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Abstract

This paper presents Dory, a transparent setup, public-coin interactive argument
for proving correctness of an inner-pairing product between committed vectors of
elements of the two source groups. For an inner product of length n, proofs are
6 log n target group elements, 1 element of each source group and 3 scalars. Verifier
work is dominated by an O(log n) multi-exponentiation in the target group. Security
is reduced to the symmetric external Diffie Hellman assumption in the standard
model. We also show an argument reducing a batch of two such instances to one,
requiring O(n1/2) work on the Prover and O(1) communication.

We apply Dory to build a multivariate polynomial commitment scheme via the
Fiat-Shamir transform. For n the product of one plus the degree in each variable,
Prover work to compute a commitment is dominated by a multi-exponentiation in
one source group of size n. Prover work to show that a commitment to an evaluation
is correct is O(nlog(8)/ log 25) in general and O(n1/2) for univariate or multilinear
polynomials, whilst communication complexity and Verifier work are both O(log n).
Using batching, the Verifier can validate ℓ polynomial evaluations for polynomials
of size at most n with O(ℓ+ log n) group operations and O(ℓ log n) field operations.

1 Introduction
Zero-knowledge succinct arguments of knowledge (zkSNARKs) for the satisfiability of
Rank-1 Constraint Systems are the subject of ongoing research. One general strategy for
constructing these arguments uses purely information-theoretic arguments to provide
a reduction to the evaluation of (possibly multi-variate) polynomials, and use some
auxiliary argument between a Prover P and Verifier V with sub-linear verification time
to show that these are correct. These auxiliary arguments are variously inner-product
arguments, or the more restricted polynomial commitments, introduced by Kate [29] in
the univariate context and in the multivariate context by in [33].

Spartan [34] makes the independence of the information-theoretic argument and
these maxillary arguments explicit, and provides an extensive overview of the history and
details of prior works, and key practical considerations relating to the uniformity of the
computation to verify. Non-exhaustively, Bulletproofs [15] use inner-product arguments
and Hyrax [37] utilize polynomial commitments, both based on work of Bootle et al. [12];
Spartan [34] optimizes this approach further. Virgo [38] and Fractal [19] use Interactive
Oracle Proofs based on Reed-Solomon codes (RS-IOP) to prove that a polynomial is of
bounded degree [6]. Supersonic [17] makes use of groups of unknown order to construct
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Diophantine ARguments of Knowledge (DARK) proofs for polynomial evaluations
over fields. Other works rely on some trusted setup, which allows the use of other
commitment schemes. For example PLONK [21] makes use of Kate [29] commitments.
In all cases these interactive arguments are then compiled to non-interactive arguments
in the random-oracle model.

This paper introduces a new argument for generalized inner products without trusted
setup, inspired by Bootle et al. [12] but applying new techniques to achieve a logarithmic
Verifier complexity. This argument can be applied to give polynomial commitments
for arbitrary numbers of variables, using two-tiered homomorphic commitments of
Groth [24] applied to matrix commitment strategy of [37]. This approach is also followed
in Bünz et al. [18] for univariate and bivariate polynomials. For transparent polynomial
commitment schemes, the key operations are for P and V to generate public parameters,
for P to commit to a polynomial and transmit that commitment to V , and for P ,V to
compute, transmit and verify a proof of evaluation of the polynomial. We present some
asymptotic comparisons of transparent polynomial commitment schemes in Figure 1.

communication complexity time complexity

Commit Eval Gen Commit Eval (P) Eval (V)

Supersonic [17] 1 |GU| log n |GU| n log n GU n GU n log n GU log n GU

RS-IOP [19] 1 |H| log2 n |H| 1 n log n H n log n H log2 n H

Hyrax [37] n1/2 |G| log n |G| n1/2H n G n1/2 G n1/2 G

IPP-PC [18] 1 |GT | log n |GT | n1/2H n G1 n1/2P n1/2 G2

This work 1 |GT | log n |GT | n1/2P n G1 n1/2P log n GT

FIGURE 1—Asymptotic comparisons of transparent polynomial commitments,
neglecting Pippenger-type savings in groups. GU a group of unknown order. H
denotes a hash function. G denotes a group. G1, G2, GT denote the two source
groups and the target group of a pairing P.

To allow a more concrete comparison at the 128-bit security level, we note the
size and typical operation times for these systems in Figure 2. Concretely, we take
Curve25519 [8] as an example group, as implemented by curve25519-dalek [31]. We use
the BLS12–381 [13] curve as implemented by RELIC [3] as an example of a group with a
pairing, enhanced to apply torus-based pairing compression [32] for serialization. We use
an imaginary class group [28] as an example group of unknown order with trustless setup.
At the 128-bit security level, a ∼ 6656 bit discriminant is required [20], concretely, we
fix the discriminant ∆ = −(26656 − 26745), as implemented by ANTIC [26]. Following
Fractal [19], we measure the Blake2b hash function, hashing 64 byte messages to 32
byte digests, as implemented by rust-crypto [1].

1.1 Limitations of prior approaches

At a high level, each of the prior approaches to transparent polynomial commitments
have practical problems. Schemes derived from [12] have V’s computation to Open an
evaluation being nO(1). Fundamentally, this is because these schemes commit to a O(n)
size matrix by committing to the rows and then opening a commitment to some linear
combination. This necessarily bounds V’s work below as Ω(n1/2). Hyrax saturates this
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Setting Implementation Size (bytes) Time (µs)

Group of Unknown Order ANTIC-QFB |GU| 832 38000
Hashing rust-crypto |H| 32 0.180
Group curve25519-dalek |G| 32 45
Group with Pairing RELIC |G1| 48 220

|G2| 96 490
|GT | 192 820

P 1600
FIGURE 2—Illustrative micro-benchmarks on a single 3.2GHz core (Intel
Xeon E5–1660 v4). For groups we give the serialized size in bytes of a group
element, and the time taken to multiply a random point by a 256-bit scalar. For
|H| denotes hashing of a 512-bit message to a 256-bit digest.

bound with small concrete constants, but for large n this can be challenging, and in
applications where a commitment must be sent frequently the O(n1/2) commitment size
can be a problem.

The soundness error of Reed-Solomon based interactive proofs seems to be sub-
stantially bounded away from 0, and the proven soundness is lower still. So whilst
asymptotically proof sizes and Verifier times are O(log2 n) the implied constants are
quite large. For example, the implementation of Fractal [19] in libiop [7] has to run the
underlying proof ∼ 500 times to achieve 128-bit security without heuristic assumptions.

Groups of unknown order can be constructed in a trustless way from the class groups
of quadratic number fields, or essentially analogously from the Jacobians of higher genus
curves [20]. Groups of unknown order have a long history [11, 28, 30], but their use
for polynomial commitments is quite new [17]. Unfortunately, general sub-exponential
attacks on the order are known [10], and the required security parameters for transparent
setup have recently grown substantially [20]. In the particular case of Supersonic [17],
even with Pippenger-type acceleration the P must perform O(nλ) group operations, and
generating parameters takes O(nλ log n) group operations. As can be seen in Figure 2,
this is unlikely to be efficient in practice.

Finally, if transparent setup is given up then Kate commitments [29] and their
multivariate generalization [33] are available, generally requiring O(n) operations in
G1 for P , O(1) commitment sizes and a V time linear in the number of variables. In
addition to requiring a trusted setup phase, these systems require unprovable knowledge-
of-exponent type assumptions for their security, which is undesirable.

1.2 Core techniques of Dory

Our approach builds on techniques of Bootle et al. [12] and recent work of Bünz et
al. [18]. These provide arguments for inner products between vectors of scalars and
group elements or generalised products between the source groups of a pairing, where
the inputs are all optionally committed. In those works, the core technique is to split the
inner product of two vectors u, v of length m into pieces uL, uR, vL, vR of size m/2, have
P supply additional data and combine with some V challenge. This essentially follows
the identity:

∀a ̸= 0 : ⟨uL, vL⟩+ ⟨uR, vR⟩ = ⟨auL + uR, a−1vL + vR⟩ − a⟨uL, vR⟩ − a−1⟨uR, vL⟩
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When applied to committed vectors, there is an additional challenge: the Verifier pos-
sesses a commitment to a length m vector (WLOG u), but must compute a commitment
to the vector u′ = auL + uR. To do this, these works use Pedersen-like commitments,
which are bilinear in the committed elements and generators. Suppose u is committed
with generators (g, h), and split g into two m/2 length pieces gL, gR as for u, v. Then
reusing the above identity, V can pass from a commitment to u with generators (g, h)
to a commitment to u′ with generators (a−1gL + gR, h). Similar arguments apply to the
commitment to v.

We say a vector equal to the Kronecker product of vectors of length 2 has multiplica-
tive structure. Applying the above argument recursively, V and P compute vectors X, Y
with multiplicative structure and have some claim about:

(∑
i Xiuj

)
×
(∑

j Yjvj

)
, where

one or both of the two terms are committed. If a vector (WLOG v) was originally com-
mitted with to generators (g, h), then V holds a commitment to

∑
j Yjvj with generators

(
∑

i Xigi, h). Similarly if u is committed with generators (g′, h′) then V must compute∑
j Yjg′j . In prior works, V directly computes these O(m)-sized multi-exponentiations; a

simple sigma proof shows the required product relation.

