
(F)unctional Sifting: A Privacy-Preserving
Reputation System Through Multi-Input

Functional Encryption
(extended version)?

Alexandros Bakas1, Antonis Michalas1, and Amjad Ullah2

1 Tampere University of Technology, Tampere, Finland
{alexandros.bakas, antonios.michalas}@tuni.fi

2 Univeristy of Westminster, London, United Kingdom
{A.Ullah@westminster.ac.uk}

Abstract. Functional Encryption (FE) allows users who hold a speci�c
secret key (known as the functional key) to learn a speci�c function of
encrypted data whilst learning nothing about the content of the under-
lying data. Considering this functionality and the fact that the �eld of
FE is still in its infancy, we sought a route to apply this potent tool
to solve the existing problem of designing decentralised additive repu-
tation systems. To this end, we �rst built a symmetric FE scheme for
the `1 norm of a vector space, which allows us to compute the sum of
the components of an encrypted vector (i.e. the votes). Then, we uti-
lized our construction, along with functionalities o�ered by Intel SGX,
to design the �rst FE-based decentralized additive reputation system
with Multi-Party Computation. While our reputation system faces cer-
tain limitations, this work is amongst the �rst attempts that seek to
utilize FE in the solution of a real-life problem.

Keywords: Functional Encryption · Multi-Client, Multi-Input · Multi-
Party Computation · Reputation System

1 Introduction

Functional Encryption (FE) is an emerging cryptographic technique that allows
selective computations over encrypted data. FE schemes provide a key genera-
tion algorithm that outputs decryption keys with remarkable capabilities. More
precisely, each decryption key FK is associated with a function f . In contrast
to traditional cryptographic techniques, using FK on a ciphertext Enc(x) does
not recover x but the function f(x) � thus keeping the actual value x private.
While the �rst de�nition of FE allowed the decryption of a single ciphertext per

? This work was funded by the ASCLEPIOS: Advanced Secure Cloud Encrypted Plat-
form for Internationally Orchestrated Solutions in Healthcare Project No. 826093 EU
research project.

2 Alexandros Bakas, Antonis Michalas, and Amjad Ullah

decryption, more recent works [?] introduced the more general notion of multi-
input FE (MIFE). In a MIFE scheme, given ciphertexts Enc(x1), . . . ,Enc(xn),
a user can use FK to recover f(x1, . . . , xn). This new de�nition, seems to make
MIFE a perfect �t in many real-life applications.

Having identi�ed the importance of FE and believing that it is a family of
modern encryption schemes that can push us into an uncharted technological
terrain, we try to make a �rst attempt to smooth out the identi�ed asymmetries
between theory and practice. To do so, we �rst design a MIFE scheme for the `1
norm of a vector space based on [?]. Then, using our MIFE scheme we attempt
a �rst approach in embedding FE into the design of a decentralized additive
reputation system [?].

In particular, we show how MIFE can be leveraged to construct privacy-
preserving decentralized additive reputation systems. A reputation system rates
the behaviour of each user, based on the quality of the provided service(s),
and gives information to the community in order to decide whether to trust an
entity in the network. Furthermore, the absence of schemes that provide privacy
in decentralized environments, such as ad-hoc networks, is even greater [?]. Our
focus is on how to utilize FE and extend existing techniques in order to use this
cryptographic primitive to solve the problem of casting and collecting votes in a
privacy-preserving way.

Contribution: The contribution of this paper is twofold:

C1 First, we design a MIFE scheme in the symmetric key setting for the `1 norm
of a vector, based on the single-client MIFE for inner products presented
in [?]. Then, we show how our scheme can be transformed from the single-
client to the multi-client setting. This transformation requires the users to
perform a Multi-Party Computation (MPC). More precisely, each user gen-
erates their own symmetric keys independently and then they collaborate
to calculate a functional decryption key skf that is derived from a combi-
nation of all the generated symmetric keys. This result is quite remarkable
since users generate their private keys locally and independently. As a result,
their symmetric keys are never exposed to unauthorized parties, and thus
no private information about the content of the underlying ciphertexts is
revealed. At the same time, su�cient information to generate the functional
decryption key is provided.

C2 Our second contribution derives from the identi�ed need to create a dialogue
between the theoretical concept of FE and real life applications. As a result,
we tried to provide a pathway towards new prospects that show the direct
and realistic applicability of this promising encryption technique when ap-
plied to concrete obstacles. To this end, we showed how our MIFE scheme
can be used to provide a solution to the problem of designing an additive
reputation system. More speci�cally, we use our Multi-client MIFE to design
a protocol that preserves the privacy of votes in decentralized environments.
The protocol allows n participants to securely cast their ratings in a way
that preserves the privacy of individual votes. More precisely, we analyze

(F)unctional Sifting 3

the protocol and prove that it is resistant to collusion even against up to
n− 1 corrupted insiders.

2 Related Work

Functional Encryption: While numerous studies with general de�nitions and
generic constructions of FE have been proposed [?, ?, ?, ?, ?, ?] there is a clear
lack of work proposing FE schemes supporting speci�c functions � a necessary
step that would allow FE to transcend its limitations and provide the founda-
tions for reaching its full potential. To the best of our knowledge, the only works
that have shown how to e�ciently run speci�c functions on ciphertexts is [?,?]
which calculates inner-product and [?] which successfully executes computations
with quadratic polynomials. While [?] and [?] are symmetric FE schemes (i.e.
e�cient), their actual application in real-life scenarios can be considered as lim-
ited since both are limited to supporting the single-client model. Our work is
heavily in�uenced by the symmetric key MIFE scheme for inner products pre-
sented in [?] where authors designed a scheme that can be regarded as the FE
equivalent of the one-time-pad and by [?] where the authors used FE to desing
an order-revealing encryption [?] scheme that can be leveraged to desing Sym-
metric Searchable Encryption schemes with range queries support [?, ?] and a
functionally encrypted private database. More precisely, using [?] as a basis, we
constructed a symmetric key MIFE scheme for the `1 norm of an arbitrary vec-
tor space. Most importantly, we show that our construction can also support
the multi-client model while preserving exactly the same security properties as
the MIFE for inner-product in [?]. This is a signi�cant result as it proves that
functional encryption can be e�ciently applied to solve more complex problems.

