
Classical Verification of Quantum Computations with

Efficient Verifier

Nai-Hui Chia1,2, Kai-Min Chung3, and Takashi Yamakawa∗4

1Joint Center for Quantum Information and Computer Science, University of Maryland,
nchia@umd.edu

2Department of Computer Science, University of Texas at Austin
3Institute of Information Science, Academia Sinica, kmchung@iis.sinica.edu.tw

4NTT Secure Platform Laboratories, takashi.yamakawa.ga@hco.ntt.co.jp

Abstract

In this paper, we extend the protocol of classical verification of quantum computations
(CVQC) recently proposed by Mahadev to make the verification efficient. Our result is obtained
in the following three steps:

• We show that parallel repetition of Mahadev’s protocol has negligible soundness error.
This gives the first constant round CVQC protocol with negligible soundness error. In this
part, we only assume the quantum hardness of the learning with error (LWE) problem
similar to Mahadev’s work.

• We construct a two-round CVQC protocol in the quantum random oracle model (QROM)
where a cryptographic hash function is idealized to be a random function. This is obtained
by applying the Fiat-Shamir transform to the parallel repetition version of Mahadev’s
protocol.

• We construct a two-round CVQC protocol with an efficient verifier in the CRS+QRO
model where both prover and verifier can access a (classical) common reference string
generated by a trusted third party in addition to quantum access to QRO. Specifically, the
verifier can verify a QTIME(T) computation in time poly(n, log T) where n is the security
parameter. For proving soundness, we assume that a standard model instantiation of our
two-round protocol with a concrete hash function (say, SHA-3) is sound and the existence
of post-quantum indistinguishability obfuscation and post-quantum fully homomorphic
encryption in addition to the quantum hardness of the LWE problem.

1 Introduction

Quantum computers that outperform classical supercomputers have been realized recently [AAB+19]
and may play a role similar to the super clusters in the foreseeable future. Indeed, this is happening
now—IBM has provided an online platform for public users to run their computational tasks on
IBM’s quantum computing server [IBM]. Since quantum computers would be accessed by clients
with only classical devices, verifying quantum computation by a classical computer has become a
major issue in this setting. To address this problem, there are several works toward reducing the
verifier’s quantum resource for verifying quantum computation [BFK09, FK17, ABOEM17, MF18].
However, it was unknown if the verifier could be purely classical until Mahadev [Mah18] finally gave

∗This work was done in part while the author was visiting Academia Sinica.

1

mailto:nchia@umd.edu
mailto:kmchung@iis.sinica.edu.tw
mailto: takashi.yamakawa.ga@hco.ntt.co.jp

an affirmative solution. Specifically, she constructed an interactive protocol between an efficient
classical verifier (a BPP machine) and an efficient quantum prover (a BQP machine) where the
verifier can verify the result of the BQP computation. (In the following, we call such a protocol
a CVQC protocol.1) Soundness of her protocol relies on a computational assumption that the
learning with error (LWE) problem [Reg09] is hard for an efficient quantum algorithm, which has
been widely used in the field of cryptography. We refer to the extensive survey by Peikert [Pei16]
for details about LWE and its cryptographic applications.

Although the verifier in Mahadev’s protocol is purely classical, it is not “efficient”. In the
classical cryptographic literature of delegating (classical) computation, efficient verifier that can
verify a delegated time T computation in o(T) time is a necessary requirement (as otherwise, the
verifier performs the computation on its own). Indeed, many previous works suggested that the
verifier’s runtime can be poly log(T) in the classical setting [Kil92, Mic00, KRR13, KRR14, GKR15,
RRR16, BHK17, BKK+18, HR18, CCH+19, KPY19]. In contrast, in the literature of delegating
quantum computation, the focus is mainly on reducing the required quantum power for the verifier,
and all existing protocols with a single prover (e.g., in blind quantum computation [BFK09] and
Mahadev’s protocol [Mah18]) inherently requires the verifier to run in poly(T) time to verify the
delegated computation, even for verifiers with weak quantum power.

Therefore, whether a CVQC protocol with an efficient verifier (i.e., with runtime o(T)) exists
is a natural and fundamental theoretical question. Also, from a technical perspective, classical
efficient verifier protocols are closely related to PCP proofs, where many protocols are constructed
based on PCP proofs, and a partial converse result is proven by Rothblum and Vadhan [RV10].
On the other hand, whether a quantum version of the PCP theorem holds is still an open question
in quantum complexity theory [AAV13]. Thus, the challenge of constructing a protocol with an
efficient verifier is potentially related to the challenge of constructing quantum PCP proofs. While
our construction relies on several strong and non-standard assumptions, our protocol provides the
first feasibility result (in any reasonable models) that answers this question of efficient verifier
CVQC protocol affirmatively.

1.1 Our Results

In this paper, our main result is a CVQC protocol with an efficient verifier, and we have also
reached two milestones on the path to the final result. We summarize them as follows:

Parallel repetition of Mahadev’s protocol We first show that parallel repetition version of
Mahadev’s protocol has negligible soundness error. Note that Mahadev’s protocol has soundness
error 3/4, which means that a cheating prover may convince the verifier even if it does not correctly
computes the BQP computation with probability at most 3/4. Though we can exponentially reduce
the soundness error by sequential repetition, we need super-constant rounds to reduce the soundness
error to be negligible. If parallel repetition works to reduce the soundness error, then we need
not increase the number of round. However, parallel repetition may not reduce soundness error
for computationally sound protocols in general [BIN97, PW07]. Thus, it was open to construct
constant round protocol with negligible soundness error. We manage to answer this question by
giving the first constant round CVQC protocol with negligible soundness error.

Two-round CVQC protocol Based on the parallel repetition version of Mahadev’s protocol
with negligible soundness, we then construct a two-round CVQC protocol in the quantum random

1“CVQC” stands for “Classical Verification of Quantum Computations”

2

oracle model (QROM) [BDF+11] where a cryptographic hash function is idealized to be a random
function that is only accessible as a quantum oracle. This is obtained by applying the Fiat-Shamir
transform [FS87, LZ19, DFMS19] to the parallel repetition version of Mahadev’s protocol.

CVQC protocol with an efficient verifier Finally, we construct a two-round CVQC protocol
with logarithmic-time verifier in the CRS+QRO model where both prover and verifier can access
to a (classical) common reference string generated by a trusted third party in addition to quan-
tum access to QRO. For proving soundness, we assume that a standard model instantiation of
our two-round protocol with a concrete hash function (say, SHA-3) is sound and the existence of
post-quantum indistinguishability obfuscation [BGI+12, GGH+16] and (post-quantum) fully ho-
momorphic encryption (FHE) [Gen09] in addition to the quantum hardness of the LWE problem.

1.2 Technical Overview

Overview of Mahadev’s protocol. First, we recall the high-level structure of Mahadev’s 4-
round CVQC protocol.2 On input a common input x, a quantum prover and classical verifier
proceeds as below to prove and verify that x belongs to a BQP language L.

First Message: The verifier generates a pair of “key” k and a “trapdoor” td, sends k to the
prover, and keeps td as its internal state.

Second Message: The prover is given the key k, generates a classical “commitment” y along with
a quantum state |stP 〉, sends y to the verifier, and keeps |stP 〉 as its internal state.

Third Message: The verifier randomly picks a “challenge” c
$← {0, 1} and sends c to the prover.

Following the terminology in [Mah18], we call the case of c = 0 the “test round” and the case
of c = 1 the “Hadamard round”.

Fourth Message: The prover is given a challenge c, generates a classical “answer” a by using the
state |stP 〉, and sends a to the verifier.

Final Verification: Finally, the verifier returns ⊤ indicating acceptance or ⊥ indicating rejection.
In case c = 0, the verification can be done publicly, that is, the final verification algorithm
need not use td.

Mahadev showed that the protocol achieves negligible completeness error and constant sound-
ness error against computationally bounded cheating provers. More precisely, she showed that if
x ∈ L, then the verifier accepts with probability 1 − negl(n) where n is the security parameter,
and if x /∈ L, then any quantum polynomial time cheating prover can let the verifier accept with
probability at most 3/4. For proving this, she first showed the following lemma:3

Lemma 1.1 (informal). For any x /∈ L, if a quantum polynomial time cheating prover passes
the test round with probability 1 − negl(n), then it passes the Hadamard with probability negl(n)
assuming the quantum hardness of the LWE problem.

2See Sec. 3.1 for more details.
3Strictly speaking, she just proved a similar property for what is called a “measurement protocol” instead of CVQC

protocol. But this easily implies a similar statement for CVQC protocol since CVQC protocol can be obtained by
combining a measurement protocol and the (amplified version of) Morimae-Fitzsimons protocol [MF18] without
affecting the soundness error as is done in [Mah18, Section 8].

3

Given the above lemma, it is easy to prove the soundness of the protocol. Roughly speaking,
we consider a decomposition of the Hilbert space HP for the prover’s internal state |ψP 〉 into two
subspaces S0 and S1 so that S0 (resp. S1) consists of quantum states that lead to rejection (resp.
acceptance) in the test round. That is, we define these subspaces so that if the cheating prover’s
internal state after sending the second message is |s0〉 ∈ S0 (resp. |s1〉 ∈ S1), then the verifier
returns rejection (acceptance) in the test round (i.e., the case of c = 0). Here, we note that the
decomposition is well-defined since we can assume that a cheating prover just applies a fixed unitary
on its internal space and measures some registers for generating the fourth message in the test round
without loss of generality. Let Πb be the projection onto Sb and |ψb〉 := Πb |ψP 〉 for b ∈ {0, 1}. Then
|ψ0〉 leads to rejection in the test round (with probability 1), so if the verifier uniformly chooses

c
$← {0, 1}, then |ψ0〉 leads to acceptance with probability at most 1/2. On the other hand, since

|ψ1〉 leads to the acceptance in the test round (with probability 1), by Lemma 1.1, |ψ1〉 leads to
the acceptance in the Hadamard round with only negligible probability. Therefore, the verifier

uniformly chooses c
$← {0, 1}, then |ψ1〉 leads to acceptance with probability at most 1/2+negl(n).

Therefore, intuitively speaking, |ψP 〉 = |ψ0〉 + |ψ1〉 leads to acceptance with probability at most
1/2 + negl(n), which completes the proof of soundness. We remark that here is a small gap since
measurements are not linear and thus we cannot simply conclude that |ψP 〉 leads to acceptance
with probability at most 1/2+negl(n) even though the same property holds for both |ψ0〉 and |ψ1〉.
Indeed, Mahadev just showed that the soundness error is at most 3/4 instead of 1/2 + negl(n) to
deal with this issue. A concurrent work by Alagic et al. [ACGH20] proved that the Mahadev’s
protocol actually achieves soundness error 1/2 + negl(n) with more careful analysis.

Parallel repetition. Now, we turn our attention to parallel repetition version of Mahadev’s
protocol. Our goal is to prove that the probability that the verifier accepts on x /∈ L is negligible if
the verifier and prover run the Mahadev’s protocol m-times parallelly for sufficiently large m and
the verifier accepts if and only if it accepts on the all coordinates.

Our first step is to consider a decomposition of the prover’s space HP into two subspaces
Si,0 and Si,1 for each i ∈ [m] similarly to the stand-alone case. Specifically, we want to define
these subspaces so that Si,0 (resp. Si,1) consists of quantum states that lead to rejection (resp.
acceptance) in the test round on the i-th coordinate. However, such subspaces are not well-defined
since a cheating prover’s behavior in the fourth round depends on challenges c = c1....cm ∈ {0, 1}m
on all coordinates. Thus, even if we focus on the test round on the i-th coordinate, all other
challenges c−i = c1...ci−1ci+1...cm still have flexibility, and a different choice of c−i leads to a
different prover’s behavior. In other words, the prover’s strategy should be described as a unitary
over HC ⊗HP where HC is a Hilbert space to store a challenge. Therefore Si,0 and Si,1 cannot be
well-defined as a decomposition of HP if we define them as above.

Therefore, we need to define these subspaces in a little different way. Specifically, our idea is
to define them as subspaces that “know” and “do not know” an answer for the test round on i-th
coordinate. More precisely, for any fixed noticeable “threshold” γ = 1/poly(n), we ideally require
the followings:

1. (Si,0 “does not know” an answer.) If the fourth message generation algorithm of the
cheating prover runs with an internal state |ψi,0〉 ∈ Si,0, then it passes the test round on i-th
coordinate with probability at most γ when the challenge c is uniformly chosen from {0, 1}m
such that ci = 0.

2. (Si,1 “knows” an answer.) There is an efficient algorithm that is given any |ψi,1〉 ∈ Si,1 as
input and outputs an accepting answer for the test round on i-th coordinate with overwhelm-

4

ing probability.

3. (Efficient projection.) A measurement described by {ΠSi,0 ,ΠSi,1} can be performed effi-
ciently where ΠSi,0 and ΠSi,1 denote projections to Si,0 and Si,1, respectively.

Unfortunately, we do not know how to achieve these requirements in the above clean form.
Nonetheless, we can show that a “noisy” version of the above requirements can be achieved by
using the techniques taken from works on an amplification theorem for QMA [MW05, NWZ09].
We will explain this in more detail in the next paragraph since this is the technical core of our
proof. In the rest of this paragraph, we explain how to prove the soundness of the parallel repetition
version of Mahadev’s protocol assuming that the above requirements are satisfied in the clean form
as above for simplicity. Here, we observe that for any i ∈ [m] and b ∈ {0, 1}, any efficiently
generated |ψi,b〉 ∈ Si,b leads to acceptance in the verification on i-th coordinate for any fixed c such
that ci = b with probability at most 2m−1γ + negl(n). This can be seen by a similar argument
to the stand-alone case: The case of b = 0 follows from the above requirement 1 considering that
the number of c ∈ {0, 1}m such that ci = 0 is 2m−1. The case of b = 1 follows from the above
requirement 2 combined with Lemma 1.1 assuming the quantum hardness of LWE.

Our next step is to sequentially apply projections onto Si,0 and Si,1 for i = 1, ...,m to further
decompose the prover’s state |ψP 〉. More precisely, for any fixed c = c1...cm ∈ {0, 1}m, we define

|ψ0〉 := ΠS1,0 |ψP 〉 , |ψ1〉 := ΠS1,1 |ψP 〉

and
|ψc̄1,...,c̄i−1,0〉 := ΠSi,0 |ψc̄1,...,c̄i−1〉 , |ψc̄1,...,c̄i−1,1〉 := ΠSi,1 |ψc̄1,...,c̄i−1〉

for i = 2, ...,m where c̄i denotes 1− ci. Then we have

|ψ〉 = |ψc1〉+ |ψc̄1,c2〉+ · · ·+ |ψc̄1,...,c̄m−1,cm〉+ |ψc̄1,...,c̄m〉 .

