
MuSig2: Simple Two-Round Schnorr Multi-Signatures

Jonas Nick1, Tim Ruffing1, and Yannick Seurin2

1 Blockstream
2 ANSSI, Paris, France

October 11, 2020

Abstract. Multi-signatures enable a group of signers to produce a single signature on a
given message. Recently, Drijvers et al. (S&P’19) showed that all thus far proposed two-round
multi-signature schemes in the DL setting (without pairings) are insecure under concurrent
sessions, i.e., if a single signer participates in multiple signing sessions concurrently. While
Drijvers et al. improve the situation by constructing a secure two-round scheme, saving a round
comes with the price of having less compact signatures. In particular, the signatures produced
by their scheme are more than twice as large as Schnorr signatures, which arguably are the
most natural and compact among all practical DL signatures and are therefore becoming
popular in cryptographic applications (e.g., support for Schnorr signature verification has
been proposed to be included in Bitcoin). If one needs a multi-signature scheme that can
be used as a drop-in replacement for Schnorr signatures, then one is either forced to resort
to a three-round scheme such as MuSig (Maxwell et al., DCC 2019) or MSDL-pop (Boneh,
Drijvers, and Neven, ASIACRYPT 2018), or to accept that signing sessions are only secure
when run sequentially, which may be hard to enforce in practice, e.g., when the same signing
key is used by multiple devices.
In this work, we propose MuSig2, a novel and simple two-round multi-signature scheme variant
of the MuSig scheme. Our scheme is the first multi-signature scheme that simultaneously i) is
secure under concurrent signing sessions, ii) supports key aggregation, iii) outputs ordinary
Schnorr signatures, iv) needs only two communication rounds, and v) has similar signer
complexity as regular Schnorr signatures. Furthermore, our scheme is the first multi-signature
scheme in the DL setting that supports preprocessing of all but one rounds, effectively enabling
a non-interactive signing process, without forgoing security under concurrent sessions. The
combination of all these features makes MuSig2 highly practical. We prove the security of
MuSig2 under the one-more discrete logarithm (OMDL) assumption in the random oracle
model, and the security of a more efficient variant in the combination of the random oracle
and algebraic group models.

1 Introduction

1.1 Background on Multi-Signatures

Multi-signature schemes [IN83] enable a group of signers (each possessing an own private/public key
pair) to run an interactive protocol to produce a single signature σ on a message m. A recent spark
of interest in multi-signatures is motivated by the idea of using them as a drop-in replacement for
ordinary (single-signer) signatures in applications such as cryptocurrencies that support signatures
already. For example the Bitcoin community, awaiting the adoption of Schnorr signatures [Sch91]
as proposed in BIP 340 [WNR20], is seeking for practical multi-signature schemes which are fully
compatible with Schnorr signatures: multi-signatures produced by a group of signers should just be
ordinary Schnorr signatures and should be verifiable like Schnorr signatures, i.e., they can be verified
using the ordinary Schnorr verification algorithm given only a single aggregate public key that can
be computed from the set of public keys of the signers and serves as a compact representation of it.

This provides a number of benefits that reach beyond simple compatibility with an upcoming
system: Most importantly, multi-signatures enjoy the efficiency of Schnorr signatures, which are
very compact and cheap to store on the blockchain. Moreover, if multi-signatures can be verified
as ordinary Schnorr signatures, the additional complexity introduced by multi-signatures remains
on the side of the signers and is not exposed to verifiers who need not be concerned with multi-
signatures at all and can simply run Schnorr signature verification. Verifiers, who are just given
the signature and the aggregate public key, in fact do not even learn whether the signature was
created by a single signer or by a group of signers (or equivalently, whether the public key is an
aggregation of multiple keys), which is advantageous for the privacy of users.

Multi-signatures Based on Schnorr Signatures. A number of modern and practical
proposals [BN06, BCJ08, MWLD10, STV+16, MPSW19, DEF+19, NRSW20] for multi-signature
schemes are based on Schnorr signatures. The Schnorr signature scheme [Sch91] relies on a cyclic
group G of prime order p, a generator g of G, and a hash function H. A private/public key pair is
a pair (x,X) ∈ {0, . . . , p− 1} ×G where X = gx. To sign a message m, the signer draws a random
integer r in Zp, computes a nonce R = gr, the challenge c = H(X,R,m), and s = r + cx. The
signature is the pair (R, s), and its validity can be checked by verifying whether gs = RXc.

The naive way to design a multi-signature scheme fully compatible with Schnorr signatures would
be as follows. Say a group of n signers want to cosign a messagem, and let L = {X1 = gx1 , . . . , Xn =
gxn} be the multiset3 of all their public keys. Each signer randomly generates and communicates
to others a nonce Ri = gri ; then, each of them computes R =

∏n
i=1 Ri, c = H(X̃, R,m) where

X̃ =
∏n
i=1 Xi is the product of individual public keys, and a partial signature si = ri + cxi; partial

signatures are then combined into a single signature (R, s) where s =
∑n
i=1 si mod p. The validity

of a signature (R, s) on message m for public keys {X1, . . . , Xn} is equivalent to gs = RX̃c where
X̃ =

∏n
i=1 Xi and c = H(X̃, R,m). Note that this is exactly the verification equation for an ordinary

key-prefixed Schnorr signature with respect to the aggregate public key X̃. However, as already
pointed out many times [HMP95, Lan96, MH96, MOR01], this simplistic protocol is vulnerable to
a rogue-key attack where a corrupted signer sets its public key to X1 = gx1(

∏n
i=2 Xi)−1, allowing

him to produce signatures for public keys {X1, . . . , Xn} by himself. One way to generically prevent
rogue-key attacks is to require that users prove possession of the secret key, e.g., by attaching a
zero-knowledge proof to their public keys [RY07, BDN18]. However, this makes key management
cumbersome, complicates implementations, and is not compatible with existing and widely used
key serialization formats.

The MuSig Scheme. A different and more direct approach proposed by Bellare and Neven [BN06]
is to work in the plain public-key model, where the only requirement is that each potential signer
has a public key. To date, the only multi-signature scheme that is fully compatible with Schnorr
signatures and provably secure without proofs of possession is MuSig by Maxwell et al. [MPSW19],
independently proven secure by Boneh, Drijvers, and Neven [BDN18].
3 Since we do not impose any constraint on the key setup, the adversary can choose corrupted public keys
arbitrarily, hence the same public key can appear multiple times in L.

2

In order to overcome rogue-key attacks in the plain public-key model, MuSig computes partial
signatures si with respect to “signer-dependent” challenges

ci = Hagg(L,Xi) · Hsig(X̃, R,m),

where X̃ is the aggregate public key corresponding to the multiset of public keys L = {X1, . . . , Xn}.
It is defined as X̃ =

∏n
i=1 X

ai
i where ai = Hagg(L,Xi) (note that the ai’s only depend on the public

keys of the signers). This way, the verification equation of a signature (R, s) on message m for
public keys L = {X1, . . . , Xn} becomes

gs = R

n∏
i=1

Xaic
i = RX̃c,

where c = Hsig(X̃, R,m). This recovers the key aggregation property enjoyed by the naive scheme,
albeit with respect to a more complex aggregate key X̃ =

∏n
i=1 X

ai
i .

In order to be able to simulate an honest signer in a run of the signing protocol via the standard
way of programming the random oracle Hsig, MuSig has an initial commitment round (like the
scheme by Bellare and Neven [BN06]) where each signer commits to its share Ri before receiving
the shares of other signers.

As a result, the signing protocol of MuSig requires three communication rounds, and only the
initial commitment round can be preprocessed without knowing the message to be signed.4

Two-Round Schemes. Following the scheme by Bellare and Neven [BN06], in which signing
requires three rounds of interaction, multiple attempts to reduce this number to two rounds [BN06,
BCJ08, STV+16, MPSW19] (without requiring pairings) were foiled by Drijvers et al. [DEF+19].
In their pivotal work, they show that all thus far proposed two-round schemes in the DL setting
cannot be proven secure and are vulnerable to attacks with subexponential complexity when the
adversary is allowed to engage in an arbitrary number of concurrent sessions (concurrent security),
as required by the standard definition of unforgeability.

If one prefers a scheme in the DL setting with fewer communication rounds, only two options
remain, and none of them is fully satisfactory. The first option is the mBCJ scheme by Drijvers
et al. [DEF+19], a repaired variant of the scheme by Bagherzandi, Cheon, and Jarecki [BCJ08].
While mBCJ needs only two rounds, it does not output ordinary Schnorr signatures and is thus not
suitable as a drop-in replacement for Schnorr signatures, e.g., in cryptocurrencies whose validation
rules support Schnorr signatures (such as proposed for Bitcoin). The second option is MuSig-DN
(MuSig with Deterministic Nonces) [NRSW20], which however relies on heavy zero-knowledge proofs
to prove a deterministic derivation of the nonce to all cosigners. This increases the complexity of
the implementation significantly and makes MuSig-DN, even though it needs only two rounds, in
fact less efficient than three-round MuSig in common setting due to the expensive zero-knowledge
proofs. Moreover, in neither of these two-round schemes is it possible to reduce the rounds further
by preprocessing the first round without knowledge of the message to be signed.

1.2 Our Contribution

We propose a novel and simple two-round variant of the MuSig scheme that we call MuSig2. In
particular, we remove the preliminary commitment phase, so that signers start right away by
sending nonces. However, to obtain a scheme secure under concurrent sessions, each signer i sends
a list of ν ≥ 2 nonces Ri,1, . . . , Ri,ν (instead of a single nonce Ri), and effectively uses a linear
combination R̂i =

∏ν
j=1 R

bj
i,j of these ν nonces, where b1 = 1 and the coefficients bj , 2 ≤ j ≤ ν, are

derived via a hash function
Except for MuSig-DN [NRSW20], which relies on rather complex and expensive zero-knowledge

proofs (proving time ≈ 1 s), our scheme is the first multi-signature scheme that simultaneously
4 The second move of the protocol is independent of the message to be signed, which makes it tempting to
process this move without knowledge of the message. But revealing the second move to the cosigners
before the message is fixed renders the scheme insecure [Nic19].

3

i) is secure under concurrent signing sessions, ii) supports key aggregation, iii) outputs ordinary
Schnorr signatures, and iv) needs only two communication rounds. Furthermore, our scheme is
the first in the DL setting that supports preprocessing of all but one rounds, effectively enabling
non-interactive signing without forgoing security under concurrent sessions.

In comparison to other multi-signature schemes based on Schnorr signatures, we pay for this
round efficiency by relying on a stronger assumption: instead of the standard DL assumption, we
need the One-More Discrete Logarithm (OMDL) assumption [BP02, BNPS03], which states that
it is hard to find the discrete logarithm of q + 1 group elements by making at most q calls to an
oracle solving the discrete logarithm problem.

We give two independent security proofs which reduce the security of MuSig2 to the hardness of
the OMDL problem. Our first proof relies on the random oracle model (ROM), and requires ν ≥ 4
in general. Our second proof additionally assumes the algebraic group model (AGM) [FKL18], and
for this ROM+AGM proof, ν = 2 nonces are sufficient.

Assuming a group element is as large as a (collision-resistant) hash of a group element, the
overhead of MuSig2 as compared to normal (three-round) MuSig is broadcasting ν−2 group elements
and a multi-exponentiation of size ν − 1. As a result, MuSig2 is highly practical. In particular for
ν = 2 nonces, the overhead is just a single exponentiation.

2 Technical Overview

2.1 The Challenge of Constructing Two-Round Schemes

Already an obsolete preliminary version [MPSW18] of the MuSig paper [MPSW19] proposed a
2-round variant of MuSig where the initial commitment round is omitted and claimed provable
security under the OMDL assumption. We will call this scheme InsecureMuSig in the following.
However, Drijvers et al. [DEF+19] discovered a flaw in the security proof (as well as in the proof
of the other 2-round DL-based multi-signature schemes by Bagherzandi et al. [BCJ08] and Ma et
al. [MWLD10]). They show through a meta-reduction that the concurrent security of these schemes
cannot be reduced to the DL or OMDL problem using an algebraic black-box reduction (assuming
the OMDL problem is hard).5

In addition to the meta-reduction, Drijvers et al. [DEF+19] also gave a concrete attack of
subexponential complexity based on Wagner’s algorithm [Wag02] for solving the Generalized
Birthday Problem [Wag02], which has led to similar attacks on Schnorr blind signatures [Sch01].
Their attack breaks InsecureMuSig and the other aforementioned multi-signature schemes and
inherently exploits the ability to run multiple sessions concurrently. Recently, Benhamouda et
al. [BLOR20] gave a novel, simple, and very efficient attack of polynomial complexity, which confirm
and extend these negative results.

A Concrete Attack. We outline the attack by Drijvers et al. [DEF+19] in order to provide an
intuition for how we can overcome their negative results. The attack relies on Wagner’s algorithm
for solving the Generalized Birthday Problem [Wag02], which can be defined as follows for the
purpose of this paper: Given a constant value t ∈ Zp, an integer kmax, and access to random oracle
H mapping onto Zp, find a set {q1, . . . , qkmax} of kmax queries such that

∑kmax
k=1 H(qk) = t. While

for kmax ≤ 2, the complexity of this problem is the same as finding a preimage (kmax = 1) or a
collision (kmax = 2) in the random oracle, the problem becomes, maybe surprisingly, easy for large
kmax. In particular, Wagner [Wag02] gives a subexponential algorithm assuming that kmax is not
bounded.

The attack proceeds as follows. The adversary opens kmax concurrent signing sessions, in which
it plays the role of the signer with public key X2 = gx2 , and receives kmax nonces R(1)

1 , . . . , R
(kmax)
1

from the honest signer with public key X1 = gx1 . Let X̃ = Xa1
1 Xa2

2 be the corresponding aggregate
public key. Given a forgery target message m∗, the adversary sets R∗ :=

∏kmax
k=1 R

(k)
1 and uses

5 We refer the interested reader to Appendix C for a high-level explanation of why the meta-reduction
cannot be adapted to work with our scheme.

4

Wagner’s algorithm to find nonces R(k)
2 such that

kmax∑
k=1

Hsig(X̃, R(k)
1 R

(k)
2 ,m(k))︸ ︷︷ ︸

=: c(k)

= Hsig(X̃, R∗,m∗)︸ ︷︷ ︸
=: c∗

. (1)

Having received R(k)
2 , the honest signer will reply with partial signatures s(k)

1 = r
(k)
1 + c(k) · a1x1.

Let r∗ :=
∑kmax
k=1 r

(k)
1 = DL(R∗). The adversary is able to obtain

s∗1 :=
kmax∑
k=1

s
(k)
1 =

kmax∑
k=1

r
(k)
1 +

(
kmax∑
k=1

c(k)

)
· a1x1 = r∗ + c∗ · a1x1,

where the last equality follows from Equation (1). The adversary can further complete the value s∗1
to

s∗ := s∗1 + c∗ · a2x2 = r∗ + c∗ · (a1x1 + a2x2).

In other words, (R∗, s∗) is a valid forgery on message m∗ with signature hash c∗ = Hsig(X̃, R∗,m∗).
In this example, the forgery is valid for the aggregate public key X̃, which is the result of aggregating
public keys X1 and X2. It is however straightforward to adapt the attack to produce a forgery
under a different aggregate public key as long as it is the result of aggregating the honest signer’s
public key X1 with any multiset of adversarial public keys.

The complexity of this attack is dominated by the complexity of Wagner’s algorithm, which is
O(kmax 2log2(p)/(1+b(log2(kmax)c)). While this is subexponential (and not polynomial), the attack is
practical for common parameters and moderately large numbers kmax of sessions. For example, for a
group size of p ≈ 2256 as common for elliptic curves, a value of kmax = 128 brings the complexity of
the attack down to approximately 239 operations, which is practical even on off-the-shelf hardware.
If the attacker is able to open more sessions concurrently, the improved polynomial-time attack by
Benhamouda et al. [BLOR20] assumes kmax > log2 p sessions, but then has complexity O(kmax log2 p)
and a negligible running time in practice.

2.2 Our Solution

The attack by Drijvers et al. (and similarly the attack by Benhamouda et al.) relies on the ability to
control the signature hash by controlling the aggregate nonce R(k)

1 R
(k)
2 (on the LHS of Equation (1))

in the first round of each of the concurrent signing sessions. Since all signers must know the aggregate
nonce at the end of the first round, it seems hard to prevent the adversary from being able to
control the aggregate nonce on the LHS without adding a preliminary commitment round.

Our high-level idea to solve this problem and to foil the attacks is to accept that the adversary
can control the LHS of the equation but prevent it from controlling the RHS instead.

The main novelty in our work is to let every signer i send a list of ν ≥ 2 nonces Ri,1, . . . , Ri,ν and
let it effectively use a random linear combination R̂i =

∏ν
j=1 R

bj
i,j of those nonces in lieu of the former

single nonce Ri. The linear coefficients bj are derived via a hash function Hnon (modeled as a random
oracle) applied the nonces of all signers, i.e., bj = Hnon(j, X̃, (

∏n
i=1 Ri,1, . . . ,

∏n
i=1 Ri,ν),m).6

As a result, whenever the adversary tries different values for R(k)
2 , the coefficients b(k)

1 , . . . , b
(k)
ν

change, and so does the honest signer’s effective nonce R̂(k)
1 =

∏ν
j=1 R

bj
1,j as well as the value

R∗ :=
∏kmax
k=1 R̂

(k)
1 on the RHS of Equation (1). This ensures that the RHS is no longer a constant

value, which is however an essential prerequisite in the definition of the Generalized Birthday
Problem and thus for the applicability of Wagner’s algorithm.

