely mostly on the batch triple check from [5], which we extend
in Section 6.6 to the Galois ring setting. Hence, the optimizations from [21] can
be also applied to Galois rings, resulting in a much more efficient protocol that
does not have a quadratic communication complexity in terms of the numbers of
parties and the depth of the circuit.

6.1 Overview of the BFO Protocol

We base our work in Section 6 on the protocol from [5], henceforth referred to as
the BFO protocol, which is set in the field setting with honest majority (t < n/2),
and has near-linear amortized communication complexity, or more precisely, the
complexity is linear but it has an overhead of log(n) for both the offline and
online phases due to the use of Shamir secret sharing.

In this section we provide a quick overview of the BFO protocol. It uses
Shamir secret sharing and it follows an offline-online paradigm, similar to the
protocol from Section 5, in which multiplication triples are preprocessed to be
used later on to compute the multiplication gates of the circuit. However, the
main complication arises from the fact that errors in the shares can be detected
but not corrected, which is an issue for obtaining guaranteed output delivery. To
this end, the BFO protocol uses the dispute control techniques from [3], which
allow the parties to generate disputes whenever an inconsistency is found so
that the current computation can be repeated whilst guaranteeing that the same
dispute will not occur again. Furthermore, another complication appears due to
the complexity goal of the BFO protocol.

The overview of the BFO protocol we provide next is largely based on [5,
Section 2.6], and we refer the reader to that reference (and in general to the
complete [5] work) in order to acquire familiarity with the BFO protocol. Here
we do not aim to be self-contained nor explicit about this protocol. On the one
hand, the protocol is already complex enough as to describe it in detail here.
Secondly, to keep the focus on our novel techniques we concentrate only on the
aspects from the BFO protocol that need to be adapted/modified to our Galois
ring setting.

Dispute Control. Every party maintains a list of parties that it is in dispute
with. The computation proceeds in segments, and the adversary may cause
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any given segment to fail. However, whenever this happens a fault localization
procedure is executed so that at the end a new dispute is generated, where at
least one of the two parties in the dispute is corrupt. At this point the segment
can be re-executed, and, furthermore, it is guaranteed that the same dispute
cannot happen. As a result, the adversary may cause a segment to be repeated
at most n2 times. By dividing whole computation in n2 segments, the adversary
may only cause an overhead of 2 to the execution.

Preparation Phase. The preparation phase is in charge of generating certain
shared material that will be used later on in the online phase. This consists of
the following:

– Two-level shared multiplication triples. These are triples {JaKR, JbKR, JcKR}
where c = a · b. The two-level sharings J·K are defined in Section 6.2.

– Local base sharings. Each party Pi has a set of local sharings, that consist
of [·]-shares where Pi knows the underlying secret. These shares are used to
obtain the two-level shares J·K, which are the ones that are actually used for
the computation. At a high level, two-level shares satisfy that each share is a
local base share, so there is enough “redundancy” in case that an opening
fails (i.e. having shares of the shares allows the party to “detect” who send a
wrong share at reconstruction time).

– Authentication tags. Two-level sharings are not enough, however. To avoid
parties from lies about their one-level shares [·], authentication tags are put
in place. At a high level, each share in [·] is authenticated towards each party
with a one-time-key MAC scheme, so that lying about these shares is detected
by honest parties.

A total of L = O(|C|)/n local base sharings per party are required. To compute
these, each party distributes shares that are then checked for consistency. This is
also known as a verifiable secret sharing (VSS) protocol. We show how to extend
this to our ring setting in Section 6.4.

A total of M = O(|C|) multiplication triples must be processed. These are
computed passively (e.g. using a protocol that resembles closely our protocol
from Section 5), and then their correctness is checked using a novel check that
saves in communication. Following the dispute control technique, these triples
are computed and checked across n2 segments, each one containing m = M/n2

multiplication triples. In Section 6.6 we show how to perform this check over our
Galois ring R.

Finally, the computation of the tags is done by exploiting certain symmetric
properties of Shamir secret sharing, namely that if (x1, . . . , xn) are Shamir-shares
of a secret x, then (x, x1, . . . , xi−1, xi+1, xn) are Shamir-shares of xi, but with
different evaluation points. We show in Section 6.2 that this property is more
general, and that it translates to our LSSS over Galois rings, and hence we can
use the techniques from BFO for the computation of the tags as sketched in
Section 6.5.
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Input Phase. The distribution of the inputs happens in a very similar way as
in our protocol from Section 5.3: A random share JrK is computed (it can be
taken from a preprocessed multiplication triple) and opened towards the input
provider Pi, who, on input x, broadcasts x − r. The parties finally compute
JxK = JrK + (x− r).

Computation Phase. The online phase makes use of the triples to process
multiplication gates. This requires the parties to reconstruct certain shares, and
this can be disrupted by the adversary if it sends incorrect shares. It turns
out that these shares that must be reconstructed can be seen as (public) linear
combinations of the local base sharings, which are authenticated, so players who
lie about their shares can be caught.

6.2 Different Types of Shares

From now on, we fix R = GR(pk, h) and S = GR(pk, κ). Notice that we may view
S as an extension of R of degree κ/h. The BFO protocol follows the template from
Section 5, except that it has an additional mechanism to ensure that whenever
the adversary cheats this can be detected and the computation can continue.
This is achieved by using different types of secret-sharings (especially 2-level
sharings, defined below), which create enough “redundancy” for the parties to
be able to interactively13 correct any error the adversary may introduce.