Reputation Systems: In [?], authors designed a privacy-preserving reputation
system and according to them �The logic of anonymous feedback to a reputation
system is analogous to the logic of anonymous voting in a political system". To
ensure the con�dentiality of the votes, authors use primitives such as the secure
sum and veri�able secret sharing. In [?], a new approach was presented based
on homomorphic encryption and zero-knowledge proofs. In particular, authors
proved that by using their construction, the privacy of a user can be preserved
even in the presence of multiple malicious adversaries. In [?] authors presented
two protocols with similar architecture as in [?]. However, their constructions
were signi�cantly more e�cient since they did not rely on homomorphic en-
cryption, while at the same time, they reduced the number of the exchanged
messages. Despite the e�ciency of these approaches, it is our �rm belief that
functional encryption is a cryptographic paradigm that squarely �ts the �eld of
repuation systems, and it has all the necessary traits to provide more a well-
rounded and versatile solution. Having identi�ed this research gap in the �eld,
we present a description of a reputation system based on a MIFE scheme that
can e�ciently calculate the sum of multiple encrypted numbers.

4 Alexandros Bakas, Antonis Michalas, and Amjad Ullah

3 Preliminaries

Notation: If Y is a set, we use y
$←− Y if y is chosen uniformly at random

from Y. The cardinality of a set Y is denoted by |Y|. For a positive integer m,
[m] denotes the set {1, . . . ,m}. If m ∈ Z, we denote by m[i] the digit in the
i-th position of m where m[0] is the rightmost digit. The number of digits of
m in base n is blognmc + 1. Vectors are denoted in bold as x = [x1, . . . , xn]. A
probabilistic polynomial time (PPT) adversary ADV is a randomized algorithm
for which there exists a polynomial p(z) such that for all input z, the running
time of ADV(z) is bounded by p(|z|). A function negl(·) is called negligible if
∀ c ∈ N,∃ ε0 ∈ N such that ∀ ε ≥ ε0 : negl(ε) < ε−c. A probabilistic polynomial
time (PPT) adversary ADV is a randomized algorithm for which there exists a
polynomial p(z) such that for all input z, the running time of ADV(z) is bounded
by p(|z|). A function negl(·) is called negligible if ∀ c ∈ N,∃ ε0 ∈ N such that
∀ ε ≥ ε0 : negl(ε) < ε−c.

Users, which in our scenario will be voters, are denoted by U = {u1, . . . u`}.
The universe of votes is V = {v1, . . . , v`}. We assume a star-based system in
the likes of well-known applications such as AirBnb and ebay. However, we let
the number of stars be an a set ST = {n1, . . . , nk} of arbitrary cardinality.
Hence, if a user wishes ui wishes to rate another user with j stars, then ui's
vote is vi = nj . We now proceed with the de�nition of a decentralized additive
reputation system, as described in [?]

De�nition 1. A reputation system R is said to be a Decentralized Additive Rep-
utation System, if it satis�es the following two requirements:

1. Feedback collection, combination and propagation are implemented in a de-
centralized way.

2. Combination of feedbacks provided by the users is calculated in an additive
manner.

De�nition 2 (Inner Product). The inner product (or dot product) of Zn is
a function 〈, 〉 de�ned by:

f(x,y) = 〈x,y〉 = x1y1 + · · ·+ xnyn, for x = [x1, . . . , xn],y = [y1, . . . , yn] ∈ Zn

De�nition 3 (`1 norm). The `1 norm of Zn is a function ‖·‖1 de�ned by:

f(x) = ‖x‖1=
i=n∑
i=1

xi = x1 + · · ·+ xn, for x = [x1, . . . , xn] ∈ Zn

From de�nitions ?? and ??, it follows directly that if x = [x1, . . . , xn] ∈ Zn
and y = [1, . . . , 1] ∈ Zn then 〈x,y〉 = x1 · 1 + · · ·+ xn · 1 =

∑n
i=1 xi = ‖x‖1.

Below, we de�ne MIFE in the symmetric key setting. Note that while this
de�nition suits the single-client model, it is inadequate for a multi-client setup.

(F)unctional Sifting 5

De�nition 4 (Multi-Input Functional Encryption in the Symmetric
Key Setting). Let F = {f1, . . . , fn} be a family of n-ary functions where each
fi is de�ned as follows: fi : Zn → Z. A multi-input functional encryption scheme
for F consists of the following algorithms:

� Setup(1λ) : Takes as input a security parameter λ and outputs a secret key
K = [k1, . . . , kn] ∈ Zn.

� Enc(K, i, xi) : Takes as input K, an index i ∈ [n] and a message xi ∈ X and
outputs a ciphertext cti.

� KeyGen(K) : Takes as input K and outputs a functional decryption key FK3.
� Dec(FK, ct1, . . . , ctn) : Takes as input a decryption key FK for a function fi
and n ciphertexts and outputs a value y ∈ Y.