6 Since the values Ri,j end up as input to a hash function, one may wonder why we propose to take
products

∏n

i=1 Ri,j instead of simply concatenating all Ri,j . While we believe that concatenation also
yields a secure scheme, we note the products

∏n

i=1 Ri,j anyway need to be computed when computing
R =

∏n

i=1 R̂i =
∏n

i=1

∏ν

j=1 R
bj
i,j =

∏ν

j=1

(∏n

i=1 Ri,j
)bj with a minimal number of exponentiations.

5

With this idea in mind, it is tempting to fall back to a single nonce only (ν = 1) but instead
rely just on the coefficient b1. However, the adversary can effectively eliminate this simple tweak by
instead considering the equation

kmax∑
k=1

Hsig(X̃, (R(k)
1)b

(k)
1 ,m(k))

b
(k)
1

= Hsig(X̃, R∗,m∗).

While this explains why using ν ≥ 2 is essential, our security proof will demonstrate that fixing
b1 = 1 (i.e., randomizing only the remaining coefficients b2, . . . , bν) is an optimization that does not
hamper security.

2.3 Proving Security

Before we describe how to prove MuSig2 secure, we first take a step back to InsecureMuSig in order
to understand the flaw in its purported security proof. Then, we explain how the usage of more
than once nonce in MuSig2 enables us to fix that flaw.

The Difficulty of Simulating Signatures. Following the textbook security proof of Schnorr
signatures, a natural but necessarily flawed approach to reduce the security of InsecureMuSig7 to
the DL problem in the ROM will be to let the reduction announce the challenge group element X1
as the public key of the honest signer and fork the execution of the adversary in order to extract
the discrete logarithm of X1 from the two forgeries output by the adversary in its two executions
(using the Forking Lemma [BN06, PS00]).

The insurmountable difficulty for the reduction in this approach is to simulate the honest signer’s
participation in signing sessions without knowledge of the secret key of the honest signer. From
the perspective of the reduction, simply omitting the preliminary commitment phase enables the
adversary to know the combined nonce R before the reduction learns it, which prevents the reduction
from simulating the signing oracle using the standard technique of programming the random oracle on
the signature challenge Hsig(X̃, R,m). In more details, observe that in InsecureMuSig, an adversary
(controlling public keys X2, . . . , Xn) can impose the value of R =

∏n
i=1 Ri used in signing sessions

since it can choose R2, . . . , Rn after having received R1 from the honest signer (controlling the
public key X1 = gx1). This forbids to use the textbook way of simulating the honest signer in the
Random Oracle Model (ROM) without knowing x1 by randomly drawing s1 and c, computing
R1 = gs1(X1)−a1c, and later programming Hsig(X̃, R,m) := c, since the adversary might have made
the random oracle query Hsig(X̃, R,m) before starting the corresponding signing session.

The Flawed Security Proof of InsecureMuSig. The hope of Maxwell et al. [MPSW18] was to
rely on the stronger OMDL assumption instead of the DL assumption in order to solve this problem
without a commitment round. The DL oracle in the formulation of the OMDL problem would enable
the reduction to obtain s1 via a DL oracle query for the discrete logarithm of R1(X1)a1c, using
a fresh DL challenge as R1 in each signing session, whose discrete logarithm could be computed
once x1 had been retrieved. Together with the DL challenge X1 used as public key of the honest
signer, this would mean that the reduction computes the DL of qs + 1 challenge elements using
only qs DL oracle calls, where qs is the number of signing sessions asked for by the adversary, i.e.,
the reduction would solve the OMDL problem.

This simulation technique however fails in a subtle way when combined with the Forking Lemma,
since the adversary might be forked in the middle of a signing session, when it has received R1 but
has not returned R2, . . . , Rn to the reduction yet. Now assume that the adversary sends different
values R2, . . . , Rn and R′2, . . . , R′n in the two executions of the fork, resulting in different signatures
hashes c and c′ respectively. This implies that in order to correctly simulate the signing oracle in
the forked execution, the reduction needs two queries to the DL oracle, both of which are related to
the same single challenge R1. Since the answer of the first DL oracle query will already be enough
to compute the discrete logarithm of R1 later on, the second query does not provide any additional
useful information to the reduction (neither about the discrete logarithm of R1 nor about the
7 Observe that InsecureMuSig is identical to a purported MuSig2 with a just a single nonce, i.e., ν = 1.

6

discrete logarithm of another DL challenge) and is thus wasted. As a result, the reduction forgoes
any hope to solve the OMDL problem when making the second query. Exactly this issue is exploited
in the meta-reduction by Drijvers et al. [DEF+19] in order to extract the signing key from the
reduction (which was supposed to simulate without knowledge of the signing key).

How Multiple Nonces in MuSig2 Help the Reduction. With MuSig2 however, the reduction
can handle this situation. Now assume ν = 2, i.e., the reduction will obtain two (instead of one)
group elements R1,1, R1,2 as challenges from the OMDL challenger during the first round of each
signing session. This will allow the reduction to make two DL queries per signing session, and thus
be able to simulate signatures even if the adversary forces different signature hashes c 6= c′ in the
two executions.

Recall that the honest signer simulated by the reduction effectively uses the linear combination
R̂1 = R1,1R

b2
1,2 as nonce. If we additionally ensure that whenever c′ and c differ, then also the

coefficients b′2 and b2 in the two executions differ, and the two DL queries made by reduction will
give linear independent equations that can be solved for the discrete logarithms of the challenges
R1,1 and R1,2. Similarly, in the case that c = c′, the reduction needs only one DL query to simulate
the honest signer in both executions, and thus it can use the free DL query to obtain a second
linear independent equation.

Note that for this simulation technique, it is not important how the adversary controls the
signature hashes c and c′. So far we only considered the case that the adversary influences c and c′
by choosing its nonces depending on the honest signer’s nonce. Thus, the reduction works equally
for an adversary which controls the signature hash computed as Hsig(X̃, R,m) not by influencing R
but instead by being able to choose the message m or the set of signers L (and thus the aggregate
public key X̃) only in the second round of the signing protocol, i.e., after having seen the honest
signer’s nonce. This explains why our scheme enables preprocessing and broadcasting the nonces
(the first round) without having determined the message and the set of signers. This is in contrast
to existing schemes, which are vulnerable to essentially the same attack as explained above if the
adversary is given the ability to select the message or the set of signers after having seen the honest
signer’s nonce [Nic19].

So far we discussed only how the reduction is able to handle two different executions of the
adversary (due to a single fork). However, since our reduction needs to fork the adversary twice
to support key aggregation, it needs to handle four possible executions of the adversary. As a
consequence, it will need four DL queries as well as ν ≥ 4 nonces. Moreover, if the number q
of Hnon hash queries made by the adversary for ν = 4 nonces is too large, e.g., close to √p, we
cannot guarantee that the reduction will obtain four linear independent equations with sufficient
probability, and thus we may need to resort to ν ≥ 5.

2.4 A More Efficient Solution in the Algebraic Group Model

In the algebraic group model (AGM) [FKL18], the adversary is assumed to be algebraic, i.e.,
whenever it outputs a group element, it is required to output a representation of this group element
in the base formed by all group elements it has received so far. While the AGM is idealized, it is
a strictly weaker model than the generic group model (GGM) [Sho97], i.e, security proofs in the
AGM carry over to the GGM but the AGM imposes fewer restrictions on the adversary. Security
proofs in the AGM work via reductions to hard problems (similar to the standard model) because
computational problems such as DL and OMDL are not information-theoretically hard in the AGM
(as opposed to the GGM). In the AGM, the Schnorr signature scheme (and related schemes such
Schnorr blind signatures [CP93]) can be proven secure using a straight-line reduction which does
not fork the execution of the adversary [FPS20].

The main technical reason why our ROM proof works only for ν ≥ 4 nonces is that our reduction
needs to handle four executions of the adversary due to two applications of the Forking Lemma.
Since this fundamental reason for requiring ν ≥ 4 in the plain ROM simply disappears in the AGM,
we are able to prove MuSig2 with ν = 2 nonces secure in AGM+ROM.

7

2.5 Concurrent Work: FROST

Concurrently to our work, Komlo and Goldberg [KG20] updated the draft of their threshold Schnorr
signature scheme FROST to rely on a similar idea of using a linear combination of multiple nonces
in order to remove a communication round while achieving security under concurrent sessions.
However, the exact method of combining nonces in FROST is different to MuSig2.

A major difference between MuSig2 and FROST is that the idea is employed in different contexts.
Komlo and Goldberg [KG20] consider the more general threshold signature setting, which inherently
requires an interactive key setup and handling of some possible disruptive signers. We consider
multi-signatures only, but this enables us to focus on features unique to multi-signatures, e.g.,
non-interactive key aggregation.

A second major difference is the cryptographic model. The FROST security proof relies on
a non-standard heuristic which models the hash function (a public primitive) used for deriving
the coefficients for the linear combination as a one-time VRF (a primitive with a secret key)
in the security proof. This treatment requires an additional communication round in FROST
preprocessing stage and to disallow concurrent sessions in this stage, resulting in a modified scheme
FROST-Interactive. As a consequence, the modified FROST-Interactive scheme that is proven secure
differs significantly from the round-efficient FROST scheme that is recommended for deployment.
The proof reduces the security of FROST-Interactive to the DL problem. In contrast, our MuSig2
proofs use the well-established ROM (or alternatively, AGM+ROM) to model the hash function as
a random oracle and rely on the hardness of the OMDL problem.

3 Preliminaries

3.1 Notation and Definitions

Notation. The security parameter is denoted λ. Given a non-empty set S, we denote s←$S
the operation of sampling an element of S uniformly at random and assigning it to s. If A is a
randomized algorithm, we let y ··= A(x1, . . . ; ρ) denote the operation of running A on inputs x1, . . .
and random coins ρ and assigning its output to y, and y ← A(x1, . . .) when coins ρ are chosen
uniformly at random.

Group Description. A group description is a triple (G, p, g) where G is a cyclic group of order p
and g is a generator of G. A (prime-order) group generation algorithm is an algorithm GrGen which
on input 1λ returns a group description (G, p, g) where p is a λ-bit prime. The group G is denoted
multiplicatively, and we conflate group elements and their representation when given as input to
hash functions.

Definition 1 (OMDL Problem). Let (G, p, g) be group parameters. Let DLg(·) be an oracle
taking as input an element X ∈ G and returning x ∈ {0, . . . , p− 1} such that gx = X. An algorithm
A is said to (q, t, ε)-solve the OMDL problem w.r.t. (G, p, g) if on input q + 1 random group
elements X1, . . . , Xq+1, it runs in time at most t, makes at most q queries to DLg(·), and returns
x1, . . . , xq+1 ∈ {0, . . . , p − 1} such that Xi = gxi for all 1 ≤ i ≤ q + 1 with probability at least ε,
where the probability is taken over the random draw of X1, . . . , Xq and the random coins of A.

3.2 Syntax and Security Definition of Multi-Signature Schemes

To keep the notation simple, we make a few simplifying assumptions in the remainder of the paper.
In particular, we restrict our syntax and security model to two-round signing algorithms, and in
order to model that the first round can be preprocessed without having determined a message to be
signed or the public keys of all signers, those two inputs are given only to the second round of the
signing algorithm. It is straightforward to extend our model to signing algorithms with a different
number of rounds or different input handling. Our syntax further assumes that each signer outputs
a signature, but most multi-signature schemes (in particular the one presented in this paper) can
be easily modified so that a single designated participant computes the final signature.

8

Syntax. A multi-signature scheme Σ consists of algorithms (Setup,KeyGen, (Sign,Sign′,Sign′′),
Ver). System-wide parameters par are generated by the setup algorithm Setup taking as input the
security parameter. For notational simplicity, we assume that par is given as input to all other
algorithms and do not denote it explicitly in the following.

The randomized key generation algorithm takes no input and returns a private/public key pair
(sk, pk)←$ KeyGen(). The interactive signature algorithm (Sign,Sign′,Sign′′) is run by each signer
and proceeds in a sequence of three steps (two communication rounds) resulting in the output of a
signature σ as follows:

(msg1, state1)← Sign(sk1)
(msg′1, state′1)← Sign′(state1,m, ((pk2,msg2), . . . , (pkn,msgn)))

σ ← Sign′′(state′1, (msg′2, . . . ,msg′n)).

The deterministic verification algorithm Ver takes a multiset of public keys L = {pk1, . . . , pkn}, a
message m, and a signature σ, and returns 1 if the signature is valid for L and m and 0 otherwise.

Correctness requires that for every λ, every message m, every integer n, and every j ∈ {1, . . . , n},

Pr



par← Setup(1λ)
(ski, pki)← KeyGen(), i = 1 . . . n
(msgi, statei)← Sign(ski), i = 1 . . . n
(msg′i, state′i)← Sign′(statei,m, ((pk1,msg1), . . . , (pki−1,msgi−1),

(pki+1,msgi+1), . . . , (pkn,msgn))), i = 1 . . . n
σ ← Sign′′(state′j , (msg′1, . . . ,msg′j−1,msg′j+1, . . . ,msg′n))
L ··= {pk1, . . . , pkn}
b← Ver(L,m, σ)

: b = 1


is equal to 1.

Security. Our security model is the same as the one of Bellare and Neven [BN06] and requires
that it is infeasible to forge multi-signatures involving at least one honest signer. As in previous
work [MOR01, Bol03, BN06], we assume wlog that there is a single honest signer and that the
adversary has corrupted all other signers, choosing corrupted public keys arbitrarily (and potentially
as a function of the honest signer’s public key).

The security game EUF-CMAAΣ is defined as follows (see also Figure 1). A key pair (sk1, pk1) is
generated for the honest signer and the adversary A gets pk1. The adversary can engage in any
number of (concurrent) signing sessions with the honest signer before returning a forgery attempt.
Formally, A has access to oracles Sign, Sign′, and Sign′′ implementing the three steps of the
signing algorithm with the honest signer’s secret key. Eventually, the adversary returns a multiset of
public keys L = {pk1, . . . , pkn}, a message m, and a signature σ. The game returns 1 (representing
a win of A) if pk1 ∈ L, the forgery is valid, i.e., Ver(L,m, σ) = 1, and the adversary never made a
Sign′ query for multiset L and message m. In addition, if we work in the random oracle model, the
adversary can make arbitrary random oracle queries at any stage of the game.

Security is formally defined as follows.

Definition 2 (EUF-CMA). Let Σ = (Setup,KeyGen, (Sign,Sign′,Sign′′),Ver) be a 2-round multi-
signature scheme. Let game EUF-CMAAΣ be as defined in Figure 1. Then Σ is existentially unforgeable
under chosen-message attacks (EUF-CMA) if for any p.p.t. adversary A,

Adveuf-cma
Σ,A (λ) ··= Pr

[
1← EUF-CMAAΣ(λ)

]
= negl(λ) .

4 Our New Multi-Signature Scheme

4.1 Description

Our new multi-signature scheme MuSig2 is parameterized by a group generation algorithm GrGen
and defined in Figure 2.

9

Game EUF-CMAAΣ(λ)

par← Setup(1λ)
// honest signer has index ’1’

(sk∗, pk∗)← KeyGen() ; (sk1, pk1)← (sk∗, pk∗)
i ··= 0 // session counter

S ··= ∅ ; S′ ··= ∅ // sets of open signing sessions after Sign and Sign′

Q ··= ∅ // set of Sign′() queries

state1 ··= () ; state′1 ··= () // empty vectors for honest signer

(L,m, σ)← ASign,Sign′,Sign′′(pk1)
return pk1 ∈ L ∧ (L,m) /∈ Q ∧ Ver(L,m, σ) = 1

Oracle Sign()

i ··= i+ 1 // increment session counter

S ··= S ∪ {i}
(msg1, state1,i)← Sign(sk1)
return msg1

Oracle Sign′(j,m, ((pk2,msg2), . . . , (pkn,msgn)))

if j /∈ S then return ⊥
(msg′1, state′1,j)← Sign′(state1,j ,m, ((pk2,msg2), . . . , (pkn,msgn)))
L ··= {pk1, . . . , pkn}
Q ··= Q ∪ {(L,m)}
S ··= S \ {j} ; S′ ··= S′ ∪ {j}
return msg′1

Oracle Sign′′(j, (msg′2, . . . ,msg′n)))

if j /∈ S′ then return ⊥
σ ← Sign′′(state′1,j , (msg′2, . . . ,msg′n))
S′ ··= S′ \ {j}
return σ

Fig. 1. The EUF-CMA security game for a multi-signature scheme Σ.

10

Parameters setup. On input 1λ, the setup algorithm Setup runs (G, p, g) ← GrGen(1λ), se-
lects three hash functions8 Hagg, Hnon, and Hsig from {0, 1}∗ to Zp, and returns par ··=
((G, p, g),Hagg,Hnon,Hsig).

Key generation. Each signer generates a random private key x←$ Zp and computes the corre-
sponding public key X = gx.