The multiple types of sharings considered for our extension of the BFO
protocol are found below — for the intuition on these definitions we refer the
reader to [5]. Note that these sharings were originally defined purely in the
context of Shamir’s secret-sharing scheme. We plug in the family of LSSS over R
from Theorem 7 and get a more general setting: not only because our LSSS is
defined over a Galois ring, but also because it does not have information rate 1,
i.e., the shares do not have the same size as the secret.

Single sharing. These are the sharings [x] as defined using our LSSS. The secret
space is R, and the share space is A. They are the analogue to the degree-t
Shamir sharings from [5].
Square sharing. These are the shares 〈x〉 under the “square” secret-sharing scheme.
The secret space is R, and the share space is A. As in Section 5, they are the
analogue to the degree-2t Shamir sharings from [5].
Twisted single sharing. These are defined with respect to a coordinate i ∈
{1, . . . , n}. Let x ∈ A. We denote by dxci an element x = (x1, . . . , xn) ∈ D such
that ψ(x) = 0 and xi = x. One may view this as a sharing of 0 such that i-th
share equals x.
Twisted square sharing. These are defined with respect to a coordinate i ∈
{1, . . . , n}. Let x ∈ A. We denote by 〈x〉i an element x = (x1, . . . , xn) ∈M such
that φ(x) = 0 and xi = x. One may view this as square sharing of 0 such that
the i-th share equals x.

13 In contrast to the t < n/3 case in which an appropriate choice of the code allows for
non-interactive error correction.
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Two-level single sharing. The secret space is R and the share space is An. For
x ∈ R, we define JxK as an n× n matrix (xi,j)

j=1,...,n
i=1,...,n ∈ An×n, such that:

1. The j-th share is the j-th column.
2. Each i-th row xi = (xi,1, . . . , xi,n) is a vector in D, i.e., it constitutes a single

sharing [xi] of some element xi ∈ R.
3. We have x1 + · · ·+ xn = x.

Two-level square sharing. Denoted 〈〈x〉〉. It is identical to a two-level single sharing,
except the rows are vectors in M , and hence constitute square sharings 〈xi〉.

6.3 Secret Sharing over a Galois Ring Extension

In [5] a large field is needed for some subprotocols in order to ensure that the
probability of cheating is low. To this end, an appropriate field extension is
used but in such a way that the overall complexity is not affected. In the BFO
protocol where Shamir secret sharing is used, it is straightforward to use shares
defined over the base field and the extension field together, since the arithmetic
is compatible. In our case, we use a Galois ring extension and we show that the
arithmetic is indeed compatible as well.

Let L be a Galois ring extension of R of degree r. Intuitively, the secret
sharing scheme [·] (and similarly for 〈·〉) over R can be extended to L as follows:
The shares of an element α ∈ L denoted by [α]L, are obtained by writing α as
α =

∑r
i=1 ai · ωi where ai ∈ R and {ωi} ⊆ L is a basis of L over R and then

setting [α]L := ([a1], . . . , [ar]). This secret sharing scheme over L has share space
Ar, and it inherits the privacy and reconstruction properties of [·]. To formalize
this intuition, we have to rely on the theory of commutative algebra.

We begin with some basic lemmas.

Lemma 4. Let R be a ring and let L ⊇ R be an R-algebra. If M is an R-module,
then extension of scalars of M over L, defined as

spanL(M) := L⊗RM,

is an L-module under the product x · (y ⊗m) = (xy)⊗m. We may think of M
as a subset of spanL(M) via m 7→ 1⊗m.

For our case in which L is a Galois ring extension of R of degree r and
M ⊆ R`, we can visualize the L-module spanL(M) as the L-submodule of L`

obtained by taking all possible linear combinations of elements in M with scalars
in L (notice that the product between a scalar in L and a vector in M is well
defined since M ⊆ R` ⊆ L`).

The following lemma shows that linear maps can be extended under the span
operator.

Lemma 5. Let R be a ring and let M and N be R-modules. Consider an R-
module homomorphism f : M → N . If ML = spanR(M) and NL = spanR(N),
then the map fL : ML → NL given by x ⊗m → x ⊗ f(m) (and extending by
linearity) is an L-module homomorphism and fL |M= f .
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With these tools at hand, we can proceed to the formal extension of our LSSS
over R to L. We begin by extending [·], but a similar analysis can be done for 〈·〉.
Recall that the shares [·] are elements of the R-submodule of An

D = {((x1, x′1), . . . , (xn, x
′
n)) : x ∈ C̃,x′ ∈ C̃⊥, ψ(x) = ψ′(x′)} ⊆ An,

where A = R2 and C ⊆ Rn+1 is a [n+ 1, t, d]-linear code C ⊆ Rn+1 over R with

dual distance d⊥, and C̃ ⊆ Rn is the projection of C onto its last n coordinates,

and similarly for C̃⊥ ⊆ Rn. Furtermore, recall that there is a reconstruction
R-module homomorphism ψ : D → R.

Consider now the L-modules DL = spanL(D) and AL = spanL(A). Using
lemmas 4 and 5, we may consider the L-module homomorphism ψL : DL → L
that extends ψ from D to DL. Given α ∈ L, we write [α]L to denote an element
of DL that maps to α under ψL. Again, for concreteness, we may think of L as
Rr and AL as Ar, and sharing an element α ∈ L amounts to sharing each of
the r coordinates using [·]. Furthermore, since D ⊆ DL, it holds for x ∈ R that
shares [x] can be automatically seen as [x]L.