For the needs of our work, we borrow the one-adaptive (one-AD) and one-
selective (one-SEL) security de�nitions from [?] that were �rst formalized in [?].
Informally, in the one-AD-IND security game, the adversary ADV receives the
encryption key of the MIFE scheme and then adaptively queries the correspond-
ing oracle for functional decryption keys of her choice. Furthermore, ADV out-
puts two messages x0 and x1 to the encryption oracle, who �ips a random coin
and outputs an encryption of xβ , β ∈ {0, 1}. If the functional keys are associated
with functions that do not distinguish between the messages (i.e.f(x0) = f(x1))
then ADV should not be able to distinguish between the encryption of x0 and
x1. In the case of the one-SEL-IND security, the game is identical to the one-
AD-IND case, with the only di�erence being that ADV needs to decide on the
x0 and x1 messages before seeing the encryption key. The �one" in both security
games determines that the encryption oracle can only be queried once for each
slot i (i.e. the adversary is not allowed to issue multiple queries to the encryption
oracle for the same xi).

De�nition 5 (one-AD-IND-secure MIFE). For every MIFE scheme for F ,
every PPT adversary ADV, and every security parameter λ ∈ N we de�ne the
following experiment for β ∈ {0, 1}:
Adaptive Security

one-AD-INDMIFE
β (1λ,ADV):

K← Setup(1λ)
α← ADVKeyGen(K),Enc(·,·,·)

Output α

Where Enc(·, ·, ·) is an oracle that on input (i, x0i , x
1
i), �ips a random coin β

and outputs Enc(K, i, xβi), β ∈ {0, 1}. Moreover, ADV is restricted to only make
queries to the KeyGen oracle satisfying f(x01, . . . , x

0
n) = f(x11, . . . , x

1
n). A MIFE

scheme is said to be one-AD-IND secure if for all PPT adversaries ADV, their
advantage is negligible in λ where the advantage is de�ned as:

3 In the literature, this algorithm can often be found as KeyGen(K, f) where it outputs
an FK for a speci�c function f . This is the case, with the MIFE scheme from [?]
presented in Section ??. In our case, we only work with one function, so we can omit
the f term in the de�nition of the algorithm.

6 Alexandros Bakas, Antonis Michalas, and Amjad Ullah

Advone−AD−IND(λ,ADV) =

|Pr[one-AD-INDMIFE
0 (1λ,ADV) = 1]− Pr[one-AD-INDMIFE

1 (1λ,ADV) = 1]|

De�nition 6 (one-SEL-IND-secure MIFE). For every MIFE scheme for
F , every PPT adversary ADV, and every security parameter λ ∈ N we de�ne
the following experiment for β ∈ {0, 1}:
Selective Security

one-SEL-INDMIFE
β (1λ,ADV):

{xbi}i∈[n],b∈{0,1} ← ADV(1λ, fi)
K← Setup(1λ)

cti = Enc(K, xβi)

α← ADVKeyGen(K)({cti})
Output α

ADV is restricted to only make queries to the KeyGen oracle satisfying
f(x01, . . . , x

0
n) = f(x11, . . . , x

1
n). A MIFE scheme is said to be one-SEL-IND se-

cure if for all PPT adversaries ADV, their advantage is negligible in λ where
the advantage is de�ned as:

Advone−SEL−IND(λ,ADV) =

|Pr[one-SEL-INDMIFE
0 (1λ,ADV) = 1]− Pr[one-SEL-INDMIFE

1 (1λ,ADV) = 1]|

Trusted Execution Environments: A Trusted Execution Environment (TEE)
is a secure, integrity-protected environment, with processing, memory and stor-
age capabilities, isolated from an untrusted, Rich Execution Environment that
comprises the OS and installed applications. Systems utilizing TEEs are in-
tended to be more secure since they use both hardware and software to isolate
security-critical assets. By creating architectures based the use of TEEs, the re-
sponsibility for keeping critical parts of an application secure, is shifted to an
entity that can have high levels of trust. While there are several di�erent TEEs
in our work we rely on the use Intel SGX. We provide a brief description of the
main SGX functionalities (more details can be found in [?]).

� Isolation: Enclaves are located in a hardware guarded area of memory and
they compromise a total of 128MB (only 90MB can be used by software).
Intel SGX is based on memory isolation built in the processor along with
strong cryptography. The processor tracks which parts of memory belong to
which enclave and ensures that only enclaves can access their own memory.

� Sealing: SGX processors come with a Root Seal Key with which, data is
encrypted when stored in untrusted memory. Sealed data can be recovered
even after an enclave is destroyed and rebooted on the same platform.

� Attestation: One of the core contributions of SGX is the support for attes-
tation between enclaves of the same (local attestation) or di�erent platforms
(remote attestation). In the case of local attestation, an enclave enci can
verify another enclave encj as well as the program/software running in the

(F)unctional Sifting 7

latter. This is achieved through a report generated by encj containing infor-
mation about the enclave itself and the program running in it. This report is
signed with a secret key skrpt which is the same for all enclaves of the same
platform. In remote attestation, enclaves of di�erent platforms can attest
each other through a signed quote. This is a report similar to the one used
in local attestation. The di�erence is that instead of using skrpt to sign it,
a special private key provided by Intel is used. Thus, verifying these quotes
requires contacting Intel's Attestation Server.

Currently there are many published works that leverage the functionality of
SGX mainly to design solutions to the problem of cloud-based storage [?, ?].
Due to space constraints, we ommit their formal description (more details can
be found in [?])

4 Multi-Input Functional Encryption for the `1 Norm

In this section, we present the �rst result and an important contribution of our
work. In particular, in the �rst part of this section, we show how the one-AD-
IND-secure MIFE scheme for inner-products from [?], can be transformed to
a one-AD-IND-secure MIFE scheme for the `1 norm (MIFE`1), while preserv-
ing exactly the same security properties. Then, we show how we can transform
our construction from the single-client model to the multi-client one. For pur-
poses of completeness, we brie�y recall the one-AD-IND-secure MIFE scheme for
inner-products in Figure ??. The security of both MIFE schemes (inner prod-
ucts and `1 norm), is derived from the fact that they behave as the functional
encryption equivalent of the one-time-pad. Note that, just like in the case of the
one-time-pad, to achieve perfect secrecy, we require that |ki|≥ |xi|, where ki is
the encryption key and xi, the message to be encrypted.