First signing step (Sign and communication round). Let X1 and x1 be the public and pri-
vate key of a specific signer. For each j ∈ {1, . . . , ν} the signer generates random r1,j ←$ Zp,
computes R1,j = gr1,j , and broadcasts (R1,1, . . . , R1,ν) to all potential cosigners.9

Second signing step (Sign′ and communication round). Let m be the message to sign, let
X2, . . . , Xn be the public keys of other cosigners, and let L = {X1, . . . , Xn} be the multi-
set of all public keys involved in the signing process.10 For i ∈ {1, . . . , n}, the signer com-
putes ai = Hagg(L,Xi) and then the “aggregate” public key X̃ =

∏n
i=1 X

ai
i . Upon recep-

tion of (R2,1, . . . , R2,ν), . . . , (Rn,1, . . . , Rn,ν) from the other cosigners, the signer computes
Rj =

∏n
i=1 Ri,j for each j ∈ {1, . . . , ν}, and then the coefficient vector (b1, . . . , bν) as b1 = 1

and bj = Hnon(j, X̃, (R1, . . . , Rν),m) for j ∈ {2, . . . , ν}. Then it computes

R =
ν∏
j=1

R
bj
j ,

c = Hsig(X̃, R,m),

s1 = ca1x1 +
ν∑
j=1

r1,jbj mod p,

and sends s1 to all other cosigners.
Final signing step (Sign′′). Finally, upon reception of s2, . . . , sn from the other cosigners, the

signer can compute s =
∑n
i=1 si mod p. The signature is σ = (R, s).

Verification. Given a multiset of public keys L = {X1, . . . , Xn}, a message m, and a signature
σ = (R, s), the verifier computes ai = Hagg(L,Xi) for i ∈ {1, . . . , n}, X̃ =

∏n
i=1 X

ai
i , c =

Hsig(X̃, R,m) and accepts the signature if gs = R
∏n
i=1 X

aic
i = RX̃c.

Correctness is straightforward to verify. Note that verification is exactly the same as for standard
key-prefixed Schnorr signatures with respect to the “aggregate” public key X̃ =

∏n
i=1 X

ai
i .

4.2 Practical Considerations

The Choice of the Number ν of Nonces. Since we provide a security proof in the ROM
(Section 5) assuming ν ≥ 4 nonces as well as a second independent proof in the ROM+AGM
(Section 6) assuming ν = 2 nonces, one may wonder about the choice of ν in practice.

Since there is no evidence that MuSig2 is insecure for ν = 2, this is the obvious and most efficient
choice if one is willing to accept the combination of the ROM and the AGM (remember that the
AGM is strictly weaker than the GGM, i.e., it puts fewer restrictions on the adversary as compared
to the GGM). Moreover, our ROM+AGM proof offers a tighter reduction to the OMDL problem.

If one prefers a ROM-only proof instead, then given a choice of p, the concrete security bound in
Theorem 1 guides the choice of ν. In particular, ν must be chosen such that the term 43q4/(p−1)ν−3

is small for a number q of (random oracle plus signing) queries which is appropriate for the desired
security level.

8 Hash function Hagg is used to compute the aggregate key, Hnon is used to aggregate nonces, and Hsig to
compute the signature. These hash functions can be constructed from a single one using proper domain
separation.

9 The cosigners (represented by their public keys) need not yet be determined in the first round.
10 As in [BN06], indices 1, . . . , n are local references to signers, defined within the specific signer instance at

hand.

11

Setup(1λ)

(G, p, g)← GrGen(1λ)
Select three hash functions

Hagg,Hnon,Hsig : {0, 1}∗ → Zp
par ··= ((G, p, g),Hagg,Hnon,Hsig)
return par

KeyGen()

x←$ Zp ; X ··= gx

sk ··= x ; pk ··= X

return (sk, pk)

Ver(L,m, σ)

{X1, . . . , Xn} ··= L

(R, s) ··= σ

X̃ ··=
∏n

i=1 X
Hagg(L,Xi)
i

c ··= Hsig(X̃, R,m)

return (gs = RX̃c)

Sign(sk1)

// Local signer has index 1.

x1 ··= sk1 ; X1 ··= gx1

for j = 1 . . . ν do
r1,j ←$ Zp ; R1,j ··= gr1,j

msg1 ··= (R1,1, . . . , R1,ν)
state1 ··= (x1, r1,1, . . . , r1,ν)
return (msg1, state1)

Sign′(state1,m, ((pk2,msg2), . . . , (pkn,msgn)))

// Sign′ must be called at most once per state1.

(x1, r1,1, . . . , r1,ν) ··= state1

X1 ··= gx1

(R1,1, . . . , R1,ν) ··= (gr1,1, . . . , gr1,ν)
for i = 2 . . . n do
Xi ··= pki ; (Ri,1, . . . , Ri,ν) ··= msgi

L ··= {X1, . . . , Xn}
for i = 1 . . . n do
ai ··= Hagg(L,Xi)

X̃ ··=
∏n

i=1 X
ai
i

for j = 1 . . . ν do
Rj ··=

∏n

i=1 Ri,j

b1 ··= 1
for j = 2 . . . ν do

bj ··= Hnon(j, X̃, (R1, . . . , Rν),m)

R ··=
∏ν

j=1 R
bj
j

c ··= Hsig(X̃, R,m)
s1 ··= ca1x1 +

∑ν

i=1 r1,jbj mod p
state′1 ··= (R, s1) ; msg′1 ··= s1

return (state′1,msg′1)

Sign′′(state′1, (msg′2, . . . ,msg′n))

(R, s1) ··= state′1
for i = 2 . . . n do si ··= msg′i
s ··=

∑n

i=1 si mod p
return σ ··= (R, s)

Fig. 2. The multi-signature scheme MuSig2[GrGen]. Public parameters par returned by Setup are implicitly
given as input to all other algorithms.

12

Deterministic Nonces are Insecure. To protect against failures in the randomness generation,
it is common in practice to derandomize the signing procedure of DL-based signature schemes by
deriving the random values used as exponents for the nonces (r1,j in our case) using a deterministic
pseudorandom function of the secret key and the message instead of drawing the nonces uniformly
at random. However, this technique is in general insecure when applied to multi-signatures, and
Maxwell et al. [MPSW19] describe an attack that applies to essentially all Schnorr multi-signature
schemes in the literature when derandomized naively, including MuSig2. Therefore our signing
protocol requires a secure random number generator for generating the values r1,j . The only
known way to sidestep this issue is to securely derandomize the signing protocol using expensive
zero-knowledge proofs as proposed in the MuSig-DN [NRSW20] scheme.

Statefulness. After executing Sign′ with some state the signer must make sure to never run Sign′
again with the same state. Otherwise, the signer will reuse the nonce, allowing trivial extraction
of the secret key. (Again, similar attacks apply to essentially all Schnorr multi-signature schemes,
except the fully deterministic MuSig-DN [NRSW20].) Guaranteeing correct state transitions may
be difficult in practice if the state is written to persistent storage. In particular, the state may be
reused by accident when restoring a backup or through a deliberate attack on the physical storage.

5 Security of MuSig2 in the ROM

In this section, we establish the security of MuSig2 in the random oracle model.

Theorem 1. Assume that there exists a (t, qs, qh, N, ε)-adversary A against the multi-signature
scheme MuSig2 with ν ≥ 4, group parameters (G, p, g) and with hash functions Hagg, Hnon, Hsig :
{0, 1}∗ → Zp modeled as random oracles. Then there exists an algorithm D which (νqs, t′, ε′)-solves
the OMDL problem for (G, p, g), with

t′ = 4(t+ q(N + 2ν − 2))texp +O(qN)

where q = (ν − 1)(qh + qs) + 1 and texp is the time of an exponentiation in G and

ε′ ≥ ε4

q3 −
11
p
− 43q4

(p− 1)ν−3 .

Before proving the theorem, we start with an informal explanation of the key techniques used in
the proof. Let us recall the security game defined in Section 3.2, adapting the notation to our setting.
Group parameters (G, p, g) are fixed and a key pair (x∗, X∗) is generated for the honest signer.
The target public key X∗ is given as input to the adversary A. Then, the adversary can engage
in protocol executions with the honest signer by providing a message m to sign and a multiset L
of public keys involved in the signing process where X∗ occurs at least once, and simulating all
signers except one instance of X∗.

The Double-Forking Technique. This technique is already used by Maxwell et al. in the
security proof for MuSig [MPSW19]. We are repeating the idea below with slightly modified notation.

The first difficulty is to extract the discrete logarithm x∗ of the challenge public key X∗. The
standard technique for this would be to “fork” two executions of the adversary in order to obtain
two valid forgeries (R, s) and (R′, s′) for the same multiset of public keys L = {X1, . . . , Xn} with
X∗ ∈ L and the same message m such that R = R′, Hsig(X̃, R,m) was programmed in both
executions to some common value hsig, Hagg(L,Xi) was programmed in both executions to the
same value ai for each i such that Xi 6= X∗, and Hagg(L,X∗) was programmed to two distinct
values hagg and h′agg in the two executions, implying that

gs = R(X∗)n
∗hagghsig

∏
i∈{1,...,n}
Xi 6=X∗

X
aihsig
i

gs
′

= R(X∗)n
∗h′agghsig

∏
i∈{1,...,n}
Xi 6=X∗

X
aihsig
i ,

13

where n∗ is the number of times X∗ appears in L. This would allow to compute the discrete
logarithm of X∗ by dividing the two equations above.

However, simply forking the executions with respect to the answer to the query Hagg(L,X∗)
does not work: indeed, at this moment, the relevant query Hsig(X̃, R,m) might not have been made
yet by the adversary,11 and there is no guarantee that the adversary will ever make this same query
again in the second execution, let alone return a forgery corresponding to the same Hsig query. In
order to remedy this situation, we fork the execution of the adversary twice: once on the answer
to the query Hsig(X̃, R,m), which allows us to retrieve the discrete logarithm of the aggregate
public key X̃ with respect to which the adversary returns a forgery, and then on the answer to
Hagg(L,X∗), which allows us to retrieve the discrete logarithm of X∗.

As in Bellare and Neven [BN06], our technical tool to handle forking of the adversary is a
“generalized Forking Lemma” which extends Pointcheval and Stern’s Forking Lemma [PS00] and
which does not mention signatures nor adversaries and only deals with the outputs of an algorithm A
run twice on related inputs. However, the generalized Forking Lemma of Bellare and Neven [BN06]
is not general enough for our setting, and we rely on a slight variant which we state and prove in
Appendix A.

Simulating the Honest Signer. For now, consider the scheme with ν = 1. (We will illustrate
the problem of this choice further down in this section.) The adversary has access to an interactive
signing oracle, which enables it to open sessions with the honest signer. The signing oracle consists of
three sub-oracles Sign, Sign′, and Sign′′ but note that we can wlog ignore Sign′′, which computes
the final signature s =

∑n
i=1 si mod p, because it does not depend on the secret key x∗ and thus

the adversary can simply simulate it locally.
The reduction’s strategy for simulating the signing oracle is to use the DL oracle available

in the formulation of the OMDL problem as follows. Whenever the adversary starts the k-th
signing session by querying Sign, the reduction uses a fresh DL challenge R1,1 from the OMDL
challenger and returns it as its nonce to the adversary. At any later time the adversary queries Sign′
with session counter k, a message m to sign, and n − 1 pairs of public keys and group elements
(X2, R2,1), . . . , (Xn, Rn,1). The reduction then sets L = {X1 = X∗, X2, . . . , Xn}, computes X̃, and
uses the DL oracle in the formulation of the OMDL problem to compute s1 as follows.

R =
n∏
i=1

Ri,1, c = Hsig(X̃, R,m), s1 = DLg(R1,1 + ca1X̃),

It then returns s1 to the adversary. We use a fresh DL challenge as R1,1 in each signing query, and
the reduction will be able to compute its discrete logarithm r1,1 once x∗ has been retrieved via
r1,1 = ca1x

∗ − s1.

Leveraging Two or More Nonces. The main obstacle in the proof and the novelty in this
work is to handle adversaries whose behavior follows this pattern: The adversary initiates a signing
session by querying the oracle Sign to obtain R1,1, then makes a query Hsig(X̃, R,m), for which
it will output a forgery later, and only then continues the signing session with a query to Sign′
with m, ((X2, R2,1), . . . , (Xn, Rn,1)). Our goal is to fork the execution of the adversary at the Hsig
query. But then, the adversary may send different values m, ((X2, R2,1), . . . , (Xn, Rn,1)) in the
two executions. In that case, this results in different signature hashes and requires the reduction
simulating the honest signer to make two DL oracle queries in order to answer the Sign′ query.
Consequently, the reduction will lose the OMDL game because it had only requested the single
OMDL challenge R1,1.

This is exactly where ν ≥ 2 nonces will come to the rescue. Now assume ν = 2, i.e., the reduction
will obtain two (instead of one) group elements R1,1, R1,2 as challenges from the OMDL challenger.
This will allow the reduction to make two DL queries. In order to answer Sign′, the reduction

11 In fact, it is easy to see that the adversary can only guess the value of the aggregate public key X̃
corresponding to L at random before making the relevant queries Hagg(L,Xi) for Xi ∈ L, so that
the query Hsig(X̃, R,m) can only come after the relevant queries Hagg(L,Xi) except with negligible
probability.

14

follows the MuSig2 scheme by computing X̃ from the public keys, and b2 by hashing X̃, m and
all R values of the signing session with Hnon. The reduction then aggregates the nonces of the
honest signer into its effective nonce R̂1 = R1,1R

b2
1,2, queries the signature hash c and replies to the

adversary with s1 = DLg(R̂(X∗)a1c).
Now the reduction is able to make another DLg query to compute s′1 and answer the Sign′

query in the second execution. Moreover, to ensure that the OMDL challenge responses r1,1 and
r1,2 can be computed after extracting x∗, the reduction programs Hnon to give different responses
in each execution after a fork. Let us assume for now that the signing session was started with a
Sign query after the Hagg fork. Then we can distinguish the following two cases depending on when
Hnon is queried with the inputs corresponding to the signing session:

– Hnon is queried after the Hsig fork. Regardless of what values the adversary sends in Sign′,
the second execution will use a value b′2 that is different from b2 in the first execution. In order
to answer the signing query, the reduction uses DLg to compute s′1 resulting in a system of
linear equations with unknowns r1,1 and r1,2:

r1,1 + b2r1,2 = s1 − a1cx
∗ mod p

r1,1 + b′2r1,2 = s′1 − a′1c′x∗ mod p

Because the system is linearly independent (as b2 6= b′2) we can solve for the unknowns and
forward them to the OMDL challenger.

– Hnon is queried before the Hsig fork. This implies that b2 in the first execution is equal to
b′2 in the second execution and requires the reduction to ensure that a′1 and c′ are identical
in both executions. Then the input to the DLg query is also identical and the reduction can
reuse the result of the DLg query from the first execution. Otherwise, the reduction would need
a second DLg query to compute s′1 but would not have a second, independent equation that
allows solving for r1,1 and r1,2.
The value a1 is equal to a′1 because the inputs of Hnon contain X̃ which implies that the
corresponding Hagg happened before Hnon and therefore before the fork. Similarly, Hsig requires
the aggregate nonce R of the signing session and therefore Hnon must be queried before the
corrsponding Hsig. In order to argue that c = c′, observe that from the inputs (and output) of a
Hnon query it is possible to compute the inputs of the Hsig query. Therefore, the reduction can
make such an “internal” Hsig query for every Hnon query it receives. This Hsig query is before
the fork point implying c = c′ as desired. (The reduction does not need to handle the case
that this Hsig query is the fork point, because then the values L and m of forgery were queried
in a signing session and thus the forgery invalid.) Now the reduction has a DLg query left to
compute the discrete logarithm of R1,1, which enables to compute the discrete logarithm of
R1,2 after x∗ has been extracted.

More generally, if the signing session can be started before the Hagg fork, the reduction may have
to provide different signatures in all four executions. To answer the signature queries nonetheless,
the reduction requires four DL queries and therefore can not be applied to MuSig2 with ν < 4.
Similar to the above, if Hnon is queried after Hsig, the reduction ends up with four equations
allowing to compute r1,1, . . . , r1,4 of the signing session if they are linearly independent. Otherwise,
signatures will be identical across executions and the remaining DLg queries are used to set up a
linear system to solve for the unknowns.

Since the coefficients of the linear system are responses to Hnon queries and drawn uniformly
at random, we need to analyze whether the system has a unique solution. For example, if q is
close to √p, then Hnon can be queried often enough that with high probability the adversary can
complete a signing session such that the equations in the linear system are not independent. In this
case, one needs to increase ν even further to ν ≥ 5. This lets the reduction draw additional OMDL
challenges R1,5 = gr1,5 , . . . , Rν = gr1,ν . For each additional challenge we select a coefficient vector
for r1,2, ..., r1,ν that is linearly independent of the existing coefficient row vectors and use a DLg
query to add an equation to the linear system. As with ν = 4 we use one DL query per OMDL
challenge. But because the system now has ν ≥ 5 uniformly random coefficients per equation, the
probability that there are Hnon responses that would make the four equations controlled by the
adversary linearly dependent is negligible, which we can show using Lemma 7.