A similar analysis can be done for the LSSS 〈·〉. The resulting LSSS over L
is denoted by 〈·〉L, and its reconstruction function is denoted by φL : ML → L,
where ML = spanL(M) (reusing the notation from Section 4.1).

Finally, we need to show that the multiplicative property also holds for these
new types of shares over L. This is done in the following proposition, which can
be seen as an analogue version of Proposition 5

Proposition 6. Let α,β ∈ DL. Then α ∗ β ∈ML and moreover φL(α ∗ β) =
ψL(α) · ψL(β).

Proof. This proposition can be proved by means of the universal property of
tensor products, but we choose are more direct approach to avoid introducing
such tool. Write α =

∑n1

i=1 ui ⊗ xi and β =
∑n2

j=1 vj ⊗ yj where ui, vj ∈ L and
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xi,yj ∈ D. We have that

φL(α ∗ β) = φL

(∑
i

ui ⊗ xi

)
∗

∑
j

vj ⊗ yj


= φL

∑
i,j

uivj ⊗ xi ∗ yj


=
∑
i,j

φL (uivj ⊗ xi ∗ yj)

=
∑
i,j

uivj ⊗ φ (xi ∗ yj)

=
∑
i,j

uivj ⊗ ψ(xi) · ψ(yi) (By Proposition 5)

=
∑
i,j

(ui ⊗ ψ(xi)) · (vj ⊗ ψ(yi))

=

(∑
i

ui ⊗ ψ(xi)

)
·

∑
j

vj ⊗ ψ(yj)


=

(∑
i

ψL(ui ⊗ xi)

)
·

∑
j

ψL(vj ⊗ yj)


= ψL

(∑
i

ui ⊗ xi

)
· ψL

∑
j

vj ⊗ yj

 = ψL(α) · ψL(β).

With these tools at hand, it is easy to prove that our construction constitutes
an Arithmetic LSSS, according to Definition 3. Furthermore, we notice that the
different types of sharings defined in Section 6.2 extend naturally the the Galois
ring extension setting.

Remark 2. Since L is itself a Galois ring, one may consider using the theory from
Section 4.1 to obtain an Arithmetic LSSS over L. This naturally works, but in
our setting we want to consider two Galois rings R ⊆ L, and we want the two
LSSS over these rings to be “compatible”. As an analogy, consider Shamir LSSS
over a field Fq. This LSSS is not necessarily compatible with Shamir LSSS over
Fqr if the evaluation points are picked in Fqr . However, if the points are in Fq,
which corresponds to performing our LSSS extension as above, the two schemes
are compatible, in the sense that shares over Fq can be seen as shares over Fqr .

6.4 Verifiable Secret Sharing

Our first task is to guarantee that whenever corrupt dealer distributes shares,
these are consistent, that is, that they belong to the R-module D. More specifically,
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VSS

Output: ` consistent [·]-sharings.

Dealing. The dealer Pd executes the following.
1. Sample σ1, . . . , σh ∈ S and χ ∈ S uniformly at random, with h = `·d

κ
.

2. Distribute [χ]S , [σ1]S , . . . , [σh]S to the parties.
Verification. The parties execute the following in order to verify that the

shares are consistent.
1. Use coin-tossing to sample a random element λ ∈ S.
2. The parties compute [x]S = [χ]S +

∑h
i=1 λ

i · [σi]S and send their shares
to every other player.

3. If these shares are inconsistent, then the parties execute a dispute-
control-based fault localization procedure. Otherwise they parse
[σ1]S , . . . , [σh]S as h · κ

d
= ` shares over R (see Section 6.3) and output

these shares as consistent.

Fig. 1. Verifiable Secret Sharing

suppose that some dealer has distributed some shares, the task consists then on
checking that these are consistent. This is needed for obtaining the L = O(|C|)/n
required local base sharings, and following the dispute control paradigm, this is
divided into n2 segments of length ` = L/n2 each. For reference, this corresponds
to protocol VerShare in [5].

We present our protocol for checking correctness of the shares in Fig. 1. We
remark that the resulting protocol provides the same functionality as VerShare in
[5], except that we do not consider explicitly the dispute control layer needed in
order to ensure guaranteed output delivery.

At a high level, the protocol follows the same template as many protocols in the
literature for the same task (e.g. [3,16,5]) of taking a masked linear combination
of the shares and then checking the correctness of the resulting sharings. This
works over fields, but the argument typically uses the fact that non-zero elements
over a field are invertible, and it is not clear how to generalize such arguments
to our Galois rings. Fortunately, in [1] the authors showed how to extend such
check in the case of Shamir secret sharing over Galois rings. This is achieved due
to the following lemma, which shows that Galois rings, albeit not being fields,
share many common features with them.

Lemma 6 (Lemma 2 in [1]). Let f ∈ R[X] polynomial of arbitrary degree
` > 0. Then Prx←R[f(x) = 0] ≤ `

pκ , where x is drawn uniformly from R.

Furthermore, the VSS protocol in [1] introduces an optimization that lowers
the cheating probability by “packing” several Galois ring elements over R into
one single element of S. Our protocol exploits this feature as well, but we need to
handle first the technical issue that their VSS protocol is set in the Shamir secret
sharing setting, whereas here we have a more general and abstract LSSS [·].
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We solve this issue via the following lemma about free submodules of Rk,
which shows that even if modules over arbitrary commutative rings are difficult
to handle, they are not quite so over a Galois ring. More specifically, it shows that
bases for submodules of modules over Galois rings can be extended to a basis of
the module, which is the abstract property that guarantees that guarantees the
security of the VSS protocol in [1]. This property holds mostly due to the fact
that Galois rings are local and therefore they share many characteristics with
fields.