Setup(1λ) :

∀ i ∈ [n], ki
$←− Z

Return K = {k1, . . . , kn} ∈ Zn

Enc(K, i, xi) :
Return cti = xi + ki

KeyGen(K, y1||. . . ||yn) :
Return FK =

∑
i∈[n]〈ki, yi〉

Dec(FK, ct1, . . . , ctn) :
Return

∑n
i=1〈cti, yi〉 − FK

Fig. 1: one-AD-IND-secure MIFE for inner products.

In the previous scheme, by �xing y to be y = [1, . . . , 1], we compute 〈x, 1〉 =
‖x‖1 for x ∈ Zn. By doing so, we manage to transform the original inner prod-
ucts MIFE to a new construct that successfully computes the `1 norm. Our
construction is illustrated in Figure ??. Since our construction is a special case

8 Alexandros Bakas, Antonis Michalas, and Amjad Ullah

of the scheme presented in Figure ??, it is straight forward that the security
proof of our scheme will be very similar to the one presented in [?]. By �xing y
to be y = [1, . . . , 1], we compute 〈x, 1〉 = ‖x‖1 for x ∈ Zn and thus, transform
the MIFE for inner products to MIFE for the `1 norm.

Setup(1λ) :

∀ i ∈ [n], ki
$←− Z

Return K = [k1, . . . , kn] ∈ Zn

Enc(K, i, xi) :
Return cti = xi + ki

KeyGen(K) :
Return FK = ‖K‖1=

∑n
i ki

Dec(FK, ct1, . . . , ctn) :
Return

∑n
i=1 cti − skf

Fig. 2: one-AD-IND-secure MIFE for the `1 norm (MIFE`1).

Theorem 1. The MIFE scheme for the `1 norm (described in Figure ??) is
one-AD-IND-secure. That is, for all PPT adversaries ADV :

Advone−AD−INDADV (λ) = 0

Proof. The proof consists of two parts. First we construct a selective distin-
guisher B whose advantage for the one-SEL-IND experiment is an upper bound
for the advantage of any adaptive distinguisher ADV. Then, using the fact that
the MIFE for the `1 norm behaves like the one-time-pad, we prove that the
advantage of B is zero.

For the �rst part of the proof we will use a complexity argument. In particu-
lar, let B be an adversary that guesses the challenge {xbi} and then simulates the
one-AD-IND experiment of ADV. If B successfully guesses ADV's challenge then
she can simulate ADV's view. Otherwise it outputs ⊥. Hence, ADV's advantage
maximizes when B guesses correctly the challenge. If the input space is X , then
B can guess successfully with probability exactly |X |−1. Hence:

Advone−AD−INDADV ≤ |X|−1Advone−SEL−INDB

From the above, it can be seen that if the input space X is very large, the
advantage of ADV tends to zero independently of the value of Advone−SEL−INDB(
i.e. |X |→ ∞ ⇒ Advone−AD−INDADV → 0

)
. However, we will still show that no mat-

ter the cardinality of X , Advone−AD−INDADV = 0. To do so, we will prove that
Advone−SEL−INDB = 0. This will directly imply that Advone−AD−INDADV = 0, since
Advone−AD−INDADV ≤ Advone−SEL−INDB . In Figure ?? we present a hybrid game
that is identical to the one-SEL-IND security game. This is derived from the

fact that if u
$←− Z, then {ui} and {ui − xβi } are identical distributions. Finally,

it is easy to see that the only information leaking about β, is ‖r − xβ‖, which
is independent of β according to the de�nition of the security game and the
restrictions of the adversary.

(F)unctional Sifting 9

Hybridβ(λ,B):
{xbi}i∈[n],b∈{0,1} ← B(1λ,F)
∀ i ∈ [n]:

yoyori
$←− Z

yoyocti ← ri
α← BOgen(·)(cti)
Output α

Ogen(r) :
∀ i ∈ [n] :

yoyo skf = ‖r− xβ‖1=
∑n
i=1(ri − x

β
i)

Return skf

Fig. 3: Hybrid games for the proof of Theorem ??

While we showed how a MIFE scheme for inner products can be transformed
into a MIFE scheme for the `1 norm, our construction is still inadequate for a
reputation system. This is due to the fact that it only supports the single-client
model. Assuming that such a model can be the right choice for a system that
requires input from a large number of users can only be regarded as a fallacious
conclusion. To this end, in Section ??, we show how we acutely attune our single
client MIFE to support the multi-client model.

4.1 From Single-Client to Multi-Client MIFE

We are now ready to describe how we can transform our single-user MIFE`1
to the multi-user MIFE for the `1 norm (MUMIFE`1). The idea is the follow-
ing: Each user generates a symmetric key ki ∈ Z which uses it to encrypt a
plainetext xi as cti = ki + xi. All the generated symmetric keys, form a vector
K = [k1, . . . , kn] ∈ Zn, where n is the number of users. The functional decryption
key FK is then ‖K‖1 and decryption works as follows:

n∑
i =1

cti − FK =

n∑
1

(ki + xi)−
n∑
1

ki =
n∑
1

xi = ‖x‖1

A third party decryptor who would get access to FK should only learn ‖x‖1
and not each individual xi. In addition to that, the users should never reveal their
symmetric keys. To achieve this, we assume the existence of a trusted authority
that will allow users to perform an MPC in order to jointly compute a masked
version of FK without revealing each distinct ki. Before we proceed to the actual
description of our construction (Figure ??), we present a high-level overview of
our system model that consists of a trusted authority (TA) and an evaluator
(EV) that evaluates the value of a function f on a set of given ciphertexts.