Here, for each i ∈ [m], we have |ψc̄1,...,c̄i−1,ci〉 ∈ Si,ci by definition. Therefore, |ψc̄1,...,c̄i−1,ci〉 leads to
acceptance on the verification on i-th coordinate with probability at most 2m−1γ + negl(n) when
the challenge is c. Moreover, if we consider the above decomposition for a randomly chosen c, then
we have E

c
$←{0,1}m

[‖ |ψc̄1,...,c̄m〉 ‖] ≤ 2−m since an expected norm is halved whenever we apply either

of projections onto Si,0 or Si,1 randomly. Therefore, we can conclude that the verifier accepts
on the all coordinates with probability at most 2m−1γ + 2−m + negl(n). This is not negligible
since we need to assume that γ is noticeable due to a technical reason. However, we can make
2m−1γ + 2−m + negl(n) as small as any noticeable function by appropriately setting m = O(logn)
and γ = 1/poly(n). This implies that a cheating adversary’s winning probability is negl(n) if we
set m = ω(log n).
How to define Si,0 and Si,1. In this paragraph, we explain how to define subspaces Si,0 and
Si,1 and achieve a noisy version of the requirements in the previous paragraph. For defining these
subspaces, we borrow a lemma from [NWZ09], which was originally used for proving an amplification
theorem for QMA. Since their lemma is a little complicated to state in a general form, we only
explain what is ensured by their lemma in our context. In our context, their lemma ensures that
there is an efficient operator Q over HC × HP where HC is a register for storing a challenge
c ∈ {0, 1}m such that

1. (Eigenvectors span HP .) there is a orthonormal basis {|α̂j〉}j of HP such that |0m〉
C
|α̂j〉P is

an eigenvector of Q with eigenvalue eiθj for some θj ,

5

2. (Eigenvalue corresponds to success probability.) if the fourth message generation algorithm
of the cheating prover runs with an internal state |α̂j〉, then it passes the test round on i-th
coordinate with probability pj := cos2(θj/2) when the challenge c is uniformly chosen from
{0, 1}m such that ci = 0, and

3. (Extractable) there is an extraction algorithm that is given a state |α̂j〉 and outputs an
accepting answer for the test round on i-th coordinate with overwhelming probability in time
poly(n, p−1j).

Given this lemma, our rough idea is to define Si,0 (resp. Si,1) as a subspace spanned by |α̂j〉 such
that pj ≤ γ (resp. pj > γ). Then, it is easy to see that Si,0 and Si,1 satisfy the requirements 1 and 2
(i.e., Si,0 “does not know” an answer and Si,1 “knows” an answer). However, we do not know how to
efficiently perform a projection onto Si,0 or Si,1 since there is no known efficient algorithm for phase
estimation without an approximation error. On the other hand, we can efficiently approximate a
phase with an approximation error 1/poly(n) [NWZ09]. Then, our next idea is to introduce an
inverse polynomial gap between thresholds for Si,0 and Si,1, i.e., we define Si,0 (resp. Si,1) as a
subspace spanned by |α̂j〉 such that pj ≤ γ (resp. pj ≥ γ + 1/poly(n)). Then, we can efficiently
perform a projection to Si,0 or Si,1 by using the phase estimation algorithm with an approximation
error 1/poly(n) if the original state does not have a “grey area”, which is a space spanned by |α̂j〉
such that pj ∈ (γ, γ +1/poly(n)). However, it may be the case that the original state is dominated
by the grey area. To resolve this issue, we randomly set the threshold γ from T possible choices
so that we can upper bound the expected norm of the grey area component by O(1/T). In the
main body, we formalize this “noisy” version of the decomposition and show that this suffices for
proving the soundness of parallel repetition version of Mahadev’s protocol.

Remark 1. We remark that parallel repetition of Mahadev’s protocol is also analyzed in a concur-
rent work of Alagic et al. [ACGH20], who gave an elegant analysis. Their analysis starts from the
same observation (Lemma 1.1) but is interestingly different from ours (see Section 1.3 for further
discussion). An advantage of our analysis is that it is more constructive. Namely, we show that
the (“noisy” version of) projection to Si,0 and Si,1 can be constructed efficiently. This is a useful
feature that has found application in the work of [CLLW20], who constructed CVQC protocols for
quantum sampling problems. They used the technique developed here to analyze parallel repetition
of their protocol (while the analysis of [ACGH20] does not seem to generalize).

Two-round protocol via Fiat-Shamir transform. Here, we explain how to convert the par-
allel repetition version of Mahadev’s protocol to a two-round protocol in the QROM. First, we
observe that the third message of the Mahadev’s protocol is public-coin, and thus the parallel rep-
etition version also satisfies this property. Then by using the Fiat-Shamir transform [FS87], we
can replace the third message with hash value of the transcript up to the second round. Though
the Fiat-Shamir transform was originally proven sound only in the classical ROM, recent works
[LZ19, DFMS19] showed that it is also sound in the QROM. This enables us to apply the Fiat-
Shamir transform to the parallel repetition version of Mahadev’s protocol to obtain a two-round
protocol in the QROM.

Making verification efficient. Finally, we explain how to make the verification efficient. Our
idea is to delegate the verification procedure itself to the prover by using delegation algorithm for
classical computation. Since the verification is classical, this seems to work at first glance. However,
there are the following two problems:

6

1. There is not a succinct description of the verification procedure since the verification pro-
cedure is specified by the whole transcript whose size is poly(T) when verifying a language
in QTIME(T). Then the verifier cannot specify the verification procedure to delegate within
time O(log(T)).

2. Since the CVQC protocol is not publicly verifiable (i.e., verification requires a secret informa-
tion that is not given to the prover), the prover cannot know the description of the verification
procedure, which is supposed to be delegated to the prover.

We solve the first problem by using a succinct randomized encoding, which enables one to
generate a succinct encoding of a Turing machine M and an input x so that the encoding only
reveals the information about M(x) and not M or x. Then our idea is that instead of sending the
original first message, the verifier just sends a succinct encoding of (V1, s) where V1 denotes the
Turing machine that takes s as input and works as the first-message-generation algorithm of the
CVQC protocol with randomness PRG(s) where PRG is a pseudorandom number generator. This
enables us to make the transcript of the protocol succinct (i.e., the description size is logarithmic
in T) so that the verifier can specify the verification procedure succinctly. To be more precise,
we have to use a strong output-compressing randomized encoding [BFK+19], where the encoding
size is independent of the output length of the Turing machine. They construct a strong output-
compressing randomized encoding based on iO and other mild assumptions in the common reference
string. Therefore our CVQC protocol also needs the common reference string.

We solve the second problem by using FHE. Namely, the verifier sends an encryption of the
trapdoor td by FHE, and the prover performs the verification procedure over the ciphertext and
provides a proof that it honestly applied the homomorphic evaluation by SNARK. Then the verifier
decrypts the resulting FHE ciphertext and accepts if the decryption result is “accept” and the
SNARK proof is valid.

In the following, we describe (a simplified version of) our construction. Suppose that we have
a 2-round CVQC that works as follows:

First message: Given an instance x, the verifier generates a pair (k, td) of a“key” and “trapdoor”,
sends k to P , and keeps td as its internal state.

Second message: Given x and k, the prover generates a response e and sends it to the verifier.

Verification: Given x, k, td, e, the verifier returns ⊤ indicating acceptance or ⊥ indicating rejec-
tion.

Then we construct a CVQC protocol with efficient verification as follows.

Setup: It generates a CRS for a strong output-compressing randomized encoding.

First Message: Given a CRS and an instance x, the verifier picks a seed s for PRG and a public

and secret keys (pkfhe, skfhe) of FHE, computes ct
$← FHE.Enc(pkfhe, s) and generates a succinct

encoding M̂inp of M(s) where M is a classical Turing machine that works as follows:

M(s): Given a seed s for PRG, it generates (k, td) as in the building block CVQC protocol
by using a randomness PRG(s) and outputs k.

Then the verifier sends (M̂inp, pkfhe, ct) to the prover and keeps skfhe as its internal state.

7

Second Message: The prover obtains k by decoding M̂inp, computes e as in the building block
CVQC protocol, and homomorphically evaluates a classical circuit C[x, e] on ct to generate
ct′ where C[x, e] is a circuit that works as follows:

C[x, e](s): Given a seed s for PRG, it generates (k, td) as in the building block CVQC protocol
by using a randomness PRG(s) and returns 1 if and only if e is an accepting answer in
the building block CVQC w.r.t. x and (k, td).

Then the prover generates a SNARK proof πsnark that proves that there exists e
′ such that ct′

is a result of a homomorphic evaluation of the circuit C[x, e] on ct. Then it sends (ct′, πsnark)
to the verifier

Verification: The verifier accepts if the decryption result of ct′ is 1 and πsnark passes the verification
of SNARK.

Intuitively, the soundness of the above protocol can be proven by considering the following
hybrids. In the first hybrid, the verifier extracts the witness e′ from πsnark by using the extractability
of SNARK and runs the original verification of the building block CVQC on the second message
e′ instead of checking if the decryption result of ct′ is 1. This decreases the cheating prover’s
success probability by a factor of poly(n) since the extraction succeeds with probability 1/poly(n)
and if the extraction succeeds, the verifier’s output should be the same. In the next hybrid, we
change ct to an encryption of 0|s| instaed of s. Since the verifier no longer uses skfhe, this hybrid
is indistinguishable from the previous one by the CPA security of FHE. In the next hybrid, we
generate M̂inp by a simulation algorithm of the strong output-compressing randomized encoding
from M(s) = k. This hybrid is indistinguishable from the previous one by the security of the
strong output-compressing randomized encoding. In the next hybrid, we replace k that is used as
an input of the simulation algorithm of the strong output-compressing randomized encoding with
a one generated with a true randomness instead of PRG(s). This hybrid is indistinguishable from
the previous one by the security of PRG noting that s is no longer used for generating ct. In this
final hybrid, a cheating prover is essentially only given k and has no information about td, and it
wins if and only if the extraction algorithm of SNARK extracts an accepting second message e′ of
the building block CVQC. Thus, the winning probability in the final hybrid is negligible due to
the soundness of the building block CVQC. Therfore the above efficient verification version is also
sound.

Though the above proof sketch can be made rigorous if we assume adaptive extractability for
SNARK, we want to instantiate SNARK in the QROM [CMS19], which is only proven to have
non-adaptive extractability. Specifically, it only ensures the extractability in the setting where the
statement is chosen before making any query to the random oracle. To deal with this issue, we first
expand the protocol to the four-round protocol where the verifier randomly sends a “salt” z, which
is a random string of a certain length, in the third round and the prover uses the “salted” random
oracle H(z, ·) for generating the SNARK proof. Since the statement to be proven by SNARK is
determined up to the second round, and the salting essentially makes the random oracle “fresh”,
we can argue the soundness of the CVQC protocol even with the non-adaptive extractability of the
SNARK. At this point, we obtain four-round CVQC protocol with efficient verification. Here, we
observe that the third message is just a salt z, which is public-coin. Therefore we can just apply
the Fiat-Shamir transform again to make the protocol two-round.

8

1.3 Related Works

Verification of Quantum Computation. There is a long line of researches on verification of
quantum computation. Except for solutions relying on computational assumptions, there are two
type of settings where verification of quantum computation is known to be possible. In the first
setting, instead of considering purely classical verifier, we assume that a verifier can perform a
certain kind of weak quantum computations [BFK09, FK17, ABOEM17, MF18]. In the second
setting, we assume that a prover is splitted into two remote servers that share entanglement but
do not communicate [RUV13]. Though these works do not give a CVQC protocol in our sense, the
advantage is that we need not assume any computational assumption for the proof of soundness,
and thus they are incomparable to Mahadev’s result and ours.

Subsequent to Mahadev’s breakthrough result, Gheorghiu and Vidick [GV19] gave a CVQC
protocol that also satisfies blindness, which ensures that a prover cannot learn what computation
is delegated. We note that their protocol requires polynomial number of rounds.

Post-Quantum Indistinguishability Obfuscation. There are several candidates of post-quantum
indistniguishability obfuscation [Agr19, AP20, BDGM20, WW20, GP20]. Especially, the recent
works by Brakerski et al. [BDGM20] and Gay and Pass [GP20] gave constructions of indistnigu-
ishability obfuscation based on the LWE assumption and a certain type of circular security of
LWE-based encryption schemes against subexponential time adversaries.

Concurrent Work. In a concurrent and independent work, Alagic et al. [ACGH20] also shows
similar results to our first and second results, parallel repetition theorem for the Madadev’s protocol
and a two-round CVQC protocol by the Fiat-Shamir transform. We note that our third result, a
two-round CVQC protocol with efficient verification, is unique in this paper. On the other hand,
they also give a construction of non-interactive zero-knowledge arguments for QMA, which is not
given in this paper.

We mention that we have learned the problem of parallel repetition for Mahadev’s protocol from
the authors of [ACGH20] on March 2019, but investigated the problem independently later as a
stepping stone toward making the verifier efficient. Interestingly, the analyses of parallel repetition
in the two works are quite different. Briefly, the analysis in [ACGH20] relies on the observation
that for any two different challenges c1 6= c2 ∈ {0, 1}m, the projections of an efficient-generated
prover’s state on the accepting subspaces corresponding to c1 and c2 are almost orthogonal, which
leads to an elegant proof of the parallel repetition theorem.

As mentioned, we additionally show that the projections can be approximated “efficiently” by
constructing an efficient quantum procedure (Lemma 3.4). This is the main technical step in our
proof, where we combine several tools such as Jordan’s lemma, phase estimation, and random
thresholding to construct the efficient projector. We then use this efficient projector iteratively to
bound the success probability of the prover. Our construction of the efficient projection has found
applications in a related context in [CLLW20].

2 Preliminaries

Notations. For a bit b ∈ {0, 1}, b̄ denotes 1 − b. For a finite set X , x $← X means that x is
uniformly chosen from X . For finite sets X and Y, Func(X ,Y) denotes the set of all functions with
domain X and range Y. A function f : N → [0, 1] is said to be negligible if for all polynomial
p and sufficiently large n ∈ N, we have f(n) < 1/p(n) and said to be overwhelming if 1 − f is
negligible. We denote by poly an unspecified polynomial and by negl an unspecified negligible

9

function. We say that a classical (resp. quantum) algorithm is efficient if it runs in probabilistic
polynomial-time (resp. quantum polynominal time). For a quantum or randomized algorithm A,
y

$← A(x) means that A is run on input x and outputs y and y := A(x; r) means that A is run on
input x and randomness r and outputs y. For an interactive protocol between a “prover” P and

“verifier” V , y
$← 〈P (xP), V (xV))〉(x) means an interaction between them with prover’s private

input xP verifier’s private input xV , and common input x outputs y. For a quantum state |ψ〉,
MX ◦ |ψ〉 means a measurement in the computational basis on the register X of |ψ〉. We denote by
QTIME(T) a class of languages decided by a quantum algorithm whose running time is at most T .
We use n to denote the security parameter throughout the paper.

2.1 Learning with Error Problem

Roughly speaking, the learning with error (LWE) is a problem to solve system of noisy linear
equations. Regev [Reg09] proved that the hardness of LWE can be reduced to hardness of certain
worst-case lattice problems via quantum reductions. We do not give a definition of LWE in this
paper since we use the hardness of LWE only for ensuring the soundness of the Mahadev’s protocol
(Lemma 3.1), which is used as a black-box manner in the rest of the paper. Therefore, we use
exactly the same assumption as that used in [Mah18], to which we refer for detailed definitions and
parameter settings for LWE.

2.2 Quantum Random Oracle Model

The quantum random oracle model (QROM) [BDF+11] is an idealized model where a real-world
hash function is modeled as a quantum oracle that computes a random function. More precisely,
in the QROM, a random function H : X → Y of a certain domain X and range Y is uniformly
chosen from Func(X ,Y) at the beginning, and every party (including an adversary) can access to
a quantum oracle OH that maps |x〉 |y〉 to |x〉 |y ⊕H(x)〉. We often abuse notation to denote AH
to mean a quantum algorithm A is given oracle OH .

2.3 Cryptographic Primitives

Here, we give definitions of cryptographic primitives that are used in this paper. We note that they
are only used in Sec 5 where we construct an efficient verifier variant.