Lemma 7. Let R = GR(pk, r) be a Galois ring. Given a free R-module M ⊆ Rn
of rank `, there exists a free R-module N ⊆ Rn such that Rn = M ⊕N .

Proof. Let v1, . . . , v` ∈ R be a basis of M , and let us denote vi = vi mod p.
Consider M ⊆ Fn, the vector space over F generated by {vi}`i=1. By classical
theorems in linear algebra, we know there exist {vj}nj=`+1 ⊆ Fn such that

{vi}`i=1 ∪ {vj}nj=`+1 is a basis of Fn.
Now we claim that {vi}ni=1 is a basis for Rn, which, by setting N to be the

R-module generated by {vj}nj=`+1, concludes the proof. It is clear that these
elements generate Rn since their reduction generates the residue field F, hence,
it suffices to show that they are R-linearly independent. To this end, suppose
that 0 =

∑n
i=1 λi · vi for some λi ∈ R. By taking modulo p and using the fact

that {vi}ni=1 is a basis of Fn, we have that λi ≡ 0 mod p for i = 1, . . . , n. We
can write then 0 = p · (

∑n
i=1 λ

′
i · vi), but in this case it must be the case that∑n

i=1 λ
′
i · vi = 0 mod pk−1, so the process can be iterated to show that λi = 0

for all i, which concludes the proof. ut

With this lemma we can prove the following proposition, which shows that
the space of all possible shares can be divided as a direct sum of consistent and
inconsistent shares.

Proposition 7. There exists an S-submodule K ⊆ (AS)n such that (AS)n =
DS ⊕K

Proof. First we observe that it suffices to show this for S = R, that is, it suffices
to show that there exists an R-submodule N ⊆ An such that An = D ⊕N . The
claimed result would follow then by setting K = spanS(N).

Now, to show the existence of N , we recall that An ∼= R2n as R-modules, and
simply apply Lemma 7 with M = D.14 ut

Now we proceed to the security proof of the VSS protocol. We notice that
privacy holds trivially due to the fact that χ ∈ R is uniformly random, so it masks
the linear combination of the secrets. Hence we only focus on the soundness of
the protocol.

Theorem 12. If the check at the end of the VSS protocol in Fig. 1 passes, then
the outputted shares are consistent with probability at least 1− `·d

κ·pκ .
14 The fact that D is free is not trivial but it is not hard to prove either. We omit this

detail for simplicity.
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Proof. We begin by noticing that the final shares over R are consistent if and only
if the shares [σ1]S , . . . , [σh]S are consistent, so we focus on showing this instead.
By definition, [σi]S is consistent if and only if [σi]S ∈ DS , where DS = spanS(D).
Furthermore, since by assumption the check at the end of the protocol passed, it
holds that [χ]S ∈ DS .

Now, consider an S-submodule K ⊆ An+1 such that An+1 = DS ⊕K, which
exists thanks to Proposition 7, and let us write each [σi]S as [σi]S = αi + βi,
and [χ]S = α0 + β0, where αj ∈ DS and βj ∈ K for j ∈ {0, . . . , h}. Our goal is
to show that each βi is zero, since this implies that [σi]S ∈ DS for all i.

Notice that

[χ]S︸︷︷︸
∈DS

=

h∑
i=0

λi ·αi︸ ︷︷ ︸
∈DS

+

h∑
i=0

λi · βi︸ ︷︷ ︸
∈K

,

which implies that
∑`
i=0 λ

i · βi = 0.

Finally, consider the polynomial in An[X] given by
∑h
i=0X

i · βi, which
corresponds to one polynomial in R2n[X]. If at least one of these 2n polynomials

is not the null polynomial, we can apply Lemma 10 to obtain that
∑h
i=0 λ

i ·βi = 0
can only hold with probability at most h/pκ. Hence, we conclude that with
probability at least 1 − h/pκ these polynomials are zero, which implies that
βi = 0 for i = 1, . . . , h, concluding the proof. ut

Complexity analysis. The complexity of the VSS protocol for one segment without
the fault localization layer is O(k · log2(p) · (n ·` ·d+n2 ·κ)). This is essentially the
same complexity as in [5], but without the log(n) overhead. In the actual protocol
this is called once per party, which adds a factor of n, and since ` = O(|C|)/n3, this
complexity translates intoO(k·log2(p)·(|C|·n−1·d+n2·κ)). Since this for one single
segment, multiplying by the n2 segments we get O(k · log2(p) · (|C| ·n ·d+n4 ·κ)).

6.5 Authentication Tags

In the BFO protocol, whenever some cheating is detected, parties resort to dispute
control in order to partially identify the cheater. One of the critical points in
which the adversary can cheat in the protocol is when sending shares in order to
reconstruct shared values, since in principle any corrupt party can lie about its
own share. In order to be able to detect who sent a wrong share, the parties need
an additional mechanism that somehow “binds” a party to its own share. This is
precisely the purpose of the two-level shares defined in Section 6.2: the share of
each party Pi is also shared among the other parties, so the parties can check
whether Pi is lying about its share by reconstructing it from the two-level shares.