Trusted Authority (TA): TA is running in an enclave and is responsible for
generating and distributing a unique random number si to each user ui. The
users will use the received random values to mask their symmetric keys. By
doing so, and considering the fact that TA is running in an enclave and thus it is
trusted, they will be able to jointly compute a masked version of the functional
decryption key FK which will be used by the evaluator to calculate FK .

10 Alexandros Bakas, Antonis Michalas, and Amjad Ullah

Evaluator (EV): EV is responsible for collecting all users' ciphertexts {ct1, . . . , ctn},
generating the functional decryption key FK based on the masked value that will
receive from users and �nally, calculate f(x1, . . . , xn) without getting any valu-
able information about the individual values xi.

Theorem 2. The Multi-User Multi-Input Functional Encryption scheme for the
`1 norm (described in Figure ??) is one-AD-IND-secure. That is, for all PPT
adversaries ADV :

Advone−AD−INDADV (λ) = 0

Proof (Proof Sketch.). The proof is omitted since it is a direct result from The-
orem ??. This can be seen by the fact that the Encryption and KeyGen oracles
are identical to the ones described in Figure ??. The only di�erence is that in
the case of MUMIFE`1 , the Setup algorithm is executed by multiple users instead
of one, since each user generates a distinct symmetric key. Without loss of gen-
erality, we can assume that this is exactly the same procedure since in the case
of MIFE`1 , one user samples n random numbers from Z resulting to a vector
K = [k1, . . . , kn], and in case of MUMIFE`1 , n users sample one random number
from Z each, resulting to a vector K′ = [k′1, . . . , k

′
n]. However, the distributions

{ki} and {k′i} are identical and thus we conclude that we can use exactly the
same Hybrid game as the one in Figure ??.

MUMIFE`1 .Setup(1
λ) :

- TA : ∀ i ∈ [n], si ← Z
- TA : si → ui
- TA : S = ‖s‖1=

∑n
1 si → EV

- ui : Generates ki ∈ Z

MUMIFE`1.Enc(ki, xi, si)

T = 0

for i = 1 to n:

- ui : cti = ki + xi
- ui : T = T + ki + si
- ui : cti → EV
- if (i == n): ui : T → EV

else ui : T → ui+1

MUMIFE`1.KeyGen(T, S)

EV : FK = T − S

MUMIFE`1.Dec(FK, ct1, . . . ctn)

EV :
∑n
i=1 cti − FK

Fig. 4: Multi-Input MIFE for the `1 norm (MUMIFE`1)

Correctness: The correctness of the MUMIFE`1 scheme presented in Figure ??
follows directly since:

n∑
i =1

cti − FK =

n∑
i=1

cti − T + S =

n∑
i=1

ki +
n∑
i=1

xi −

(
n∑
i=1

(ki + s1)

)
+

n∑
i=1

si =

(F)unctional Sifting 11

=

�
�
��

n∑
i=1

ki +
n∑
i=1

xi −
�
�
��

n∑
i=1

ki −
�
�
��

n∑
i=1

si +

�
�
��

n∑
i=1

si =

n∑
i=1

xi = ‖x‖1

5 The Reputation System

We begin this section by formalizing the problem that we are trying to solve.

Problem Statement: A user ui demands feedback for another user uj . To this
end, she requests from other users on the network, to give their votes about uj .
The problem is to �nd a way that each vote vi remains private while at the same
time an evaluator EV would be in position of understanding what voters, as a
whole, believe about uj , by evaluating the sum of all votes.

Stars, Voters and Votes: As already stated, the stars are represented as a
power of an integer n. Hence, for each vote vi we have that vi = nj . The reason
for representing votes in this way is that we can tell the �nal reputation score
just by looking at the sum of the votes. This is because for all β in base n, we
can represent β as a sum of powers of n. In other words:

∀ β ∈ Z,∃ βj ∈ Z :β = β0n
0 + · · ·+ βblognβcn

blognβc

Hence, if
∑n−1
i=0 vi = β:

n−1∑
i =0

vi = β =

blognβc∑
j=0

βjn
j =β0n

0 + β1n
1 + · · ·+ βblognβcn

blognβc ∈ Z+,

then the coe�cient of each nj tells us how many voters voted for vi = nj .
Moreover, on each round, we only allow n − 1 voters to cast their votes. The
reason for allowing only n − 1 voters is to avoid multiple representations of
the same number. Below we present a toy example to help the reader better
understand the idea of our design:

Voter ui Vote vi Sum

u1 101

101 + 103 + 100 + 101 + 104 = 11021
u2 103

u3 100

u4 101

u5 104

Table 1: Voting Example with �ve voters and �ve candidates.

Toy Example: For reasons of simplicity, let the base n = 10. We assume
a scenario with a �ve-star system such as n0 = 100, n1 = 101, n2 = 102, n3 =
103, n4 = 104 and �ve voters. Each voter casts her vote as shown in Table ??.

12 Alexandros Bakas, Antonis Michalas, and Amjad Ullah

After all voters cast their votes, we simply compute the sum
∑
vi = 11021.

Hence, we see that the coe�cients of the njs are β0 = 1, β1 = 2, β2 = 0, β3 = 1
and β4 = 1 and as a result, we conclude that one user gave a rating of 1 star
n0, 4 stars n3 and 5 stars n4 (i.e. β0 = β3 = β4 = 1), two gave a rating of
two stars n1 (i.e. β1 = 2) and no one gave a rating of three stars. two users
voted for n1, one for n0, n3 and n4 and no one voted for n2. The reason for
allowing only n − 1 users vote on each round, is because we want to achieve a
unique representation of the sum of the votes. For instance, in this example, if
we allowed more than n− 1 = 10− 1 = 9 users to vote, then we could interpret
11021 as 11 × 103 + 21 × 100 which could also mean that eleven users gave a
rating of 4 stars and twenty-one users a rating of 1 star. By limiting the number
of users to n−1, we overcome this problem by achieving a unique representation
of each number.