A poly-logarithmic V: In the bilinear setting, Abe et al. [2] provide linearly ho-
momorphic commitments to vectors of group elements. Since X has multiplicative
structure, X = (ℓX′||rX′). So instead of computing

∑
i Xigi directly, V might precom-

pute commitments to gL and gR, and compute a commitment to G = ℓgL + rgR Then∑
i Xigi =

∑
i X′

i Gi, and so once X′ is known P and V could run an m/2 sized inner-
product argument to convince V of the value of

∑
i Xigi.

Naively, this only yields a constant factor improvement, as X′ is an O(m)-length
vector of scalars. However, X′ has multiplicative structure, and crucially, the only com-
putation that V performs with X′ is to take its inner product with another vector with
multiplicative structure derived from challenges in the m/2 sized inner product argument;
the inner product of vectors with multiplicative structure can be computed in logarithmic
time (i.e. without instantiating the vectors explicitly).

So using the inner-product reductions derived from Bootle et. al. [12] as a black box,
we have an O(log m) reduction from a length m inner product between a vector with
multiplicative structure in F or a committed vector in G1 and a committed vector in G2
to an m/2 length inner product between a public vector with multiplicative structure in
F and a constant vector in G2 (and a similar reduction with G1,G2 swapped).

Applying this recursively gives arguments for length m inner products between
committed vectors, or between committed vectors and vectors of scalars with multi-
plicative structure, with O(log2 m) proof sizes and verification time. P and V would
share generators for commitments of every power-of-2 length less than m in both G1
and G2, and commitments to the left and right halves of each set of generators (using
the generators for half length commitments). These public parameters can be computed
transparently if hashing to G1,G2 is possible. This use of public parameters with structure
but without trusted setup can be seen as analogous to the computational commitments
used in Spartan [34], as we perform some linear-size computation once during setup to
accelerate the online proof generation and verification.
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A logarithmic V: To reduce further we modify the inner-product reduction. In particu-
lar, note that the scalars ℓ, r that are used to convert the generators of length m to a vector
of length m/2 are known after the first round of inner-product reductions. So after this
first round, there are two high level tasks:

• prove an m/2-length inner product, where any committed vectors are now committed
using generators depending on V’s challenge

• prove that these modified generators are consistent with the pre-computed commit-
ments in the public parameters, i.e. that some product of these modified generators
with a fixed vector in the other group is correct.

These tasks are both m/2-length inner products, and we can combine multiple inner
products of the same length with a V supplied challenge, as:

∀b : ⟨bu1 + u2, bv1 + v2⟩ = b2⟨u1, v1⟩+ ⟨u2, v2⟩+ b(⟨u1, v2⟩+ ⟨u2, v1⟩)

So V sends a challenge b, and combine these two claims into a single m/2-length inner
product between vectors committed with fixed generators. Applying this recursively,
we obtain a 2 log m round argument, and V’s computation is dominated by an O(log m)
multi-exponentiation.

Polynomial commitments, batching: We then apply ideas from Hyrax [37, §6] and
BMMV [18] to construct a polynomial commitment from a two-tiered homomorphic
commitment to matrices. This ultimately reduces a dense univariate or multilinear
polynomial with n coefficients to two inner products of size O(n1/2), between vectors
of scalars with multiplicative structure and vectors in G1,G2 respectively. Conveniently,
in our context we can combine the proofs of these inner products, thereby saving an
additional factor 2.

We apply ideas similar of those of Bowe et al. [14] to batch these arguments to
reduce verification time further. In particular, we reduce the cost of evaluating each
additional polynomial commitment to O(1) group operations and O(log n) additional
operations in the scalar field.

2 Preliminaries
2.1 Notation

We use ⊗ to denote the Kronecker product, sending an m× n matrix A and p× q matrix
B to an mp× nq matrix built up of appended copies of B multiplied by scalars in A. For
any vector v of even length we will denote the left and right halves of the vector by vL

and vR respectively; more formally:

vL = ((1, 0)⊗ In/2)v, vR = ((0, 1)⊗ In/2)v.

For any two vectors v1, v2 we denote their concatenation by (v1||v2).
We write←$ S for a uniformly random sample of S, with the understanding that

this encodes no additional structure; concretely for groups G we assume that samples
gi ←$ G have unrelated logarithms. In the context of curves this is known but not entirely
trivial [9, 27, 35, 36].
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We write all groups additively, and assume we are given some method to sample
Type III pairings [22] at a given security level. Then we are furnished with a prime field
F = Fp, three groups G1,G2,GT of order p, a bilinear map e : G1 × G2 → GT , and
generators G1 ∈ G1, G2 ∈ G2 such that e(G1, G2) generates GT . Concretely, classes of
pairing-friendly curves (e.g. Barreto-Lynn-Scott [4] or Barreto-Naehrig [5] curves) are
believed to satisfy these properties.

We generally suppress the distinction between e and multiplication of F ,G1,G2 or
GT by elements of F , writing all of these bilinear maps as multiplication; we will also
use ⟨, ⟩ to denote all of the generalized inner products:

F n × F n → F , F n × Gn
{1,2,T} → G{1,2,T}, Gn

1 × Gn
2 → GT ,

given by ⟨a, b⟩ =
∑n

i=1 aibi in each case.
We will initially present our arguments as requiring some precomputation depending

on public, independent and uniformly random samples of G1,G2. These can be computed
from a hash function as in [9, 27, 35, 36]. Ultimately these precomputed values are
computed form part of the public parameters.

2.2 Computationally hard problems in Type III pairings

Since the pairing is of Type III, there are no efficiently computable morphisms between
G1,G2, and the standard security assumption in this case is Symmetric eXternal Diffie-
Hellman (SXDH) [2]:

Definition 2.1 (SXDH). For (Fp,G1,G2,GT , e, G1, G2) as above, the Decisional Diffie-
Hellman (DDH) assumption holds for (Fp,G1, G1) and (Fp,G2, G2)

Note that a DDH instance in G1 can be mapped to a DDH instance in GT by the map
g → e(g, G2), so SXDH implies that DDH holds in GT . In any group, DDH implies
DLOG, and so:

Lemma 2.1. For (Fp,G1,G2,GT , e, G1, G2) satisfying SXDH, for G ∈ {G1,G2,GT} and
polynomial n, given B←$ Gn no non-uniform polynomial-time adversary can compute
a non-trivial A ∈ F n such that: ⟨A, B⟩ = 0.

SXDH also implies the more useful Double Pairing assumption and reverse Double
Pairing assumption, which we combine:

Definition 2.2 (DBP). For (Fp,G1,G2,GT , e, G1, G2) as above, given A1, A2 ←$ G1 no
non-uniform polynomial-time adversary can compute non-trivial B1, B2 ∈ G2 such that:
A1B1 + A2B2 = 0. Similarly, given A1, A2 ←$ G2 no adversary can compute non-trivial
B1, B2 ∈ G1 such that B1A1 + B2A2 = 0.

This in turn implies that:

Lemma 2.2. For (Fp,G1,G2,GT , e, G1, G2) as above and polynomial n, given A←$ Gn
1

no non-uniform polynomial-time adversary can compute a non-trivial B ∈ Gn
2 such that:

⟨A, B⟩ = 0. Similarly, given A ←$ Gn
2, no adversary can compute non-trivial B ∈ Gn

1
such that ⟨B, A⟩ = 0.
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2.3 Succinct interactive arguments of knowledge

These definitions largely follow follow the presentation in [34]. Let P ,V be a pair of
interactive PPT algorithms, and fix public parameters pp output by some algorithm Gen
given λ a security parameter, such that O(2−λ) = negl(λ) is negligibly small.

Definition 2.3. A public-coin succinct interactive argument of knowledge for a language
L is a protocol between P ,V with the following properties:

• Completeness. If x ∈ L, there exists a witness w such that for all r ∈ {0, 1}∗,
Pr{⟨P(pp, w),V(pp, r)⟩(x) = 1} ≥ 1− negl(λ).

• Soundness. For any non-satisfiable problem instance x, any PPT Prover P∗, and
for all w, r ∈ {0, 1}∗, Pr{⟨P∗(pp, w),V(pp, r)⟩(x) = 1} ≤ negl(λ).

• Knowledge soundness. For any PPT adversary A, there exists a PPT extractor E
such that ∀x ∈ L,∀w, r ∈ {0, 1}∗, if Pr{⟨A(pp, w),V(pp, r)⟩(x) = 1} ≥ negl(λ),
then Pr{SatL(x, EA(pp,x)) = 1} ≥ negl(λ).

• Succinctness. The total communication between P and V is sub-linear in the size
of the NP statement x ∈ L.

• Public coin. V’s messages are chosen uniformly at random.

We denote the transcript of the interaction of two PPTs P ,V with random tapes
zP , zV ∈ {0, 1}∗ on x by tr⟨P(zP),V(zV)⟩(x)

Definition 2.4. A succinct interactive argument of knowledge is publicly verifiable if
there is a polynomial time algorithm Accept of the transcript t such that:

Pr (Accept(tr⟨P(zP),V(zV)⟩(x),x) ̸= ⟨P(zP),V(zV)⟩(x)) = negl(λ).