Unfortunately, nothing prevents the parties to also lie in the reconstruction of
the two-level shares themselves. In order to deal with this situation, authentication
tags are put in place, which allow a party to announce a share and prove that it
is correct, or more precisely, prove that it is the same share that was created at
the beginning of the protocol, which was guaranteed to be correct.
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At a high level, the tags over fields in the BFO protocol work as follows.15

Consider a value s ∈ Fq that is shared as [s] = (s1, . . . , sn) ∈ Fnq using Shamir
LSSS. Player Pi holds share si ∈ Fnq , and to prevent him from lying about his
share, Pi is given a tag τ = µ · si + ν, where the key µ, ν ∈ Fnq is random and
only known by some verifier Pj . At the time of opening, Pi has to present a share
s′i = si + δ plus a tag τ ′ = τ +∆, where δ,∆ ∈ Fq may be nonzero for the case

of a corrupt Pi, and the verifier Pj checks whether τ ′
?
= µ · s′i + ν. This check

passes if and only if ∆ = µ · δ. If Pi attempts to cheat (i.e., δ 6= 0) and if the
verifier Pj is honest, then Pi does not know the random µ, and therefore check
must fail with high probability (assuming the field is large). This can be seen by
using that δ 6= 0 is invertible, so ∆ · δ−1 = µ, which due to the randomness of µ
cannot be satisfied.

Adapting this to our setting is not straightforward because of two reasons.
First, Galois rings are not fields for k > 1 and therefore the argument above
does not apply directly, since δ 6= 0 need not be invertible. Fortunately, using the
ideas from [1] we still can show that the equation ∆ = µ · δ holds with negligible
probability. However, the second issue is more delicate and it has to do with the
fact that in our setting each share in [s] is not a single Galois ring element but it
is actually an element of A = R2.

We handle this second issue by extending the authentication scheme from
above not only from Fq to R, but to A. At a high level, the tag corresponding to
a share si ∈ A is computed as τ = µ ? si + ν ∈ A, for the key µ, ν ∈ A. Cheating
in this new MAC scheme corresponds to solving equations of the form ∆ = µ ? δ,
for some ∆, δ ∈ A, which intuitively cannot be satisfied since it corresponds to
two similar equations over R. We develop the details in what follows.

Definition and properties of the tags. We use the same template as the
MAC scheme from [5], which authenticates batches instead of individual values.
Let {(sj,1, . . . , sj,κ/h)}`j=1 ∈ (Rh)`. Recall from Proposition 3 that Rκ/h ∼= S, so
we may think of each (sj,1, . . . , sj,κ/h) as one single element σj ∈ S. Following
Section 6.3, we consider shares [σj ]S which can be obtained by sharing each of its
coordinates as [sj,i]. By writing [sj,i] = (sj,i,1, . . . , sj,i,n) ∈ Dn and considering
the vector (sj,1,w, . . . , sj,κ/h,w) ∈ Aκ/h for j ∈ {1, . . . , `} and w ∈ {1, . . . , n},
which we identify with an element σj,w ∈ AS where AS = spanS(A), we can see
that [σj ]S = (σj,1, . . . , σj,n) ∈ (AS)n.

Notice that the S-algebra AS can be seen simply as S2, with the product
operation defined as (α, α′) ? (β, β′) = (α · β′, α′ · β). With this in hand we can
define what it means for the shares of σ to be authenticated.

15 As we will see, the scheme is a bit more complex since the values are tagged in blocks
rather than individually, but we will not consider this for now.
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Definition 4. (Informal.)16 We say that the ` · κh shares {[sj,i]}`,κ/hj=1,i=1 are
authenticated if for every pair of players Pu, Pv the following holds:

– Pv has a random key µ ∈ (AS)` and ν ∈ AS.
– Pu has a tag τ ∈ AS
– τ = µ � σ + ν, where σ = (σ1,u, . . . , σ`,u) ∈ (AS)` and � denotes the dot

product operator.

Proposition 8 argues that the tags defined above serve their purpose, i.e. a
corrupt Pu cannot lie about any of his shares sj,i,u and still present a valid tag
without an honest Pv detecting this. The proof follows a similar argument as
the one sketched before over fields for the BFO protocol. However, we first need
to show that the S-algebra AS , even though it is not a field, and not even a
Galois ring, does have good properties in terms of roots of linear equations. This
is shown in the following lemma, which can be seen as an analogue of Lemma 10
to the S-algebra AS , but considers multivariate polynomials of degree 1.

Lemma 8. Let L = GR(pk, r) and let B = L2 be the L-algebra with multiplication
given by (α, α′) ? (β, β′) = (αβ′, α′β). Let α ∈ B` and γ ∈ B. If α 6= 0, then
Prβ←B` [α� β = γ] ≤ `

pr .

Proof. Suppose that (α1, . . . , α`) � (β1, . . . , β`) = γ, and suppose that α 6= 0.
Without loss of generality, assume that α1 6= 0, so α1 ? β1 = ρ, with ρ =
γ −

∑`
j=2 αj ? βj . Let π1, π2 be the canonical L-algebra homomorphisms B → L

of projection onto the first and second coordinate, respectively. Since α1 6= 0, for
at least one of i = 1 or i = 2 we have πi(α1) 6= 0. Then πi(ρ) = πi(α1 ? β1) =
πi(α1)πi(β1) is a nonzero polynomial of degree 1 over L (in the variable πi(β1)),
which occurs with probability at most 1/pr according to Lemma 10. ut

Proposition 8. (Informal) Suppose that the shares {[sj,i]}`,κ/hj=1,i=1 are authen-
ticated, and let Pu, Pv be two players, where Pv is honest. If Pu announces
potentially incorrect shares s′j,i,u = sj,i,u + δj,i,u and a potentially incorrect tag

τ ′ = τ +∆, then the check τ ′
?
= µ� σ′ + ν will succeed with probability at most

1
pκ .