15

Tagg(L,X∗)
hagg

Tsig(X̃, R,m)

hsig
L,m, (R, s)

h′sig
L,m, (R, s′)h′agg

Tsig(X̃′, R′,m′)

h′′sig
L,m′, (R′, s′′)

h′′′sig
L,m′, (R′, s′′′)

Fig. 3. A possible execution of algorithm D. Each path from the leftmost root to one of the four rightmost
leaves represent an execution of the adversary. Each vertex symbolizes an assignment to tables Tagg or Tsig
used to program Hagg and Hsig, and the edge originating from this vertex symbolizes the value used for
the assignment. Leaves symbolize the forgery returned by the adversary. Only vertices and edges that are
relevant to the forgery are labeled.

5.1 Security Proof

Proof Overview. We first construct a “wrapping” algorithm B which essentially runs the
adversary and returns a forgery together with some information about the adversary execution,
unless some bad events happen.12Algorithm B simulates the random oracles Hagg, Hnon, and Hsig
uniformly at random and the signing oracle by obtaining ν DL challenges from the OMDL challenger
for each Sign query and by making a single query to the DL oracle for each Sign′ query. Then, we
use B to construct an algorithm C which runs the forking algorithm ForkB as defined in Section 3
(where the fork is w.r.t. the answer to the Hsig query related to the forgery), allowing it to return
a multiset of public keys L together with the discrete logarithm of the corresponding aggregate
public key. Finally, we use C to construct an algorithm D computing the DL of the public key of the
honest signer by running ForkC (where the fork is now w.r.t. the answer to the Hagg query related
to the forgery). Throughout the proof, the reader might find helpful to refer to Figure 3 which
illustrates the inner working of D.

Using careful programming of random oracles, it is ensured that the ν DL challenges that B
obtains in each Sign query are identical across all executions of B. Since D (via C and B) obtains
1 + νqs DL challenges (one for the public key of the honest signer and ν for each of the qs signing
sessions) and solved all of these challenges using at most νqs queries to the DL oracle (one for each
of the qs signing session in at most 4 ≤ ν executions due to double-forking), algorithm D solves the
OMDL problem.

Normalizing Assumptions. In all the following, we assume that the adversary never repeats
a query, and only makes “well-formed” queries, meaning that X∗ ∈ L and X ∈ L for any query
Hagg(L,X) and 2 ≤ j ≤ ν for any query Hnon(j, . . .). This is without loss of generality, since “ill-
formed” queries are irrelevant and could simply be answered uniformly at random in the simulation.
Moreover, we assume that the adversary closes every signing session, i.e., for every Sign query it
will also make a corresponding Sign′ query at some point. This is again without loss of generality
because missing Sign′ query could be emulated after the adversary has terminated (using a set
of public keys and a message m which are different from the forgery in the output but otherwise
arbitrary, to make sure not to invalidate a valid forgery). We also assume wlog that the adversary
makes exactly qh queries to each random oracle and opens exactly qs signing sessions.

Lemma 1. Assume that there exists a (t, qs, qh, N, ε)-adversary A in the random oracle model
against the multi-signature scheme MuSig2 with group parameters (G, p, g) and let q = (ν −
1)(qh + qs) + 1. Then there exists an algorithm B that takes as input νqs + 1 uniformly random
12 In particular, we must exclude the case where the adversary is able to find two distinct multisets of public

keys L and L′ such that the corresponding aggregate public keys are equal, since when this happens
the adversary can make a signing query for (L,m) and return the resulting signature σ as a forgery for
(L′,m). Jumping ahead, this will correspond to bad event KeyColl defined in the proof of Lemma 1.

16

group elements X∗, U1, . . . , Uνqs and uniformly random scalars hagg,1, . . . , hagg,q, hnon,1, . . . , hnon,q,
hsig,1, . . . , hsig,q ∈ Zp,13 makes at most qs queries to a discrete logarithm oracle DLg(·), and, with
accepting probability (as defined in Lemma 4) at least

ε− 2q2/p,

outputs (iagg, jagg, isig, jsig, L,R, s,a) where iagg, isig ∈ {1, . . . , q}, jagg, jsig ∈ {0, . . . , q}, L =
{X1, . . . , Xn} is a multiset of public keys such that X∗ ∈ L, a = (a1, . . . , an) ∈ Znp is a tuple
of scalars such that ai = hagg,iagg for any i such that Xi = X∗, and

gs = R

n∏
i=1

X
aihsig,isig
i . (2)

Proof. We construct algorithm B as follows. It initializes three empty sets Tagg, Tnon and Tsig
for storing key-value pairs (k, v), which we write in assignment form “T (k) ··= v” for a set T .
The sets represent tables for storing programmed values for respectively Hagg, Hnon and Hsig. It
also initializes and three counters ctrhagg, ctrhnon, ctrhsig, and ctrs (initially zero) that will be
incremented respectively each time an entry of the form Tagg(·, X∗) is assigned, each time an
assignment is made in Tsig, and each time the adversary makes a Sign query. It also initializes two
flags BadOrder and KeyColl that will help keep track of bad events. In order to keep track of the
open signing sessions, B initializes an empty set Sessions. Then, it picks random coins ρF , runs the
adversary A with the public key X∗ as input and answers its queries as follows.

– Hash query Hagg(L,X): (Recall that by assumption, X∗ ∈ L and X ∈ L.) If Tagg(L,X) is
undefined, then B increments ctrhagg, randomly assigns Tagg(L,X ′)←$ Zp for all X ′ ∈ L\{X∗},
and assigns Tagg(L,X∗) ··= hagg,ctrhagg . Then, it returns Tagg(L,X).

– Hash query Hnon(j, X̃, (R1, . . . , Rν),m): (Recall that by assumption, 2 ≤ j ≤ ν.) If the entry
Tnon(X̃, (R1, . . . , Rν),m) is undefined, then algorithm B assigns Tnon(X̃, (R1, . . . , Rν),m) ··=
(1, hnon,ctrhnon+1, . . . , hnon,ctrhnon+(ν−1)) and increments ctrhnon by ν− 1. B parses (b1, . . . , bν) ··=
Tnon(X̃, (R1, . . . , Rν),m) and computes R ··=

∏ν
i=j R

bj
j , If Tsig(X̃, R,m) is undefined, then B

makes an “internal” query to Hsig(X̃, R,m). Finally it returns bj .
– Hash query Hsig(X̃, R,m): If Tsig(X̃, R,m) is undefined, then B increments ctrhsig and assigns
Tsig(X̃, R,m) ··= hsig,ctrhsig . Then, it returns Tsig(X̃, R,m).

– Signing query Sign(): B increments ctrs, adds ctrs to Sessions, lets k′ ··= ν(ctrs − 1) + 1 and
sends (R1,1 := Uk′ , . . . , R1,ν := Uk′+ν−1) to the adversary.

– Signing query Sign′(k,m, ((pk2,msg2), . . . , (pkn,msgn))): If k /∈ Sessions then the signing query
is answered with ⊥. Otherwise, B removes k from Sessions. Let k′ ··= ν(k − 1) + 1 and
R1,1 := Uk′ , . . . , R1,ν := Uk′+ν−1. Let Xi ··= pki for each i ∈ {2, . . . , n} and let L := {X1 =
X∗, X2, . . . , Xn}. If Tagg(L,X∗) is undefined,14 B makes an “internal” query to Hagg(L,X∗)
which ensures that Tagg(L,Xi) is defined for each i ∈ {1, . . . , n}. It sets ai ··= Tagg(L,Xi) and
computes X̃ :=

∏n
i=1 X

ai
i . Then B sets (Ri,1, . . . , Ri,ν) ··= msgi for each i ∈ {2, . . . , n} and

computes Rj :=
∏n
i=1 Ri,j for each j ∈ {1, . . . , ν}. If Tnon(X̃, (R1, . . . , Rν),m) is undefined,

then B makes an “internal” query to Hnon(2, X̃, (R1, . . . , Rν),m). It sets b1 ··= 1, parses
(b2, . . . , bν) ··= Tnon(X̃, (R1, . . . , Rν),m), aggregates the nonces as R ··=

∏ν
j=1 R

bj
j , and sets c ··=

Hsig(X̃, R,m). (Note that Tsig(X̃, R,m) is defined due to the internal Hsig query when handling
Hnon queries, which also implies that B can save the exponentiations necessary to compute R
using caching.) Finally, B computes the honest signer’s effective nonce R̂1 ··=

∏ν
j=1 R

bj
1,j , sets

s1 ··= DLg(R̂1(X∗)a1c) by querying the DL oracle, and returns s1.
13 Strings hagg,i, hnon,i, hsig,i will be used to answers queries to Hagg, Hnon, Hsig, respectively. B needs at

most q = (ν − 1)(qh + qs) + 1 answers per hash oracle because each hash function query uses up at most
ν − 1 elements, each signing query requires updating the tables corresponding to the hash functions and
thereby uses up at most ν − 1 elements and final verification of the validity of the forgery uses up at
most one element.

14 This is true iff L never appeared in a previous Hagg or signing query.

17

If A returns ⊥, then B outputs ⊥ as well. Otherwise, the adversary returns a purported forgery
(R, s) for a public key multiset L such that X∗ ∈ L and a message m. Then, B parses L as
{X1 = X∗, . . . , Xn} and checks the validity of the forgery as follows. If Tagg(L,X∗) is undefined,
it makes an internal query to Hagg(L,X∗) which ensures that Tagg(L,Xi) is defined for each
i ∈ {1, . . . , n}, sets ai ··= Tagg(L,Xi), and computes X̃ :=

∏n
i=1 X

ai
i . If Tsig(X̃, R,m) is undefined,

it makes an internal query to Hsig(X̃, R,m) and lets c ··= Tsig(X̃, R,m).15If gs 6= RX̃c, i.e., the
forgery is not a valid signature, or if the forgery is invalid because the adversary made a Sign′
query for L and m, B outputs ⊥. Otherwise, it takes the following additional steps. Let

– iagg be the index such that Tagg(L,X∗) = hagg,iagg ,
– jagg be the value of ctrhnon at the moment Tagg(L,X∗) is assigned.
– isig be the index such that Tsig(X̃, R,m) = hsig,isig ,
– jsig be the value of ctrhnon at the moment Tsig(X̃, R,m) is assigned.

B sets BadOrder ··= true and returns ⊥ if the assignment Tagg(L,X∗) ··= hagg,iagg occurred after
the assignment Tsig(X̃, R,m) := hsig,isig . B sets KeyColl ··= true and returns ⊥ if if there exists
another multiset of public keys L′ such that, at the end of the execution, Tagg(L′, X ′) is defined for
each X ′ ∈ L′ and the aggregate keys corresponding to L and L′ are equal. Otherwise, it returns
(iagg, isig, L,R, s,a), where a = (a1, . . . , an). By construction, ai = hagg,iagg for each i such that
Xi = X∗, and the validity of the forgery implies Equation (2).

We now lower bound the accepting probability of B. Since hagg,1, . . . , hagg,q, hnon,1, . . . , hnon,q
and hsig,1, . . . , hsig,q are uniformly random, B perfectly simulates the security experiment to the
adversary. Moreover, when the adversary eventually returns a forgery, B returns a non-⊥ output
unless BadOrder or KeyColl is set to true. Hence, acc(B) ≥ ε− Pr [BadOrder]− Pr [KeyColl] by the
union bound.

It remains to upper bound Pr [BadOrder] and Pr [KeyColl], for which it will be convenient to
introduce the following wording. Note that by construction of B, for any multiset L′ appearing at
some point in the queries of the adversary or in its forgery, assignments Tagg(L′, X ′) for all X ′ ∈ L′
are concomitant and occur the first time L′ appears either in a query to Hagg, or in a signing query,
or in the forgery. We will refer to the set of assignments {Tagg(L′, X ′) ··= a′, X ′ ∈ L′} as the set of
Tagg assignments related to L′. Note that there are at most q sets of Tagg assignments and that
each of them contains a unique assignment Tagg(L′, X∗) ··= hagg,i for some i ∈ {1, . . . , q}.

In order to upper bound the probability that BadOrder is set to true, we upper bound the
probability that some set of Tagg assignments related to some multiset L′ (not necessarily the one
returned in the forgery) results in the aggregate key X̃ ′ corresponding to L′ being equal to the first
argument of a defined entry in table Tsig (which is clearly a necessary condition for BadOrder to be
set to true). Considering the i-th set of Tagg assignments, one has

X̃ ′ = (X∗)n
∗hagg,i · Z

where n∗ ≥ 1 is the number of times X∗ appears in L′ and hagg,i is uniformly random in Zp and
independent of Z which accounts for public keys different from X∗ in L′. Hence, X̃ ′ is uniformly
random in a set of at least p group elements. Since there are always at most q defined entries in
Tsig and at most q sets of Tagg assignments, BadOrder is set to true with probability at most q2/p.

In order to upper bound the probability that KeyColl is set to true, we upper bound the
probability that some set of Tagg assignments related to some multiset L′ (not necessarily the one
returned in the forgery) results in the aggregate key X̃ ′ corresponding to L′ being equal to the
aggregate key X̃ ′′ corresponding to some previous set of Tagg assignments related to some other
multiset L′′ (again, neither L′ nor L′′ need be the multiset returned in the forgery). Since each
aggregate key is uniform in a set of at least p group elements and independent of other aggregate
keys, this happens with probability at most q2/p.

Combining all of the above, we obtain

acc(B) ≥ ε− 2q2/p.

15 In general, we cannot assume that the adversary has made the random oracle queries corresponding to
its forgery attempt, even though the forgery is valid only with negligible probability in this case.

18

Using B, we now construct an algorithm C which returns a multiset of public keys L together
with the discrete logarithm of the corresponding aggregate key.

Lemma 2. Assume that there exists a (t, qs, qh, N, ε)-adversary A in the random oracle model
against the multi-signature scheme MuSig2, group parameters (G, p, g) and let q = (ν−1)(qh+qs)+1.
Then there exists an algorithm C that takes as input νqs + 1 uniformly random group elements
X∗, U1, . . . , Uνqs and uniformly random scalars hagg,1, . . . , hagg,q, hnon,1, h

′
non,1, . . . , hnon,q, h

′
non,q ∈

Zp, makes at most 2qs queries to a discrete logarithm oracle DLg(·), and, with accepting probability
(as defined in Lemma 4) at least

ε2

q
− 4q + 1

p
,

outputs a tuple (iagg, jagg, L,a, x̃) where iagg ∈ {1, . . . , q}, jagg ∈ {0, . . . , q}, L = {X1, . . . , Xn} is
a multiset of public keys such that X∗ ∈ L, a = (a1, . . . , an) ∈ Znp is a tuple of scalars such that
ai = hagg,iagg for any i such that Xi = X∗, and x̃ is the discrete logarithm of X̃ =

∏n
i=1 X

ai
i in

base g.

Proof. Algorithm C runs ForkB with B as defined in Lemma 1 and takes additional steps as described
below. The mapping with notation of our Forking Lemma (Lemma 4 in Appendix A) is as follows:

– X∗, hagg,1, . . . , hagg,q, and U1, . . . , Uνqs play the role of inp,
– hsig,1, . . . , hsig,q play the role of h1, . . . , hq,
– hnon,1, h

′
non,1 . . . , hnon,q, h

′
non,q play the role of v1, v

′
1, . . . , vm, v

′
m,

– (isig, jsig) play the role of (i, j),
– (iagg, jagg, L,R, s,a) play the role of out.

In more details, C picks random coins ρA and runs algorithm B on coins ρA, group elements
X∗, U1, . . . , Uνqs , and scalars hagg,1, . . . , hagg,q, hnon,1, . . . , hnon,q, hsig,1, . . . , hsig,q ∈ Zp, where
hsig,1, . . . , hsig,q are drawn uniformly at random by C. Recall that the values hagg,1, . . . , hagg,q
and hnon,1, . . . , hnon,q are part of the input of C and the former will be the same in both runs of B.
All DL oracle queries made by B are relayed by C to its own DL oracle. If B returns ⊥, C returns ⊥
as well. Otherwise, if B returns a tuple (iagg, jagg, isig, jsig, L,R, s,a), where L = {X1, . . . , Xn} and
a = (a1, . . . , an), C runs B again with the same random coins on input

X∗, U1, . . . , Uνqs ,

hagg,1, . . . , hagg,q,

hnon,1, . . . , hnon,jsig , h
′
non,jsig+1, . . . , h

′
non,q,

hsig,1, . . . , hsig,isig−1, h
′
sig,isig

, . . . , h′sig,q,

where h′sig,isig
, . . . , h′sig,q are uniformly random. If B returns ⊥ in this second run, C returns ⊥

as well. If B returns another tuple (i′agg, jagg, i
′
sig, j

′
sig, L

′, R′, s′,a′), where L′ = {X ′1, . . . , X ′n′}
and a′ = (a′1, . . . , a′n′), C proceeds as follows. Let X̃ =

∏n
i=1 X

ai
i and X̃ ′ =

∏n′

i=1(X ′i)a
′
i denote

the aggregate public keys corresponding to the two forgeries. If isig 6= i′sig, or isig = i′sig and
hsig,isig = h′sig,isig

, then C returns ⊥. Otherwise, if isig = i′sig and hsig,isig 6= h′sig,isig
, we will prove

shortly that necessarily

iagg = i′agg, jagg = jagg, L = L′, R = R′, and a = a′, (3)

which implies in particular that X̃ = X̃ ′. By Lemma 1, the two outputs returned by B are such that

gs = RX̃hsig,isig and gs
′

= R′(X̃ ′)h
′
sig,isig = RX̃

h′sig,isig ,

which allows C to compute the discrete logarithm of X̃ as

x̃ = (s− s′)(hsig,isig − h′sig,isig
)−1 mod p.