Note that any public-coin succinct interactive argument of knowledge is necessarily
publicly verifiable. Then from [37]:

Definition 2.5 (Witness-extended emulation [25]). An publicly verifiable interactive
argument (Gen,P ,V) for L has witness-extended emulation if for all deterministic
polynomial time programs P∗ there exists an expected polynomial time emulator E
such that for all non-uniform polynomial time adversaries A and all zV ∈ {0, 1}∗, the
following probabilities differ by at most negl(λ): Pr{pp← Gen(1λ) ; (x, zP)← A(pp) ;
t ← tr⟨P∗(zP),V(zV)⟩(x) : A(t,x) = 1} and Pr{pp ← Gen(1λ) ; (x, zP) ← A(pp) ;
(t, w)← EP∗(zP)(x) : A(t,x) = 1 ∧ (Accept(t) = 1⇒ SatL(x, w) = 1)}.

Note that witness-extended emulation implies soundness and knowledge soundness.
In particular, we will use [37, Lemma 13] heavily:

Lemma 2.3. Let (P ,V) be a (2µ + 1)-move interactive protocol. Let χ be a witness
extraction algorithm extracting a witness from an (w1, . . . , wµ)-tree of accepting tran-
scripts in probabilistic polynomial time with negligible failure probability, and that

∏
i wi

is bounded above by some polynomial in λ the security parameter. Then (P ,V) has
witness-extended emulation.
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Remark 2.1. The main advantage of Lemma 2.3 is that composing reductions between
x ∈ L and x′ ∈ L′ is straightforward. In the reduction, one may assume that the
argument showing x′ ∈ L′ is already witness-extracted, so one has to extract a witness
for x ∈ L from a tree of accepting transcripts of the reduction where P additionally
provides witnesses for x′ ∈ L′. We will have logarithmic numbers of O(1) round
interactive protocols reducing from membership in one language to another, so the
composed witness extraction algorithm has µ = O(log n), all wi = O(1) and n = λO(1).

Definition 2.6. An interactive argument (Gen,P ,V) for L is Honest-Verifier Statistical
Zero-Knowledge (HVSZK) if there exists a PPT algorithm S called the simulator, running
in time polynomial in the length of its first input such that for every problem instance
x ∈ L, w ∈ Rx, and z ∈ {0, 1}∗, the following holds when the distinguishing gap is
considered as a function of |x|:

View(⟨P(w),V(z)⟩(x)) ≈ S(x, z),

where View(⟨P(w),V(z)⟩(x)) denotes the distribution of the transcript of interaction
betweenP and V , and≈ denotes that the statistical distance between the two distributions
is negligible.

Remark 2.2. As is standard, when compiled with the Fiat-Shamir transform, honest
verifier zero knowledge, public-coin succinct interactive arguments are transformed into
zkSNARKs. Standard techniques [23] can also be used to remove the honest-verifier
constraint.

2.4 Commitments

Our aim is to define polynomial commitments. As in [34], we work with the definitions
from Bünz et al. [17] rather than directly with Kate et al. [29], as this permits interactive
proofs for evaluations.

A commitment scheme for some space of messages X is a tuple of three protocols
(Gen, Commit, Open):

• pp← Gen(1λ): produces public parameters pp.

• (C; S)← Commit(pp; x): takes as input some x ∈ X ; produces a public commitment
C and a secret opening hint S.

• b ← Open(pp, C, x,S): verifies the opening of commitment C to x ∈ X with the
opening hint S; outputs b ∈ {0, 1}.

In the sequel, our commitment schemes will generally have S sampled uniformly from
some space. In this case it is often convenient to pass in S, and we will write this
Commit(pp; x,S).

Definition 2.7. A tuple of three protocols (Gen, Commit, Open) is a binding commit-
ment scheme for X if:

Binding. For any PPT adversary A,

Pr

 pp← Gen(1λ); (C,G0,G1,S0,S1) = A(pp);
b0 ← Open(pp, C,G0,S0); b1 ← Open(pp, C,G1,S1):

b0 = b1 ̸= 0 ∧ G0 ̸= G1

 ≤ negl(λ)
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Definition 2.8. A commitment scheme (Gen, Commit, Open) provides hiding commit-
ments if for all PPT adversaries A = (A0,A1):∣∣∣∣∣∣∣∣∣∣∣∣

1− 2 · Pr



b = b̄ :
pp← Gen(1λ);

(G0,G1, st) = A0(pp);
b←R {0, 1};

(C,S)← Commit(pp; Gb);
b̄← A1(st, C)



∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

If the above holds for all algorithms, then the commitment is statistically hiding.

Pedersen and AFGHO Commitments For messages X = F n and any i ∈ {1, 2, T},
the Pedersen commitment scheme is defined by:

Gen(1λ) = {g←$ Gn
i , h← Gi}

(C,S)← Commit(pp; x) = {r ←$ F ; (⟨x, g⟩+ rh ; r)}

Open(pp, C, x,S) = (⟨x, g⟩+ r(h) ?
= C)

As is standard, if DLOG in Gi is hard, then this is a hiding, binding commitment scheme.
Similarly, Abe et. al. [2] define a structure preserving commitment to group elements. In
this case we have X = Gn

i for i ∈ {1, 2} and:

Gen(1λ) = {g←$ Gn
3−i, H1 ←$ G1, H2 ←$ G2}

(C,S)← Commit(pp; x) = {r ←$ F ; (⟨x, g⟩+ re(H1, H2) ; r)}

Open(pp, C, x,S) = (⟨x, g⟩+ Se(H1, H2)
?
= C)

This is a hiding commitment as re(H1, H2) is uniformly random in GT . The commitment
is binding conditional on the DBP assumption (since providing two distinct openings
would violate Lemma 2.2). Note that this commitment reduces to that of [2]; in that work
an opening for a commitment to a vector x ∈ Gn

1 would supply some R ∈ G1 such that:

C = ⟨x, g⟩+ e(R, H2).

Here, an opening provides r ∈ F such that R = rH1, which is strictly stronger. Both the
Pedersen and AFGHO commitments are additively homomorphic.

Commitments to matrices Composing the Pedersen and AFGHO commitments yields
a two-tiered homomorphic commitment [24] to matrices. We recommend Bünz et al. [18]
for a longer exposition of these ideas. Formally, we take X = F n×m, and for Mij ∈ X
we have:

Gen(1λ) = {Γ1 ←$ Gm
1 , H1 ←$ G1,Γ2 ←$ Gn

2, H2 ←$ G2}

(C,S)← Commit(pp; Mij) =

 rrows ←$ F n ; rfin ←$ F ; HT ← e(H1, H2) ;
Vi ← CommitPedersen((Γ1, H1) ; Mij, rrows,i) ;

(CommitAFGHO((Γ2, HT) ; V , rfin), (rrows, rfin, V))


Open(pp, C, M,S) =

C ?
=

∑
i

Γ2i

∑
j

MijΓ1j + rrows,iH1

+ rfine(H1, H2)


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Remark 2.3. V ∈ Gn
1 is a vector of hiding, binding commitments to the rows of M. So if

L ∈ F n then
∑

LiVi ∈ G1 is a hiding, binding commitment to LTM ∈ Fm.

2.5 Polynomial commitments and evaluation from vector-matrix-vector products

We define a polynomial commitment scheme for multilinear polynomials, following [17,
34], which permit interactive evaluation proofs contra Kate [29]. Let (GenF , CommitF , OpenF )
be a commitment scheme for X = F with public parameters ppF .

Definition 2.9. A tuple of four protocols (Gen, Commit, Open, Eval) is an honest-verifier,
zero-knowledge, extractable polynomial commitment scheme for ℓ-variable multilinear
polynomials over F if (Gen, Commit, Open) is a commitment scheme for ℓ-variable
multilinear polynomials over F , and:

• pp← Gen(1λ), ppF ← GenF (1λ). Both V and P hold a commitment CG to G.

• V selects a public-coin r ∈ F ℓ; P then supplies a commitment Cv to a scalar v ∈ F .

• b ← Eval(pp, ppF , CG, r, Cv; G,SG,Sv) is an interactive public-coin protocol be-
tween a PPT Prover P and Verifier V . P additionally knows a ℓ-variate multilinear
polynomial G ∈ F [X1, . . . , Xℓ] and its secret opening hint SG, and the scalar v ∈ F

and its secret opening hint Sv. P attempts to convince V that G(r) = v. At the end of
the protocol, V outputs b ∈ {0, 1}.