Proof. The errors δj,i,u translate into an error vector δ ∈ (AL)` such that the
check is performed on σ′ = σ+ δ. Furthermore, δ = 0 if and only if δj,i,u = 0 for
all i ∈ {1, . . . , κ/h} and j ∈ {1, . . . , `}, so checking that the shares announced by
Pu are correct amounts to checking that δ = 0.

It is easy to see that the check passes if and only if ∆ = µ� δ + ν. Invoking
Lemma 8 completes the proof. ut

We conclude that once the tags are in place, these can be used to prevent
corrupt parties to lie about their shares whenever some fault localization is
required at the dispute control layer. We refer the reader to [5] for the details
about how these tags are exactly used.

16 The statement is incomplete since we are deliberately omitting many details like the
dispute control layer, which determines which parties should get which type of tags,
or how the keys are reused. We refer to [5] for these details.
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Computation of the tags. In the previous paragraphs we showed that the tags,
once computed and distributed, provide the required authentication properties.
However, we did not deal with the way that these tags are computed. An important
contribution of [5] was showing an efficient method for the computation of these
tags, which saves in communication and that is crucial for the overall efficiency.

At a very high level, their method works as follows: First, observe that the
task of computing the tags can be seen as a two-party protocol between party Pu
and party Pv, where Pu inputs the share vector σ, Pv inputs the keys µ ∈ (AS)`,
ν ∈ AS , and Pu gets the output τ . The idea is to use a “Mini-MPC” protocol
for this computation, but to ensure efficiency of the whole protocol distributing
the inputs must be done with little communication. This is where the concept
of twisted shares defined in Section 6.2 comes into play: one of the inputs, σ, is
actually a share, and therefore it is already “shared”. We discuss this idea in a
bit more detail in what follows, but first we begin with the crucial property of
twisted shares that motivates their consideration in a first place.

Lemma 9. Let R = GR(pk, h), let x, y ∈ R and suppose they are shared as
[x] = (x1, . . . , xn) ∈ An, dyci = (y1, . . . , yn) ∈ An. Then [x] ∗ dyci = 〈〈xi ? y〉〉.
Furthermore, an analogous property holds for the LSSS obtained by extending to
a Galois ring extension L.

Proof. By definition, dyci can be seen as [0]. Then, using Proposition 5, we see
that [x] ∗ dyci = [x] ∗ [0] = 〈0〉. Furthermore, the i-th entry of this vector is
xi ? yi = xi ? y, which concludes the proof of the lemma. ut

With this lemma in hand we can sketch the Mini-MPC protocol that the
parties Pu, Pv use to compute the tags. First, let us assume for simplicity that
` = 1 and that R = S, so the MAC is simply τ = µ ? σ + ν ∈ A. Let [s] be such
that its u-th share is σ (recall that the tags are used to authenticate shares, so σ
is a share of some secret). The protocol, at a high level, proceeds as follows:

1. Pv samples µ, ν ∈ A.
2. Pv distributes twisted shares of µ and double twisted shares of ν, i.e.,
dµcu, 〈ν〉u.

3. The parties compute [s] ∗ dµcu + 〈ν〉u, which by Lemma 9 equals 〈〈σ ? µ+ ν〉〉.
4. The parties send these shares to Pu for reconstruction.
5. The correctness of the tags is verified via standard cut-and-choose techniques.

We refer the reader to protocol TagComp in [5] for the full details of the
protocol to compute the tags. We remark that the core aspects of this protocol
that depend on working over a field have been already addressed above, and the
rest of the protocol translates directly to our setting.

Complexity analysis. With the due modifications the resulting TagComp protocol
over R has a communication complexity of O(k · log2(p) · (m · n · h+ n5 · κ)) for
computing the tags in one single segment. Since m = O(|C|)/n2, multiplying by
the n2 segments yields O(k · log2(p) · (|C| · n · h+ n7 · κ))
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6.6 Batched Triple Sacrifice

The task here is to compute the M = O(|C|) multiplication triples necessary for
the execution of online phase. Computing them can be done in a similar way as
in Section 5, but their correctness will not be guaranteed. As before, due to the
dispute control layer, m = M/n2 triples are checked in each segment. One of the
key novelties of the BFO protocol is a technique for checking these triples with
a complexity that is roughly O(n log(n) + κ) per triple.17 This is achieved by
dividing the m triples to be checked into batches of size N = n2 each, developing
a procedure that checks these N triples with complexity O(N ·n · log(n) +n2 ·κ),
which, by multiplying by the number of batches m/N , yields O(m·(n·log(n)+κ)).

Before we adapt their protocol to our setting, we begin by revisiting their
techniques over fields here. Consider a field Fq with at least 2N elements, where
N = n2, and let x1, . . . , x2N−1 be different points in Fq. Suppose the parties have

shares over this field {JaiK, JbiK, JciK}Ni=1 where ci is supposed to be ai · bi. The
parties check their consistency as follows:

1. Define f(X), g(X) ∈ Fq[X] to be the polynomials of degree at most N − 1
such that f(xk) = ak and g(xk) = bk for k = 1, . . . , N .

2. The parties compute shares of ak := f(xk) and bk := g(xk) for k = N +
1, . . . , 2N − 1 by taking an appropriate linear combination (over Fq) of the
shares {JakK}Nk=1 and {JbkK}Nk=1, respectively.

3. Define h(X) as the polynomial of degree at most 2N − 2 given by h(X) =
f(X)·g(X), notice that it should be the case that ck = h(xk) for k = 1, . . . , N .