2.3.1 Pseudorandom Generator

A post-quantum pseudorandom generator (PRG) is an efficient deterministic classical algorithm
PRG : {0, 1}ℓ → {0, 1}m such that for any efficient quantum algorithm A, we have

∣∣∣∣∣ Pr
s

$←{0,1}ℓ
[A(PRG(s))]− Pr

y
$←{0,1}m

[A(y)]
∣∣∣∣∣ ≤ negl(n).

It is known that there exists a post-quantum PRG for any ℓ = Ω(n) and m = poly(n) assuming
post-quantum one-way function [HILL99, Zha12]. Especially, a post-quantum PRG exists assuming
the quantum hardness of LWE.

2.3.2 Fully Homomorphic Encryption

A post-quantum fully homomorphic encryption consists of four efficient classical algorithm ΠFHE =
(FHE.KeyGen,FHE.Enc,FHE.Eval,FHE.Dec).

10

FHE.KeyGen(1n): The key generation algorithm takes the security parameter 1n as input and out-
puts a public key pk and a secret key sk.

FHE.Enc(pk,m): The encryption algorithm takes a public key pk and a message m as input, and
outputs a ciphertext ct.

FHE.Eval(pk, C, ct): The evaluation algorithm takes a public key pk, a classical circuit C, and a
ciphertext ct, and outputs a evaluated ciphertext ct′.

FHE.Dec(sk, ct): The decryption algorithm takes secret key sk and a ciphertext ct as input and
outputs a message m or ⊥.

Correctness. For all n ∈ N, (pk, sk)
$← FHE.KeyGen(1n), m and C, we have

Pr[FHE.Dec(sk,FHE.Enc(pk,m)) = m] = 1

and

Pr[FHE.Dec(sk,FHE.Eval(pk, C,FHE.Enc(pk,m))) = C(m)] = 1.

Post-Quantum CPA-Security. For any efficient quantum adversary A = (A1,A2), we have

|Pr[1 $← A2(|stA〉 , ct) : (pk, sk) $← FHE.KeyGen(1n), (m0,m1, |stA〉) $← A1(pk), ct
$← FHE.Enc(pk,m0)]

− Pr[1
$← A2(|stA〉 , ct) : (pk, sk) $← FHE.KeyGen(1n), (m0,m1, |stA〉) $← A1(pk), ct

$← FHE.Enc(pk,m1)]|
≤ negl(n).

FHE is usually constructed by first constructing leveled FHE, where we have to upper bound the
depth of a circuit to evaluate at the setup, and then converting it to FHE by the technique called
bootstrapping [Gen09]. There have been many constructions of leveled FHE whose (post-quantum)
security can be reduced to the (quantum) hardness of LWE [BV11, BGV12, Bra12, GSW13]. FHE
can be obtained assuming that any of these schemes is circular secure [CL01] so that it can be
upgraded into FHE via bootstrapping. We note that Canetti et al. [CLTV15] gave an alternative
transformation from leveled FHE to FHE based on subexponentially secure iO.

2.3.3 Strong Output-Compressing Randomized Encoding

A strong output-compressing randomized encoding [BFK+19] consists of three efficient classical
algorithms (RE.Setup,RE.Enc,RE.Dec).

RE.Setup(1n, 1ℓ, crs) : It takes the security parameter 1n, output-bound ℓ, and a common reference
string crs ∈ {0, 1}ℓ and outputs a encoding key ek.

RE.Enc(ek,M, inp, T): It takes an encoding key ek, Turing machine M , an input inp ∈ {0, 1}∗, and
a time-bound T ≤ 2n (in binary) as input and outputs an encoding M̂inp.

RE.Dec(crs, M̂inp): It takes a common reference string crs and an encoding M̂inp as input and outputs
out ∈ {0, 1}∗ ∪ {⊥}.

Correctness. For any n ∈ N, ℓ, T ∈ N, crs ∈ {0, 1}ℓ, Turing machine M and input inp ∈ {0, 1}∗
such that M(inp) halts in at most T steps and returns a string whose length is at most ℓ, we have

Pr
[
RE.Dec(M̂inp, crs) =M(inp) : ek

$← RE.Setup(1n, 1ℓ, crs), M̂inp
$← RE.Enc(ek,M, inp, T)

]
= 1.

11

Efficiency. There exists polynomials p1, p2, p3 such that for all n ∈ N, ℓ ∈ N, crs
$← {0, 1}ℓ:

• If ek
$← RE.Setup(1n, 1ℓ, crs), |ek| ≤ p1(n, log ℓ).

• For every Turing machineM , time bound T , input inp ∈ {0, 1}∗, if M̂inp
$← RE.Enc(ek,M, inp, T),

then |M̂inp| ≤ p2(|M |, |inp|, log T, log ℓ, n),

• The running time of RE.Dec(crs, M̂inp) is at most min(T,Time(M,x)) · p3(n, log T)

Post-Quantum Security. There exists a simulator S such that for any M and inp such that
M(inp) halts in T ∗ ≤ T steps and |M(inp)| ≤ ℓ and efficient quantum adversary A,

|Pr[1 $← A(crs, ek, M̂inp) : crs
$← {0, 1}ℓ, ek $← RE.Setup(1n, 1ℓ, crs), M̂inp

$← RE.Enc(ek,M, inp, T)]

− Pr[1
$← A(crs, ek, M̂inp) : (crs, M̂inp)

$← S(1n, 1|M |, 1|inp|,M(inp), T ∗), ek
$← RE.Setup(1n, 1ℓ, crs)]| ≤ negl(n).

Badrinarayanan et al. [BFK+19] gave a construction of strong output-compressing randomized
encoding based on iO and the LWE assumption.

2.3.4 SNARK in the QROM

Let H : {0, 1}2n → {0, 1}n be a quantum random oracle. A SNARK for an NP language L
associated with a relation R in the QROM consists of two efficient oracle-aided classical algorithms
PHsnark and V H

snark.

PHsnark: It is an instance x and a witness w as input and outputs a proof π.

V H
snark: It is an instance x and a proof π as input and outputs⊤ indicating acceptance or⊥ indicating

rejection.

We require SNARK to satisfy the following properties:
Completeness. For any (x,w) ∈ R, we have

Pr
H
[V H

snark(x, π) = ⊤ : π
$← PHsnark(x,w)] = 1.

Extractability. There exists an efficient quantum extractor Ext such that for any x and a malicious
quantum prover P̃Hsnark making at most q = poly(n) queries, if

Pr
H
[V H

snark(x, π) : π
$← P̃Hsnark(x)]

is non-negligible in n, then

Pr
H
[(x,w) ∈ R : w

$← ExtP̃snark(x, 1q, 1n)]

is non-negligible in n.

Efficient Verification. If we can verify that (x,w) ∈ R in classical time T , then for any π
$←

P̃Hsnark(x), V
H
snark(x, π) runs in classical time poly(n, |x|, log T).

Chiesa et al. [CMS19] showed that there exists SNARK in the QROM that satisfies the above
properties.

12

2.4 Lemma

Here, we give a simple lemma, which is used in the proof of soundness of parallel repetition version
of the Mahadev’s protocol in Sec. 3.3.

Lemma 2.1. Let |ψ〉 =∑m
i=1 |ψi〉 be a quantum state and M be a projective measurement. Then

we have

Pr[M ◦ |ψ〉 = 1] ≤ m
m∑

i=1

‖ |ψi〉 ‖2 Pr
[
M ◦ |ψi〉‖ |ψi〉 ‖

= 1

]

Proof. Since M is a projective measurement, there exists a projection Π such that

Pr[M ◦ |ψ〉 = 1] = 〈ψ|Π |ψ〉 .

Then we have

〈ψ|Π |ψ〉 = ‖
m∑

i=1

Π |ψi〉 ‖2

≤ m
m∑

i=1

‖Π |ψi〉 ‖2

= m
m∑

i=1

〈ψi|Π |ψi〉

= m
m∑

i=1

‖ |ψi〉 ‖2 Pr
[
M ◦ |ψi〉‖ |ψi〉 ‖

= 1

]

where we used the Cauchy-Schwarz inequality from the second to third lines.

3 Parallel Repetition of Mahadev’s Protocol

3.1 Overview of Mahadev’s Protocol

Here, we recall Mahadev’s protocol [Mah18]. We only give a high-level description of the protocol
and properties of it and omit the details since they are not needed to show our result.

The protocol is run between a quantum prover P and a classical verifier V on a common input
x. The aim of the protocol is to enable a verifier to classically verify x ∈ L for a BQP language
L with the help of interactions with a quantum prover. The protocol is a 4-round protocol where
the first message is sent from V to P . We denote the i-th message generation algorithm by Vi for
i ∈ {1, 3} or Pi for i ∈ {2, 4} and denote the verifier’s final decision algorithm by Vout. Then a
high-level description of the protocol is given below.

V1: On input the security parameter 1n and x, it generates a pair (k, td) of a“key” and “trapdoor”,
sends k to P , and keeps td as its internal state.

P2: On input x and k, it generates a classical “commitment” y along with a quantum state |stP 〉,
sends y to P , and keeps |stP 〉 as its internal state.

V3: It randomly picks a “challenge” c
$← {0, 1} and sends c to P .4 Following the terminology in

[Mah18], we call the case of c = 0 the “test round” and the case of c = 1 the “Hadamard
round”.

4The third message is just a public-coin, and does not depend on the transcript so far or x.

13

P4: On input |stP 〉 and c, it generates a classical “answer” a and sends a to P .

Vout: On input k, td, y, c, and a, it returns ⊤ indicating acceptance or ⊥ indicating rejection. In
case c = 0, the verification can be done publicly, that is, Vout need not take td as input.

For the protocol, we have the following properties:
Completeness: For all x ∈ L, we have Pr[〈P, V 〉(x)] = ⊥] = negl(n).
Soundness: If the LWE problem is hard for quantum polynomial-time algorithms, then for any
x /∈ L and a quantum polynomial-time cheating prover P ∗, we have Pr[〈P ∗, V 〉(x)] = ⊥] ≤ 3/4.

We need a slightly different form of soundness implicitly shown in [Mah18], which roughly says
that if a cheating prover can pass the “test round” (i.e., the case of c = 0) with overwhelming
probability, then it can pass the “Hadamard round” (i.e., the case of c = 1) only with a negligible
probability.

Lemma 3.1 (implicit in [Mah18]). If the LWE problem is hard for quantum polynomial-time
algorithms, then for any x /∈ L and a quantum polynomial-time cheating prover P ∗ such that
Pr[〈P ∗, V 〉(x)] = ⊥ | c = 0] = negl(n), we have Pr[〈P ∗, V 〉(x)] = ⊤ | c = 1] = negl(n).

We will also use the following simple fact:

Fact 1. There exists an efficient prover that passes the test round with probability 1 (but passes the
Hadamard round with probability 0) even if x /∈ L.

3.2 Parallel Repetition

Here, we prove that the parallel repetition of Mahadev’s protocol decrease the soundness bound to
be negligible. Let Pm and V m be m-parallel repetitions of the honest prover P and verifier V in
Mahadev’s protocol. Then we have the following:

Theorem 3.2 (Completeness). For all m = Ω(log2(n)), for all x ∈ L, we have Pr[〈Pm, V m〉(x)] =
⊥] = negl(n).

Theorem 3.3 (Soundness). For all m = Ω(log2(n)), if the LWE problem is hard for quantum
polynomial-time algorithms, then for any x /∈ L and a quantum polynomial-time cheating prover
P ∗, we have Pr[〈P ∗, V m〉(x)] = ⊤] ≤ negl(n).

The completeness (Theorem 3.2) easily follows from the completeness of Mahadev’s protocol.
In the next subsection, we prove the soundness (Theorem 3.3).

3.3 Proof of Soundness

First, we remark that it suffices to show that for any µ = 1/poly(n), there exists m = O(log(n))
such that the success probability of the cheating prover is at most µ. This is because we are
considering ω(log(n))-parallel repetition, in which case the number of repetitions is larger than
any m = O(log(n)) for sufficiently large n, and thus we can just focus on the first m coordinates
ignoring the rest of the coordinates. Thus, we prove the above claim in this section.
Characterization of cheating prover. Any cheating prover can be characterized by a tuple
(U0, U) of unitaries over Hilbert space HC ⊗ HX ⊗ HZ ⊗ HY ⊗ HK.5 A prover characterized by
(U0, U) works as follows.6

5HX ⊗HZ corresponds to HP in Section 1.2.
6Here, we hardwire into the cheating prover the instance x /∈ L on which it will cheat instead of giving it as an

input.

14

Second Message: Upon receiving k = (k1, ..., km), it applies U0 to the state |0〉
X
⊗ |0〉

Z
⊗ |0〉

Y
⊗

|k〉
K
, and then measures the Y register to obtain y = (y1, ..., ym). Then it sends y to V and

keeps the resulting state |ψ(k, y)〉
X,Z over HX,Z.

Fourth Message: Upon receiving c ∈ {0, 1}m, it applies U to |c〉
C
|ψ(k, y)〉

X,Z and then measures
the X register in computational basis to obtain a = (a1, ..., am). We denote the designated
register for ai by Xi.

For each i ∈ [m], we denote by Accki,yi the set of ai such that the verifier accepts ai in the test round
on the i-th coordinate when the first and second messages are ki and yi, respectively. Note that
one can efficiently check if ai ∈ Accki,yi without knowing the trapdoor behind ki since verification
in the test round can be done publicly as explained in Sec. 3.1.

We first give ideas about Lemma 3.4 that is the main lemma for this section. For each coordinate
i ∈ [m], we would like to decompose the space HX,Z into a subspace Si,0 that “does not know”
ai ∈ Accki,yi and a subspace Si,1 that “knows” ai ∈ Accki,yi . Ideally, we want to prove the following
statement: For any i ∈ [m] and |ψ〉 ∈ HX,Z, if we decompose it as

|ψ〉 = |ψ0〉+ |ψ1〉

where |ψ0〉 ∈ Si,0 and |ψ1〉 ∈ Si,1, then we have the followings:7

1. (|ψ0〉 “does not know” ai ∈ Accki,yi.) If we apply U to |c〉
C
|ψ0〉X,Z for c

$← {0, 1}m such
that ci = 0 and measures theXi register in computational basis to obtain ai, then ai ∈ Accki,yi
with “small” probability.8

2. (|ψ1〉 “knows” ai ∈ Accki,yi.) There is an efficient algorithm that is given |ψ1〉 as input and
outputs ai ∈ Accki,yi with overwhelming probability.

3. (Efficient projection.) A measurement described by {ΠSi,0 ,ΠSi,1} can be performed effi-
ciently where ΠSi,0 and ΠSi,1 denote projections to Si,0 and Si,1, respectively.

If this is true, then the rest of the proof would be easy following the outline described in Section
1.2. However, we do not know how to prove it in the above clean form. Therefore we prove a noisy
version of the above claim where

1. the way of decomposition is randomized,

2. there is an error term, i.e., we decompose |ψ〉 as

|ψ〉 = |ψ0〉+ |ψ1〉+ |ψerr〉

by using a state |ψerr〉 whose norm is “small” on average, and

3. we have ‖ |ψ0〉 ‖2 + ‖ |ψ1〉 ‖2 ≤ ‖ |ψ〉 ‖2. We note that this condition automatically follows if
|ψ0〉 and |ψ1〉 are orthogonal as in the above clean version, but they may not be orthogonal
in our case.