• Completeness. For any ℓ-variate multilinear polynomial G ∈ F [X1, . . . , Xℓ],

Pr

 pp← Gen(1λ);
(CG,SG)← Commit(pp; G); (Cv,Sv)← CommitF (ppF ; v):

Eval(pp, ppF , CG, r, Cv, ; G,SG,Sv) = 1 ∧ v = G(r)

 ≥ 1− negl(λ)

• Knowledge soundness. Eval is a public-coin succinct interactive argument of
knowledge with witness-extended emulation (Definition 2.5) for the following NP
relation given pp ← Gen(1λ), ppF ← GenF (1λ), and r ∈ F ℓ chosen after CG is
fixed:

REval(pp, ppF ) =

 ⟨(CG, Cv), (G,SG,Sv)⟩ :
G ∈ F [X1, . . . , Xℓ] is multilinear ∧ v ∈ F ∧ G(r) = v
∧Open(pp; CG, G,SG) = 1 ∧ OpenF (ppF ; Cv, v,Sv) = 1


• Zero-knowledge. Eval is a public-coin succinct interactive argument of knowl-
edge with witness-extended emulation (Definition 2.5) and honest-verifer zero-
knowledge (Definition 2.6) for the following NP relation given pp ← Gen(1λ),
ppF ← GenF (1λ), and r ∈ F ℓ chosen after CG is fixed:

REval(pp, ppF ) =

 ⟨(CG, Cv), (G,SG, v,Sv)⟩ :
G ∈ F [X1, . . . , Xℓ] is multilinear ∧ G(r) = v∧

Open(pp; CG, G,SG) = 1 ∧ OpenF (ppF ; Cv, v,Sv) = 1


Remark 2.4. We modify the definition from [17] to have the evaluation be committed,
and weaken it to explicitly state that the point of evaluation is not chosen adversarially.
This weakening can be avoided (see Remark 5.2)), but is not relevant to the typical use
cases for polynomial commitment schemes.
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Bünz et al. [18] use the matrix commitment of Section 2.4 to commit to univariate
and bivariate polynomials. Using ideas from Hyrax [37], we present a fundamentally
similar commitment for general polynomials.

Any polynomial f in variables x1, . . . , xℓ of degree d1, . . . , dℓ can be reformulated as
a multilinear polynomial in the variables {xi, x2

i , . . . x2⌈log(di+1)⌉

i : i ∈ [ℓ]}. The evaluation
of a multilinear polynomial in r variables at some point x ∈ F r is the contraction of an
order r tensor T with r vectors (1, xi). Furthermore, for any n1 × . . .× nr tensor T and
vectors vi ∈ F ni :∑

i1,...,ir

T i1...ir(vj)ij
= (⊗i<kvi)

TM(⊗i≥kvi)

where Mij = T i1...ir ⇔ i
∏
i≥k

ni + j = ir + nr(. . . (i2 + n2(i1)) . . .)

So the evaluation of f at some point r can be replaced with the evaluation of a multilinear
polynomial in r =

∑
i⌈log(di + 1)⌉, variables, which can in turn be replaced by a vector-

matrix-vector product with vectors of length at most 2m = 2⌈r/2⌉ = O((
∏

i di)
1/22ℓ/2).

Note also that the vectors in this product have multiplicative structure, being formed as
Kronecker products of vectors (1, x2j

i ) for i, j ∈ N. For univariate polynomials of degree
d, m ≤ (3 + log d)/2, and for multilinear polynomials in ℓ variables m ≤ (ℓ+ 1)/2.

In the particular case of multilinear polynomials in ℓ variables, it is often convenient
to specify the polynomial on some cube, e.g. {0, 1}ℓ. In this case, analogous formulae
exist, as reading off the evaluations on the cube as a tensor:

f (x) =
∑

i1,...,ir∈{0,1}

T i1...ir
∏

j∈1,...,r

(v′j)ij
,

where now the vectors have the slightly different form v′j = (1− xj, xj). Similar formulae
exist for interpolating from the evaluations on any product {a1, b1} × . . .× {aℓ, bℓ}.

3 An inner-product argument with logarithmic Verifier costs
We begin by showing the simplest form of Dory: an argument for inner products between
two vectors in v1 ∈ Gn

1, v2 ∈ Gn
2, AFGHO committed with generators (Γ2, e(H1, H2)) ∈

Gn
2 × GT and (Γ1, e(H1, H2)) ∈ Gn

1 × GT respectively. Formally, we define a language:

(C, D1, D2) ∈ Ln,Γ1,Γ2,H1,H2 ⊂ G3
T

⇔ ∃(v1 ∈ Gn
1, v2 ∈ Gn

2, rC ∈ F , rD1 ∈ F , rD2 ∈ F ) :
D1 = ⟨v1,Γ2⟩+ rD1 e(H1, H2), D2 = ⟨Γ1, v2⟩+ rD2 e(H1, H2),
C = ⟨v1, v2⟩+ rCe(H1, H2)

For n even, and Γ′
1,2 ∈ G2n/2

1,2 , we will show an interactive protocol reducing member-
ship in Ln,Γ1,Γ2,H1,H2 to membership in Ln/2,Γ′

1,Γ′
2,H1,H2 . For Γ1,2 ∈ G1,2, we will also show

an interactive argument of knowledge for L1,Γ1,Γ2,H1,H2 . We will also show a generic
argument reducing two claims of membership of Ln,Γ1,Γ2,H1,H2 to one. We will briefly
discuss concrete efficiency of these protocols and optimizations for V .
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3.1 Scalar-Product

We give a interactive argument of knowledge for L1,Γ1,Γ2,H1,H2 . This requires showing the
product of two elements v1 ∈ G1 and v2 ∈ G2 under AFGHO; for Pedersen commitments
this is folklore. Since pairings are more expensive than multiplications in G1 or G2, we
combine the usual final three checks into a single pairing with a Verifier challenge.

Scalar-ProductΓ1,Γ2,H1,H2(C, D1, D2)

Precompute: HT = e(H1, H2), χ = e(Γ1,Γ2)

P witness: (v1, v2, rC, rD1 , rD2) for (C, D1, D2) ∈ L1,Γ1,Γ2,H1,H2

P: rP1 , rP2 , rQ, rR ←$ F , d1 ←$ G1, d2 ←$ G2

P → V: P1 = e(d1,Γ2) + rP1 HT , P2 = e(Γ1, d2) + rP2 HT ,
Q = e(d1, v2) + e(v1, d2) + rQHT , R = e(d1, d2) + rRHT ,

V → P: c←$ F

P → V: E1 ← d1 + cv1, E2 ← d2 + cv2,
r1 ← rP1 + crD1 , r2 ← rP2 + crD2 ,

r3 ← rR + crQ + c2rC

V: d ←$ F , accept if:
e(E1 + dΓ1, E2 + d−1Γ2) = χ+ R + cQ + c2C

+ dP2 + dcD2 + d−1P1 + d−1cD1

− (r3 + dr2 + d−1r1)HT

Theorem 3.1. For Γ2, H ←$ G2, Γ1, H1 ←$ G1, Scalar-Product is an HVSZK, succinct
interactive argument of knowledge for L1,Γ1,Γ2,H1,H2 with witness extended emulation
under SXDH.

Proof. Succinctness and the Public Coin property are immediate. Completeness holds
as for an honest Prover:

e(E1 + dΓ1, E2 + d−1Γ2) = e(d1 + cv1, d2 + cv2) + de(Γ1, d2 + cv2)

+ d−1e(d1 + cv1,Γ2) + e(Γ1,Γ2)

= χ+ c2e(v1, v2) + c[e(d1, v2) + e(v1, d2)] + e(d1, d2)

+ de(Γ1, d2) + dce(Γ1, v2) + d−1e(d2,Γ2) + d−1ce(v2,Γ2)

= χ+ R + cQ + c2C + dP2 + dcD2 + d−1P1 + d−1cD1 − (r3 + dr2 + d−1r1)HT

so V accepts.

Witness extended emulation: Apply Lemma 2.3, taking µ = 2 and w1 = w2 = 3.
We are given tree of accepting transcripts for 3 values c, and for each c there are 3
accepting values of d. Across all transcripts, P1, P2, Q, R, C, D1, D2 are constant, and
E1, E2, r1, r2, r3 can be interpolated as quadratics in c.

12



The final randomized check contains terms in d only of form d, 1, d−1. Since there are
three accepting choices of d, we can eliminate any two of d, 1, d−1 leaving a non-trivial
constraint. So for each of the three challenge c:

e(E1(c), E2(c)) + r3(c)HT = R + cQ + c2C

e(E1(c),Γ2) + r1(c)e(H1, H2) = P1 + cD1

e(Γ1, E2(c)) + r2(c)e(H1, H2) = P2 + cD2

Then if E1(c), r1(c) are not linear functions, we can eliminate P1, D1 and recover a
non-trivial linear relationship between elements of Γ2 and H2, contradicting Lemma 2.2.
Similarly E2(c), r2(c) must be linear. So for i = 1, 2, Ei(c) = di + cvi and ri = rPi + crDi .
We interpolate r3(c) = rR + crQ + c2rC, and substitute into the last verification equation:

R + cQ + c2C = e(d1, d2) + rRHT + c(e(d1, v2) + e(v1, d2) + rQHT)

+ c2(e(v1, v2) + rCHT)

Since this holds for 3 distinct c, we can eliminate any two of 1, c, c2 leaving a non-trivial
constraint. So comparing c2 terms we find C = e(v1, v2) + rCHT , and so we have
extracted a witness.

HVSZK: Note that for P , E1, E2, Q ←$ G3
T and r1, r2, r3 ←$ F . We split the final

check into terms that are proportional to d−1, d, 1:

P1 = e(E1,Γ2) + r1HT − cD1, P2 = e(Γ1, E2) + r2HT − cD2,

R = e(E1, E2) + r3HT − cQ− c2C

We construct a simulator as follows: Sample Q, E1, E2 ←$ G3
T and compute the challenge

c from V’s coins. Then sample r1, r2, r3 ←$ F and compute P1, P2, R as above.