5.1 Formal Construction

In this section, we present our construction. Our scheme consists of three di�erent
phases, namely, Setup,Voting and Count. The topology of our construction is
depicted in Figure ?? and a formal description of our construction is presented
in Figure ??.

𝑢𝑢1𝑡𝑡1

𝑡𝑡1 + 𝑡𝑡2

�
𝑖𝑖=1

3
𝑡𝑡𝑖𝑖

�
𝑖𝑖=1

4
𝑡𝑡𝑖𝑖 �

𝑖𝑖=1

5
𝑡𝑡𝑖𝑖

�
𝑖𝑖=1

𝑛𝑛−3
𝑡𝑡𝑖𝑖

�
𝑖𝑖=1

𝑛𝑛−2
𝑡𝑡𝑖𝑖

𝑇𝑇 = �
𝑖𝑖=1

𝑛𝑛−1
𝑡𝑡𝑖𝑖

𝑐𝑐𝑡𝑡1𝑐𝑐𝑡𝑡2

𝑐𝑐𝑡𝑡3

𝑐𝑐𝑡𝑡4

𝑐𝑐𝑡𝑡5

(𝑐𝑐𝑡𝑡𝑛𝑛−1,𝑇𝑇)

𝑐𝑐𝑡𝑡𝑛𝑛−2

And the winner
is…
𝑣𝑣 1

EV

𝑢𝑢2

𝑢𝑢3

𝑢𝑢4

𝑢𝑢5

𝑢𝑢𝑛𝑛−2

𝑢𝑢𝑛𝑛−1

TA

𝑠𝑠1

𝑠𝑠𝑛𝑛−1

𝑆𝑆 = �
𝑖𝑖=1

𝑛𝑛−1
𝑠𝑠𝑖𝑖

Assign an 𝑠𝑠𝑖𝑖
to each user
and send 𝑆𝑆 to
EV

Fig. 5: Topology of the voting scheme

Setup: In the setup phase, TA picks the base n and places the n−1 voters ran-
domly in a circle. Then, generates n−1 random values s = [s1, . . . , sn−1] ∈ Zn−1
and send an si to each ui. Finally, it computes ‖s‖1=

∑n−1
i=1 si = S and sends it

to the evaluator EV.

(F)unctional Sifting 13

Voting: The voters are voting one by one as follows: At �rst, u1 generates
an encryption key k1 such that k1 ∈ Z. Then, she picks her vote v1 and runs
MUMIFE.Enc(k1, v1, si). In particular, u1 encrypts v1 and then masks k1 by cal-
culating t1 = k1 + s1 where s1 is the secret value received from the TA during
the setup phase. Finally, u1 sends ct1 to EV and t1 to u2 � the next voter in
the ring. The rest of the voters follow exactly the same steps except from the
last user (un−1). In particular, un−1, apart from sending ctn−1 to EV, also sends

T =
∑n−1
i=1 ti. This sum will allow EV to compute the functional decryption key

FK that will be used to compute the sum of the votes.

Count: After EV gets n − 1 votes, it �rst computes the function key FK
based on the T and S values received during the voting phase. More pre-
cisely, EV computes FK = T − S = ‖K‖1=

∑n−1
i=1 ki. Then, it simply runs

MUMIFE`1 .Dec(FK, ct1, . . . ctn) → ‖vi‖1=
∑n−1
i=1 vi ∈ Z+. Finally, by looking at

the coe�cients of the result, it can tell which candidate gathered the most votes.

Vote.Setup :

TA:

- Choose the base n
- Place n−1 voters randomly in a circle
- Sample s = {s1, . . . , sn−1}

$←− Zn−1

- Assign an si to each user
- Compute S = ‖s‖1=

∑n−1
i=1 si

- Send S to the evaluator EV

Vote.Voting :

Voters:

T = 0
for i = 1 to n− 1:

- Run MUMIFE`1 .Enc(ki, si, vi)

Vote.Count

EV:

- VoteCnt = 0

for each cti received:

- VoteCnt ++

if {VoteCnt = n-1} then:

- MUMIFE`1 .KeyGen(T, S)→ FK

- MUMIFE`1 .Dec(FK, ct1, . . . ctn−1) →
‖v‖1=

∑n−1
i=1 vi

Fig. 6: Voting Scheme

6 Security Analysis

In this section, we prove the security of our construction in the presence of an
honest-but-curious adversary ADV. In particular, we will prove that even if ADV
corrupts n−3 of the total n−1 voters and EV, she will still not be able to deduce
the votes of the uncorrupted voters.

Theorem 3. Assume an honest-but-curious adversary ADV corrupts at most
d < n − 2 voters out of those who participate in an election round. Moreover,

14 Alexandros Bakas, Antonis Michalas, and Amjad Ullah

ADV corrupts the evaluator EV. Then ADV cannot deduce the votes of the
legitimate voters.

Proof. We are considering the most extreme case where d = n− 3. In this case,
ADV has corrupted all but two voters, ul and u`, and the evaluator EV. We
start by looking exactly what information ADV possesses.

� Since EV is corrupted, ADV knows S = ‖s‖=
∑n−1

1 si.
� For each corrupted voter uci , ADV knows: Her vote, vci , Her key kci and
Her share of the secret s, sci .

� For the legitimate voters ul and u`, ADV knows: Their ciphertexts, ctl =
vl + rl and ct` = v` + r` and The masked values of their keys kl and k` as
tl = kl + sl and t` = k` + s`.