Then C returns (iagg, jagg, L,a, x̃).

19

It is easy to see that C returns a non-⊥ output iff ForkB does, so that by Lemma 4 and Lemma 1,
C’s accepting probability is at least

acc(B)
(

acc(B)
q

− 1
p

)
≥ (ε− 2q2/p)2

q
− ε− 2q2/p

p

≥ ε2

q
− ε(4q + 1)

p
+ 2q2(2q + 1)

p2

≥ ε2

q
− 4q + 1

p

It remains to prove the equalities of Equation (3). In B’s first execution, hsig,isig is assigned
to Tsig(X̃, R,m), while is B’s second execution, h′sig,isig

is assigned to Tsig(X̃ ′, R′,m′). Note that
these two assignments can happen either because of a direct query to Hsig by the adversary,
during a query to Hnon, during a Sign′ query, or during the final verification of the validity of the
forgery. Up to these two assignments, the two executions are identical since B runs A on the same
random coins and input, uses the same values hagg,1, . . . , hagg,q for Tagg(·, X∗) assignments, the same
values hsig,1, . . . , hsig,isig−1 for Tsig assignments, and the same values hnon,1, . . . , hnon,jsig for Tnon
assignments, Tagg(·, X 6= X∗) assignments, and DL oracle outputs s1 in Sign′ queries. Since both
executions are identical up to the two assignments Tsig(X̃, R,m) ··= hsig,isig and Tsig(X̃ ′, R′,m′) :=
h′sig,isig

, the arguments of the two assignments must be the same, which in particular implies
that R = R′ and X̃ = X̃ ′. Assume that L 6= L′. Then, since X̃ = X̃ ′, this would mean that
KeyColl is set to true in both executions, a contradiction since B returns a non-⊥ output in both
executions. Hence, L = L′. Since in both executions of B, BadOrder is not set to true, assignments
Tagg(L,X∗) ··= hagg,iagg and Tagg(L′, X∗) := hagg,i′agg

necessarily happened before the fork. This
implies that iagg = i′agg and a = a′.

We are now ready to prove Theorem 1, which we restate below for convenience, by constructing
from C an algorithm D solving the OMDL problem.

Theorem 1. Assume that there exists a (t, qs, qh, N, ε)-adversary A against the multi-signature
scheme MuSig2 with ν ≥ 4, group parameters (G, p, g) and with hash functions Hagg, Hnon, Hsig :
{0, 1}∗ → Zp modeled as random oracles. Then there exists an algorithm D which (νqs, t′, ε′)-solves
the OMDL problem for (G, p, g), with

t′ = 4(t+ q(N + 2ν − 2))texp +O(qN)

where q = (ν − 1)(qh + qs) + 1 and texp is the time of an exponentiation in G and

ε′ ≥ ε4

q3 −
11
p
− 43q4

(p− 1)ν−3 .

Proof. Algorithm D runs ForkC with C as defined in Lemma 2 and takes additional steps as described
below. The mapping with the notation in our Forking Lemma (Lemma 4 in Appendix A) is as
follows:

– X∗, U1, . . . , Uνqs play the role of inp,
– hagg,1, . . . , hagg,q play the role of h1, . . . , hq,
– (hnon,1, h

′
non,1), (h′′non,1, h

′′′
non,1), . . . , (hnon,q, h

′
non,q), (h′′non,q, h

′′′
non,q) play the role of v1, v

′
1, . . . , vm,

v′m,
– (iagg, jagg) play the role of (i, j),
– (L,a, x̃) play the role of out.

In more details, D picks random coins ρB and runs algorithm C on coins ρB, group elements
X∗, U1, . . . , Uνqs , and uniformly random scalars hagg,1, . . . , hagg,q, hnon,1, h

′
non,1, . . . , hnon,q, h

′
non,q ∈

Zp. It relays all DL oracle queries made by C to its own DL oracle, caching the DL oracle replies to
avoid making multiple identical queries. If C returns ⊥, D returns ⊥ as well. Otherwise, if C returns a
tuple (iagg, jagg, L,a, x̃), D runs C again with the same random coins ρB on input X∗, U1, . . . , Uνqs ,

hagg,1, . . . , hagg,iagg−1, h
′
agg,iagg

, . . . , h′agg,q, and

20

hnon,1, h
′
non,1 . . . , hnon,jagg , h

′
non,jagg

, h′′non,jagg+1, h
′′′
non,jagg+1, . . . , h

′′
non,q, h

′′′
non,q,

where h′agg,iagg
, . . . , h′agg,q and h′′non,jagg+1, h

′′′
non,jagg+1, . . . , h

′′
non,q, h

′′′
non,q are uniformly random. If C

returns ⊥ in this second run, D returns ⊥ as well. If C returns another tuple (i′agg, jagg, L
′,a′, x̃′),

D proceeds as follows. Let L = {X1, . . . , Xn}, a = (a1, . . . , an), L′ = {X ′1, . . . , X ′n′}, and a′ =
(a′1, . . . , a′n). Let n∗ be the number of times X∗ appears in L. If iagg 6= i′agg, or iagg = i′agg and
hagg,iagg = h′agg,iagg

, D returns ⊥. Otherwise, if iagg = i′agg and hagg,iagg 6= h′agg,iagg
, then

L = L′ and ai = a′i for each i such that Xi 6= X∗. (4)

By Lemma 2, we have that

gx̃ =
n∏
i=1

Xai
i = (X∗)n

∗hagg,iagg
∏

i∈{1,...,n}
Xi 6=X∗

Xai
i ,

gx̃
′

=
n∏
i=1

X
a′i
i = (X∗)n

∗h′agg,iagg
∏

i∈{1,...,n}
Xi 6=X∗

Xai
i .

Thus, D can compute the discrete logarithm of X∗ as

x∗ = (x̃− x̃′)(n∗)−1(hagg,iagg − h′agg,iagg
)−1 mod p.

We will now prove the equalities in Equation (4). In the two executions of B run within the
first execution of C, hagg,iagg is assigned to Tagg(L,X∗), while in the two executions of B run within
the second execution of C, h′agg,iagg

is assigned to Tagg(L′, X∗). Note that these two assignments
can happen either because of a direct query Hagg(L,X) made by the adversary for some key
X ∈ L (not necessarily X∗), during a signing query, or during the final verification of the validity
of the forgery. Up to these two assignments, the four executions of A are identical since B runs
A on the same random coins and the same input, uses the same values hagg,1, . . . , hagg,iagg−1
for Tagg(·, X∗) assignments, the same values hsig,1, . . . , hsig,q for Tsig assignments, the same values
hnon,1, . . . , hnon,jagg for Tnon assignments, Tagg(·, X 6= X∗) assignments, and the DL oracle outputs s1
in Sign′ queries (note that this relies on the fact that in the four executions of B, BadOrder is not set
to true). Since the four executions of B are identical up to the assignments Tagg(L,X∗) ··= hagg,iagg

and Tagg(L′, X∗) := h′agg,iagg
, the arguments of these two assignments must be the same, which

implies that L = L′. Besides, all values Tagg(L,X) for X ∈ L \ {X∗} are chosen uniformly at
random by B using the same coins in the four executions, which implies that ai = a′i for each i
such that Xi 6= X∗. This shows the equalities in Equation (4).

Recall that D internally ran four executions of B (throughout forking in ForkB as well as
ForkC). Consider a Sign query handled by B, and let i be the index such that the group elements
Ui, . . . , Ui+ν−1 as drawn by D were assigned to R1,1, . . . R1,ν by B when handling this query. In
the corresponding Sign′ query, algorithm B has computed bj for each j ∈ {1, . . . , ν}, ai and c has
queried the DL oracle with

s1 ··= DLg

((
ν∏
j=1

R
bj
1,j

)
(X∗)a1c

)
. (5)

Note that all four executions of B have been passed same group elements Ui, . . . , Ui+ν−1 as input
to be used in Sign signing queries. However, when handling the corresponding Sign′ queries, B
may have made different queries to the DL oracle in the four executions.16 Note however that a DL
query has been made in every execution due to the normalizing assumption that the adversary A
closes every opened signing session.

Algorithm D initializes a flag LinDep representing a bad event and attempts to deduce the
discrete logarithm of all challenges which were used in each Sign query in all four executions of B
as follows. For each Sign query, D proceeds to build a system of ν linear equations in the unknowns
16 For example, the adversary may have replied with different L, m or R values in different executions, or

algorithm B may have received different “hnon” values.

21

r1, . . . , rν . Let P be the partition of the four executions of B where two executions are in the same
component if their b2, . . . , bν variables in the Sign′ query handler were assigned to the same “hnon”
values drawn by D.17 For every k ∈ {1, . . . , |P |} let b(k)

j , s
(k)
1 , a

(k)
1 , c(k) be the bj , s1, a1, c value in

the Sign′ signing queries in the k-th component; we will show below that algorithm B ensures that
these values are the same within all executions in a single component. As a consequence, also the
group elements passed to its DL oracle (see Equation (5)) are identical within every component.
Thus, due to the caching of DL oracle replies in D, algorithm D needed only |P | DL queries to its
own DL oracle to answer the DL oracle queries originating by all four executions of B. Then D has
the following linear equations:

ν∑
j=1

b
(k)
i ri = s

(k)
1 − a(k)

1 c(k)x∗, k ∈ {1, . . . , |P |} (6)

Let b(k) ··= (b(k)
1 , . . . , b

(k)
ν). If the vectors b(1), . . . ,b(|P |) are linearly dependent, then D sets

LinDep ··= true and returns ⊥. Otherwise, it continues to complete the linear system by using
ν − |P | remaining DL queries as follows. For each k ∈ {|P | + 1, . . . , ν}, it picks coefficients b(k)

such that b(1), . . . ,b(ν) are linearly independent and obtains the following equations:
ν∑
j=1

b
(k)
i ri = DLg

(
ν∑
j=1

R
b

(k)
j

1,j

)
, l ∈ {|P |+ 1, . . . , ν} (7)

At this stage, D has a system of ν linear independent equations with ν unknowns. Because the
system is consistent by construction, it has a unique solution r1, . . . , rν , which is computed by D
and provided as output.

It remains to show that if for some given Sign query, two executions of B are in the same
component of P , then B passed the same group element to the DL oracle (see Equation (5)) in the
corresponding Sign′ query in both executions. To this end, we show

bj = b′j for each j ∈ {1, . . . , ν}, a1 = a′1, and c = c′, (8)

where the non-primed and primed terms are the values used in the Sign′ query in the respective
execution. The equality bj = b′j , j ∈ {1, . . . , ν} follows immediately from the fact that the two
executions are in the same component. Moreover, since bj and b′j were assigned to the same hnon
value, both executions of B are identical up to that point.

To prove a1 = a′1 we first note that the aggregate key X̃ is an input in the assignment
bj = Hnon(X̃, (R1, . . . , Rν),m). Because both executions are identical when bj and b′j are assigned,
we have X̃ = X̃ ′. B has not set KeyColl ··= true in either of the executions, which implies that
a1 = a′1.

To see that c = c′, recall that assignments “bj = Hnon(j, X̃, (R1, . . . , Rν),m)” result in set-
ting the table entry Tnon(X̃, (R1, . . . , Rν),m). If entry Tsig(X̃, R,m) had already been set when
Tnon(X̃, (R1, . . . , Rν),m) was set, then c = c′ due to the executions being identical. Otherwise,
if the value Tsig(x̃, R,m) had not already been set when Tnon(X̃, (R1, . . . , Rν),m) was set, then
the internal Hsig query in the Hnon query handler set Tsig(X̃, R,m) exactly when the first query
Hnon(j, X̃, (R1, . . . , Rν),m) for some j was handled. Since B did not receive a forgery which invalid
due to the values m and L from the forgery having been queried in a Sign′ query, the internal Hsig

query was not the Hsig fork point. Therefore, both executions are still identical when Tsig(X̃, R,m)
is set which implies that c = c′. This shows the equalities in Equation (8).

Altogether, D makes |P | DL queries initiated by B (as in Eq. (6)) and ν − |P | additional DL
queries (as in Eq. (7)) per initiated signing session. Thus, the total number of DL queries is then
exactly νqs.

Neglecting the time needed to compute discrete logarithms and solve linear equation systems,
the running time t′ of D is twice the running time of C, which itself is twice the running time
17 For example, all four executions (as visualized in Figure 3) are in the same component if the corresponding
Tnon value was set before the Hagg fork point, and two executions in the same branch of the Hagg fork
are in the same component if the Tnon value was set before the Hsig fork point.

22

of B. The running time of B is the running time t of A plus the time needed to maintain tables
Tagg, Tnon, and Tsig (we assume each assignment takes unit time) and answer signing and hash
queries. The sizes of Tagg, Tnon, and Tsig are at most qN , q, and q respectively. Answering signing
queries is dominated by the time needed to compute the aggregate key as well as the honest signer’s
effective nonce, which is at most Ntexp and (ν − 1)texp respectively. Answering hash queries is
dominated by the time to compute the aggregate nonce which is at most (ν − 1)texp. Therefore,
t′ = 4(t+ q(N + 2ν − 2))texp +O(qN).

Clearly, D is successful iff ForkC returns a non-⊥ answer and LinDep is not set to true. Let T ′non
be the union of the four tables Tnon from the four executions of B.18 The probability that LinDep is
set to true, i.e., that the vectors b(1), . . . ,b(|P |) are linearly dependent in some signing session, is
clearly bounded by the probability that a family of four or fewer linearly dependent vectors can be
found in T ′non. By construction of B, we have |T ′non| ≤ 4q, and thus by Lemma 7 (Appendix B),

Pr [LinDep] ≤ (4q)4

6(p− 1)ν−3 ≤
43q4

(p− 1)ν−3 .

By Lemma 4 and Lemma 2, the success probability of ForkC is at least

acc(ForkC) = acc(C)
(

acc(C)
q
− 1
p

)
≥ (ε2/q − (4q + 1)/p)2

q
− ε2/q − (4q + 1)/p

p

≥ ε4

q3 −
(8 + 2/q)
q · p

− 1
q · p

≥ ε4

q3 −
11
p
.

Altogether, the success probability of D is at least

acc(D) ≥ acc(ForkC)− Pr [LinDep] ≥ ε4

q3 −
11
p
− 43q4

(p− 1)ν−3 .

6 Security of MuSig2 in the ROM + AGM

By assuming the ROM and AGM, we can show the security of MuSig2 with only ν = 2 nonces.
Theorem 2. Assume that there exists an algebraic (t, qs, qh, N, ε)-adversary A against the multi-
signature scheme MuSig2 with ν = 2, group parameters (G, p, g) and hash functions Hagg, Hsig,
Hnon : {0, 1}∗ → Zp modeled as random oracles. Then there exists an algorithm B which (2qs, t′, ε′)-
solves the OMDL problem for (G, p, g), with

t′ = t+O(qN) · texp +O(q3)

where texp is the time of an exponentiation in G and

ε′ ≥ ε− 14q3/p.

Proof. Let A be an algebraic (t, qs, qh, N, ε)-adversary in the EUF-CMAMuSig2 security game. With
respect to the queries made by A, we make the same normalizing assumptions as introduced
in Section 5.1: We assume that the A never repeats a query, and only makes “well-formed” queries,
meaning that X∗ ∈ L and X ∈ L for any query Hagg(L,X) and j = 2 for any query Hnon(j, . . .).
Moreover, we assume that the forger closes every signing session, makes exactly qh queries to each
random oracle and opens exactly qs signing sessions.