Specifically, our lemma is stated as follows:

7|ψ0〉 and |ψ1〉 correspond to |ψi,0〉 and |ψi,1〉 in Section 1.2, respectively.
8The threshold for “small” can be set to be any noticeable function.

15

Lemma 3.4. Let (U0, U) be any prover’s strategy. Let m = O(log n), i ∈ [m], γ0 ∈ [0, 1], and
T ∈ N such that γ0

T = 1/poly(n). Let γ be sampled uniformly randomly from [γ0T ,
2γ0
T , . . . , Tγ0T].

Then, there exists an efficient quantum procedure Gi,γ such that for any (possibly sub-normalized)
quantum state |ψ〉

X,Z,

Gi,γ |0m〉C |ψ〉X,Z |0t〉ph |0〉th |0〉in = z0 |0m〉C |ψ0〉X,Z |0t01〉ph,th,in + z1 |0m〉C |ψ1〉X,Z |0t11〉ph,th,in + |ψ′err〉

where t is the number of qubits in the register ph, z0, z1 ∈ C such that |z0| = |z1| = 1, and z0, z1,
|ψ0〉X,Z, |ψ1〉X,Z, and |ψ′err〉 may depend on γ.

Furthermore, the following properties are satisfied.

1. (Error is Small.) If we define |ψerr〉X,Z := |ψ〉
X,Z − |ψ0〉X,Z − |ψ1〉X,Z, then we have

Eγ [‖ |ψerr〉X,Z ‖2] ≤ 6
T + negl(n).

2. (Efficient projection.) For any fixed γ, Pr[Mph,th,in ◦ |ψ′err〉 ∈ {0t01, 0t11}] = 0. This

implies that if we apply the measurement Mph,th,in on
Gi,γ |0m〉C|ψ〉X,Z|0t〉ph|0〉th|0〉in

‖|ψ〉
X,Z‖

, then the

outcome is 0tb1 with probability ‖ |ψb〉X,Z ‖2 and the resulting state in the register (X,Z) is
|ψb〉X,Z

‖|ψb〉X,Z‖
ignoring a global phase factor.

3. (Projection halves the squared norm.) For any fixed γ, Eb∈{0,1}[‖ |ψb〉X,Z ‖2] ≤ 1
2‖ |ψ〉X,Z ‖2.

4. (|ψ0〉 “does not know” ai ∈ Accki,yi.) For any fixed γ and c ∈ {0, 1}m such that ci = 0, we
have

Pr

[
MXi

◦ U
|c〉

C
|ψ0〉X,Z

‖ |ψ0〉X,Z ‖
∈ Accki,yi

]
≤ 2m−1γ + negl(n).

5. (|ψ1〉 “knows” ai ∈ Accki,yi.) For any fixed γ, there exists an efficient quantum algorithm
Exti such that

Pr

[
Exti

(
|0m〉

C
|ψ1〉X,Z

‖ |ψ1〉X,Z ‖

)
∈ Accki,yi

]
= 1− negl(n).

For proving Lemma 3.4, we prepare a lemma and some notations. First, we introduce a general
lemma about two projectors that was shown by Nagaj, Wocjan, and Zhang [NWZ09] by using the
Jordan’s lemma.9

Lemma 3.5 ([NWZ09, Appendix A]). Let Π0 and Π1 be projectors on an N -dimensional Hilbert
space H and let R0 := 2Π0 − I, R1 := 2Π1 − I, and Q := R1R0. H can be decomposed into two-

dimensional subspaces Sj for j ∈ [ℓ] and N − 2ℓ one-dimensional subspaces T
(bc)
j for b, c ∈ {0, 1}

that satisfies the following properties:

1. For each two-dimensional subspace Sj, there exist two orthonormal bases (|αj〉 , |α⊥j 〉) and

(|βj〉 , |β⊥j 〉) of Sj such that 〈αj |βj〉 is a positive real and for all |s〉 ∈ Sj, Π0 |s〉 = 〈αj |s〉 |αj〉
and Π1|s〉 = 〈βj |s〉 |βj〉. Moreover, Q is a rotation with eigenvalues e±iθj in Sj corre-
sponding to eigenvectors |φ+j 〉 = 1√

2
(|αj〉 + i |α⊥j 〉) and |φ−j 〉 = 1√

2
(|αj〉 − i |α⊥j 〉) where

θj = 2arccos〈αj |βj〉 = 2arccos
√
〈αj |Π1 |αj〉.

9This lemma is introduced only for proving Lemma 3.4. Readers who want to know how to use Lemma 3.4 to
complete the proof of soundness may directly go to Lemma 3.6.

16

2. Each one-dimensional subspace T
(bc)
j is spanned by a vector |α(bc)

j 〉 such that Π0 |α(bc)
j 〉 =

b |α(bc)
j 〉 and Π1 |α(bc)

j 〉 = c |α(bc)
j 〉.

For i ∈ [m], we consider two projectors

Πin := |0m〉〈0m|C ⊗ IX,Z
Πi,out := (UHC−i

)†(
∑

ai∈Accki,yi

|ai〉〈ai|Xi
⊗ IC,X−i,Z)(UHC−i

),

where X−i := X1, . . . ,Xi−1,Xi+1, . . . ,Xm and HC−i
means applying Hadamard operators to reg-

isters C1, . . . ,Ci−1,Ci+1, . . . ,Cm to produce uniformly random challenges. We apply Lemma 3.5
for Π0 = Πin and Π1 = Πi,out to decompose the space HC,X,Z into the two-dimensional sub-

spaces {Sj}j and one-dimensional subspaces {T (bc)
j }j,b,c. In the following, we use notations de-

fined in Lemma 3.5 for this particular application. We can write |αj〉C,X,Z = |0〉 ⊗ |α̂j〉X,Z
since Πin |αj〉 = 〈αj |αj〉 |αj〉 = |αj〉. Similarly, we can write |α(10)

j 〉
C,X,Z

= |0〉 ⊗ |α̂(10)
j 〉

X,Z
and

|α(11)
j 〉

C,X,Z
= |0〉 ⊗ |α̂(11)

j 〉
X,Z

. Then {|α̂j〉}j and {|α̂(1c)
j 〉}j,c span HX,Z.

A proof of Lemma 3.4 is given below.

Proof of Lemma 3.4. Procedure 1 defines an efficient process Gi,γ , which decomposes |ψ〉
X,Z into

|ψ0〉X,Z , |ψ1〉X,Z , and |ψerr〉X,Z described in Lemma 3.4. Here, Gi,γ := UinU
†
estUthUest operates

on register C, X, Z, and additional registers ph, th, and in, and we let δ := γ0
3T .

Procedure 1 Gi,γ

1. Do quantum phase estimation Uest on Q = (2Πin − I)(2Πi,out − I) with input state
|0m〉

C
|ψ〉

X,Z and τ -bit precision and failure probability 2−n where the parameter τ will
be specified later, i.e.,

Uest |u〉C,X,Z |0t〉ph →
∑

θ∈(−π,π]
αθ |u〉C,X,Z |θ〉ph .

such that
∑

θ/∈θ̄±2−τ |αθ|2 ≤ 2−n for any eigenvector |u〉
C,X,Z of Q with eigenvalue eiθ̄.

2. Apply Uth : |u〉
C,X,Z |θ〉ph |0〉th

Uth−−→ |u〉
C,X,Z |θ〉ph |b〉th, where b = 1 if cos2(θ/2) ≥ γ − δ.

3. Apply U †est.

4. Apply Uin : |c〉
C
|0〉in

Uin−−→ |c〉
C
|b′〉in, where b′ = 1 if c = 0m.

In the procedure, we choose τ so that for any θ and θ′ such that |θ′ − θ| ≤ 2−τ , we have
| cos2(θ′/2) − cos2(θ/2)| ≤ δ/2. Since we can upper and lower bound cos2(θ′/2) − cos2(θ/2) by
polynomials in θ′−θ by considering the Taylor series, we can set τ = O(− log(δ)) for satisfying this
property. Since phase estimation with τ -bit precision and failure probability 2−n can be done in
time poly(n, 2τ) [NWZ09] and δ = γ0

3T = 1/poly(n) by the assumption, the procedure runs in time
poly(n).

17

For each j ∈ [ℓ], we define pj := cos2(θj/2) = 〈αj |Πi,out |αj〉. We define the following projections
on HX,Z:

Πin,≤γ−2δ :=
∑

j:pj≤γ−2δ
|α̂j〉〈α̂j |X,Z +

∑

j

|α̂(10)
j 〉〈α̂(10)

j |X,Z,

Πin,≥γ :=
∑

j:pj≥γ
|α̂j〉〈α̂j |X,Z +

∑

j

|α̂(11)
j 〉〈α̂(11)

j |X,Z,

Πin,mid :=
∑

j:pj∈(γ−2δ,γ)
|α̂j〉〈α̂j |X,Z.

We let |ψ≤γ−2δ〉X,Z := Πin,≤γ−2δ |ψ〉X,Z, |ψ≥γ〉X,Z := Πin,≥γ |ψ〉X,Z, and |ψmid〉X,Z := Πin,mid |ψ〉X,Z.
Then we have

|ψ〉
X,Z = |ψ≤γ−2δ〉X,Z + |ψ≥γ〉X,Z + |ψmid〉X,Z . (1)

Roughly speaking, |ψ≤γ−2δ〉X,Z, |ψ≥γ〉X,Z, and |ψmid〉X,Z will correspond to |ψ0〉, |ψ1〉, and |ψerr〉,
respectively, with some error terms as explained in the following.

It is easy to see that Eγ [‖ |ψmid〉 ‖2] ≤ 1
T since Πin,mid with different choice of γ are disjoint.

In the following, we analyze how the first two terms of Eq. 1 develops by Gi,γ .
|ψ≤γ−2δ〉X,Z is a superposition of states {|α̂j〉X,Z}j:pj≤γ−2δ and {|α̂11

j 〉X,Z}j . By Lemma 3.5,

|αj〉C,X,Z = |0m〉
C
⊗ |α̂j〉X,Z can be written as |αj〉C,X,Z = 1√

2
(|φ+j 〉C,X,Z + |φ−j 〉C,X,Z) where

|φ±j 〉C,X,Z is an eigenvector ofQ with eigenvalue e±iθj where θj = 2arccos(
√
pj) ≥ 2 arccos(

√
γ − 2δ).

Moreover, |α(10)
j 〉

C,X,Z
= |0m〉

C
⊗ |α̂(10)

j 〉
X,Z

is an eigenvector of Q with eigenvalue −1 = eiπ. Here,

we remark that π ≥ 2 arccosx for any 0 ≤ x ≤ 1. Thus, after applying Uest to |ψ≤γ−2δ〉X,Z,
(1−2−n)-fraction of the state contains θ in the register ph such that |θ| ≥ 2 arccos(

√
γ − 2δ)−2−τ ,

which implies cos2(θ/2) ≤ γ − 3
2δ < γ − δ by our choice of τ . For this fraction of the state, Uth

does nothing. Thus, we have

TD(Uest |0m〉C |ψ≤γ−2δ〉X,Z |0
t00〉ph,th,in , UthUest |0m〉C |ψ≤γ−2δ〉X,Z |0

t00〉ph,th,in) ≤ 2−n

and thus

TD(|0m〉
C
|ψ≤γ−2δ〉X,Z |0

t00〉ph,th,in , U
†
estUthUest |0m〉C |ψ≤γ−2δ〉X,Z |0

t00〉ph,th,in) ≤ 2−n

where TD denotes the trace distance.
Therefore we can write

Gi,γ |0m〉C |ψ≤γ−2δ〉X,Z |0
t00〉ph,th,in = z≤γ−2δ |0m〉C |ψ≤γ−2δ〉X,Z |0

t01〉ph,th,in + |ψ′err,≤γ−2δ〉 (2)

by using z≤γ−2δ such that |z≤γ−2δ|2 ≥ 1 − 2−n and a state |ψ′err,≤γ−2δ〉 that is orthogonal to

|0m〉
C
|ψ≤γ−2δ〉X,Z |0t01〉ph,th,in such that ‖ |ψ′err,≤γ−2δ〉 ‖2 ≤ 2−n.

By a similar analysis, we can write

Gi,γ |0m〉C |ψ≥γ〉X,Z |0
t00〉ph,th,in = z≥γ |0m〉C |ψ≥γ〉X,Z |0

t11〉ph,th,in + |ψ′err,≥γ〉 (3)

by using z≥γ such that |z≥γ |2 ≥ 1−2−n and a state |ψ′err,≥γ〉 that is orthogonal to |0m〉C |ψ≥γ〉X,Z |0t01〉ph,th,in
such that ‖ |ψ′err,≥γ〉 ‖2 ≤ 2−n.

18

Combining Eq. 1, 2, and 3, we have

Gi,γ |0m〉C |ψ〉X,Z |0t00〉ph,th,in
= |0m〉

C
(z≥γ |ψ≥γ〉X,Z + |ηmid,0〉X,Z + |ηother,0〉X,Z) |0

t01〉ph,th,in
+ |0m〉

C
(z≤γ−2δ |ψ≤γ−2δ〉X,Z + |ηmid,1〉X,Z + |ηother,1〉X,Z) |0

t11〉ph,th,in
+ |ψ′err〉 .

(4)

where |ηmid,0〉X,Z, |ηother,0〉X,Z, |ηmid,1〉X,Z, and |ηother,1〉X,Z are defined so that

IC,X,Z ⊗ |0t01〉〈0t01|ph,th,inGi,γ |0m〉C |ψmid〉X,Z |0t00〉ph,th,in = |0m〉
C
|ηmid,0〉X,Z |0

t01〉ph,th,in ,
(5)

IC,X,Z ⊗ |0t11〉〈0t11|ph,th,inGi,γ |0m〉C |ψmid〉X,Z |0t00〉ph,th,in = |0m〉
C
|ηmid,1〉X,Z |0

t11〉ph,th,in ,
(6)

IC,X,Z ⊗ |0t01〉〈0t01|ph,th,in(|ψ′err,≤γ−2δ〉+ |ψ′err,≥γ〉) = |0m〉C |ηother,0〉X,Z |0
t01〉ph,th,in , (7)

IC,X,Z ⊗ |0t11〉〈0t11|ph,th,in(|ψ′err,≤γ−2δ〉+ |ψ′err,≥γ〉) = |0m〉C |ηother,1〉X,Z |0
t11〉ph,th,in . (8)

and |ψ′err〉 is defined by

|ψ′err〉 :=
∑

s/∈{0t01,0t11}
IC,X,Z ⊗ |s〉〈s|ph,th,in(Gi,γ |0m〉C |ψmid〉X,Z |0t00〉ph,th,in + |ψ′err,≤γ−2δ〉+ |ψ′err,≥γ〉).

(9)

We remark that |ηmid,0〉X,Z, |ηother,0〉X,Z, |ηmid,1〉X,Z, and |ηother,1〉X,Z are well-defined since
after applying Gi,γ , the value in the register in is 1 if and only if the value in the register C is 0m.

We let z0 :=
z≤γ−2δ

|z≤γ−2δ| , z1 :=
z≥γ

|z≥γ | , and

|ψ0〉X,Z := |z≤γ−2δ| |ψ≤γ−2δ〉X,Z + z0(|ηmid,0〉X,Z + |ηother,0〉X,Z), (10)

|ψ1〉X,Z := |z≥γ | |ψ≥γ〉X,Z + z1(|ηmid,1〉X,Z + |ηother,1〉X,Z), (11)

where z0 and z1 denotes complex conjugates of z0 and z1. By Eq 4, 10, and 11, we have

Gi,γ |0m〉C |ψ〉X,Z |0t〉ph |0〉th |0〉in = z0 |0m〉C |ψ0〉X,Z |0t01〉ph,th,in + z1 |0m〉C |ψ1〉X,Z |0t11〉ph,th,in + |ψ′err〉 .
Now, we are ready to prove the five claims in Lemma 3.4.