3.2 Dory-Reduce

We now show an interactive argument reducing membership of L2m,Γ1,Γ2,H1,H2 to mem-
bership of L2m−1,Γ′

1,Γ′
2,H1,H2 :

Dory-Reducem,Γ1,Γ2,Γ′
1,Γ′

2,H1,H2
(C, D1, D2)

Precompute: HT = e(H1, H2), χ = ⟨Γ1,Γ2⟩, and:

∆1L = ⟨Γ1L,Γ′
2⟩, ∆1R = ⟨Γ1R,Γ′

2⟩,
∆2L = ⟨Γ′

1,Γ2L⟩, ∆2R = ⟨Γ′
1,Γ2R⟩,

χi = ⟨Γ1,Γ2⟩

P witness: (v1, v2, rc, rD1 , rD2) for (C, D1, D2) ∈ L2m,Γ1,Γ2,H1,H2

P: rD1L , rD1R , rD2L , rD2R ←$ F

P → V: D1L = ⟨v1L,Γ′
2⟩+ rD1L HT , D1R = ⟨v1R,Γ′

2⟩+ rD1R HT

D2L = ⟨Γ′
1, v2L⟩+ rD2L HT , D2R = ⟨Γ′

1, v2R⟩+ rD2R HT
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V → P: β ←$ F

P(∗): v1 ← v1 + βΓ1, v2 ← v2 + β−1Γ2, rC ← rC + βrD2 + β−1rD1

P: rC+ , rC− ←$ F

P → V: C+ = ⟨v1L, v2R⟩+ rC+
HT ,

C− = ⟨v1R, v2L⟩+ rC−HT

V → P: α←$ F

P(∗∗): v′1 ← αv1L + v1R, v′2 ← α−1v2L + v2R

r′D1
← αrD1L + rD1R , r′D2

← α−1rD2L + rD2R ,

r′C ← rC + αrC+
+ α−1rC−

V(∗∗): C′ ← C + χ+ βD2 + β−1D1 + αC+ + α−1C−

D′
1 ← αD1L + D1R + αβ∆1L + β∆1R

D′
2 ← α−1D2L + D2R + α−1β−1∆2L + β−1∆2R

V: Accept if (C′, D′
1, D′

2) ∈ L2m−1,Γ′
1,Γ′

2,H1,H2

P witness: (v′1, v′2, r′C, r′D1
, r′D2

)

Theorem 3.2. For Γ′
2 ←$ Gm−1

2 , H2 ←$ G2, Γ1 ←$ Gm−1
2 , H1 ←$ G1, Dory-Reduce is

an HVSZK, succinct interactive argument of knowledge for L2m,Γ1,Γ2,H1,H2 with witness
extended emulation under SXDH.

Proof. Succinctness and the Public Coin properties are immediate. Completeness holds
if (v′1, v′2, r′C, r′D1

, r′D2
) witnesses (C′, D′

1, D′
2) ∈ L2m−1,Γ′

1,Γ′
2,H1,H2 . To see this, observe that:

v′1 = αv1L + v1R + βαΓ1L + βΓ1R, v′2 = α−1v2L + v2R + β−1α−1Γ2L + β−1Γ2R,

and so:

C′ = ⟨v1, v2⟩+ ⟨Γ1,Γ2⟩+ rCHT + β(⟨Γ1, v2⟩+ rD2 HT) + β−1(⟨v1,Γ2⟩+ rD1 HT)

+ α(⟨v1L, v2R⟩+ rC+
HT) + α−1(⟨v1R, v2L⟩+ rC−HT) = ⟨v′1, v′2⟩+ r′CHT ,

D′
1 = α(⟨v1L,Γ′

2⟩+ rD1L HT) + (⟨v1R,Γ′
2⟩+ rD1R HT) + αβ⟨Γ1L,Γ′

2⟩+ β⟨Γ1R,Γ′
2⟩

= ⟨v′1,Γ′
2⟩+ r′D1

HT ,

D′
2 = α−1(⟨Γ′

1, v2L⟩+ rD2L HT) + (⟨Γ′
1, v2R⟩+ rD2R HT)

+ α−1β−1⟨Γ′
1,Γ2L⟩+ β−1⟨Γ′

1,Γ2R⟩ = ⟨v′1,Γ′
2⟩+ r′D1

HT ,

Witness extended emulation Apply Lemma 2.3, taking µ = 2 and w1 = w2 = 3. We
are given a tree of accepting transcripts for 3 values β, and for each β 3 values of α.
For each leaf, the Prover reveals the witness (v′1, v′2, r′C, r′D1

, r′D2
). Our witness extraction

is analogous to witness extraction of SIPP in [18][“Proof of Theorem 4.1”] or of the
improved inner product argument of [16][Appendix B].
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Across all transcripts, D1L, D1R are constant. Furthermore, C+, C− can be interpo-
lated as a Laurent polynomials with coefficients in GT of degree 1 and order -1 in β, and
v′1, v′2, r′D1

, r′D2
, r′C can be interpolated as bivariate Laurent polynomials with coefficients

in GT of degree 1 and order -1 in α,β. From membership of L2m−1,Γ′
1,Γ′

2,H1,H2 :

D′
1 = αD1L + D1R + αβ⟨Γ1L,Γ′

2⟩+ β⟨Γ1R,Γ′
2⟩

= ⟨v′1(α,β),Γ′
2⟩+ r′D1

(α,β)e(H1, H2)

for all 9 (β,α) pairs. So if v′1, r′D1
are not multilinear in α,β, we can eliminate the

1,α,β,αβ terms to obtain a non-trivial relationship between Γ′
2, H2, contradicting

Lemma 2.2. Similarly if the αβ,β terms of v1 are not Γ1L, Γ1R respectively and the
same terms in r′D1

are not 0, we find a non-trivial linear relationship between Γ′
2, H2,

contradicting Lemma 2.2. Applying the same considerations to v′2, r′D2
we find:

v′1(α,β) = αv1L + v1R + β(αΓ1L + Γ1R)

v′2(α,β) = α−1v2L + v2R + β−1(α−1Γ2L + Γ2R)

Let us say r′C(α,β) = rC + βrD2 + β−1rD1 + α(. . .) + α−1(. . .). Then substituting into
the constraint of L2m−1,Γ′

1,Γ′
2,H1,H2 on C′:

C′ = C + χ+ βD2 + β−1D1 + αC+(β) + α−1C−(β)

= ⟨v′1(α,β), v′2(α,β)⟩+ r′C(α,β)HT

= ⟨v1L, v2L⟩+ ⟨v1R, v2R⟩+ χ

+ β(⟨Γ1L, v2L⟩+ ⟨Γ1R, v2R⟩) + β−1(⟨v1L,Γ2L⟩+ ⟨v1L,Γ2L⟩)
+ α(⟨v1L, v2R⟩+ ⟨Γ1L,Γ2R⟩+ β⟨Γ1L, v2R⟩+ β−1⟨v1L,Γ2R⟩)
+ α−1(⟨v1R, v2L⟩+ ⟨Γ1R,Γ2L⟩+ β⟨Γ1R, v2L⟩+ β−1⟨v1R,Γ2L⟩)

Since these are two bivariate Laurent series of degree 1 and order -1, equal at 3 values
of α for each of 3 values of β, we conclude they are equal. In particular comparing the
1,β,β−1 coefficients:

C = ⟨v1L, v2L⟩+ ⟨v1R, v2R⟩+ rCHT

D1 = ⟨v1L,Γ2L⟩+ ⟨v1R,Γ2R⟩+ rD1 HT

D2 = ⟨Γ1L, v2L⟩+ ⟨Γ1R, v2R⟩+ rD2 HT

and so the vectors v1 = (v1L||v2L), v2 = (v2L||v2R) and the values rC, rD1 , rD2 are the
desired witness.

HVSZK: All messages from P to V are uniformly random elements of GT , and so are
trivially simulated.

3.3 Dory-Innerproduct

We now discuss the full inner product argument explicitly, which requires public param-
eters: ∀j ∈ 0 . . .m,Γ1,j ∈ G2m−j

1 ,Γ2,j ∈ G2m−j

2 .
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Dory-InnerproductΓij,Hi
(C, D1, D2)

Precompute: HT = e(H1, H2), for all i ∈ 0 . . .m compute χi = ⟨Γ1i,Γ2i⟩, and for
all i ∈ 0 . . .m− 1 compute:

∆1L,i = ⟨(Γ1,i)L,Γ2,i+1⟩, ∆1R,i = ⟨(Γ1,i)R,Γ2,i+1⟩,
∆2L,i = ⟨Γ1,i+1, (Γ2,i)L⟩, ∆2R,i = ⟨Γ1,i+1, (Γ2,i)R⟩,

P witness: (v1, v2, rC, rD1 , rD2) for (C, D1, D2) ∈ L2m,Γ1,0,Γ2,0,H1,H2

For j = 0 . . .m− 1

P ,V: (C, D1, D2)← Dory-Reducem−j,Γ1,jΓ2,j,Γ1,j+1,Γ2,j+1,H1,H2
(C, D1, D2)

P ,V: Scalar-ProductΓ1,m,Γ2,m,H1,H2(C, D1, D2)

Theorem 3.3. If each Γij is uniformly random in G2m−j

i and Hi ←$ Gi, Γ1, H1 ←$ G1,
then Dory-Innerproduct is an HVSZK, succinct interactive argument of knowledge for
L2m,Γ1,Γ2,H1,H2 with witness extended emulation under SXDH.