Note that for ADV to deduce the votes of ul and u`, she must �nd the keys
kl and k`. To do so, she has to unmask the masked values tl = kl + sl and
t` = k`+m`. In other words, to learn the votes vl and v` she either needs to �nd
sl and s` or kl and `. We present the above information in the form of equations.
The circled terms are the ones ADV has not been able to compromise.

‖v‖1 =
∑

i∈[n−1]\{l,`}

vi+ vl + v` ‖ct‖1 =
∑

i∈[n−1]\{l,`}

cti+ kl + vl︸ ︷︷ ︸
ctl

+ k` + v`︸ ︷︷ ︸
ct`

S =
∑

i∈[n−1]\{l,`}

si + sl + s` T =
∑

i∈[n−1]\{l,`}

mi + kl + sl︸ ︷︷ ︸
tl

+ k` + s`︸ ︷︷ ︸
t`

From the above equations, we see that for ADV to deduce the votes of ul and
u`, she needs to solve a system of four equations and six unknown variables. We
thus conclude, that the protocol remains secure even in the extreme case where
the evaluator, along with all but two voters are compromised.

7 Limitations

While this work is amongst the �rst that seeks to utilize FE to address real-life
problems, we acknowledge that it faces certain limitations. However, it is our
�rm belief that our proposed schemes can serve as the basis for more advanced
applications. In particular, we plan to extend our application in order to design
a more sophisticated solutions to important and complex problem of designing
a decentralized additive reputation system.

� Threat Model: The most important limitation of our construction directly
a�ecting its security is the considered adversarial model. Our construction is
secure under the not so realistic honest-but-curious threat model � a model
that undoubtedly is inadequate for an e-voting protocol. This is due to the
fact that it allows us to overlook important features that need to be appro-
priately addressed (e.g. double voting and validity of casted votes.).

(F)unctional Sifting 15

� Topology: The ring topology we presented can be susceptible to various at-
tacks, such as breaking the link between two voters. Additionally, the failure
of a single node can cause the entire network to fail (ring down e�ect).

� MPC Implies Synchronization: Another limitation, also related to the
adapted topology, is that since the voters need to participate in an MPC, we
need to de�ne a time interval where voters will be able to cast their votes.
Additionally, due to the fact that voters are jointly calculating the masked
value T that will be sent to EV, we need to make sure that all voters will be
online for a certain amount of time. Otherwise, this will lead to changes in
the ring and will a�ect the entire performance of our construction.

Having identi�ed the shortcomings mentioned above, in our future work, we
plan to extend our construction in such a way so as to make it secure under the
Dolev-Yao [?] adversarial model.

8 Experimental Setup and Results

Our experiments mainly focused on analyzing the performance of our scheme. In
contrast to similar works in the area, we wanted our measurements to be taken
under realistic conditions and not just be conducted as lab-based experiments.
It is worth mentioning that while this can substantially weaken the overall mea-
surements and subsequently the performance of our scheme, we decided to adopt
the stance that by following this course we would ensure the conclusions of our
work are not built on optimal premises but rather on the realistic ones. Based
on that, we created a distributed architecture where the TA was running on an
Azure cloud with SGX support (VM with 1 vcpu, 4GB RAM and Standard

DC1s_v2 instance type). The implementation of the TA was based on the In-
tel SGX SDK4. The Evaluator was implemented on a di�erent Azure instance
without SGX support (VM with 1 vcpu, 2GB RAM and Standard B1ms in-
stance type). Finally, the voters were running on an Amazon S3 cloud (a VM
with 1 vcpu, 2GB RAM and t2.micro instance type). The communication be-
tween these three entities was done over the Internet. Furthermore, the TA and
the Voters were implemented using C++, whereas EV in C++ and Python 3.
The details of the execution enviornment for each component are as follows:

� TA: A VM with 1 vcpu and 4GB RAM. The instance type of VM is Standard
DC1s_v2 and it runs on Microsoft Azure Con�dential Computing cloud.

� EV: A VM with 1 vcpu and 2GB RAM running on the Azure Standard
B1ms instance type.

� Voters: Running on Amazon in a VM of t2.micro instance type with 1 vcpu
and 2GB RAM.

To test the performance of our scheme, we gradually increased the number
of voters starting from a set of 1,000 and moving up to 100,000 voters. We

4 https://software.intel.com/en-us/sgx/sdk

https://software.intel.com/en-us/sgx/sdk

16 Alexandros Bakas, Antonis Michalas, and Amjad Ullah

evaluated two di�erent scenarios regarding the number of candidates � the �rst
uses 3 and the second 15 candidates. In both scenarios, we ran each experiment
ten times and calculated the average processing time. As we mentioned in Sec-
tion ??, our scheme involves a multiparty computation phase between the voters
through which the functional decryption key is constructed. For the multiparty
computation phase, we divided the total number of voters into unique individual
subsets. At the beginning of the process, and after a subset of voters has been
created, a remote attestation takes place where the voters of each subset attest
the integrity of the TA by contacting Intel's server. If the attestation is success-
ful, the voters run our scheme by calculating their unique encryption keys locally
and communicating with the TA to receive the corresponding shares si (i.e. se-
cret values). Subsequently, they perform the multiparty computation through
which they compute the sum of all masked keys. At the end of this round, they
send their encrypted votes along with the sum of the masked keys to EV. Upon
reception, EV attests the TA and receives the sum of all shares sent to the voters
in the previous round. Finally, EV uses FK along with the value received by the
TA and calculates the total votes. Figure ?? illustrates the communication and
the processes run between the three components of our scheme.