Proof of the first claim. By Eq. 1, 10, and 11, we have

|ψerr〉X,Z = |ψ〉
X,Z − |ψ0〉X,Z − |ψ1〉X,Z

= (1− |z≤γ−2δ|) |ψ≤γ−2δ〉X,Z + (1− |z≥γ |) |ψ≥γ〉X,Z + |ψmid〉X,Z
− z0(|ηmid,0〉X,Z + |ηother,0〉X,Z)− z1(|ηmid,1〉X,Z + |ηother,1〉X,Z),

Since |z≤γ−2δ| and |z≥γ | are 1 − negl(n), the norms of the first two terms are negligible. By
Eq. 7 and 8, we have ‖ |ηother,0〉X,Z ‖2 + ‖ |ηother,1〉X,Z ‖2 ≤ ‖ |ψ′err,≤γ−2δ〉 + |ψ′err,≥γ〉 ‖2 ≤ negl(n).
Therefore we have

‖ |ψerr〉X,Z ‖2 ≤ ‖ |ψmid〉X,Z − z0 |ηmid,0〉X,Z − z1 |ηmid,1〉X,Z ‖
2 + negl(n)

≤ 3(‖ |ψmid〉X,Z ‖2 + ‖ |ηmid,0〉X,Z ‖
2 + ‖ |ηmid,1〉X,Z ‖

2) + negl(n)

where the latter inequality follows from the Cauchy-Schwarz inequality. As already noted, we
have Eγ [‖ |ψmid〉X,Z ‖2] ≤ 1

T . By Eq. 5 and 6, we have Eγ [‖ |ηmid,0〉X,Z ‖2 + ‖ |ηmid,1〉X,Z ‖2] ≤
Eγ [‖ |ψmid〉X,Z ‖2] ≤ 1

T . Therefore, we have Eγ [‖ |ψerr〉X,Z ‖2] ≤ 6
T + negl(n) and the first claim is

proven.

19

Proof of the second claim. By Eq 9, we can see that

IC,X,Z ⊗ (|001〉〈001|ph,th,in + |011〉〈011|ph,th,in) |ψ′err〉 = 0.

This immediately implies the second claim.

Proof of the third claim. By the second claim, |0m〉
C
|ψ0〉X,Z |0t01〉ph,th,in, |0m〉C |ψ1〉X,Z |0t11〉ph,th,in,

and |ψ′err〉 are orthogonal with one another. Therefore we have

‖Gi,γ |0m〉C |ψ〉X,Z |0t00〉ph,th,in ‖2

=‖z0 |0m〉C |ψ0〉X,Z |0t01〉ph,th,in ‖2 + ‖z1 |0m〉C |ψ1〉X,Z |0t11〉ph,th,in ‖2 + ‖ |ψ′err〉 ‖2.

Since we have ‖Gi,γ |0m〉C |ψ〉X,Z |0t00〉ph,th,in ‖2 = ‖ |ψ〉X,Z ‖2 and ‖zb |0m〉C |ψb〉X,Z |0tb1〉ph,th,in ‖2
= ‖ |ψb〉X,Z ‖2, the above implies ‖ |ψ0〉X,Z ‖2 + ‖ |ψ1〉X,Z ‖2 ≤ ‖ |ψ〉X,Z ‖2, which implies the third
claim.

Proof of the fourth claim. Roughly speaking, we first show that |0m〉
C
|ψ0〉X,Z can be writ-

ten as a superposition of states {|αj〉}j:pj≤γ and {|α(10)
j 〉}j except for a term with a negligible

norm. Since each of the above states has eigenvalues at most γ w.r.t. Πi,out, we can show that
‖Πi,out |0m〉C |ψ0〉X,Z ‖2 is at most γ + negl(n). This means that |ψ0〉X,Z leads to acceptance in

the test round on the i-th coordinate with probability at most γ + negl(n) if c−i ∈ {0, 1}m−1 is
chosen randomly. Since the number of possible choices of c is 2m−1, the probability is at most
2m−1γ + negl(n) for any fixed c, which implies the fourth claim. The detail follows.

We analyze each term of Eq. 10 separately. First, since we have |ψ≤γ−2δ〉X,Z = Πin,≤γ−2δ |ψ〉X,Z,
|ψ≤γ−2δ〉X,Z is a superposition of states {|α̂j〉}j:pj≤γ−2δ and {|α̂

(10)
j 〉}j by the definition of Πin,≤γ−2δ.

Therefore, |0m〉
C
|ψ≤γ−2δ〉X,Z is a superposition of states {|αj〉}j:pj≤γ−2δ and {|α

(10)
j 〉}j

Second, we analyze |ηmid,0〉. By the definition of |ψmid〉X,Z, the state |0m〉
C
|ψmid〉X,Z is in the

subspace Smid, which is the subspace spanned by {Sj}j:pj∈(γ−2δ,γ). We define |ψ′′mid,s〉C,X,Z so that

Gi,γ |0m〉C |ψmid〉 |0t00〉ph,th,in =
∑

s∈{0,1}t+2

|ψ′′mid,s〉C,X,Z |s〉ph,th,in .

Since each subspace Sj is invariant under the projections Πin and Πi,out, each |ψ′′mid,s〉C,X,Z is also

in the subspace Smid. In particular, |0m〉
C
|ηmid,0〉X,Z = |ψ′′mid,0t01〉C,X,Z is in the subspace Smid.

That is, |0m〉
C
|ηmid,0〉X,Z is a superposition of {|αj〉}j:pj∈(γ−2δ,γ).

Third, we can see that ‖ |ηother,0〉X,Z ‖ = negl(n) from Eq. 7 and that ‖ |ψ′err,≤γ−2δ〉+|ψ′err,≥γ〉 ‖ =
negl(n).

Combining the above together with Eq. 10, we can write

|0m〉
C
|ψ0〉X,Z =

∑

j:pj<γ

dj |αj〉C,X,Z +
∑

j

d
(10)
j |α(10)

j 〉
C,X,Z

+ |ψ′′err,0〉C,X,Z (12)

for some dj , d
(10)
j ∈ C and a state |ψ′′err,0〉C,X,Z := z0 |0m〉C |ηother,0〉X,Z whose norm is negl(n). Here,

we remark that the first term comes from both |z≤γ−2δ| |0m〉C |ψ≤γ−2δ〉X,Z and z0 |0m〉C |ηmid,0〉,
and the second term comes from |z≤γ−2δ| |0m〉C |ψ≤γ−2δ〉X,Z.

20

By the definition of Πi,out, we have

Pr
c−i

[
MXi

◦ U
|c1...ci−10ci+1...cm〉C |ψ0〉X,Z

‖ |ψ0〉X,Z ‖
∈ Accki,yi

]
=
〈0m|

C
〈ψ0|X,ZΠi,out |0m〉C |ψ0〉X,Z

‖ |ψ0〉X,Z ‖2
(13)

where c−i denotes c1...ci−1ci+1...cm.
By Lemma 3.5, we can see that 〈αj |Πi,out |αj′〉 = 0 for all j 6= j′ and Πi,out |αj(10)〉 = 0 for all j.

By substituting Eq. 12 for Eq. 13, we have

Pr
c−i

[
MXi

◦ U
|c1...ci−10ci+1...cm〉C |ψ0〉X,Z

‖ |ψ0〉X,Z ‖
∈ Accki,yi

]

=
1

‖ |ψ0〉X,Z ‖2


 ∑

j:pj<γ

|dj |2 〈αj |Πi,out |αj〉+
∑

j:pj<γ

(dj 〈αj |Πi,out |ψ′′err,0〉+ dj 〈ψ′′err,0|Πi,out |αj〉)




≤ γ + negl(n)

where the last inequality follows from
∑

j:pj<γ
|dj |2 ≤ ‖ |ψ0〉X,Z ‖2, 〈αj |Πi,out |αj〉 = pj , and

‖ |ψ′′err,0〉C,X,Z ‖ = negl(n). This immediately implies the fourth claim considering that the number

of possible c−i is 2m−1 and m = O(logn).

Proof of the fifth claim. By a similar argument to the one in the proof of the fourth claim, we
can write

|0m〉
C
|ψ1〉X,Z =

∑

j:pj>γ−2δ
dj |αj〉C,X,Z +

∑

j

d
(11)
j |α(11)

j 〉
C,X,Z

+ |ψ′′err,1〉C,X,Z (14)

where |ψ′′err,1〉C,X,Z is a state such that ‖ |ψ′′err,1〉C,X,Z ‖ = negl(n).

The algorithm Exti is described below:

Exti

(|0m〉
C
|ψ1〉X,Z

‖|ψ1〉X,Z‖

)
: Given

|0m〉
C
|ψ1〉X,Z

‖|ψ1〉X,Z‖
as input, Exti works as follows:

• Repeat the following procedure N = poly(n) times where N is specified later:

1. Perform a measurement {Πi,out, IC,X,Z − Πi,out}. If the outcome is 0, i,e, Πi,out is
applied, then apply UHC−i

and measure the register Xi in computational basis to
obtain ai, outputs ai, and immediately halts.

2. Perform a measurement {Πin, IC,X,Z −Πin}.
• If it does not halts within N trials in the previous step, output ⊥.

By the definition of Πi,out, it is clear that Exti succeeds, (i.e., returns ai ∈ Accki,yi) if it does not
output ⊥. Since the algorithm Exti just alternately applies measurements {Πi,out, IC,X,Z − Πi,out}
and {Πin, IC,X,Z−Πin} and each subspaces Sj and T

(11)
j are invariant under Πin and Πi,out, we can

analyze the success probability of the algorithm separately on each subspace. Therefore, it suffices
to show that Exti succeeds with probability 1− negl(n) on any input |αj〉X,Z such that pj > γ − 2δ

or |α(11)
j 〉 for any j. First, it is easy to see that on input |α(11)

j 〉, Exti returns ai ∈ Accki,yi at the

first trial with probability 1 since we have 〈α(11)
j |Πi,out |α11

j 〉 = 1. What is left is to prove that Exti
succeeds with probability 1− negl(n) on any input |αj〉X,Z such that pj > γ − 2δ.

21

By Lemma 3.5, it is easy to see that we have

|αj〉X,Z =
√
pj |βj〉X,Z +

√
1− pj |β⊥j 〉X,Z ,

|βj〉X,Z =
√
pj |αj〉X,Z +

√
1− pj |α⊥j 〉X,Z .

Let Pk and P⊥k be the probability that Exti succeeds within k trials starting from the initial
state |αj〉X,Z and |α⊥j 〉X,Z, respectively. Then by the above equations, it is easy to see that we have

P0 = P⊥0 = 0 and

Pk+1 = pj + (1− pj)2Pk + (1− pj)pjP⊥k ,
P⊥k+1 = (1− pj) + pj(1− pj)Pk + p2jP

⊥
k .

Solving this, we have

PN = 1− (1− 2pj + 2p2j)
N−1(1− pj).

Since we assume pj > γ−2δ > γ0
3T = 1/poly(n), we have 1−2pj+2p2j = 1−1/poly(n). Therefore

if we take N = poly(n) sufficiently large, then PN = 1 − negl(n). This means that Exti succeeds
within N steps with probability 1− negl(n) starting from the initial state |αj〉X,Z. This completes
the proof of the fifth claim and the proof of Lemma 3.4.

In Lemma 3.4, we showed that by fixing any i ∈ [m], we can partition any prover’s state |ψ〉
X,Z

into |ψ0〉X,Z, |ψ1〉X,Z, and |ψerr〉X,Z with certain properties. In the following, we sequentially apply
Lemma 3.4 for each i ∈ [m] to further decompose the prover’s state.

Lemma 3.6. Let m, γ0, T be as in Lemma 3.4, and let γi
$← [γ0T ,

2γ0
T , . . . , Tγ0T] for each i ∈ [m].

For any c ∈ {0, 1}m, a state |ψ〉
X,Z can be partitioned as follows.

|ψ〉
X,Z = |ψc1〉X,Z + |ψc̄1,c2〉X,Z + · · ·+ |ψc̄1,...,c̄m−1,cm〉X,Z + |ψc̄1,...,c̄m〉X,Z + |ψerr〉X,Z

where the way of partition may depend on the choice of γ̂ = γ1...γm. Further, the following properties
are satisfied.

1. For any fixed γ̂ and any c, i ∈ [m] such that ci = 0, we have

Pr

[
MXi

◦ U
|0m〉

C
|ψc̄1,...,c̄i−1,0〉X,Z

| |ψc̄1,...,c̄i−1,0〉X,Z |
∈ Accki,yi

]
≤ 2m−1γ0 + negl(n).

2. For any fixed γ̂ and any c, i ∈ [m] such that ci = 1, there exists an efficient algorithm Exti
such that

Pr

[
Exti

(
|0m〉

C
|ψc̄1,...,c̄i−1,1〉X,Z

‖ |ψc̄1,...,c̄i−1,1〉X,Z ‖

)
∈ Accki,yi

]
= 1− negl(n).

3. For any fixed γ̂, we have Ec[‖ |ψc̄1,...,c̄m〉X,Z ‖2] ≤ 2−m.

4. For any fixed c, we have Eγ̂ [‖ |ψerr〉X,Z ‖2] ≤ 6m2

T + negl(n).

22

5. For any fixed γ̂ and c there exists an efficient quantum algorithm Hγ̂,c that is given |ψ〉
X,Z

as input and produces
|ψc̄1,...,c̄i−1,ci 〉X,Z

‖|ψc̄1,...,c̄i−1,ci 〉X,Z
‖ with probability ‖ |ψc̄1,...,c̄i−1,ci〉X,Z ‖2 ignoring a global

phase factor.

Proof. We inductively define |ψc1〉X,Z,...,|ψc̄1,...,c̄m〉X,Z as follows.
First, we apply Lemma 3.4 for the state |ψ〉

X,Z with γ = γ1 to give a decomposition

|ψ〉
X,Z = |ψ0〉X,Z + |ψ1〉X,Z + |ψerr,1〉X,Z

where |ψerr,1〉X,Z corresponds to |ψerr〉X,Z in Lemma 3.4.
For each i = 2, ...,m, we apply Lemma 3.4 for the state |ψc̄1,...,c̄i−1〉X,Z with γ = γi to give a

decomposition

|ψc̄1,...,c̄i−1〉X,Z = |ψc̄1,...,c̄i−1,0〉X,Z + |ψc̄1,...,c̄i−1,1〉X,Z + |ψerr,i〉X,Z

where |ψc̄1,...,c̄i−1,0〉X,Z, |ψc̄1,...,c̄i−1,1〉X,Z, and |ψerr,i〉X,Z corresponds to |ψ0〉X,Z, |ψ1〉X,Z, and |ψerr〉X,Z
in Lemma 3.4, respectively.