4. Use a passively secure multiplication protocol to compute (potentially incor-
rectly) JckK := JakK · JbkK for k = N + 1, . . . , 2N − 1. Now the parties have
shares of 2N − 1 points on the polynomial h(X).

5. Sample a random σ ∈ Fqκ and compute shares over Fqκ of f(σ), g(σ), h(σ) ∈
Fqκ by taking a linear combination over Fqκ of {JakK}Nk=1, {JbkK}Nk=1 and
{JckK}2N−1k=1 , respectively.

6. Perform some check over these shares to verify that f(σ) · g(σ) = h(σ).

When extending the above protocol over rings there are several complications
that appear. One immediate concern is the argument that shows that checking
the polynomial equality f(X) · g(X) = h(X) can be done by evaluating a random
point. To show this still holds, we invoke the following lemma from [1, Lemma 2].

Lemma 10. Let f ∈ R[X] polynomial of arbitrary degree ` > 0. Then Prx←R[f(x) =
0] ≤ `

pκ , where x is drawn uniformly from R.

One issue that appears is that we do not necessarily have enough points
x1, . . . , x2N−1 ∈ R for interpolation over our ring R. We fix this by using a
Galois ring extension L of degree O(log(N)) = O(log(n)) for the interpolation,
which introduces an overhead of log(n) in the multiplications JckK = JakK · JbkK
17 A simple optimization in [5] transforms this into O(n log(n)) for the case in which
κ = poly(n). This optimization also applies to our setting.
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for k = N + 1, . . . , 2N − 1. We remark that this is the only place of the whole
protocol where the log(n) overhead appears.

The final effect of this is that the complexity of the preprocessing phase
becomes O(|C| · (n · log(n) + κ)), which is not fully linear, but it is already better
than the best protocol known for this setting [1], which has a complexity of
O(|C| ·n2 · log(n)).18 Furthermore, our online phase is fully linear, i.e., O(|C| ·n).
This has an interpretation in practice: in the offline phase the communication
per party increases logarithmically as the number of parties gets larger, but
in the online phase, this communication remains constant. This supports the
rationale of the offline/online paradigm: expensive computations can be pushed
to a function-independent preprocessing phase, and in the online phase where the
inputs and the function are actually instantitated, the computation is cheaper.

We describe our protocol for batched triple generation in Fig. 2. It is very
similar to the corresponding protocol in [5] except that in our case we use
properties of Galois rings to argue about the security of the construction. The
security of our construction is argued below in proposition 9. It shows that if
there is at least one triple that is incorrect then it will be detected in the final
check with high probability.

Proposition 9. Let {(JaiKR, JbiKR, JciKR)}Ni=1 be the triples inputted to Protocol
BatchedTriples, and suppose that ci = ai · bi + di for i = 1, . . . , N . If the honest
parties output OK at the end of the protocol, then di = 0 for all i with probability
at least 1− 1

pκ .

Thanks to the properties of Galois rings that we have exploited throughout
the paper, the proof follows along the same lines as the corresponding proof in
[5], and we will not replicate it here.

Complexity analysis. Similar to the analysis in the field case done at the beginning
of this section, the complexity of checking the m triples in one segment using
BatchedTriples is O(k · log2(p) ·m · (n · log(N) · h+ κ)). By multiplying by the
number of segments n2, and recalling that N = n2 and m = O(|C|)/n2, we
obtain O(k · log2(p) · |C| · (n · log(n) · h+ κ)). Furthermore, the optimization in
[5] of using N = n2+c where κ(n) = O(nc) applies also in our case and results in
a complexity of O(k · log2(p) · |C| · n · log(n) · h).

Remark 3. The log(n) overhead we have in the preprocessing appears in a very
specific stage, and we can even remove it assuming a functionality that produces
additive shares of matrix outer products efficiently.

18 We notice, however, that the extension of Shamir secret sharing to R from [1] is
likely to be compatible with the BFO protocol using some of the ideas introduced
in our work. The resulting protocol would have the same offline complexity as our
construction, but the online complexity would be O(|C|n log(n)), unlike ours which
is O(|C|n). On the other hand, the threshold would be maximal.
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BatchedTriples

Input: N potentially incorrect triples {(JaiKR, JbiKR, JciKR)}Ni=1.

– Let L be a Galois-ring extension of Z/pkZ of degree logp(2N), and let
χ1, . . . , χ2N−1 ∈ L be an exceptional sequence. We may think of S as a
Galois-ring extension of L of degree κ/ logp(2N).

The parties execute the following in order to check the correctness of these
triples:

1. Define f(X), g(X) ∈ L[X] as the polynomials of degree at most N − 1 such
that f(χk) = ak and g(χk) = bk for k = 1, . . . , N .

2. The parties compute shares of ak := f(χk) ∈ L and bk := g(χk) ∈ L
for k = N + 1, . . . , 2N − 1 by taking an appropriate linear combination
JakKL =

∑N
j=1 λj · JajKR and JbkKL =

∑N
j=1 λj · JbjKR, where λj ∈ L.

3. Define h(X) as the polynomial of degree at most 2N − 2 given by h(X) =
f(X) · g(X). Notice that it should be the case that ck = h(χk) for k =
1, . . . , N .

4. For i = N + 1, . . . , 2N − 1 use the passively secure multiplication protocol
to compute (possibly incorrect) shares Jai · biKL = JaiKL · JbiKL.

5. Sample a random σ ∈ S and compute shares of f(σ), g(σ) ∈ S as Jf(σ)KS =∑N
j=1 µj · JajKR and Jg(σ)KS =

∑N
j=1 µj · JbjKR where µj ∈ S.