Let q = qh + (N + 2)(qs + 1). Consider Figure 4 which specifies Game0 = EUF-CMAAMuSig2(λ).
Since the adversary is algebraic, for each group element Z it outputs (including those con-
tained in queries to random oracles) it returns a representation (α, β, (γ1,k, γ2,k)1≤k≤qs) in basis
(g,X∗, (R(k)

1,1 , R
(k)
1,2)1≤k≤qs) such that

Z = gα(X∗)β
qs∏
k=1

(R(k)
1,1)γ1,k(R(k)

1,2)γ2,k ,

18 For taking unions, recall that we model tables T as sets of pairs (k, v) representing assignments T (k) ··= v.

23

Game EUF-CMAAMuSig2(λ) Game1

(G, p, g)← GrGen(1λ)

x∗ ←$ Zp ; X∗ ··= gx
∗

// X∗ ← U1

x1 ··= x∗ ; X1 ··= X∗

ctr ··= 0 ; S ··= ∅ ; Q ··= ∅
Tagg, Tnon, Tsig ··= ()

Takey ··= () // stores info on agg. keys

(L,m, (R, s))← ASign,Sign′,Hagg,Hnon,Hsig (X1)
if (L,m) ∈ Q then return 0
if X1 /∈ L then return 0

{X1, . . . , Xn} ··= L ; X̃ ··=
∏n

i=1 X
Hagg(L,Xi)
i

c ··= Hsig(X̃, R,m)
return (gs = RX̃c)

Sign()

ctr ··= ctr + 1 ; k ··= ctr ; S ··= S ∪ {k}

r
(k)
1,1 ←$ Zp ; R(k)

1,1 ··= g
r

(k)
1,1 // R(k)

1,1 ← U2k

r
(k)
1,2 ←$ Zp ; R(k)

1,2 ··= g
r

(k)
1,2 // R(k)

1,2 ← U2k+1

return (R(k)
1,1 , R

(k)
1,2)

Sign′(k,m(k), (X(k)
i , (R(k)

i,1 , R
(k)
i,2))2≤i≤n(k))

if k /∈ S then return ⊥

L(k) ··= {X(k)
1 , . . . , X(k)

n }

for i = 1 . . . n do a
(k)
i
··= Hagg(L(k), X

(k)
i)

X̃ ··=
∏n

i=1(X(k)
i)ai

(k)

R1 ··=
∏n

i=1 R
(k)
i,1 ; R2 ··=

∏n

i=1 R
(k)
i,2

b(k) ··= Hnon(2, X̃, (R1, R2),m)

R(k) ··= R1(R2)b
(k)

c(k) ··= Hsig(X̃, R(k),m(k))

s
(k)
1 ··= c(k)a

(k)
1 x1 + r

(k)
1,1 + b(k)r

(k)
1,2 mod p

s
(k)
1 ··= DLg(R(k)

1,1(R(k)
1,2)b

(k)
(X∗)a1c)

Q ··= Q ∪ {(L(k),m(k))} ; S ··= S \ {k}

return s
(k)
1

Hagg(L,X)

// X,X∗ ∈ L by assumption

if Tagg(L,X) = ⊥ then
Tagg(L,X)←$ Zp

for X ′ ∈ L do
Tagg(L,X ′)←$ Zp
{X1 = X∗, (Xi [αi,βi,(γ̃i,1,k,γ̃i,2,k)])2≤i≤n} ··= L

// Xi = g
α̃i (X∗)β̃i

∏qs

k=1
(R(k)

1,1)γ̃i,1,k (R(k)
1,2)γ̃i,2,k

for i = 1 . . . n do
ai ··= Tagg(L,Xi)

X̃ ··=
∏n

i=1 X
ai
i

CheckTagg(X̃, ((a1, . . . , an),
(γ̃i,1,k, γ̃i,2,k)2≤i≤n,1≤k≤qs))

return Tagg(L,X)

Hnon(2, X̃, (R1, R2),m)

if Tnon(X̃, (R1, R2),m) = ⊥ then

Tnon(X̃, (R1, R2),m)←$ Zp

CheckTnon(X̃, (R1, R2),m)
b← Tnon(X̃, (R1, R2),m)
c← Hsig(X̃, R1R

b
2,m)

// compute rep. of R1R
b
2 from those of R1 and R2

return Tnon(X̃, (R1, R2),m)

Hsig(X̃, R,m)

if Tsig(X̃, R,m) = ⊥ then
Tsig(X̃, R,m)←$ Zp

CheckTsig(X̃, R,m)

return Tsig(X̃, R,m)

Fig. 4. Games used in the proof of Theorem 2. Comments in gray show how reduction B simulates Game1.
Procedures CheckTagg, CheckTnon, and CheckTsig are defined in Figures 5–7.

24

Procedure CheckTagg(X̃, ((a1, . . . , an), (γ̃i,1,k, γ̃i,2,k)2≤i≤n,1≤k≤qs))

1 : if Takey(X̃) 6= ⊥
2 : abort game and return 0

3 : Takey(X̃) ··= ((a1, . . . , an), (γ̃i,1,k, γ̃i,2,k)2≤i≤n,1≤k≤qs)
4 : if ∃(R,m) : Tsig(X̃, R,m) 6= ⊥ then
5 : abort game and return 0

6 : if ∃(R1, R2,m) : Tnon(X̃, R1, R2,m) 6= ⊥ then
7 : abort game and return 0
8 : for k = 1 . . . qs do
9 : if ∃i ∈ {2, . . . , n} : γ̃i,1,k 6= 0 then

10 : if γ̃1,k ··=
∑n

i=2 aiγ̃i,1,k = 0 then
11 : abort game and return 0
12 : K1 ··= {k ∈ {1, . . . , qs} : ∃i ∈ {2, . . . , n}, γ̃i,1,k 6= 0}
13 : for

(
(X̃ ′, R′1, R′2,m′), b′

)
∈ Tnon do

14 : if ∃k ∈ K1, i ∈ {2, . . . , n} : γ̃i,2,k − b′γ̃i,1,k 6= 0 then
15 : if θk ··=

∑n

i=2 ai(γ̃i,2,k − b
′γ̃i,1,k) = 0 then

16 : abort game and return 0
17 : for k ∈ K1 do
18 : // check whether there exists a Tnon entry such that θk = 0 holds independently of (a1, . . . , an)

19 : if ∃
(
(X̃ ′, R′1, R′2,m′), b′

)
∈ Tnon : (Takey(X̃ ′) 6= ⊥)

20 : ∧
(
∀i ∈ {2, . . . , n}, γ̃i,2,k − b′γ̃i,1,k = 0

)
then

21 : // such a Tnon entry is necessarily unique

22 : â
(k)
1 ··= Takey(X̃ ′)[1] // first component of Takey(X̃′)

23 : ĉ(k) ··= Tsig(X̃ ′, R′1(R′2)b
′
,m′)

24 : if ∀k ∈ K1, (â(k)
1 , ĉ(k)) 6= ⊥ then

25 : if θ0 ··= a1 +
∑n

i=2 aiβ̃i −
∑

k∈K1
â

(k)
1 ĉ(k)∑n

i=2 aiγ̃i,1,k = 0 then

26 : // a1 is a different random sample than â(k), k ∈ K1, because we did not abort in line 5.

27 : abort game and return 0

Fig. 5. Procedures used to check bad events for a Tagg assignment in Game1.

25

Procedure CheckTnon(X̃ ′, (R′1, R′2),m′)

1 : b′ ··= Tnon(X̃ ′, (R′1, R′2),m′)

2 : if ∃(X̃ ′′, (R′′1 , R′′2),m′′) 6= (X̃ ′, (R′1, R′2),m′) : b′ = Tnon(X̃ ′′, (R′′1 , R′′2),m′′) then
3 : abort game and return 0

4 : for X̃ ∈ Takey do

5 : ((a1, . . . , an), (γ̃i,1,k, γ̃i,2,k)2≤i≤n,1≤k≤qs) ··= Takey(X̃)
6 : for k = 1 . . . qs do

7 : if
(
γ̃1,k ··=

∑n

i=2 aiγ̃i,1,k 6= 0
)
∧
(∑n

i=2 aiγ̃i,2,k − b
′γ̃1,k = 0

)
then

8 : abort game and return 0

9 : for (X̃, R[α,β,(γ1,k,γ2,k)],m) ∈ Tsig do

10 : if Takey(X̃) 6= ⊥ then

11 : c ··= Tsig(X̃, R,m)

12 : ((a1, . . . , an), (γ̃i,1,k, γ̃i,2,k)2≤i≤n,1≤k≤qs) ··= Takey(X̃)
13 : for k = 1 . . . qs do
14 : if ∀i = 2 . . . n : γ̃i,1,k = 0) ∧ (γ1,k 6= 0 then
15 : if c

∑n

i=2 aiγ̃i,2,k + γ2,k − b′γ1,k = 0 then
16 : abort game and return 0
17 : if ∃i ∈ {2, . . . , n} : γ̃i,1,k 6= 0 then

18 : if
(
δ1,k ··= γ1,k + c

∑n

i=2 aiγ̃i,1,k 6= 0
)
∧
(
c
∑n

i=2 aiγ̃i,2,k + γ2,k − b′δ1,k = 0
)

then

19 : abort game and return 0

Fig. 6. Procedures used to check bad events for a Tnon assignment in Game1.

26

Procedure CheckTsig(X̃, R,m)

1 : c ··= Tsig(X̃, R,m)
2 : if Takey(X̃) 6= ⊥ then

3 : ((a1, . . . , an), (γ̃i,1,k, γ̃i,2,k)2≤i≤n,1≤k≤qs) ··= Takey(X̃)
4 : for k = 1 . . . qs do
5 : if ∃i ∈ {2, . . . , n} : γ̃i,1,k 6= 0 then
6 : if (γ̃1,k 6= 0) ∧ (δ1,k ··= γ1,k + cγ̃1,k 6= 0) then
7 : abort game and return 0
8 : if (∀i = 2 . . . n : γ̃i,1,k = 0) ∧ (γ1,k = 0) then
9 : if θk ··=

∑n

i=2 aiγ̃i,2,k 6= 0 ∧ cθk + γ2,k = 0 then
10 : abort game and return 0

11 : for (X̃ ′, (R′1, R′2),m′) ∈ Tnon do

12 : b′ ··= Tnon(X̃ ′, (R′1, R′2),m′)
13 : if

(
θk ··=

∑n

i=2 ai (γ̃i,2,k − b′γ̃i,1,k) 6= 0
)
∧
(
cθk + γ2,k − b′γ1,k = 0

)
then

14 : abort game and return 0
15 : K1 ··= {k ∈ {1, . . . , qs} : ∃i ∈ {2, . . . , n}, γ̃i,1,k 6= 0}
16 : K′1 ··= {k ∈ {1, . . . , qs} : ∀i ∈ {2, . . . , n}, γ̃i,1,k = 0 ∧ γ1,k 6= 0}
17 : for k ∈ K1 ∪K′1 do

18 : if ∃
(
(X̃ ′, R′1, R′2,m′), b′

)
∈ Tnon :

19 : (Takey(X̃ ′) 6= ⊥)

20 : ∧ (X̃ ′, R′1(R′2)b
′
,m′) 6= (X̃, R,m)

21 : ∧
[(
k ∈ K1 ∧ ∀i ∈ {2, . . . , n}, γ̃i,2,k − b′γ̃i,1,k = 0

)
22 : ∨ (k ∈ K′1 ∧ γ2,k − b′γ1,k = 0)

]
then

23 : // such a Tnon entry is necessarily unique

24 : â
(k)
1 ··= Takey(X̃ ′)[1] // first component of Takey(X̃′)

25 : ĉ(k) ··= Tsig(X̃ ′, R′1(R′2)b
′
,m′)

26 : if ∀k ∈ K1 ∪K′1, (â(k)
1 , ĉ(k)) 6= ⊥ then

27 : if θ0 ··= a1 +
∑n

i=2 aiβ̃i −
∑

k∈K1
â

(k)
1 ĉ(k)∑n

i=2 aiγ̃i,1,k 6= 0 then

28 : if cθ0 + β −
∑

k∈K1
â

(k)
1 ĉ(k)γ1,k −

∑
k∈K′1

â
(k)
1 ĉ(k)γ1,k = 0 then

29 : // c is a different random sample than ĉ(k) due to line 20.

30 : abort game and return 0

Fig. 7. Procedures used to check bad events for a Tsig assignment in Game1.

27

where (R(k)
1,1 , R

(k)
1,2) are the nonces returned by the k-th query to Sign(). We denote Z[α,β,(γ1,k,γ2,k)]

such an augmented output and sometimes omit the representation when it is not used in the proof.
By definition,

Advgame0
A (λ) = Adveuf-cma

MuSig2,A(λ). (9)

In order to bound the probability of certain bad events in Game0, we define a game Game1
which differs from Game0 by a number of additional steps and checks as specified in Figures 4–7.
We introduce the following short notation for the events that one of these checks fail and makes
Game1 abort and return 0:

Bad(P,C, I) ··= Game1 aborts in the I-th invocation of procedure P in line C,

and combining all the invocations and code lines

Bad(P) ··=
⋃
I,C

Bad(P,C, I).

Then, since in CheckTagg, the freshly computed value X̃, is random and independent of the other
table keys in Takey, the table keys in Tsig and the table keys in Tnon, we have by code inspection for
each invocation I ∈ {1, . . . , qh} of CheckTagg that

Pr [Bad(CheckTagg, 2, I)] ≤ |Takey|/p ≤ q/p,
Pr [Bad(CheckTagg, 5, I)] ≤ |Tsig|/p ≤ q/p,
Pr [Bad(CheckTagg, 7, I)] ≤ |Tnon|/p ≤ q/p.

Furthermore, since in CheckTagg, the freshly computed value an (n 6= 1) is random and independent
from any state, we have by code inspection for each invocation I ∈ {1, . . . , qh} of CheckTagg that

Pr [Bad(CheckTagg, 11, I)] ≤ qs/p ≤ q/p,
Pr [Bad(CheckTagg, 16, I)] ≤ |Tnon| qs/p ≤ q2/p.

and similarly, since the freshly computed value a1 is random and independent from any state,

Pr [Bad(CheckTagg, 27, I)] ≤ 1/p.

CheckTagg is invoked at most qh +N(qs + 1) ≤ q times because Hagg is invoked at most qh times by
the adversary, at most N times when Game1 verifies the forgery, and at most Nqs times in Sign′.
Thus, by the union bound

Pr [Bad(CheckTagg)] ≤ qh(5q2 + 1) ≤ 6q3. (10)

Since in CheckTnon, the freshly assigned Tnon value b′ is random and independent of the other
Tnon values, we have by code inspection for each invocation I ∈ {1, . . . , qh} of CheckTnon that

Pr [Bad(CheckTnon, 3, I)] ≤ |Tnon|/p ≤ q/p,
Pr [Bad(CheckTnon, 8, I)] ≤ |Takey| qs/p ≤ q2/p,

Pr [Bad(CheckTnon, 16, I)] ≤ |Tsig| qs/p ≤ q2/p,

Pr [Bad(CheckTnon, 19, I)] ≤ |Tsig| qs/p ≤ q2/p.

CheckTnon is invoked at most qh + qs ≤ q times because Hnon is invoked at most qh times by the
adversary, and at most qs times in Sign′. Thus, by the union bound

Pr [Bad(CheckTnon)] ≤ (qh + qs)(4q2)/p ≤ 4q3/p. (11)

Since in CheckTsig, the freshly assigned Tsig value c is random and independent of the other
Tsig values, we have by code inspection for each invocation I ∈ {1, . . . , qh} of CheckTsig that

Pr [Bad(CheckTsig, 7, I)] ≤ qs/p ≤ q/p,

28

Pr [Bad(CheckTsig, 10, I)] ≤ qs/p ≤ q/p,
Pr [Bad(CheckTsig, 14, I)] ≤ qs |Tnon|/p ≤ q2/p,

Pr [Bad(CheckTsig, 30, I)] ≤ 1/p.

CheckTsig is invoked at most qh + qs + 1 ≤ q times because Hsig is invoked at most qh times by the
adversary, at most once for every invocation of Sign′, and once when Game1 verifies the forgery.
Thus, by the union bound

Pr [Bad(CheckTsig)] ≤ (qh + qs + 1)(3q2 + 1)/p ≤ 4q3/p. (12)

Let
Bad = Bad(CheckTagg) ∪ Bad(CheckTnon) ∪ Bad(CheckTsig).

Combining Equations (10), (11), and (12), we have by the union bound

Pr [Bad] ≤ 14q3/p

and by the fundamental lemma of game hopping

Advgame1
A (λ) ≥ Advgame0

A (λ)− Pr [Bad]
≥ Advgame0

A (λ)− 14q3/p.
(13)

Now we define an algorithm B which solves the OMDL problem whenever Game1 returns 1. On
input ((G, p, g), (U1, . . . U2qs+1)), where U1, . . . , U2qs+1 are the OMDL challenge elements, it sets
X∗ = U1 and runs A on input X∗.

Algorithm B simulates Game0
19 without knowledge of the discrete logarithm x∗ of X∗ as follows

(see comments in Figure 4): when A makes the k-th Sign query, B sets R1,1 = U2k and R1,2 = U2k+1;
it then simulates Sign′ without knowledge of x∗ by querying its DL oracle available from the OMDL
problem (analogous to algorithm B from Section 5).

When A returns its forgery (L,M, (R, s)), algorithm B proceeds as follows. Since A is alge-
braic, whenever it queries oracle Hagg then for every key Xi ∈ L it provides a representation
(α̃i, β̃i, γ̃i,1,1, γ̃i,2,1, . . . , γ̃i,1,qs , γ̃i,2,qs) ∈ Z2+2qs

p in basis (g,X∗, R(1)
1,1, R

(1)
2,1, . . . , R

(qs)
1,1 , R

(qs)
2,1) such that

Xi = gα̃i(X∗)β̃i
qs∏
k=1

(R(k)
1,1)γ̃i,1,k(R(k)

1,2)γ̃i,2,k .

Using the representations of Xi, B computes a representation of X̃ = (X∗)a1 ·
∏n
i=2 X

ai
i :

X̃ = gα̃(X∗)β̃
qs∏
k=1

(R(k)
1,1)γ̃1,k(R(k)

1,2)γ̃2,k (14)

where

α̃ =
n∑
i=2

aiα̃i mod p, (15)

β̃ = a1 +
n∑
i=2

aiβ̃i mod p, (16)

γ̃1,k =
n∑
i=2

aiγ̃i,1,k mod p for all k ∈ {1, . . . , qs}, (17)

γ̃2,k =
n∑
i=2

aiγ̃i,2,k mod p for all k ∈ {1, . . . , qs}. (18)

19 We use Game1 only to bound Pr [Bad]. Algorithm B simulates Game0 and does not (need to) perform
the additional checks introduced in Game1.