Then it is easy to see that we have

|ψ〉
X,Z = |ψc1〉X,Z + |ψc̄1,c2〉X,Z + · · ·+ |ψc̄1,...,c̄m−1,cm〉X,Z + |ψc̄1,...,c̄m〉X,Z + |ψerr〉X,Z

where we define |ψerr〉X,Z :=
∑m

i=1 |ψerr,i〉X,Z.
The first and second claims immediately follow from the fourth and fifth claims of Lemma 3.4

and γi ≤ γ0 for each i ∈ [m].
By the third claim of Lemma 3.4, we have Ec1...ci [‖ |ψc̄1,...,c̄i〉X,Z ‖] ≤ 1

2Ec1...ci−1 [‖ |ψc̄1,...,c̄i−1〉X,Z ‖].
Ths implies the third claim.

By the first claim of Lemma 3.4, we have Eγi [‖ |ψerr,i〉X,Z ‖2] ≤ 6
T + negl(n). The fourth claim

follows from this and the Cauchy-Schwarz inequality.
Finally, for proving the fifth claim, we define the procedure Hγ̂,c as described in Procedure 2

We can easily see that Hγ̂,c satisfies the desired property by the second claim of Lemma 3.4.

Procedure 2 Hγ̂,c

On input |ψ〉
X,Z, it works as follows:

For each i = 1, ...,m, it applies

1. Prepare registers C, (ph1, th1, in1),..., (phm, thm, inm) all of which are initialized to be
|0〉.

2. For each i = 1, ...,m, do the following:

(a) Apply Gi,γi on the quantum state in the registers (C,X,Z, phi, thi, ini).

(b) Measure the registers (phi, thi, ini) in the computational basis.

(c) If the outcome is 0tci1, then it halts and returns the state in the register (X,Z). If
the outcome is 0tc̄i1, continue to run. Otherwise, immediately halt and abort.

23

Given Lemma 3.6, we can start proving Theorem 3.3.

Proof of Theorem 3.3. First, we recall how a cheating prover characterized by (U0, U) works. When
the first message k is given, it first applies

U0 |0〉X,Z |0〉Y |k〉K
measure Y−−−−−−−−→ |ψ(k, y)〉

X,Z |k〉K .

to generate the second message y and |ψ(k, y)〉
X,Z. Then after receiving the third message c, it

applies U on |c〉
C
|ψ(k, y)〉

X,Z and measures the register X in the computational basis to obtain
the fourth message a. In the following, we just write |ψ〉

X,Z to mean |ψ(k, y)〉
X,Z for notational

simplicity. Let Mi,ki,tdi,yi,ci be the measurement that outputs the verification result of the value in
the register Xi w.r.t. ki, tdi, yi, ci, and let Mk,td,y,c be the measurement that returns ⊤ if and only
if Mi,ki,tdi,yi,ci returns ⊤ for all i ∈ [m] where k = (k1, ..., km), td = (td1, ..., tdm), y = (y1, ..., ym)
and c = (c1, ..., cm). With this notation, a cheating prover’s success probability can be written as

Pr
k,td,y,c

[Mk,td,y,c ◦ U |c〉C |ψ〉X,Z = ⊤].

Let γ0, γ̂, and T be as in Lemma 3.6. According to Lemma 3.6, for any fixed γ̂ and c ∈ {0, 1}m,
we can decompose |ψ〉

X,Z as

|ψ〉
X,Z = |ψc1〉X,Z + |ψc̄1,c2〉X,Z + · · ·+ |ψc̄1,...,c̄m−1,cm〉X,Z + |ψc̄1,...,c̄m−1,c̄m〉X,Z + |ψerr〉X,Z .

To prove the theorem, we show the following two inequalities. First, for any fixed γ̂, i ∈ [m],
c ∈ {0, 1}m such that ci = 0, ki, tdi, and yi, we have

Pr

[
Mi,ki,tdi,yi,0 ◦

U |c〉
C
|ψc̄1,...,c̄i−1,0〉X,Z

‖ |ψc̄1,...,c̄i−1,0〉X,Z ‖
= ⊤

]
≤ 2m−1γ0 + negl(n). (15)

This easily follows from the first claim of Lemma 3.6
Second, for any fixed γ̂, i ∈ [m], and c ∈ {0, 1}m such that ci = 1, we have

E
k,td,y

[
‖ |ψc̄1,...,c̄i−1,1〉X,Z ‖

2 Pr

[
Mi,ki,tdi,yi,1 ◦ U

|c〉
C
|ψc̄1,...,c̄i−1,1〉X,Z

‖ |ψc̄1,...,c̄i−1,1〉X,Z ‖
= ⊤

]]
= negl(n) (16)

assuming the quantum hardness of LWE problem.
For proving Eq. 16, we consider a cheating prover against the original Mahadev’s protocol on

the i-th corrdinate described below:

1. Given ki, it picks k−i = k1...ki−1, ki+1, ..., km as in the protocol and computes U0 |0〉X,Z |0〉Y |k〉K
and measure the register Y to obtain y = (y1, ..., ym) along with the corresponding state
|ψ〉

X,Z = |ψ(k, y)〉
X,Z.

2. ApplyHγ̂,c (which is defined in the fifth claim of Lemma 3.6) to generate the state
|ψc̄1,...,c̄i−1,1

〉
X,Z

‖|ψc̄1,...,c̄i−1,1
〉
X,Z
‖ ,

which succeeds with probability ‖ |ψc̄1,...,c̄i−1,1〉X,Z ‖2 (ignoring a global phase factor). We de-
note by Succ the event that it succeeds in generating the state. If it fails to generate the
state, then it overrides yi by picking it in a way such that it can pass the test round with
probability 1, which can be done according to Fact 1. Then it sends yi to the verifier.

3. Given a challenge c′i, it works as follows:

24

• When c′i = 0 (i.e., Test round), if Succ occurred, then it runs Exti in the second claim

of Lemma 3.6 on input
|0m〉

C
|ψc̄1,...,c̄i−1,1

〉
X,Z

‖|ψc̄1,...,c̄i−1,1
〉
X,Z
‖ to generate a fourth message accepted with

probability 1− negl(n). If Succ did not occur, then it returns a fourth message accepted
with probability 1, which is possible by Fact 1.

• When c′i = 1 (i.e., Hadamard round), if Succ occurred, then it computes U
|c〉

C
|ψc̄1,...,c̄i−1,1

〉
X,Z

‖|ψc̄1,...,c̄i−1,1
〉
X,Z
‖

and measure the register Xi to obtain the fourth message ai. If Succ did not occur, it
just aborts.

Then we can see that this cheating adversary passes the test round with overwhelming probability
and passes the Hadamard round with the probability equal to the LHS of Eq. 16. Therefore, Eq. 16
follows from Lemma 3.1 assuming the quantum hardness of LWE problem.

Now, we are ready to prove the soundness of the parallel repetition version of Mahadev’s
protocol (Theorem 3.3). As remarked at the beginning of Sec. 3.3, it suffices to show that for
any µ = 1/poly(n), there exists m = O(log(n)) such that the success probability of the cheating
prover is at most µ. Here we set m = log 1

µ2
, γ0 = 2−2m, and T = 2m. Note that this parameter

setting satisfies the requirement for Lemma 3.6 since m = log 1
µ2

= log(poly(n)) = O(log n) and
γ0
T = 2−3m = µ6 = 1/poly(n). Then we have

Pr
k,td,y,c

[
Mk,td,y,c ◦ U |c〉C |ψ〉X,Z = ⊤

]

= Pr
k,td,y,c,γ̂

[
Mk,td,y,c ◦ U |c〉C

(
m∑

i=1

|ψc̄1,...,c̄i−1,ci〉X,Z + |ψc̄1,...,c̄m〉X,Z + |ψerr〉X,Z

)
= ⊤

]

≤ (m+ 2) E
k,td,y,c,γ̂

[
m∑

i=1

‖ |ψc̄1,...,c̄i−1,ci〉X,Z ‖
2 Pr

[
Mk,td,y,c ◦ U

|c〉
C
|ψc̄1,...,c̄i−1,ci〉X,Z

‖ |ψc̄1,...,c̄i−1,ci〉X,Z ‖
= ⊤

]

+ ‖ |ψc̄1,...,c̄m〉X,Z ‖
2 Pr

[
Mk,td,y,c ◦ U

|c〉
C
|ψc̄1,...,c̄m〉X,Z

‖ |ψc̄1,...,c̄m〉X,Z
= ⊤

]

+ ‖ |ψerr〉X,Z ‖2 Pr
[
Mk,td,y,c ◦ U

|c〉
C
|ψerr〉X,Z

‖ |ψerr〉X,Z ‖
= ⊤

]]

≤ (m+ 2) E
k,td,y,c,γ̂

[
m∑

i=1

‖ |ψc̄1,...,c̄i−1,ci〉X,Z ‖
2 Pr

[
Mi,ki,tdi,yi,ci ◦ U

|c〉
C
|ψc̄1,...,c̄i−1,ci〉X,Z

‖ |ψc̄1,...,c̄i−1,ci〉X,Z ‖
= ⊤

]

+ ‖ |ψc̄1,...,c̄m〉X,Z ‖
2 + ‖ |ψerr〉X,Z ‖2

]

≤ (m+ 2)(m(2m−1γ0 + negl(n)) + 2−m +
6m2

T
+ negl(n))

≤ poly(log µ−1)µ2 + negl(n).

The first equation follows from Lemma 3.6. The first inequality follows from Lemma 2.1. The
second inequality holds since considering the verification on a particular coordinate just increases
the acceptance probability and probabilities are at most 1. The third inequality follows from Eq. 15
and 16, which give an upper bound of the first term and Lemma 3.6, which gives upper bounds
of the second and third terms. The last inequality follows from our choices of γ0, T , and m. For
sufficiently large n, this can be upper bounded by µ. Since Prk,td,y,c[Mk,td,y,c ◦U |c〉C |ψ〉X,Z = ⊤] is

25

the success probability of a cheating prover, the above inequality means that for any µ = 1/poly(n),
there exists m = O(log(n)) such that the success probability of the cheating prover is at most µ.
As remarked at the beginning of Sec. 3.3, this suffices for proving that a chearing prover’s success
probability is negligible when m = ω(log n).

4 Two-Round Protocol via Fiat-Shamir Transform

In this section, we show that if we apply the Fiat-Shamir transform to m-parallel version of the
Mahadev’s protocol, then we obtain two-round protocol in the QROM. That is, we prove the
following theorem.

Theorem 4.1. Assuming LWE assumption, there exists a two-round CVQC protocol with over-
whelming completeness and negligible soundness error in the QROM.

Proof. Letm > n be a sufficiently large integer so thatm-parallel version of the Mahadev’s protocol
has negligible soundness. For notational simplicity, we abuse the notation to simply use Vi, Pi, and
Vout to mean the m-parallel repetitions of them. Let H : Y → {0, 1}m be a hash function idealized
as a quantum random oracle where X is the space of the second message y and Y = {0, 1}m. Our
two-round protocol is described below:

First Message: The verifier runs V1 to generate (k, td). Then it sends k to the prover and keeps
td as its state.

Second Message: The prover runs P2 on input k to generate y along with the prover’s state |stP 〉.
Then set c := H(y), and runs P4 on input |stP 〉 and y to generate a. Finally, it returns (y, a)
to the verifier.

Verification: The verifier computes c = H(y), runs Vout(k, td, y, c, a), and outputs as Vout outputs.

It is clear that the completeness is preserved given that H is a random oracle. We reduce the
soundness of this protocol to the soundness of m-parallel version of the Mahadev’s protocol. For
proving this, we borrow the following lemma shown in [DFMS19].

Lemma 4.2 ([DFMS19, Theorem 2]). Let Y be finite non-empty sets. There exists a black-box
polynomial-time two-stage quantum algorithm S with the following property. Let A be an arbitrary
oracle quantum algorithm that makes q queries to a uniformly random H : Y → {0, 1}m and that
outputs some y ∈ Y and output a. Then, the two-stage algorithm SA outputs y ∈ Y in the first
stage and, upon a random c ∈ {0, 1}m as input to the second stage, output a so that for any x◦ ∈ X
and any predicate V :

Pr
c

[
V (y, c, a) : (y, a)

$← 〈SA, c〉
]
≤ 1

O(q2)
Pr
H

[
V (y,H(y), a) : (y, a)

$← AH
]
− 1

2m+1q
,

where (y, a)
$← 〈SA, c〉 means that SA outputs y and a in the first and second stages respectively on

the second stage input c.

We assume that there exists an efficient adversary A that breaks the soundness of the above
two-round protocol. We fix x /∈ L on which A succeeds in cheating. We fix (k, td) that is in the

26

support of the verifier’s first message. We apply Lemma 4.2 for A = A(k) and V = Vout(k, td, ·, ·, ·),
to obtain an algorithm SA(k) that satisfies

Pr
c

[
Vout(k, td, y, c, a) : (y, a)

$← 〈SA(k), c〉
]

≤ 1

O(q2)
Pr
H

[
Vout(k, td, y,H(y), a) : (y, a)

$← AH(k)
]
− 1

2m+1q
.

Averaging over all possible (k, td), we have

Pr
k,td,c

[
Vout(k, td, y, c, a) : (y, a)

$← 〈SA(k), c〉
]

≤ 1

O(q2)
Pr

k,td,H

[
Vout(k, td, y,H(y), a) : (y, a)

$← AH(k)
]
− 1

2m+1q
.

Since we assume that A breaks the soundness of the above two-round protocol,

Pr
k,td,H

[
Vout(k, td, y,H(y), a) : (y, a)

$← AH(k)
]

is non-negligible in n. Therefore, as long as q = poly(n),

Pr
k,td,c∗

[
Vout(k, td, y, c

∗, a) : (y, a)
$← 〈SA(k), c∗〉

]

is also non-negligible in n. Then, we construct an adversary B that breaks the soundness of parallel
version of Mahadev’s protocol as follows:

Second Message: Given the first message k, B runs the first stage of SA(k) to obtain y. It sends
y to the verifier.

Fourth Message: Given the third message c, B gives c to SA(k) as the second stage input, and
let a be the output of it. Then B sends a to the verifier.

Clearly, the probability that B succeeds in cheating is

Pr
k,td,c∗

[
Vout(k, td, y, c

∗, a) : (y, a)
$← 〈SA(k), c∗〉

]
,

which is non-negligible in n. This contradicts the soundness of m-parallel version of Mahadev’s
protocol (Theorem 3.3). Therefore we conclude that there does not exists an adversary that succeeds
in the two-round protocol with non-negligible probability assuming LWE in the QROM.

5 Making Verifier Efficient

In this section, we construct a CVQC protocol with efficient verification in the CRS+QRO model
where a classical common reference string is available for both prover and verifier in addition to
quantum access to QRO. Our main theorem in this section is stated as follows:

Theorem 5.1. Assuming LWE assumption and existence of post-quantum iO, post-quantum FHE,
and two-round CVQC protocol in the standard model, there exists a two-round CVQC protocol for
QTIME(T) with verification complexity poly(n, log T) in the CRS+QRO model.

27

Remark 2. One may think that the underlying two-round CVQC protocol can be in the QROM
instead of in the standard model since we rely on the QROM anyway. However, this is not the case
since we need to use the underlying two-round CVQC in a non-black box way, which cannot be done
if that is in the QROM. Since our two-round protocol given in Sec. 4 is only proven secure in the
QROM, we do not know any two-round CVQC protocol provably secure in the standard model. On
the other hand, it is widely used heuristic in cryptography that a scheme proven secure in the QROM
is also secure in the standard model if the QRO is instantiated by a well-designed cryptographic
hash function. For example, many candidates for the NIST post-quantum standardization [NIS]
give security proofs in the QROM and claim their security in the real world. Therefore, we believe
that it is reasonable to assume that a standard model instantiation of the scheme in Sec. 4 with a
concrete hash function is sound.