1: Setup

TA Voters

Evaluator

2: Remote attestation

4: Send 𝑠"
5: Encrypt vote

6: Submit vote

Loop for #Voters

3: Remote attestation
5: Send FK

7: Count votes

(a) Work�ow

●
●

●

●

●

●

●

●
●

●

●

●

●

●

0

5

10

15

20

25

1k 5k 10k 25k 50k 75k 100k
Number of Voters

P
ro

ce
ss

in
g

T
im

e
(m

in
)

Number of Candidates ● ●3 15

(b) Processing Time

Fig. 7: Implementation Architecture and Performance Evaluation

By using the described test-bed and evaluating the aforementioned scenarios,
we measured the processing time of the following processes: (1) Enclave Creation:
The average required time to initilize the enclave for the TA was 0.011sec; (2)
Remote attestation: The average time required for a speci�c enclave (the TA) to
remotely attest itself to a remote party was 1.24sec; (3) Voting Processing Time:
The average time required to complete the voting for single group of voters was
2.65sec (this includes a complete run of our scheme). Figure ?? illustrates the
results of running the two aforementioned scenarios with up to 100,000 voters.
It is important to note that our scheme allows the implementation of the voting
procedure in parallel. However, during our experiments, we aimed to demon-

(F)unctional Sifting 17

strate and evaluate the performance of the scheme without having any support
of parallelism and/or scalability. Therefore, in the current prototype, we ran the
experiments in a sequential manner (i.e. each time only a single group of users
was voting). Finally, as can be seen from the �gure, changing the number of
candidates does not have a signi�cant e�ect on the overall performance.

It is worht mentioning that at this stage and due to time contstraints, we
ran our epxeriments in a sequential manner (i.e. each time only a single group of
users was voting). However, our scheme allows the implementation of the voting
procedure in parallel � an approach that will signi�cantly reduce the overall
processing time. Finally, as can be seen from the �gure, changing the number of
candidates does not have a signi�cant e�ect in the overall performance.

9 Conclusion

In this work, we presented the �rst reputation reputation based on Functional
Encryption. We �rst showed how a FE scheme for inner products can be trans-
formed into a FE scheme for the `1 norm of a vector of an arbitrary vector space.
This enabled us to design a multi-client MIFE in the symmetric key setting,
which was used as a basis for building a privacy-preserving reputation scheme.
While our approach has certain limitations, and thus may not seem particularly
earth-shattering, we believe it should be seen as a valuable contribution to both
the �eld of cryptography and secure and private e-voting. This is due to the
fact that we showed how to utilize FE and extend existing techniques to solve
the important and di�cult problem of casting and collecting votes in a privacy-
preserving way. Hence, our work can be seen as the �rst thoroughfare into the
creation of privacy-preserving e-voting schemes with the use of FE.

References

1. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional en-
cryption for inner products: Function-hiding realizations and constructions without
pairings. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology � CRYPTO
2018. pp. 597�627. Springer International Publishing, Cham (2018)

2. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 601�626. Springer (2017)

3. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adap-
tive security in functional encryption. In: Annual Cryptology Conference. pp. 657�
677. Springer (2015)

4. Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Veri�able functional encryption.
In: International Conference on the Theory and Application of Cryptology and
Information Security. pp. 557�587. Springer (2016)

5. Bakas, A., Michalas, A.: Power range: Forward private multi-client symmetric
searchable encryption with range queries support. In: The 25th IEEE International
Conference on Communications (ISCC'20) (2020)

18 Alexandros Bakas, Antonis Michalas, and Amjad Ullah

6. Bakas, A., Michalas, A.: Modern family: A revocable hybrid encryption scheme
based on attribute-based encryption, symmetric searchable encryption and sgx.
In: International Conference on Security and Privacy in Communication Systems.
pp. 472�486. Springer (2019)

7. Bakas, A., Michalas, A.: Multi-client symmetric searchable encryption with forward
privacy. IACR Cryptol. ePrint Arch. 2019, 813 (2019)

8. Bakas, A., Michalas, A.: Multi-input functional encryption: E�cient applications
from symmetric primitives. In: Proceedings of the 19th IEEE International Con-
ference on Trust, Security and Privacy in Computing and Communications (Trust-
Com'20) (2020)

9. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Se-
mantically secure order-revealing encryption: Multi-input functional encryption
without obfuscation. In: Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques. pp. 563�594. Springer (2015)

10. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in
the private-key setting: Stronger security from weaker assumptions. Journal of
Cryptology 31(2), 434�520 (2018)

11. Costan, V., Devadas, S.: Intel sgx explained. IACR Cryptology ePrint Archive
2016(086), 1�118 (2016)

12. Dimitriou, T., Michalas, A.: Multi-party trust computation in decentralized envi-
ronments in the presence of malicious adversaries. Ad Hoc Networks 15 (2014)

13. Dolev, D., Yao, A.C.: On the security of public key protocols. Information Theory,
IEEE Transactions on 29(2) (1983)

14. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.H., Sahai, A.,
Shi, E., Zhou, H.S.: Multi-input functional encryption. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 578�
602. Springer (2014)

15. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Annual Cryptology Conference. pp.
536�553. Springer (2013)

16. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Annual Cryptology Conference. pp.
162�179. Springer (2012)

17. Hasan, O., Brunie, L., Bertino, E., Shang, N.: A decentralized privacy preserving
reputation protocol for the malicious adversarial model. IEEE Transactions on
Information Forensics and Security 8(6), 949�962 (2013)

18. Michalas, A.: The lord of the shares: Combining attribute-based encryption
and searchable encryption for �exible data sharing. In: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing. pp. 146�155 (2019)

19. Pavlov, E., Rosenschein, J.S., Topol, Z.: Supporting privacy in decentralized addi-
tive reputation systems. In: International Conference on Trust Management. pp.
108�119. Springer (2004)

20. Sans, E.D., Gay, R., Pointcheval, D.: Reading in the dark: Classifying encrypted
digits with functional encryption. IACR Cryptology ePrint Archive 2018

21. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Annual Cryptology Conference. pp. 678�697. Springer (2015)