Proof. Succinctness, the Public Coin property, Completeness and HVSZK follow from
the same properties of the two sub-arguments.

Soundness holds as for each i, all entries in Γ1,i and H1 are uniformly random and
independent and all entries in Γ2,i and H2 are uniformly random and independent, so
each sub-argument is computationally sound.

Witness extended emulation follows from composition for Lemma 2.3 as in Re-
mark 2.1, giving µ = 2m + 2 and all wi = 3. Then the tree has size 91+log n = O(nlog 9)
transcripts, which is polynomial in λ.

Remark 3.1. For i ̸= j, Γ1,i and Γ1, j can be dependent (similarly Γ2,i and Γ2, j). So in
the sequel we set Γ1,i+1 = (Γ1,i)L and Γ2,i+1 = (Γ2,i)L, which implies (∆1,i)L = (∆2,i)L.

3.3.1 Concrete costs of Dory-Innerproduct

P: In each call to Dory-Reduce, P sends 6 elements of GT to V . The j-th call requires
P to perform 6 multi-pairings of size 2m−j−1, O(2m−j) operations in F to update their
witness, and O(1) additional operations in GT and F . The call to Scalar-Product requires
P compute O(1) pairings and exponentiations in GT . So the overall cost to P is dom-
inated by multi-pairings of total size 6× 2m, O(m) group operations, and O(2m) field
arithmetic.

V: Naively, in each invocation of Dory-Reduce V computes 10 exponentiations in GT , 2
inversions and 2 multiplications in F , and O(1) additional operations in GT and additions
in F . In the invocation of Scalar-Product V must compute 1 pairing, 7 exponentiations
in GT , 1 inversion and 5 multiplications in F , and O(1) additional operations in GT and
additions in F .

Deferring V Computation: V’s computation depends only on the messages from
P and the 5m + 1 precomputed values. For each call to Dory-Reduce, V uses some
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values ∆1L = ∆2L,∆1R,∆2R,χ, and in the final check V uses e(Γ1m,Γ2m). We will use
superscripts on group elements and subscripts on the challenge scalars to denote which
call they came from. We assume that we precompute ∆j

{1,2}{L,R} as before, but instead of

computing χi for i ∈ 0 . . .m, we compute: χ =
∑m−1

j=0 ⟨Γ1j,Γ2j⟩ and χfin = ⟨Γ1m,Γ2m⟩.
Collapsing the Dory-Reduce rounds, we obtain the arguments for Scalar-Product:

C← C + χ+ β0D0
2 + β−1

0 D0
1 +

m−1∑
j=0

(αjC
j
+ + α−1

j Cj
−)+

+

m−1∑
j=1

βj(α
−1
j−1Dj−1

2L + Dj−1
2R + α−1

j−1β
−1
j−1∆

j−1
2L + β−1

j−1∆
j−1
2R )

+

m−1∑
j=1

β−1
j (αj−1Dj−1

1L + Dj−1
1R + αj−1βj−1∆

j−1
1L + βj−1∆

j−1
1R )

D1 ← αj−1Dm−1
1L + Dm−1

1R + αm−1βm−1∆
m−1
1L + βm−1∆

m−1
1R

D2 ← α−1
j−1Dm−1

2L + Dm−1
2R + α−1

m−1β
−1
m−1∆

m−1
2L + β−1

m−1∆
m−1
2R

which are substituted into the check in Scalar-Product. This reduces V’s group operations
to a multi-exponentiation in GT of size 9m + 9, two exponentiations in GT , and one
pairing. Computation of the required coefficients with Montgomery’s trick for batch
inversions requires one inversion and O(m) multiplications and additions in F .

3.4 Batching inner products

Suppose we have (C, D1, D2), (C′, D′
1, D′

2) ∈ Ln,Γ1,Γ2,H1,H2 , and P possesses witnesses
(v1, v2, rC, rD1 , rD2) and (v′1, v′2, r′C, r′D1

, r′D2
) respectively. Then we have the following

two-to-one interactive argument:

Batch-InnerproductΓ1,Γ2
(C, D1, D2, C′, D′

1, D′
2)

Precompute: HT = e(H1, H2) ∈ GT

P witness: (v1, v2, rc, rD1 , rD2) for (C, D1, D2) ∈ Ln,Γ1,Γ2,H1,H2 , and (v′1, v′2, r′c, r′D1
, r′D2

)
for (C′, D′

1, D′
2) ∈ Ln,Γ1,Γ2,H1,H2

P: rX ←$ F

P → V: X = ⟨v1, v′2⟩+ ⟨v′1, v2⟩+ rXHT

V → P: γ ←$ F

P: v′′1 ← γv1 + v′1, v′′2 ← γv2 + v′2,
r′′D1
← γrD1 + r′D1

, r′′D2
← γrD2 + r′D2

,

r′′C ← γ2rC + γrX + r′C

V: C′′ ← γ2C + γX + C′, D′′
1 ← γD1 + D′

1, D′′
2 ← γD2 + D′

2,
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V: Accept if (C′′, D′′
1 , D′′

2 ) ∈ Ln,Γ1,Γ2,H1,H2

P witness: (v′′1 , v′′2 , r′′C, r′′D1
, r′′D2

)

Theorem 3.4. For Γi ←$ Gn
i , Hi ←$ Gi, Batch-Innerproduct is an HVSZK, succinct

interactive argument of knowledge for L2
n,Γ1,Γ2,H1,H2

with witness extended emulation
under SXDH.

Proof. Succinctness, the Public Coin property, Completeness, Soundness and HVSZK
of this protocol are immediate.

To show witness extended emulation, apply Lemma 2.3, with µ = 1 and w1 = 3. We
are given witnesses for 3 distinct challenges γ. For i ∈ {1, 2}, from the 3 values D′

i we
either find a non trivial relationship between Γi, Hi for some i, contradicting Lemma 2.2,
or: v′′i (γ) = γvi + v′i . We interpolate r′′C(γ) = r′C + γrX + γ2rC, and get:

C′′(γ) = γ2C + γX + C′ = ⟨v′′1 (γ), v′′2 (γ)⟩+ r′′C(γ)HT

= γ2(⟨v1, v2⟩+ rCHT) + γ(. . . ) + (⟨v′1, v′2⟩+ r′CHT)

Since this holds for 3 values of γ, the 1, γ, γ−1 coefficients must be equal, which
immediately implies we have extracted the required witness.

Concretely, in Batch-Innerproduct messages from P to V have size |GT |; P’s compu-
tation is clearly dominated by an 2n-sized multi-pairing and V’s computation is clearly
O(1) exponentiations in GT .

4 Extending to inner products with public vectors of scalars
In the previous section, we constructed Dory-Innerproduct, a succinct argument of knowl-
edge for generalised inner products between committed vectors in Gn

1 and Gn
2. For a

polynomial commitment scheme we also require the ability to prove products of commit-
ted vectors with vectors of scalars with multiplicative structure. However, this structure
is not preserved when instances are batched, so we will extend our arguments to allow
for general vectors in F n.

So we define a family of languages, parameterised by an additional pair of vectors
s1, s2 ∈ F n:

(C, D1, D2, E1, E2) ∈ Ln,Γ1,Γ2,H1,H2(s1, s2) ⊂ G3
T × G1 × G2

⇔ ∃(v1 ∈ Gn
1, v2 ∈ Gn

2, rC, rD1 , rD2 , rE1 , rE2 ∈ F ) :
D1 = ⟨v1,Γ2⟩+ rD1 e(H1, H2), D2 = ⟨Γ1, v2⟩+ rD2 e(H1, H2),
E1 = ⟨v1, s2⟩+ rE1 H1, E2 = ⟨s1, v2⟩+ rE2 H2,
C = ⟨v1, v2⟩+ rCe(H1, H2),

We will show how the arguments of the previous section naturally extend to proving
membership in this language. Note that (C, D1, D2, E1, E2) ∈ Ln,Γ1,Γ2,H1,H2(s1, s2) implies
that (C, D1, D2) ∈ Ln,Γ1,Γ2,H1,H2 .
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4.1 General reduction with O(n) cost

There is a reduction from Ln,Γ1,Γ2,H1,H2(s1, s2) to Ln,Γ1,Γ2,H1,H2 , with O(n) cost to P ,V:

Fold-Scalarsn,Γ1,Γ2,H1,H2(C, D1, D2, E1, E2, s1, s2)

Precompute: HT = e(H1, H2)

P witness: (v1, v2, rC, rD1 rD2 , rE1 , rE2) for
(C, D1, D2, E1, E2) ∈ Ln,Γ1,Γ2,H1,H2(s1, s2)

V → P: γ ←$ F

P(∗∗): v′1 ← v1 + γs1H1, v′2 ← v2 + γ−1s2H2,
r′D1
← rD1 , r′D2

← rD2 ,

r′C ← rC + γrE2 + γ−1rE1

V(∗∗): C′ ← C + ⟨s1, s2⟩HT + γe(H1, E2) + γ−1e(E1, H2),

D′
1 ← D1 + e(H1, ⟨s1, γΓ2⟩), D′

2 ← D2 + e(γ−1⟨Γ1, s2⟩, H2)

V: Accept if (C′, D′
1, D′

2) ∈ Ln,Γ1,Γ2,H1,H2

P witness: (v′1, v′2, r′C, r′D1
, r′D2

)

Theorem 4.1. For Γi ←$ Gn
i , Hi ←$ Gi, Fold-Scalars is an HVSZK, succinct, interactive

argument of knowledge for Ln,Γ1,Γ2,H1,H2(s1, s2) with witness extended emulation under
SXDH.