Remark 3. One may think we need not assume CRS in addition to QRO since CRS may be replaced
with an output of QRO. This can be done if CRS is just a uniformly random string. However, in
our construction, CRS is non-uniform and has a certain structure. Therefore we cannot implement
CRS by QRO.

5.1 Preparation

First, we prepare a lemma that is used in our security proof.

Lemma 5.2. For any finite sets X and Y and two-stage oracle-aided quantum algorithm A =
(A1,A2), we have

Pr
[
1

$← AH2 (|stA〉 , z) : |stA〉 $← AH1 ()
]
− Pr

[
1

$← AH[z,G]
2 (|stA〉 , z) : |stA〉 $← AH1 ()

]
≤ q12−

ℓ
2
+1

where z
$← {0, 1}ℓ, H $← Func({0, 1}ℓ ×X ,Y), G $← Func(X ,Y), H[z,G] is defined by

H[z,G](z′, x) =

{
G(x) if z′ = z

H(z′, x) else
.

where q1 denotes the maximal number of queries by A1.

This can be proven similarly to [SXY18, Lemma 2.2]. We give a proof in Appendix A for
completeness.

5.2 Four-Round Protocol

First, we construct a four-round scheme with efficient verification, which is transformed into two-
round protocol in the next subsection. Our construction is based on the following building blocks:

• A two-round CVQC protocol Π = (P = P2, V = (V1, Vout)) in the standard model, which
works as follows:

V1: On input the security parameter 1n and x, it generates a pair (k, td) of a“key” and
“trapdoor”, sends k to P , and keeps td as its internal state.

P2: On input x and k, it generates a response e and sends it to V .

Vout: On input x, k, td, e, it returns ⊤ indicating acceptance or ⊥ indicating rejection.

• A post-quantum PRG PRG : {0, 1}ℓs → {0, 1}ℓr where ℓr is the length of randomness for V1.

28

• An FHE scheme ΠFHE = (FHE.KeyGen,FHE.Enc,FHE.Eval,FHE.Dec) with post-quantum CPA
security.

• A strong output compressing randomized encoding scheme ΠRE = (RE.Setup,RE.Enc,RE.Dec)
with post-quantum security. We denote the simulator for ΠRE by Sre.

• A SNARK ΠSNARK = (Psnark, Vsnark) in the QROM for an NP language Lsnark defined below:

We have (x, pkfhe, ct, ct
′) ∈ Lsnark if and only if there exists e such that ct′ = FHE.Eval(pkfhe,

C[x, e], ct) where C[x, e] is a circuit that works as follows:

C[x, e](s): Given input s, it computes (k, td)
$← V1(1

n, x;PRG(s)), and returns 1 if and only
if Vout(x, k, td, e) = ⊤ and 0 otherwise.

Let L be a BPP language decided by a quantum Turing machine QTM (i.e., for any x ∈
{0, 1}∗, x ∈ L if and only if QTM accepts x), and for any T , LT denotes the set consisting
of x ∈ L such that QTM accepts x in T steps. Then we construct a 4-round CVQC protocol
(Setupeff , Peff = (Peff,2, Peff,4), Veff = (Veff,1, Veff,3, Veff,out)) for LT in the CRS+QRO model where
the verifier’s efficiency only logarithmically depends on T . Let H : {0, 1}2n ×{0, 1}2n → {0, 1}n be
a quantum random oracle.

Setupeff(1
n): The setup algorithm takes the security parameter 1n as input, generates crsre

$← {0, 1}ℓ
and computes ekre

$← RE.Setup(1n, 1ℓ, crsre) where ℓ is a parameter specified later. Then it
outputs a CRS for verifier crsVeff := ekre and a CRS for prover crsPeff

:= crsre.
10

V H
eff,1: Given crsVeff = ekre and x, it generates s

$← {0, 1}ℓs and (pkfhe, skfhe)
$← FHE.KeyGen(1n),

computes ct
$← FHE.Enc(pkfhe, s) and M̂inp

$← RE.Enc(ekre,M, s, T ′) where M is a Turing
machine that works as follows:

M(s): Given an input s ∈ {0, 1}ℓs , it computes (k, td)
$← V1(1

n, x;PRG(s)) and outputs k

and T ′ is specified later. Then it sends (M̂inp, pkfhe, ct) to Peff and keeps skfhe as its internal
state.

PHeff,2: Given crsPeff
= crsre, x and the message (M̂inp, pkfhe, ct) from the verifier, it computes k ←

RE.Dec(crsre, M̂inp), e
$← P2(x, k), and ct′ ← FHE.Eval(pkfhe, C[x, e], ct) where C[x, e] is a

classical circuit defined above. Then it sends ct′ to Veff and keeps (pkfhe, ct, ct
′, e) as its state.

V H
eff,3 Upon receiving ct′, it randomly picks z

$← {0, 1}2n and sends z to Peff .

PHeff,4 Upon receiving z, it computes πsnark
$← P

H(z,·)
snark ((x, pkfhe, ct, ct

′), e) and sends πsnark to Veff .

V H
eff,out: It returns ⊤ if V

H(z,·)
snark ((x, pkfhe, ct, ct

′), πsnark) = ⊤ and 1 ← FHE.Dec(skfhe, ct
′) and ⊥

otherwise.

10We note that we divide the CRS into crsVeff
and crsPeff

just for the verifier efficiency and soundness still holds
even if a cheating prover sees crsVeff

.

29

Choice of parameters.

• We set ℓ to be an upper bound of the length of k where (k, td)
$← V1(1

n, x) for x ∈ LT . We
note that we have ℓ = poly(n, T).

• We set T ′ to be an upperbound of the running time of M on input s ∈ {0, 1}ℓs when x ∈ LT .
We note that we have T ′ = poly(n, T).

Verification Efficiency. By encoding efficiency of ΠRE and verification efficiency of ΠSNARK,
Veff runs in time poly(n, |x|, log T).

Remark 4. We note that the running time of the setup algorithm is poly(T). This can be done by
a trusted party that has a strong (classical) computational power. Alternatively, as in the classical
delegating computation literature, we can consider an offline/online setting where the verifier can
spend a one-time cost of poly(T) to setup the CRS in the offline stage, and use it to delegate multiple
quantum computation efficiently in the online stage.

Theorem 5.3 (Completeness). For any x ∈ LT ,

Pr
[
〈PHeff(crsPeff

), V H
eff (crsVeff)〉(x) = ⊥

]
= negl(n)

where (crsPeff
, crsVeff)

$← Setupeff(1
n).

Proof. This easily follows from completeness and correctness of the underlying primitives.

Theorem 5.4 (Soundness). For any x /∈ LT any efficient quantum cheating prover A,

Pr
[
〈AH(crsPeff

, crsVeff), V
H
eff (crsVeff)〉(x) = ⊤

]
= negl(n)

where (crsPeff
, crsVeff)

$← Setupeff(1
n).

Proof. We fix T and x /∈ LT . Let A be a cheating prover. First, we divides A into the first stage
A1, which is given (crsPeff

, crsVeff) and the first message and outputs the second message ct′ and
its internal state |stA〉, and the second stage A2, which is given the internal state |stA〉 and the
third message and outputs the fourth message πsnark. We consider the following sequence of games
between an adversary A = (A1,A2) and a challenger. Let q1 and q2 be an upper bound of number
of random oracle queries by A1 and A2, respectively. We denote the event that the challenger
returns 1 in Gamei by Ti.

Game1: This is the original soundness game. Specifically, the game runs as follows:

1. The challenger generates H
$← Func({0, 1}2n × {0, 1}2n, {0, 1}n), crsre $← {0, 1}ℓ, s $←

{0, 1}ℓs , and (pkfhe, skfhe)
$← FHE.KeyGen(1n), and computes ekre

$← RE.Setup(1n, 1ℓ, crsre),

ct
$← FHE.Enc(pkfhe, s), and M̂inp

$← RE.Enc(ekre,M, s, T ′).

2. AH1 is given crsPeff
:= crsre, crsVeff := ekre and the first message (M̂inp, pkfhe, ct), and

outputs the second message ct′ and its internal state |stA〉.
3. The challenger randomly picks z

$← {0, 1}2n.
4. AH2 is given the state |stA〉 and the third message z and outputs πsnark.

5. The challenger returns 1 if V
H(z,·)
snark ((x, pkfhe, ct, ct

′), πsnark) = ⊤ and 1← FHE.Dec(skfhe, ct
′)

and 0 otherwise.

30

Game2: This game is identical to the previous game except that the oracles given to A2 and Vsnark
are replaced withH[z,G] andG in Step 4 and 5 respectively whereG

$← Func({0, 1}2n, {0, 1}n)
and H[z,G] is as defined in Lemma 5.2. We note that the oracle given to A1 in Step 2 is
unchanged from H.

Game3: This game is identical to the previous game except that Step 4 and 5 are modified as
follows:

4. The challenger runs e
$← ExtA

′
2[H,|stA〉,z]((x, pkfhe, ct, ct

′), 1q2 , 1n) where A′2[H, stA, z] is an

oracle-aided quantum algorithm that is given an oracle G and emulates AH[z,G]
2 (|stA〉 , z).

5. The challenger returns 1 if e is a valid witness for (x, pkfhe, ct, ct
′) ∈ Lsnark and 1 ←

FHE.Dec(skfhe, ct
′) and 0 otherwise.

Game4: This game is identical to the previous game except that Step 5 is modified as follows:

5. The challenger returns 1 if e is a valid witness for (x, pkfhe, ct, ct
′) ∈ Lsnark, and Vout(x, k, td, e) =

⊤ where (k, td)
$← V1(1

n, x;PRG(s)) and 0 otherwise.

Game5: This game is identical to the previous game except that ct is generated as ct
$← FHE.Enc(pkfhe,

02n) in Step 1.

Game6: This game is identical to the previous game except that crsre, ekre, and M̂inp are generated in

a different way. Specifically, in Step 1, the challenger computes (k, td)
$← V1(1

n, x;PRG(s)),

(crsre, M̂inp)
$← Sre(1n, 1|M |, 1ℓs , k, T ∗), and ekre

$← RE.Setup(1n, 1ℓ, crsre) where T ∗ is the
running time of M(inp). We note that the same (k, td) generated in this step is also used in
Step 5.

Game7: This game is identical to the previous game except that PRG(s) used for generating (k, td)
in Step 1 is replaced with a true randomness.

This completes the descriptions of games. Our goal is to prove Pr[T1] = negl(n). We prove
this by the following lemmas. Since Lemmas 5.8, 5.9, and 5.10 can be proven by straightforward
reductions, we only give proofs for the rest of lemmas.

Lemma 5.5. We have |Pr[T2]− Pr[T1]| ≤ q12−(n+1).

Proof. This lemma is obtained by applying Lemma 5.2 for B = (B1,B2) described below:

BO1
1 (): It generates crsre

$← {0, 1}ℓ, s $← {0, 1}ℓs , and (pkfhe, skfhe)
$← FHE.KeyGen(1n), computes

ekre
$← RE.Setup(1n, 1ℓ, crsre), ct

$← FHE.Enc(pkfhe, s), M̂inp
$← RE.Enc(ekre,M, s, T ′), and

ct
$← FHE.Enc(pkfhe, s), and sets crsPeff

= crsre and crsVeff := ekre. Then it runs (ct′, |stA〉) $←
AO1

1 (crsPeff
, crsVeff , x, (M̂inp, pkfhe, ct)), and outputs |stB〉 := (|stA〉 , x, M̂inp, ct, ct

′, skfhe).11

BO2
2 (|stB〉 , z): It runs πsnark

$← AO2
2 (|stA〉), and outputs 1 if V

O2(z,·)
snark ((x, pkfhe, ct, ct

′), πsnark) = ⊤
and 1← FHE.Dec(skfhe, ct

′) and 0 otherwise.

Lemma 5.6. If ΠSNARK satisfies the extractability and Pr[T2] is non-negligible, then Pr[T3] is also
non-negligible.

11Classical strings are encoded as quantum states in a trivial manner.

31

Proof. Let trans3 be the transcript of the protocol before the fourth message is sent (i.e., trans3 =

(crsPeff
, crsVeff , M̂inp, pkfhe, ct

′, z)). We say that (H, skfhe, trans3, |stA〉) is good if we randomly choose

G
$← Func({0, 1}2n, {0, 1}n) and run πsnark

$← AH[z,G]
2 (|stA〉) to complete the transcript, then the

transcript is accepted (i.e., we have V G
snark((x, pkfhe, ct, ct

′), πsnark) = ⊤ and 1← FHE.Dec(skfhe, ct
′))

with non-negligible probability. By a standard averaging argument, if Pr[T2] is non-negligible, then
a non-negligible fraction of (H, skfhe, trans3, |stA〉) is good when they are generated as in Game2.
We fix good (trans3, skfhe, |stA〉). Then by the extractability of ΠSNARK, Ext succeeds in extracting
a witness for (x, pkfhe, ct, ct

′) ∈ Lsnark with non-negligible probability. Moreover, since we assume
(H, skfhe, trans3, |stA〉) is good, we always have 1← FHE.Dec(skfhe, ct

′) (since otherwise a transcript
with prefix trans3 cannot be accepted). Therefore we can conclude that Pr[T3] is non-negligible.

Lemma 5.7. We have Pr[T4] = Pr[T3].

Proof. If e is a valid witness for (x, pkfhe, ct, ct
′) ∈ Lsnark, then we especially have ct′ = FHE.Eval(pkfhe,

C[x, e], ct). By the correctness of ΠFHE, we have FHE.Dec(skfhe, ct
′) = C[x, e](s) = (Vout(x, k, td, e)

?
=

⊤) where (k, td)
$← V1(1

n, x;PRG(s)). Therefore, the challenger returns 1 in Game4 if and only if
it returns 1 in Game3.

Lemma 5.8. If ΠFHE is CPA-secure, then we have |Pr[T5]− Pr[T4]| ≤ negl(n).

Lemma 5.9. If ΠRE is secure, then we have |Pr[T6]− Pr[T5]| ≤ negl(n).

Lemma 5.10. If PRG is secure, then we have |Pr[T7]− Pr[T6]| ≤ negl(n).

Lemma 5.11. If (P, V) satisfies soundness, then we have Pr[T7] ≤ negl(n).

Proof. Suppose that Pr[T7] is non-negligible. Then we construct an adversary B against the under-
lying two-round protocol as follows:

B(k): Given the first message k, it generatesH
$← Func({0, 1}2n×{0, 1}2n, {0, 1}n), G $← Func({0, 1}2n,

{0, 1}n), z $← {0, 1}2n, (k, td) $← V1(1
n, x;PRG(s)), (crsre, M̂inp)

$← Sre(1n, 1|M |, 1ℓs , k, T ∗),
ekre

$← RE.Setup(1n, 1ℓ, crsre), and (pkfhe, skfhe)
$← FHE.KeyGen(1n), computes ct

$← FHE.Enc(

pkfhe, 0
2n), and sets crsPeff

= crsre and crsVeff := ekre. Then it runs (ct′, |stA〉) $← AH1 (crsPeff
, crsVeff ,

x, (M̂inp, pkfhe, ct)) and e
$← ExtA

′
2[H,|stA〉,z]((x, pkfhe, ct, ct

′), 1q2 , 1n) and outputs e.

Then we can easily see that the probability that we have Vout(x, k, td, e) is at least Pr[T7]. Therefore,
if the underlying two-round protocol is sound, then Pr[T7] = negl(n).