6. Compute shares Jh(σ)KS =
∑2N−1
i=1 ωi · Jai · biKL, where ωi ∈ S.

7. The parties execute a sacrifice step in order to check the correctness of
(Jf(σ)KS , Jg(σ)KS , Jh(σ)KS):a

(a) Sample a potentially incorrect triple (JαKS , JβKS , Jγ = α · βKS).
(b) Sample a random value λ ∈ S.
(c) Open sequentially α′ = JαKS +λ · Jf(σ)KS and ν = JγKS + γ · Jh(σ)KS −

α′ · Jg(σ)KS .
(d) If v 6= 0 then proceed to the fault localization phase as in [5]. Otherwise

output OK.

a This corresponds to protocol SingleVerify in [5].

Fig. 2. Protocol for checking the correctness of several triples
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Optimizing the batch triple verification. We can use the tools we have developed
to further optimize our triple check procedure by adapting the more recent
protocol of [21]. Their batch check protocol builds on top of the one we use from
[5], and also makes use of polynomial interpolation, which as we have shown
extends to Galois rings. This would lead to a more efficient protocol.

6.7 Putting the Pieces Together

Using the building blocks described in previous sections, we obtain a protocol
over R = GR(pk, h) whose offline phase has a total communication complexity
of O(k · log p · (h · |C| · n · log(n) + n7 · κ)). The online phase, which follows the
exact same template as in [5, Section 3.4], has a total communication complexity
of O(k · log p · h · |C| · n). This proves Theorem 10.

6.8 Linear-Complexity Preprocessing in the FOuterProduct Model

Finally, we would like to discuss an optimization to our base protocol. Unfor-
tunately, our protocol in Section 6 does not achieve O(|C|n) complexity in the
preprocessing phase due to the computation of the N products in step 4 of our
batched triple sacrifice, which happen over a Galois ring extension L of degree
log(n). It turns out that if we assume an outer product functionality (to be
defined below) we can obtain linear communication complexity by exchanging
the N products over L with N2 correlated products over R. The outer product
functionality, denoted by FOuterProduct, produces random triples (JaK, JbK, Ja ·bᵀK),
where a and b are (column) vectors over R of dimension N .

The reason why such functionality helps is the following. Suppose the parties
have shares JxK, JyK, and the goal is to compute shares Jx · yᵀK. Given a triple
(JaK, JbK, Ja·bᵀK) produced by FOuterProduct, this can be done by opening d = JxK−
JaK and e = JyK−JbK, and computing Jx ·yᵀK = d ·JbᵀK+JaK ·eᵀ+Ja ·bᵀK+d ·eᵀ.
We denote this procedure by OuterProduct. Notice that the communication
complexity is O(N), compared to the O(N2) one would get by computing each
entry of Jx · yᵀK directly.

Given the procedure above, we modify steps 4, 5 and 6 of the protocol in Fig.
2 as follows:

4. Call OuterProduct on inputs {JaiKR}Ni=1 and {JbiKR}Ni=1 to get (potentially
incorrect) shares {Jai · bjKR}Ni,j=1.

5. Sample a random σ ∈ S and compute shares of f(σ), g(σ) ∈ S as Jf(σ)KS =∑N
j=1 µj · JajKR and Jg(σ)KS =

∑N
j=1 µj · JbjKR where µj ∈ S.

6. Observe that

h(σ) =

2N−1∑
k=1

ωk·f(χk)·g(χk) =

N∑
k=1

ωk·ak·bk+

2N−1∑
k=N+1

ωk·

(
N∑
i=1

λi · ai

)
·

 N∑
j=1

λj · bj

 .
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Therefore, the parties can compute

Jh(σ)KS =

N∑
k=1

ωk · JakKR · JbkKR +

N∑
i=1

N∑
j=1

ηij · JaiKR · JajKR,

for some coefficients ηij ∈ S.

We can see that with these modifications, the complexity becomes O(N),
which, when plugged into the general triple check, gives an overall complexity of
O(|C| · n). However, this requires access to the FOuterProduct functionality, which
does not seem straightforward to instantiate. For instance, it is not hard to see
that this functionality cannot be instantiated with a communication complexity
that is less than O(N2) if we aim for information-theoretic security. This has
to do with the fact that the input has O(N · n) bits of entropy (from the point
of view of the adversary), and the functionality requires the output to have
O(N2 · n) bits of entropy. Hence, any instantiation of this functionality must lie
in the computational domain.

We stress that this verification step is the only part of the preprocessing
phase where linearity is broken. Hence, we see our extension here to “fully-linear”
preprocessing only as an indication of where exactly the main bottleneck lies.

7 Conclusions and Future Work

Our work shows that results from coding theory over fields can be leveraged to
obtain corresponding results over the more general Galois rings, which include as
a particular case the practically relevant ring Z/2kZ. Although not all properties
automatically lift (e.g., multiplicativity), we presented techniques to overcome
these issues and still get meaningful coding-theoretic tools over Galois rings, that
can be applied to MPC.

We showed that information-theoretic honest-majority MPC over rings which
scales well with the number of parties is possible. Our protocols have linear
communication complexity, except for the offline phase of our protocol with
guaranteed output delivery from Section 6, which has a log(n) overhead. The
complexity can be further reduced by combining our results with the work of
[20].

Finally, like in [5], the communication complexity of our construction remains
linear if the circuit is not too narrow. This restriction was removed in [20] for
the case of t < n/3, and then in [21] for the case of t < n/2. As we mentioned in
Section 6, the techniques from that paper can also be adapted to Galois rings.
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