29

Similarly, A gives a representation (α, β, γ1,1, γ2,1 . . . , γ1,qs , γ2,qs) ∈ Z2+2qs
p of R when querying

Hsig:

R = gα(X∗)β
qs∏
k=1

(R(k)
1,1)γ1,k(R(k)

1,2)γ2,k . (19)

Validity of the forgery implies that gs = RX̃c, which together with (14) and (19) yields

gs = gα+cα̃(X∗)β+cβ̃
qs∏
k=1

(R(k)
1,1)γ1,k+cγ̃1,k(R(k)

1,2)γ2,k+cγ̃2,k . (20)

Similarly, validity of the partial signature s(k)
1 returned in the k-th signing session yields

gs
(k)
1 = R

(k)
1,1(R(k)

1,2)b
(k)

(X∗)a
(k)
1 c(k)

for all k ∈ {1, . . . , qs}. (21)

Combining (20) and (21), A obtains a linear system with qs + 1 equations and 2qs + 1 unknowns
x∗, r

(1)
1,1, r

(1)
1,2, . . . , r

(qs)
1,1 , r

(qs)
1,2 which are the discrete logarithms of X∗, R(1)

1,1, R
(1)
1,2, . . . , R

(qs)
1,1 , R

(qs)
1,2 re-

spectively:

s− α− cα̃ = (β + cβ̃)x∗ +
qs∑
k=1

(γ1,k + cγ̃1,k)r(k)
1,1 + (γ2,k + cγ̃2,k)r(k)

1,2

s
(1)
1 = a

(1)
1 c(1)x∗ + r

(1)
1,1 + b(1)r

(1)
1,2

...

s
(qs)
1 = a

(qs)
1 c(qs)x∗ + r

(qs)
1,1 + b(qs)r

(qs)
1,2 .

The coefficient matrix M of this linear system is

M =


δ1,1 δ2,1 · · · δ1,qs δ2,qs β + cβ̃

1 b(1) 0 · · · 0 a
(1)
1 c(1)

. .

0 · · · 0 1 b(qs) a
(qs)
1 c(qs)

 (22)

where
δ1,k ··= γ1,k + cγ̃1,k and δ2,k ··= γ2,k + cγ̃2,k, k ∈ {1, . . . , qs}. (23)

We will prove in Lemma 3 below that when Game1 returns 1, then necessarily this matrix has rank
qs + 1. Hence, B is able to compute x∗, r(1)

1,1, r
(1)
1,2, . . . , r

(qs)
1,1 , r

(qs)
1,2 by solving the linear system after

querying the DL oracle qs times to add qs equations to the system such that the system has a
unique solution. This is possible because the system is consistent by construction and the existing
coefficient vectors are linearly independent. More specifically, for every j ∈ {1, . . . , qs}, B chooses
a coefficient vector vj = (vj,0, v(1)

j,1 , v
(1)
j,2 , . . . , v

(qs)
j,1 , v

(qs)
j,2) ∈ Z2qs+1

p such that the vector is linearly
independent of the rows of coefficient matrix and adds the following equation to the linear system:

DLg

(
(X∗)vj,0

qs∏
k=1

(R(k)
1,1)v

(k)
j,1 (R(k)

1,2)v
(k)
j,2

)
= vj ·


x∗

r
(1)
1,1
...

r
(qs)
1,2

 .

This allows B to solve the linear system and output the solution x∗, r(1)
1,1, r

(1)
1,2, . . . , r

(qs)
1,1 , r

(qs)
1,2 to the

OMDL problem. In total, B queried the DL oracle qs times to answer signing queries and qs times
to complete the linear system, which totals 2qs DL oracle queries.

Algorithm B succeeds whenever Game0 returns 1 and the matrix M defined by Equation (22)
has rank qs + 1. By Lemma 3, these two conditions are necessarily fulfilled whenever Game1 returns
1. (Recall that Game0 and Game1 are identical unless Game1 aborts and returns 0 early). By
Equations (9) and (13), the success probability of B is

30

ε′ ≥ Advgame1
A (λ) ≥ Advgame0

A (λ)− 14q3/p = ε− 14q3/p.

The running time t′ of B is the running time t of A plus the time needed to maintain tables Tagg,
Tnon, and Tsig (we assume each assignment takes unit time), answer signing and hash queries, and
solve the linear equation system. All tables have size in O(qN), and B needs O(qsN)texp = O(qN)texp
time to compute the aggregate key and the effective nonces when simulating signatures and answering
Hagg queries, where texp is the time to compute an exponentiation in G. Solving the linear equation
system takes time in O(q3

s). Thus

t′ = t+O(qN) · texp +O(q3).

This concludes the proof.

Lemma 3. Consider an execution of Game1 which returns 1. Then matrix M defined by Equa-
tion (22) has rank qs + 1.

Proof. Subtracting b(k) times the 2k − 1-th column from the 2k-th column, k = 1, . . . , qs, and
a

(k)
i c(k) times the 2k − 1-th column from the last column, k = 1, . . . , qs, yields

δ1,1 ζ1 · · · δ1,qs ζqs η
1 0 0 · · · 0 0
.
0 · · · 0 1 0 0


where ζk ··= δ2,k − b(k)δ1,k and

η ··= β + cβ̃ −
qs∑
k=1

a
(k)
1 c(k)δ1,k.

By reordering the columns, we obtain
η ζ1 · · · ζqs δ1,1 δ1,2 · · · δ1,qs
0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 0 1 · · · 0
.
0 0 · · · 0 0 0 · · · 1

 .

Being in row echelon form, we see that the system has rank < qs + 1 if and only if the left qs + 1
coefficients of the first row are all zero, i.e.,

0 = β + cβ̃ −
qs∑
k=1

a
(k)
1 c(k)δ1,k (24)

0 = δ2,k − b(k)δ1,k for k ∈ {1, . . . , qs}. (25)

By (16), (17), (18), and (23), these equations are equivalent to

0 = c

(
a1 +

n∑
i=2

aiβ̃i −
qs∑
k=1

a
(k)
1 c(k)

n∑
i=2

aiγ̃i,1,k︸ ︷︷ ︸
··=θ0

)
+ β −

qs∑
k=1

a
(k)
1 c(k)γ1,k (26)

0 = c

(
n∑
i=2

ai

(
γ̃i,2,k − b(k)γ̃i,1,k

)
︸ ︷︷ ︸

··=θk

)
+ γ2,k − b(k)γ1,k for k ∈ {1, . . . , qs}. (27)

Assume that (26) and (27) hold at the end of the execution. We show that necessarily, one of the
bad events leading to Game1 returning 0 must have happened, a contradiction. Consider all Tagg,
Tnon, and Tsig table entries that appear in (26) and (27). These are:

31

– ai = Tagg(L,Xi), i ∈ {1, . . . , n}
– c = Tsig(X̃, R,m)
– a

(k)
1 = Tagg(L(k), X1), k ∈ {1, . . . , qs}

– b(k) = Tnon(X̃(k), (R(k)
1 , R

(k)
2),m(k)), k ∈ {1, . . . , qs}

– c(k) = Tsig(X̃(k), R(k),m(k)), k ∈ {1, . . . , qs}.

We will show that some bad event necessarily happened during the random assignment of one of
these table values.

Claim. For an execution of Game1 which returns 1, the following properties holds:

(P1) when the assignment of Tsig(X̃, R,m) occurs, Takey(X̃) 6= ⊥;
(P2) for every k ∈ {1, . . . , qs}, one has (X̃(k), R(k),m(k)) 6= (X̃, R,m)
(P3) for every k ∈ {1, . . . , qs}, one has (∃i ∈ {2, . . . , n} : γ̃i,1,k 6= 0)⇒ (γ̃1,k 6= 0);
(P4) for every k ∈ {1, . . . , qs}, one has (∃i ∈ {2, . . . , n} : γ̃i,1,k 6= 0)⇒ (δ1,k 6= 0);
(P5) for every k ∈ {1, . . . , qs}, when the assignment of Tnon(X̃(k), (R(k)

1 , R
(k)
2),m(k)) occurs,

Takey(X̃(k)) 6= ⊥.

Proof. We prove each item in turn.

(P1) Assume that Takey(X̃) = ⊥ when the assignment of Tsig(X̃, R,m) occurs. Since for the forgery,
Takey(X̃) 6= ⊥ at the end of the execution, Game1 would necessarily have returned 0 at
line 5 of CheckTagg(X̃, . . .), which would necessarily have been called after the assignment of
Tsig(X̃, R,m).

(P2) Assume that ∃k ∈ {1, . . . , qs} : (X̃(k), R(k),m(k)) = (X̃, R,m). Since the forgery is valid, we
have (L,m) /∈ Q, where Q = {(L(k),m(k)) : k ∈ {1, . . . , qs}}). Since m(k) = m, we have
L(k) 6= L. Since additionally X̃(k) = X̃, Game1 would have necessarily have returned 0 at
line 2 of the later of the two invocations CheckTagg(X̃, . . .) and CheckTagg(X̃(k), . . .).

(P3) Assume that (∃i ∈ {2, . . . , n} : γ̃i,1,k 6= 0) and γ̃1,k = 0. Then Game1 would necessarily have
returned 0 at line 11 of CheckTagg(X̃, . . .).

(P4) Assume that (∃i ∈ {2, . . . , n} : γ̃i,1,k 6= 0) and δ1,k = 0. By (P3), we have that γ̃1,k 6= 0. Hence,
Game1 would necessarily have returned 0 at line 7 of CheckTsig(X̃, R,m).

(P5) Assume that Takey(X̃(k)) = ⊥ when the assignment of Tnon(X̃(k), (R(k)
1 , R

(k)
2),m(k)) occurs.

Since for the k-th signing session, Takey(X̃(k)) 6= ⊥ at the end of the execution, Game1 would
necessarily have returned 0 at line 7 of CheckTagg(X̃(k), . . .), which would necessarily have
been called after the assignment of Tnon(X̃(k), (R(k)

1 , R
(k)
2),m(k)).

This proves the claim. �

In all the following, we let

K0 ··= {k ∈ {1, . . . , qs} : ∀i ∈ {2, . . . , n}, γ̃i,1,k = 0}
K1 ··= {k ∈ {1, . . . , qs} : ∃i ∈ {2, . . . , n}, γ̃i,1,k 6= 0}.

Note that {1, . . . , qs} is the disjoint union of K0 and K1 and that

θ0 = a1 +
n∑
i=2

aiβ̃i −
∑
k∈K1

a
(k)
1 c(k)

n∑
i=2

aiγ̃i,1,k.

We distinguish two cases depending on the values of θk, k ∈ {1, . . . , qs} at the end of the
execution:

1. θk = 0 for all k ∈ {1, . . . , qs}; we distinguish the following sub-cases:
(a) there exists k ∈ K1 such that Tnon(X̃(k), (R(k)

1 , R
(k)
2),m(k)) was randomly assigned after

Takey(X̃): then by (P3), γ̃1,k 6= 0 so that CheckTnon would have aborted and returned 0 at
line 8;

32

(b) for all k ∈ K1, Tnon(X̃(k), (R(k)
1 , R

(k)
2),m(k)) was randomly assigned before Takey(X̃): then

we distinguish the following sub-cases (below we let b(k) = Tnon(X̃(k), (R(k)
1 , R

(k)
2),m(k))):

i. there exists k ∈ K1 and i ∈ {2, . . . , n} such that γ̃i,2,k − b(k)γ̃i,1,k 6= 0; then CheckTagg
would have aborted and returned 0 at line 16.

ii. for all k ∈ K1 and all i ∈ {2, . . . , n}, γ̃i,2,k − b(k)γ̃i,1,k = 0; (then note that θk = 0
trivially holds for k ∈ K1); again we distinguish:
A. θ0 = 0; then, by (P5), we have Takey(X̃(k)) 6= ⊥ when the entry Tnon(X̃(k), (R(k)

1 , R
(k)
2),

m(k)) is assigned, so that Game1 would necessarily have returned 0 at line 27 of
CheckTagg(X̃, . . .);

B. θ0 6= 0; let
K ′1 ··= {k ∈ K0 : γ1,k 6= 0}.

Then (26) is equivalent to

0 = cθ0 + β −
∑
k∈K1

a
(k)
1 c(k)γ1,k −

∑
k∈K′1

a
(k)
1 c(k)γ1,k,

while for k ∈ K ′1, (27) is equivalent to

0 = c

n∑
i=2

aiγ̃i,2,k + γ2,k − b(k)γ1,k.

We distinguish:
– there exists k ∈ K ′1 such that Tnon(X̃(k), (R(k)

1 , R
(k)
2),m(k)) was randomly assigned

after Tsig(X̃, R,m); Then by (P5), Game1 would necessarily have returned 0 at
line 16 in the invocation of CheckTnon(X̃(k), (R(k)

1 , R
(k)
2),m(k)).

– for all k ∈ K ′1, Tnon(X̃(k), (R(k)
1 , R

(k)
2),m(k)) was randomly assigned before

Tsig(X̃, R,m); Then by (P1) and (P2), Game1 would necessarily have returned 0
at line 30 of CheckTsig(X̃, R,m).

2. θk 6= 0 for some k ∈ {1, . . . , qs}; we distinguish the following sub-cases:
(a) Tsig(X̃, R,m) was randomly assigned after Tnon(X̃(k), (R(k)

1 , R
(k)
2),m(k)); then, by (P1),

Takey(X̃) 6= ⊥ when Tsig(X̃, R,m)←$ Zp occurs, so that Game1 would have returned 0 at
line 14 of CheckTsig;

(b) Tnon(X̃(k), (R(k)
1 , R

(k)
2),m(k)) was randomly assigned after Tsig(X̃, R,m); again we distin-

guish:
i. if γ̃i,1,k = 0 for all i ∈ {2, . . . , n} and γ1,k = 0, then Game1 would have returned 0 at

line 10 of CheckTsig;
ii. if γ̃i,1,k = 0 for all i ∈ {2, . . . , n} and γ1,k 6= 0, then Game1 would have returned 0 at

line 16 of CheckTnon;
iii. if (∃i ∈ {2, . . . , n} : γ̃i,1,k 6= 0), then by (P4) one has δ1,k 6= 0 so that Game1 would have

returned 0 at line 19 of CheckTnon.

Hence, in all cases we obtain a contradiction, which concludes the proof.

Acknowledgments

We thank Julian Loss, Greg Maxwell, and Pieter Wuille for their helpful comments and suggestions.
We also thank Chelsea Komlo and Ian Goldberg for insightful discussions about multi-signatures
and threshold signatures and for helping us understand the relation of our work to theirs [KG20].

References

[BCJ08] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures secure under
the discrete logarithm assumption and a generalized forking lemma. In Peng Ning, Paul F.
Syverson, and Somesh Jha, editors, ACM CCS 2008, pages 449–458. ACM Press, October
2008.

33

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II,
volume 11273 of LNCS, pages 435–464. Springer, Heidelberg, December 2018.

[BLOR20] Fabrice Benhamouda, Tancrède Lepoint, Michele Orrù, and Mariana Raykova. On the
(in)security of ROS. Cryptology ePrint Archive, Report 2020/945, 2020. Available at http:
//eprint.iacr.org/2020/945.pdf.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general
forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati,
editors, ACM CCS 2006, pages 390–399. ACM Press, October / November 2006.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The one-
more-RSA-inversion problems and the security of Chaum’s blind signature scheme. Journal
of Cryptology, 16(3):185–215, June 2003.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume
2567 of LNCS, pages 31–46. Springer, Heidelberg, January 2003.

[BP02] Mihir Bellare and Adriana Palacio. GQ and Schnorr identification schemes: Proofs of se-
curity against impersonation under active and concurrent attacks. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 162–177. Springer, Heidelberg, August 2002.

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, Heidelberg, August 1993.

[DEF+19] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and
Igors Stepanovs. On the security of two-round multi-signatures. In 2019 IEEE Symposium on
Security and Privacy, pages 1084–1101. IEEE Computer Society Press, May 2019.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992
of LNCS, pages 33–62. Springer, Heidelberg, August 2018.

[FPS20] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr signatures and signed
ElGamal encryption in the algebraic group model. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 63–95. Springer, Heidelberg, May
2020.

[HMP95] Patrick Horster, Markus Michels, and Holger Petersen. Meta-multisignature schemes based
on the discrete logarithm problem. In IFIP/Sec ’95, IFIP Advances in Information and
Communication Technology, pages 128–142. Springer, 1995.

[IN83] K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital multisignatures.
NEC Research and Development, 71:1–8, 1983.

[KG20] Chelsea Komlo and Ian Goldberg. FROST: Flexible Round-Optimized Schnorr Threshold
Signatures. IACR Cryptology ePrint Archive, Report 2020/852, 2020. Available at https:
//eprint.iacr.org/2020/852.

[Lan96] Susan K. Langford. Weakness in some threshold cryptosystems. In Neal Koblitz, editor,
CRYPTO’96, volume 1109 of LNCS, pages 74–82. Springer, Heidelberg, August 1996.

[MH96] Markus Michels and Patrick Horster. On the risk of disruption in several multiparty signature
schemes. In Kwangjo Kim and Tsutomu Matsumoto, editors, ASIACRYPT’96, volume 1163
of LNCS, pages 334–345. Springer, Heidelberg, November 1996.

[MOR01] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures: Ex-
tended abstract. In Michael K. Reiter and Pierangela Samarati, editors, ACM CCS 2001,
pages 245–254. ACM Press, November 2001.