Proof. Completeness, Succinctness and the Public-Coin property are immediate. Since
all P messages are independent and uniformly random zero-knowledge is straightfor-
ward.

To show witness extended emulation, apply Lemma 2.3, with µ = 1 and w1 = 3. For
i ∈ {1, 2}, from the 3 values D′

i we either find a non trivial relationship between Γi, Hi

for some i, contradicting Lemma 2.2, or: v′1(γ) = v1 + γs1H1, v′2(γ) = v2 + γ−1s2H2.
We interpolate r′C(γ) = r′C + γrE2 + γ−1rE1 , and get:

C′(γ) = C + ⟨s1, s2⟩HT + γe(H1, E2) + γ−1e(E1, H2)

= ⟨v′1(γ), v′2(γ)⟩+ r′C(γ)HT

= ⟨v1, v2⟩+ (r′C + ⟨s1, s2⟩)HT

+ γe(H1, ⟨s1, v2⟩+ rE2 H2) + γ−1e(⟨v1, s2⟩+ rE1 H1, H2).

Since this holds for 3 values of γ, the 1, γ, γ−1 coefficients must be equal, which
immediately implies we have extracted the required witness.

4.2 Extending Dory-Reduce

We modify the argument so that P’s first message additionally contains: E1β = ⟨Γ1, s2⟩,
E2β = ⟨s1,Γ2⟩. Prior to their second message, P samples rE{1,2}{+,−} ←$ F and their

19



second message additionally contains:

E1+ = ⟨v1L, s2R⟩+ rE1+H1, E1− = ⟨v1R, s2L⟩+ rE1−H1,
E2+ = ⟨s1L, v2R⟩+ rE2+H2, E2− = ⟨s1R, v2L⟩+ rE2−H2.

After their second message, P additionally computes:

r′E1
← rE1 + αrE1+ + α−1rE2− , r′E2

← rE2 + αrE2+ + α−1rE2− .

V additionally computes:

E′
1 ← E1 + βE1β + αE1+ + α−1E2−, E′

2 ← E2 + β−1E2β + αE2+ + α−1E2−,

and both P , V compute the new vectors: s′1 ← αs1L + s1R, s′2 ← α−1s2L + s2R

Theorem 4.2. For Γ′
2 ←$ Gm−1

2 , H2 ←$ G2, Γ1 ←$ Gm−1
2 , H1 ←$ G1, the ex-

tended Dory-Reduce is an HVSZK, succinct interactive argument of knowledge for
L2m,Γ1,Γ2,H1,H2(s1, s2) with witness extended emulation under SXDH.

Proof. Succinctness and the Public Coin properties are immediate. Completeness and
HVSZK holds as in the proof of Theorem 3.2. Witness extended emulation follows
directly from Theorem 3.2 as the witnesses for the witness for (C, D1, D2) ∈ Ln,Γ1,Γ2,H1,H2

is the witness we require.

4.3 Extending Dory-Innerproduct

We use the extended Dory-Reduce, and apply Fold-Scalars at n = 1:

Dory-InnerproductΓij,Hi
(C, D1, D2, E1, E2, s1, s2)

Precompute: HT = e(H1, H2), for all i ∈ 0 . . .m compute χi = ⟨Γ1i,Γ2i⟩, and for
all i ∈ 0 . . .m− 1 compute:

∆1L,i = ⟨(Γ1,i)L,Γ2,i+1⟩, ∆1R,i = ⟨(Γ1,i)R,Γ2,i+1⟩,
∆2L,i = ⟨Γ1,i+1, (Γ2,i)L⟩, ∆2R,i = ⟨Γ1,i+1, (Γ2,i)R⟩,

P witness: (v1, v2, rC, rD1 , rD2 , rE1 , rE2) for
(C, D1, D2, E1, E2) ∈ L2m,Γ1,0,Γ2,0,H1,H2(s1, s2)

For j = 0 . . .m− 1

P ,V: (C, D1, D2, E1, E2, s1, s2)←
Dory-Reducem−j,Γ1,jΓ2,j,Γ1,j+1,Γ2,j+1,H1,H2

(C, D1, D2, E1, E2, s1, s2)

P ,V: (C, D1, D2)← Fold-ScalarsΓ1,m,Γ2,m,H1,H2(C, D1, D2, E1, E2, s1, s2)

P ,V: Scalar-ProductΓ1,m,Γ2,m,H1,H2(C, D1, D2)

Theorem 4.3. If each Γij is uniformly random in G2m−j

i and Hi ←$ Gi, Γ1, H1 ←$ G1,
then the extended Dory-Innerproduct is an HVSZK, succinct interactive argument of
knowledge for L2m,Γ1,Γ2,H1,H2(s1, s2) with witness extended emulation under SXDH.
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Proof. Succinctness and the Public Coin properties are immediate. Completeness and
HVSZK holds as in the proof of Theorem 3.3. Witness extended emulation follows
directly from Theorem 3.3 as the witnesses for the witness for (C, D1, D2) ∈ Ln,Γ1,Γ2,H1,H2

is the witness we require.

4.3.1 Concrete costs of the extended Dory-Innerproduct

P sends 3 additional elements of G1 and G2 in each invocation of Dory-Reduce. P
also computes exponentiations of total size 2× 2m−j exponentiations in G1 and G2, and
O(2m−j) additional field arithmetic. So in total, P’s work is: (6P+4G2+4G1+O(1)F )×
n + o(n) which is dominated by the 6n pairings, especially as multi-exponentiations in
G1,G2 can be accelerated with variants of Pippenger’s algorithm. The total size of P’s
messages is: (6|GT |+ 3|G2|+ 3|G1|) log n + 4|GT |+ |G2|+ |G1|+ 5|F |. As before, V
defers computation to reduce their costs. To compute the C, E1, E2 passed to Fold-Scalars
requires, respectively, a multi-exponentiation in GT of size 9m+9, a multi-exponentiation
in G1 of size 4m and a multi-exponentiation in G2 of size 4m. The computation of the
final D1, D2 and verification of Fold-Scalars and Scalar-Product require 3 additional
pairings and O(1) exponentiations. Whilst naively there are 5 pairings, 2 of them are
pairings with H1 and 2 are pairings with H2, which can be combined in the final check
of Scalar-Product.
V must also compute the final s1, s2 used as arguments to Fold-Scalars. In particular,

these are the scalars: ⟨s1,⊗m−1
i=0 (αi, 1)⟩, ⟨s2,⊗m−1

i=0 (α−1
i , 1)⟩. For general vectors s1, s2,

these require O(n) operations in F . However, when the vectors si themselves have
multiplicative structure, we have the identity:

⟨⊗m−1
i=0 (ℓi, ri),⊗m−1

i=0 (Xi, 1)⟩ =
m−1∏
i=0

(ℓiXi + ri),

which allows the computation of the product in O(m) operations in F . Similarly, a vector
that can be written as a sum of ℓ vectors with multiplicative structure can have this inner
product computed in O(ℓm) operations in F (as in Section 4.4).

4.4 Extending Batch-Innerproduct

P samples rY1 , rY2 ←$ F , and their first message contains in addition to X:

Y1 = ⟨v1, s′2⟩+ ⟨v′1, s2⟩+ rY1 H1, Y2 = ⟨s′1, v2⟩+ ⟨s1, v′2⟩+ rY2 H2.

After receiving γ, P computes: r′′E1
← γ2rE1 + γrY1 + r′E1

, r′′E2
← γ2rE2 + γrY2 + r′E2

, and
V computes: E′′

1 ← γ2E1 + γY1 + E′
1, E′′

2 ← γ2E2 + γY2 + E′
2. Both P and V compute:

s′′1 ← γs2 + s′2, s′′2 ← γs1 + s′1.

Theorem 4.4. For Γi ←$ Gn
i , Hi ←$ Gi, the extended Batch-Innerproduct is an HVSZK,

succinct interactive argument of knowledge for Ln,Γ1,Γ2,H1,H2(s1, s2)×Ln,Γ1,Γ2,H1,H2(s
′
1, s′2)

with witness extended emulation under SXDH.

Proof. Succinctness and the Public Coin properties are immediate. Completeness and
HVSZK holds as in the proof of Theorem 3.4. Witness extended emulation follows
directly from Theorem 3.4 as the witnesses for the witness for L2

n,Γ1,Γ2,H1,H2
is the

witness we require.
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P’s messages to V have size |GT | + |G2| + |G1|. As before, P’s computation is
dominated by a 2n-size multi-pairing and V’s group operations are O(1) exponentiations.
For general vectors s1, s2, V must perform O(n) operations in F . However, if si, s′i are
some linear combination of ℓ, ℓ′ vectors with multiplicative structure, then s′′i is a linear
combination of ℓ+ ℓ′ vectors with multiplicative structure; this representation can be
computed in O(m) operations in F .