By combining Lemmas 5.5 to 5.10, we can see that if Pr[T1] is non-negligible, then Pr[T7] is also
non-negligible, which contradicts Lemma 5.11. Therefore we conclude that Pr[T1] = negl(n).

5.3 Reducing to Two-Round via Fiat-Shamir

Here, we show that the number of rounds can be reduced to 2 relying on another random oracle.
Namely, we observe that the third message of the scheme is just a public coin, and so we can
apply the Fiat-Shamir transform similarly to Sec.4. In the following, we describe the protocol for
completeness.

Our two-round CVQC protocol (Setupeff-fs, Peff-fs, Veff-fs = (Veff-fs,1, Veff-fs,out)) for LT in the
CRS+QRO model is described as follows. Let H : {0, 1}2n × {0, 1}2n → {0, 1}n be a quantum
random oracle and H ′ : {0, 1}ℓct′ → {0, 1}2n be another quantum random oracle where ℓct′ is the
maximal length of ct′ in the four-round scheme and ℓ and T ′ be as defined in the previous section.

32

Setupeff-fs(1
n): The setup algorithm takes the security parameter 1n as input, generates crsre

$←
{0, 1}ℓ and computes ekre

$← RE.Setup(1n, 1ℓ, crsre). Then it outputs a CRS for verifier
crsVeff-fs := ekre and a CRS for prover crsPeff-fs

:= crsre.

V H,H′

eff-fs,1: Given crsVeff-fs = ekre and x, it generates s
$← {0, 1}ℓs and (pkfhe, skfhe)

$← FHE.KeyGen(1n),

computes ct
$← FHE.Enc(pkfhe, s) and M̂inp

$← RE.Enc(ekre,M, s, T ′) where M is a Turing
machine that works as follows:

M(s): Given an input s ∈ {0, 1}ℓs , it computes (k, td)
$← V1(1

n, x;PRG(s)) and outputs k.

Then it sends (M̂inp, pkfhe, ct) to Peff-fs and keeps skfhe as its internal state.

PH,H
′

eff-fs,2: Given crsPeff-fs
= crsre, x and the message (M̂inp, pkfhe, ct) from the verifier, it computes

k ← RE.Dec(crsre, M̂inp), e
$← P2(x, k), and ct′ ← FHE.Eval(pkfhe, C[x, e], ct) where C[x, e]

is a classical circuit defined above. Then it computes z := H ′(ct′), computes πsnark
$←

P
H(z,·)
snark ((x, pkfhe, ct, ct

′), e) and sends (ct′, πsnark) to Veff-fs.

V H,H′

eff-fs,out: It computes z := H ′(ct′) and returns ⊤ if V
H(z,·)
snark ((x, pkfhe, ct, ct

′), πsnark) = ⊤ and 1 ←
FHE.Dec(skfhe, ct

′) and ⊥ otherwise.

Verification Efficiency. Clearly, the verification efficiency is preserved from the protocol in
Sec. 5.2

Theorem 5.12 (Completeness). For any x ∈ LT ,

Pr
[
〈PH,H′

eff-fs (crsPeff-fs
), V H,H′

eff-fs (crsVeff-fs)〉(x) = ⊥
]
= negl(n)

where (crsPeff-fs
, crsVeff-fs)

$← Setupeff-fs(1
n).

Theorem 5.13 (Soundness). For any x /∈ LT any efficient quantum cheating prover A,

Pr
[
〈AH,H′

(crsPeff-fs
, crsVeff), V

H,H′

eff-fs (crsVeff-fs)〉(x) = ⊤
]
= negl(n)

where (crsPeff-fs
, crsVeff-fs)

$← Setupeff-fs(1
n).

This can be reduced to Theorem 5.4 similarly to the proof of soundness of the protocol in Sec. 4.

Acknowledgement

Kai-Min Chung is partially supported by the Academia Sinica Career Development Award under
Grant no. 23-17, and MOST QC project under Grant no. MOST 108-2627-E-002-001-.

Nai-Hui Chia were supported by Scott Aaronson’s Vannevar Bush Faculty Fellowship.

33

References

[AAB+19] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell,
Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Court-
ney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney,
Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan,
Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble,
Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian
Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David
Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R.
McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud
Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen
Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rief-
fel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim
Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Vil-
lalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven,
and John M. Martinis. Quantum supremacy using a programmable superconducting
processor. Nature, 574(7779):505–510, 2019.

[AAV13] Dorit Aharonov, Itai Arad, and Thomas Vidick. Guest column: The quantum pcp
conjecture. SIGACT News, 44(2):47–79, June 2013.

[ABOEM17] Dorit Aharonov, Michael Ben-Or, Elad Eban, and Urmila Mahadev. Interactive proofs
for quantum computations. arXiv, 1704.04487, 2017.

[ACGH20] Gorjan Alagic, Andrew M. Childs, Alex B. Grilo, and Shih-Han Hung. Non-interactive
classical verification of quantum computation. In TCC 2020, 2020. To appear.

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New
methods for bootstrapping and instantiation. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 191–225. Springer,
Heidelberg, May 2019.

[AP20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without
maps: Attacks and fixes for noisy linear FE. In Vincent Rijmen and Yuval Ishai,
editors, EUROCRYPT 2020, Part I, LNCS, pages 110–140. Springer, Heidelberg,
May 2020.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and
Mark Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun
Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 41–69. Springer,
Heidelberg, December 2011.

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and
pairings are not necessary for io: Circular-secure lwe suffices. IACR Cryptol. ePrint
Arch., 2020:1024, 2020.

[BFK09] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum
computation. In 50th FOCS, pages 517–526. IEEE Computer Society Press, October
2009.

34

[BFK+19] Saikrishna Badrinarayanan, Rex Fernando, Venkata Koppula, Amit Sahai, and
Brent Waters. Output compression, MPC, and iO for turing machines. In ASI-
ACRYPT 2019, Part I, LNCS, pages 342–370. Springer, Heidelberg, December 2019.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
59(2):6:1–6:48, 2012.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012,
pages 309–325. ACM, January 2012.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation
and batch NP verification from standard computational assumptions. In Hamed
Hatami, Pierre McKenzie, and Valerie King, editors, 49th ACM STOC, pages 474–
482. ACM Press, June 2017.

[BIN97] Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does parallel repetition lower
the error in computationally sound protocols? In 38th FOCS, pages 374–383. IEEE
Computer Society Press, October 1997.

[BKK+18] Saikrishna Badrinarayanan, Yael Tauman Kalai, Dakshita Khurana, Amit Sahai, and
Daniel Wichs. Succinct delegation for low-space non-deterministic computation. In
Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, 50th ACM STOC,
pages 709–721. ACM Press, June 2018.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 868–886. Springer, Heidelberg, August 2012.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE
Computer Society Press, October 2011.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses
Charikar and Edith Cohen, editors, 51st ACM STOC, pages 1082–1090. ACM Press,
June 2019.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Birgit Pfitzmann, ed-
itor, EUROCRYPT 2001, volume 2045 of LNCS, pages 93–118. Springer, Heidelberg,
May 2001.

[CLLW20] Kai-Min Chung, Yi Lee, Han-Hsuan Lin, and Xiaodi Wu. Constant-round blind
classical verification of quantum sampling. In submission, 2020.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation
of probabilistic circuits and applications. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, TCC 2015, Part II, volume 9015 of LNCS, pages 468–497. Springer, Heidel-
berg, March 2015.

35

[CMS19] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in the
quantum random oracle model. In TCC 2019, Part II, LNCS, pages 1–29. Springer,
Heidelberg, March 2019.

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security of the Fiat-
Shamir transformation in the quantum random-oracle model. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS,
pages 356–383. Springer, Heidelberg, August 2019.

[FK17] Joseph F Fitzsimons and Elham Kashef. Unconditionally verifiable blind quantum
computation. Physical Review A, 96(1):012303, 2017.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer, Heidelberg, August 1987.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. SIAM J. Comput., 45(3):882–929, 2016.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computa-
tion: Interactive proofs for muggles. J. ACM, 62(4):27:1–27:64, 2015.

[GP20] Romain Gay and Rafael Pass. Indistinguishability obfuscation from cir-
cular security. Cryptology ePrint Archive, Report 2020/1010, 2020.
https://eprint.iacr.org/2020/1010.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 75–92. Springer, Heidelberg, August 2013.

[GV19] Alexandru Gheorghiu and Thomas Vidick. Computationally-secure and composable
remote state preparation. In 60th FOCS, pages 1024–1033. IEEE Computer Society
Press, 2019.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999.

[HR18] Justin Holmgren and Ron Rothblum. Delegating computations with (almost) minimal
time and space overhead. In Mikkel Thorup, editor, 59th FOCS, pages 124–135. IEEE
Computer Society Press, October 2018.

[IBM] Ibm quantum experience. https://quantum-computing.ibm.com/docs/. Accessed:
2020-05-22.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In 24th ACM STOC, pages 723–732. ACM Press, May 1992.

36

https://eprint.iacr.org/2020/1010
https://quantum-computing.ibm.com/docs/

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations
publicly. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages 1115–
1124. ACM Press, June 2019.

[KRR13] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded space.
In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC,
pages 565–574. ACM Press, June 2013.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations:
the power of no-signaling proofs. In David B. Shmoys, editor, 46th ACM STOC, pages
485–494. ACM Press, May / June 2014.

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of
LNCS, pages 326–355. Springer, Heidelberg, August 2019.

[Mah18] Urmila Mahadev. Classical verification of quantum computations. In Mikkel Thorup,
editor, 59th FOCS, pages 259–267. IEEE Computer Society Press, October 2018.

[MF18] Tomoyuki Morimae and Joseph F. Fitzsimons. Post hoc verification with a single
prover. Physical Review Letters, 120:040501, 2018.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298,
2000.

[MW05] Chris Marriott and John Watrous. Quantum arthur—merlin games. Comput. Com-
plex., 14(2):122–152, June 2005.

[NIS] NIST. Post-quantum cryptography standardization.
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography. Accessed:
2020-09-21.

[NWZ09] Daniel Nagaj, Pawel Wocjan, and Yong Zhang. Fast amplification of qma. arXiv,
0904.1549, 2009.

[Pei16] Chris Peikert. A decade of lattice cryptography. Foundations and Trends in Theoret-
ical Computer Science, 10(4):283–424, 2016.

[PW07] Krzysztof Pietrzak and Douglas Wikström. Parallel repetition of computationally
sound protocols revisited. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of
LNCS, pages 86–102. Springer, Heidelberg, February 2007.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6):34:1–34:40, 2009.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Daniel Wichs and Yishay Mansour, editors, 48th
ACM STOC, pages 49–62. ACM Press, June 2016.

[RUV13] Ben W Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quantum
systems. Nature, 496(7746):456, 2013.

[RV10] Guy N. Rothblum and Salil P. Vadhan. Are pcps inherent in efficient arguments?
Comput. Complex., 19(2):265–304, 2010.

37

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-
encapsulation mechanism in the quantum random oracle model. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of
LNCS, pages 520–551. Springer, Heidelberg, April / May 2018.

[SY17] Fang Song and Aaram Yun. Quantum security of nmac and related constructions
- prf domain extension against quantum attacks. IACR Cryptology ePrint Archive,
2017:509, 2017. Version 20170602:164010. Preliminary version of this paper was pre-
sented at CRYPTO 2017.

[WW20] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious lwe sampling.
IACR Cryptol. ePrint Arch., 2020:1042, 2020.

[Zha12] Mark Zhandry. How to construct quantum random functions. In 53rd FOCS, pages
679–687. IEEE Computer Society Press, October 2012.

A Proof of Lemma 5.2

Here, we give a proof of Lemma 5.2. We note that the proof is essentially the same as the proof of
[SXY18, Lemma 2.2].

Before proving the lemma, we introduce another lemma, which gives a lower bound for a
decisional variant of Grover’s search problem.

Lemma A.1 ([SY17, Lemma C.1]). Let gz : {0, 1}ℓ → {0, 1} denotes a function defined as gz(z) :=
1 and gz(z

′) := 0 for all z′ 6= z, and g⊥ : {0, 1}ℓ → {0, 1} denotes a function that returns 0 for all
inputs. Then for any quantum adversary B = (B1,B2) we have

∣∣∣Pr[1 $← B2(|stB〉 , z) | |stB〉 $← Bgz1 ()]− Pr[1
$← B2(|stB〉 , z) | |stB〉 $← Bg⊥1 ()]

∣∣∣ ≤ q1 · 2−
ℓ
2
+1.

where z
$← {0, 1}ℓ and q1 denotes the maximal number of queries by B1.

Then we prove Lemma 5.2.

Proof. (of Lemma 5.2.) We consider the following sequence of games. We denote the event that
Gamei returns 1 by Ti.

Game1: This game simulates the environment of the first term of LHS in the inequality in the

lemma. Namely, the challenger chooses z
$← {0, 1}ℓ, H $← Func({0, 1}ℓ×X ,Y), A1 runs with

oracle H to generate |stA〉, A2 runs on input (|stA〉 , z) with oracle H to generate a bit b, and
the game returns b.

Game2: This game is identical to the previous game except that the oracle given to A1 is replaced

with H[z,G] where G
$← Func(X ,Y).

Game3: This game is identical to the previous game except that the oracle given to A1 is replaced
with H and the oracle given to A2 is replaced with H[z,G]. We note that this game simulates
the environment as in the second term of the LHS in the inequality in the lemma.

38

What we need to prove is |Pr[T1] − Pr[T3]| ≤ q12
− ℓ

2
+1. First we observe that the change from

Game2 to Game3 is just conceptual and nothing changes from the adversary’s view since in both
games, the oracles given to A1 and A2 are random oracles that agrees on any input (z′, x) such
that z′ 6= z and independent on any input (z, x). Therefore we have Pr[T2] = Pr[T3]. What is left

is to prove |Pr[T1] − Pr[T2]| ≤ q12
− ℓ

2
+1. For proving this, we construct an algorithm B = (B1,B2)

that breaks Lemma 5.2 with the advantage |Pr[T1]− Pr[T2] as follows:

Bg∗1 (): It generates H
$← Func({0, 1}ℓ × X ,Y) and G $← Func(X ,Y), implements an oracle O1 as

O1(z
′, x) =

{
G(x) if g∗(z′) = 1

H(z′, x) else
,

runs |stA〉 $← AO1
1 () and outputs |stB〉 := |stA〉

B2(|stB〉 = |stA〉 , z): It runs b
$← AH2 (|stB〉 , z) and outputs b.

It is easy to see that if g∗ = g⊥, then B perfectly simulates Game1 for A and if g∗ = gz, then B
perfectly simulates Game2 for A. Therefore, we have |Pr[T1]−Pr[T2]| ≤ q12−

ℓ
2
+1 by Lemma 5.2.

39

	Introduction
	Our Results
	Technical Overview
	Related Works

	Preliminaries
	Learning with Error Problem
	Quantum Random Oracle Model
	Cryptographic Primitives
	Pseudorandom Generator
	Fully Homomorphic Encryption
	Strong Output-Compressing Randomized Encoding
	SNARK in the QROM

	Lemma

	Parallel Repetition of Mahadev's Protocol
	Overview of Mahadev's Protocol
	Parallel Repetition
	Proof of Soundness

	Two-Round Protocol via Fiat-Shamir Transform
	Making Verifier Efficient
	Preparation
	Four-Round Protocol
	Reducing to Two-Round via Fiat-Shamir

	Proof of Lemma 5.2