[MPSW18] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple Schnorr multi-
signatures with applications to Bitcoin. 2018. Preliminary obsolete version of [MPSW19]
claiming the security of an insecure two-round scheme. Preserved at https://eprint.iacr.org/
2018/068/20180118:124757.

[MPSW19] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple Schnorr
multi-signatures with applications to Bitcoin. Des. Codes Cryptogr., 87(9):2139–2164, 2019.
Available at https://eprint.iacr.org/2018/068.pdf.

[MWLD10] Changshe Ma, Jian Weng, Yingjiu Li, and Robert H. Deng. Efficient discrete logarithm based
multi-signature scheme in the plain public key model. Des. Codes Cryptogr., 54(2):121–133,
2010.

[Nic19] Jonas Nick. Insecure shortcuts in musig, 2019. Available at https://medium.com/blockstream/
insecure-shortcuts-in-musig-2ad0d38a97da.

[NRSW20] Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. MuSig-DN: Two-round Schnorr
multi-signatures with verifably deterministic nonces. In ACM Conference on Computer and
Communications Security - CCS 2020, 2020. Available at https://eprint.iacr.org/2020/1057.
pdf.

34

http://eprint.iacr.org/2020/945.pdf
http://eprint.iacr.org/2020/945.pdf
https://eprint.iacr.org/2020/852
https://eprint.iacr.org/2020/852
https://eprint.iacr.org/2018/068/20180118:124757
https://eprint.iacr.org/2018/068/20180118:124757
https://eprint.iacr.org/2018/068.pdf
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://eprint.iacr.org/2020/1057.pdf
https://eprint.iacr.org/2020/1057.pdf

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, June 2000.

[RY07] Thomas Ristenpart and Scott Yilek. The power of proofs-of-possession: Securing multiparty
signatures against rogue-key attacks. In Moni Naor, editor, EUROCRYPT 2007, volume 4515
of LNCS, pages 228–245. Springer, Heidelberg, May 2007.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, January 1991.

[Sch01] Claus-Peter Schnorr. Security of blind discrete log signatures against interactive attacks. In
Sihan Qing, Tatsuaki Okamoto, and Jianying Zhou, editors, ICICS 01, volume 2229 of LNCS,
pages 1–12. Springer, Heidelberg, November 2001.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May
1997.

[STV+16] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic, Linus Gasser,
Nicolas Gailly, Ismail Khoffi, and Bryan Ford. Keeping authorities “honest or bust” with
decentralized witness cosigning. In 2016 IEEE Symposium on Security and Privacy, pages
526–545. IEEE Computer Society Press, May 2016.

[Wag02] David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO 2002, volume
2442 of LNCS, pages 288–303. Springer, Heidelberg, August 2002.

[WNR20] Pieter Wuille, Jonas Nick, and Tim Ruffing. Schnorr signatures for secp256k1. Bitcoin
Improvement Proposal 340, 2020. See https://github.com/bitcoin/bips/blob/master/bip-0340.
mediawiki.

A A Generalized Forking Lemma

As in Bellare and Neven [BN06], our security proof relies on a “generalized Forking Lemma”
extending Pointcheval and Stern’s Forking Lemma [PS00] and which does not mention signatures
nor forgers and only deals with the outputs of an algorithm A run twice on related inputs. However,
the generalized Forking Lemma of Bellare and Neven [BN06] is not general enough for our setting. In
short, in BN’s lemma, only the values hi, . . . , hq (i.e., the post-fork responses used by the reduction
for the random oracle Hsig) are refreshed in the second execution of A, whereas we need to refresh
others part of the input of A. In particular, our reduction must obtain fresh OMDL challenges,
used as nonces R1,1, . . . R1,ν sent by the honest signer in signing sessions as well as fresh bitstrings
b1, . . . , bν used as responses for the random oracle Hnon, after the two executions of A have forked.

Lemma 4. Fix integers q and m. Let A be a randomized algorithm which takes as input some main
input inp following some unspecified distribution, elements h1, . . . , hq from some finite non-empty
set H, and elements v1, . . . , vm from some finite non-empty set V , and returns either a distinguished
failure symbol ⊥, or a tuple (i, j, out), where i ∈ {1, . . . , q}, j ∈ {0, . . . ,m}, and out is some side
output. The accepting probability of A, denoted acc(A), is defined as the probability, over the random
draws of inp, h1, . . . , hq ←$H as well as v1, . . . , vm←$V , and the random coins of A, that A returns
a non-⊥ output. Consider algorithm ForkA, taking as input inp and v1, v

′
1, . . . , vm, v

′
m ∈ V , described

on Figure 8. Let frk be the probability (over the draw of inp, v1, v
′
1, . . . , vm, v

′
m←$V , and the random

coins of ForkA) that ForkA returns a non-⊥ output. Then

frk ≥ acc(A)
(

acc(A)
q

− 1
|H|

)
.

The proof of the lemma is very similar to the one of [BN06, Lemma 1]. As in [BN06], we will
need the following two lemmas which are consequences of Jensen’s inequality.

Lemma 5. Let Y be a real-valued random variable. Then E[Y 2] ≥ E[Y]2.

Lemma 6. Let q ≥ 1 be an integer and y1, . . . , yq ≥ 0 be real numbers. Then

q∑
i=1

y2
i ≥

1
q

(
q∑
i=1

yi

)2

.

35

https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

Proof of Lemma 4. Let acc(inp) be the probability (over the draw of h1, . . . , hq, v1, . . . , vm, and
the random coins of A) that A returns a non-⊥ output when run with inp as first input. Let also
frk(inp) be the probability (over the draw of v1, v

′
1, . . . , vm, v

′
m and the random coins of ForkA) that

ForkA returns a non-⊥ output when run with inp as first input. We will show shortly that for all
inp,

frk(inp) ≥ acc(inp)
(

acc(inp)
q

− 1
|H|

)
. (28)

Then, exactly as in [BN06], taking the expectation over inp we have

frk = E[frk(inp)] ≥ E
[
acc(inp)

(
acc(inp)

q
− 1
|H|

)]
(29)

= E[acc(inp)2]
q

− E[acc(inp)]
|H|

(30)

≥ E[acc(inp)]2

q
− E[acc(inp)]

|H|
(31)

= acc(A)
(

acc(A)
q

− 1
|H|

)
, (32)

where we used Lemma 5 for Equation (31). It remains to prove Equation (28).
We fix inp and consider the random experiment of running ForkA(inp, v1, v

′
1, . . . , vm, v

′
m) with

v1, v
′
1, . . . , vm, v

′
m←$V and random coins. We regard the first two elements of the outputs (i, j, out)

and (i′, j′, out′) returned by A in each of its two executions as random variables denoted I, J ,
I ′, and J ′, with the convention that I = 0, resp. I ′ = 0 if A returns ⊥ in its first, resp. second
execution.

Again, exactly as in the proof of [BN06, Lemma 1], we have

frk(inp) = Pr [(I > 0) ∧ (I = I ′) ∧ (hI 6= h′I)]
≥ Pr [(I > 0) ∧ (I = I ′)]− Pr [(I > 0) ∧ (hI = hI′)]

= Pr [(I > 0) ∧ (I = I ′)]− Pr [I > 0]
|H|

= Pr [(I > 0) ∧ (I = I ′)]︸ ︷︷ ︸
=·· pr

−acc(inp)
|H|

.

1 algorithm ForkB(inp, v1, v
′
1, . . . , vm, v

′
m)

2 pick random coins ρ for B
3 h1, . . . , hq ←$H
4 α← B(inp, (h1, . . . , hq), (v1, . . . , vm); ρ)
5 if α = ⊥ then return ⊥
6 else parse α as (i, j, out)
7 h′i, . . . , h

′
q ←$H

8 α′ ← B(inp, (h1, . . . , hi−1, h
′
i, . . . , h

′
q), (v1, . . . , vj , v

′
j+1, . . . , v

′
m); ρ)

9 if α′ = ⊥ then return ⊥
10 else parse α′ as (i′, j′, out′)
11 if (i = i′ and hi 6= h′i) then return (i, out, out′)
12 else return ⊥

Fig. 8. The “forking” algorithm ForkB built from B.

36

It remains to lower bound the term pr. Let R denote the set of random coins for A. For each
i ∈ {1, . . . , q} and j ∈ {0, . . . ,m}, we define the function Yi,j : R×Hi−1 × V j → [0, 1] as

Yi,j(ρ,h,V) ··= Pr

hi, . . . , hq ←$H,
vj+1, . . . , vm←$V,
(I, J, out)← A(inp, (h1, . . . , hq), (v1, . . . , vm); ρ)

 : I = i


for all ρ ∈ R, h = (h1, . . . , hi−1) ∈ Hi−1, and V = (v1, . . . , vj) ∈ V j .

Then

pr =
m∑
j=0

q∑
i=1

Pr [(I = i) ∧ (J = j) ∧ (I ′ = i)] (33)

=
m∑
j=0

q∑
i=1

Pr [J = j] · Pr [I = i|J = j] · Pr [I ′ = i|(I = i) ∧ (J = j)] (34)

=
m∑
j=0

q∑
i=1

Pr [J = j]
∑
ρ∈R

h∈Hi−1

V∈V j

Yi,j(ρ,h,V)2

|R| · |H|i−1 · |V |j
(35)

=
m∑
j=0

Pr [J = j]
q∑
i=1

E[Y 2
i,j] (36)

≥
m∑
j=0

Pr [J = j]
q∑
i=1

E[Yi,j]2 (37)

≥ 1
q

m∑
j=0

Pr [J = j]
(

q∑
i=1

E[Yi,j]
)2

(38)

≥ 1
q

 m∑
j=0

Pr [J = j]
q∑
i=1

E[Yi,j]

2

(39)

= acc(inp)2

q
. (40)

Above we used Lemma 5 to derive Equation (37) and Equation (39) and Lemma 6 for each j with
yi = E[Yi,j] to derive Equation (38).

B Linear Dependence of Random Vectors

Our security proof in the ROM (Appendix 5) relies on the following lemma in order to bound
the probability that the adversary manages to obtain linearly dependent vectors across different
executions.

Lemma 7. Let Zp be the finite field with p elements, and let 1 ≤ f ≤ ν be integers. Let
{b(1), . . . ,b(q)} be a family of q vectors in (Zp)ν such that for each vector b(k) = (b(k)

1 , b
(k)
2 , . . . , b

(k)
ν),

k ∈ {1, . . . , q}, we have b(k)
1 = 1 and b(k)

2 , . . . , b
(k)
ν are chosen uniformly at random from Zp. Then

the probability that there is a linearly dependent subfamily {b(k1), . . . ,b(kf′)} of size f ′ < f is at
most

qf

(f − 1)! (p− 1)ν−f+1 .

Proof. For a fixed f , we can assume wlog that q ≥ f and that f ′ = f because these assumptions
make the probability that there is a linearly dependent (“ld”) subfamily {b(k1), . . . ,b(kf′)} only
larger. Let {b(1), . . . ,b(f)} be any subfamily of size f , wlog indexed by {1, . . . , f} to keep the

37

notation simple. Given scalars u(1), . . . , u(q) chosen uniformly random from Zp \ {0}, consider the
vectors {b′(1), . . . ,b′(f)} defined as

b′(k) := u(k)b(k) = (u(k), u(k)b
(k)
2 , . . . , u(k)b(k)

ν).

It is well-known that {b′(1), . . . ,b′(f)} are linearly independent (“li”) if and only if {b(1), . . . ,b(f)}
are linearly independent. Thus

Pr
[
{b(1), . . . ,b(f)} li

]
= Pr

[
{b′(1), . . . ,b′(f)} li

]
and we can work with {b′(1), . . . ,b′(f)} instead of {b(1), . . . ,b(f)} if all we care about is linear
independence.

For any k, there are (p − 1)pν−1 choices of b′(k) and pk−1 of those fall into the span of
{b′(1), . . . ,b′(k−1)} if this family is linearly independent. Thus

Pr
[
{b′(1), . . . ,b′(k)} li

∣∣∣{b′(1), . . . ,b′(k−1)} li
]

= 1− pk−1

(p− 1)pν−1 = 1− pk−ν

p− 1 .

By the law of total probability, we have

Pr
[
{b′(1), . . . ,b′(k)} li

]
= Pr

[
{b′(1), . . . ,b′(k)} li

∣∣∣{b′(1), . . . ,b′(k−1)} li
]
· Pr

[
{b′(1), . . . ,b′(k−1)}li

]
+ Pr

[
{b′(1), . . . ,b′(k)} li

∣∣∣{b′(1), . . . ,b′(k−1)} ld
]
· Pr

[
{b′(1), . . . ,b′(k−1)} ld

]
= Pr

[
{b′(1), . . . ,b′(k)} li

∣∣∣{b′(1), . . . ,b′(k−1)} li
]
· Pr

[
{b′(1), . . . ,b′(k−1)} li

]
.

By induction with base case Pr [{} li] = 1, we obtain

Pr
[
{b′(1), . . . ,b′(f)} li

]
=

f∏
k=1

(
1− pk−ν

p− 1

)
≥
(

1− pf−ν

p− 1

)f
.

Switching back to b and considering the complementary event, we further obtain

Pr
[
{b(1), . . . ,b(f)} ld

]
≤ 1−

(
1− pf−ν

p− 1

)f
≤ fpf−ν

p− 1 ≤
f

(p− 1)ν−f+1 ,

where the penultimate inequality follows from Bernoulli’s inequality and the last inequality holds
because f ≤ ν.

There are
(
q
f

)
subfamilies of {b(1), . . . ,b(q)}, ignoring their internal order. By the union bound,

Pr
[
∃ {k1, . . . , kf} ⊆ {1, . . . , q}, {b(k1), . . . ,b(kf)} ld

]
≤
(
q

f

)
f

(p− 1)ν−f+1

≤ qf

(f − 1)! (p− 1)ν−f+1 .

C Inapplicability of the Meta-reduction by Drijvers et al.

Drijvers et al. [DEF+19] show that there is no algebraic reduction from the OMDL problem to
InsecureMuSig if the OMDL problem is hard. They describe a meta-reduction that solves the OMDL
problem by executing a given reduction and simulating the OMDL challenger and the forger. To
illustrate the idea, let us consider a reduction similar to the one in the flawed security proof of
InsecureMuSig. It runs the forger twice with identical inputs up to the Hsig query from the forgery
and responds to it with a different value in the second execution.

The main idea of the meta-reduction is that it opens a signing session before the reduction forks
the simulated forger and then continues the session with a different nonce (or different message)

38

in each fork, allowing extraction of the secret key. So, after opening the session by requesting the
reduction’s R1 value, the meta-reduction obtains an OMDL challenge R that will be the nonce
of the forgery and queries Hsig with R. Now the forger sends some nonce to continue the signing
session and receives s1 from the reduction. Then the forger queries the DL oracle to produce a
forged signature (R, s).

The reduction runs the simulated forger again with exactly the same responses up to the Hsig
query relevant to the forgery. In this execution the forger continues the signing session by sending
a different nonce and receives s′1 from the reduction. Let c and c′ with c 6= c′ be the signature
hashes of the sessions and a1 be the MuSig coefficient of the reduction’s public key. Then the
meta-reduction computes the secret key x1 of the reduction as (s1 − s′1)/((c − c′)a1). In order
to prevent the reduction from guessing the Hsig query and programming it such that c = c′, the
simulated forger actually opens multiple concurrent signing sessions to make sure that the reduction
guessed wrong for at least one of the sessions with high probability. Note how in the concrete attack
with Wagner’s algorithm the attacker similarly opens multiple signing sessions and controls their R
values.

With the secret key x1 the meta-reduction uses the s-value from the DL oracle query to compute
r such that gr = R, creates a signature with x1 and r and returns it as the forgery in the second
execution. The meta-reduction used one DL query and obtained two OMDL challenges that are
answered with x1 and r. Therefore, if the reduction is successful, the meta-reduction solves the
OMDL problem without access to an actual forger for InsecureMuSig which implies that the OMDL
problem was not hard if such a reduction existed.

However, the idea behind this meta-reduction does not apply to MuSig2. Assume that the
reduction now provides ν = 2 nonces R1,1 and R1,2 at the start of a signing session. If the forger
replies with values such that c 6= c′ we have that b2 6= b′2. As a result, the meta-reduction can
not extract the secret key because it obtains two linearly independent signature equations with
three unknowns x1, r1,1, r1,2. That means that in order to create a forgery in the second execution
the meta-reduction needs to use another DL query which prevents it from winning the OMDL
game. More generally, this explains why the meta-reduction can only be applied to reductions that
execute the forger more than ν times. In Section 5 we provide a reduction for MuSig2 with ν ≥ 4
that requires exactly four executions of the forger.

39

	 MuSig2: Simple Two-Round Schnorr Multi-Signatures
	Introduction
	Background on Multi-Signatures
	Our Contribution

	Technical Overview
	The Challenge of Constructing Two-Round Schemes
	Our Solution
	Proving Security
	A More Efficient Solution in the Algebraic Group Model
	Concurrent Work: FROST

	Preliminaries
	Notation and Definitions
	Syntax and Security Definition of Multi-Signature Schemes

	Our New Multi-Signature Scheme
	Description
	Practical Considerations

	Security of MuSig2 in the ROM
	Security Proof

	Security of MuSig2 in the AGM
	References
	A Generalized Forking Lemma
	Linear Dependence of Random Vectors
	Inapplicability of the Meta-reduction by Drijvers et al.