5 Vector-Matrix-Vector products
Let n = 2m. Fix some commitment scheme for F and F n×n, and define:

(CM , Cy, L, R) ∈ LVMV ⊂ GT × GT × F n × F n

⇔ ∃(M ∈ F n×n, y ∈ F ,SM ,Sy) :

Open(ppF n×n , CM , M,SM) = 1, Open(ppF , Cy, y,Sy) = 1, y = LTMR

This is a stepping stone to polynomial commitments, which will take L, R to have multi-
plicative structure. For a batch of ℓ evaluations these vectors will be linear combinations
of ℓ vectors with multiplicative structure. We require public parameters ppVMV , generated
by the public coin GenVMV :

Γ1,0,Γ1,fin, H1 ←$ G2m

1 × G1 × G1, Γ2,0,Γ2,fin, H2 ←$ G2m

2 × G2 × G2,

∀i ∈ 1, . . . , m : Γ1,i = (Γ1,i)L, Γ2,i = (Γ2,i)L,
∀i ∈ 0, . . . , m− 1 : ∆1L,i = ∆2L,i = ⟨Γ1,i+1,Γ2,i+1⟩,
∀i ∈ 0, . . . , m− 1 : ∆1R,i = ⟨(Γ1,i)R,Γ2,i+1⟩, ∆2R,i = ⟨Γ1,i+1, (Γ2,i)R⟩,

χ =

m−1∑
j=0

⟨Γ1,j,Γ2,j⟩, χfin = ⟨Γ1m,Γ2m⟩

HT = e(H1, H2) Υ = e(H1,Γ2,fin)

Recall the matrix commitment from Section 2.4. Explicitly, we fix parameters ppF n×n =
{Γ1,0, H1,Γ2,0, H2} for this commitment. As noted in Section 2.4, if Commit(pp, M) =
(T , (rrows, rfin, T ′)), then T ′ ∈ Gn

1 is a vector of hiding Pedersen commitments to the rows
of M with generators (Γ1,0 ; H1), and T is a hiding AFGHO commitment to T ′ with
generators (Γ2,0 ; H2). So T is a hiding commitment to M. The alert reader may note
that T ′ depends only on M and rrows; since it is in the opening hint retained by P it need
not be recomputed in Eval-VMV.

The general strategy for Eval-VMV is as follows. The commitment to the evaluation
y = LTMR will be a Pedersen commitment with parameters ppF = (Γ1,fin, H1), so
the commitment ycom = yΓ1,fin + ryH1. Now, P can compute the vector v = LTM,
and by construction y = LTMR = ⟨v, R⟩. Since Pedersen commitments are linearly
homomorphic: vcom = ⟨L, C′⟩ = CΓ1,0;H1(v ; ⟨L, rrows⟩) is a hiding, binding commitment
to v with blind rv = ⟨L, rrows⟩. Recall also that T is a hiding, binding commitment to
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T ′ ∈ Gn
1. So to prove that T , ycom are commitments to M, y and that y = LTMR, we will

have P prove knowledge of:

T ′ ∈ Gn
1, v ∈ F n, rv, rfin, ry ∈ F :

T = ⟨T ′,Γ2⟩+ rfinHT

⟨L, T ′⟩ = ⟨v,Γ1⟩+ rvH1 (= vcom)

ycom = ⟨v, R⟩Γ1,fin + ryH1

To reduce proving knowledge of this to Ln,Γ1,Γ2,H1,H2(L, R), we will implicitly use the
vector vΓ2,fin ∈ Gn

2. Whilst this prevents witness-extracting v directly, we will show
that M can still be extracted if P shows evaluations at many L, R. We also make use of
auxiliary Σ-protocols to prove knowledge of logarithms.

Eval-VMVppVMV (T , ycom, L, R)

P witness: M, (T ′, rrows, rfin), ry

P: v = LTM, rv = ⟨L, rrows⟩, y = ⟨v, R⟩, rC, rD2 , rE1 , rE2 ←$ F

P → V: C = e(⟨v, T ′⟩,Γ2,fin) + rCHT ,
D2 = e(⟨Γ1, v⟩,Γ2,fin) + rD2 HT

E1 = ⟨L, C′⟩+ rE1 H1,
E2 = yΓ2,fin + rE2 H2,

P ,V: Σ-protocol showing P knows s ∈ F 3:
E2 = s1Γ2,fin + s2H2 ∧ yC = s1Γ1,fin + s3H1
P witness: s = (y, rE2 , ry)

P ,V: Σ-protocol showing P knows t ∈ F 2:
e(E1,Γ2,fin)− D2 = e(H1, t1Γ2,fin + t2H2)
P witness: t = (rE1 + rv,−rD2)

P ,V: Dory-InnerproductΓij,Hi
(C, T , D2, E1, E2, L, R).

P witness: (T ′, vΓ2,fin, rC, rfin, rD2 , rE1 , rE2)

Theorem 5.1. For ppVMV generated as above, if P commits to M as above, then for any
L, R ∈ F n×n, P can send a commitment ycom to LTMR and use Eval-VMV to argue that
P knows M this is true. This argument is a complete, HVSZK interactive argument of
knowledge with witness extended emulation under SXDH.

Proof. Completeness is straightforward from the definition of P’s witnesses. Succinct-
ness, the Public Coin property and honest-verifier statistical zero-knowledge of Eval-VMV
follow straightforwardly from the same properties for the two auxiliary Σ-protocols and
Dory-Innerproduct.

We apply Lemma 2.3, taking µ = 1 and w1 = 2n2. We then witness extract
Dory-Innerproduct and the two sigma proofs in Eval-VMV. Since we have 2n2 pairs Li, Ri,
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the maps RLT ∈ (F n×n)∗ do not span the dual space with negl(λ) probability. For each
of 2n2 cases, we have:

v1 ∈ Gn
1, v2 ∈ Gn

2, S, yC ∈ G1, D2 ∈ G2, E1, E2 ∈ GT ,
y, s2, ry, t1, t2, rC, rD1 , rD2 , rE1 , rE2 ∈ F :

E2 = yΓ′
2 + s2H2, (1)

yC = yΓ′
1 + ryH1 (2)

e(E1,Γ′
2)− D2 = e(H1, t1Γ′

2 − t2H2) (3)
C = ⟨v1, v2⟩+ rCe(H1, H2) (4)
T = ⟨v1,Γ2⟩+ rD1 e(H1, H2) (5)

D2 = ⟨Γ1, v2⟩+ rD2 e(H1, H2) (6)
E1 = ⟨L, v1⟩+ rE1 H1 (7)
E2 = ⟨R, v2⟩+ rE2 H2 (8)

Since T is constant in (5), v1, rD1 must be constant as functions of Li, Ri, as otherwise
we obtain a non-trivial relationship between Γ2, H2, contradicting Lemma 2.2. Then
substituting (6, 7) into (3) we have:

e(⟨L, v1⟩,Γ′
2) = ⟨Γ1, v2⟩+ e(H1, (rD2 − t2)H2 − (rE1 − t1)Γ′

2) (9)

Then if v2 is not linear in L and independent of R, we can eliminate L and obtain a
non-trivial relationship between Γ1, H1, contradicting Lemma 2.2. From (1, 8) we have:
⟨R, v2⟩ = yΓ′

2 + (s2 − rE2)H2, and so if y and s2 − rE2 are not bilinear in L, R we obtain
a non-trivial relationship between Γ′

2, H2, contradicting Lemma 2.2. In particular we
extract matrices M, B ∈ F n×n such that y = LTMR and s2− rE2 = LTBR in all cases, and
so v2 = LTMΓ′

2 + LTBH2. Substituting into (9), we have:

e(⟨L, v1 −MΓ1⟩+ (rE1 − t1)H1,Γ′
2) = e(⟨LTB,Γ1⟩+ (rD2 − t2)H1, H2)

and so either we find a non-trivial pairing relationship between Γ′
2, H2, contradicting

Lemma 2.2, or:

0 = ⟨L, v1 −MΓ1⟩+ (rE1 − t1)H1

0 = ⟨LTB,Γ1⟩+ (rD2 − t2)H1

We apply a similar argument to look for a non-trivial scalar relationship between the
Γ1, H1, which would violate Lemma 2.1. If one is not found, then from the second
equation rD2 = t2 and LTB is identically 0, so B = 0. From the first we deduce that
rE1 − t1 must be a linear function of L and independent of R, so we have some rrows ∈ F n

such that rE1 − t1 = LTrrows, which implies that v1 = MΓ1 + rrowsH1. So from (5) we
have:

T = ⟨MΓ1,Γ2⟩+ e(H1, rD2 H2 + ⟨rrows,Γ2⟩),
which precisely states that T is a commitment to M with opening hint (rrows, rfin =
rD2 , T ′ = v1). Furthermore in each case yC = (LTMR)Γ′

1 + ryH1, so is a commitment to
the desired evaluation. So we have extracted a matrix M and evaluations y consistent
with the claimed evaluations. Since the vectors Li

∗(Ri
∗) span A, the projection of M onto

A∗ is uniquely defined.
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Remark 5.1. In the above, it suffices for the matrices RLT to span F n×n. This means
that V can restrict their choices of L, R substantially.

Remark 5.2. As observed in Remark 2.4, extractability in this case requires that RLT

is not fixed by some adversary. If required, this randomization can be achived here.
Concretely, V can sample some L′, R′ ∈ e1, . . . , en. Then P responds with claimed
commitments C2, C1 to L′TMR′ and to L′TMR + LTMR′, and V samples some γ ←$ F .
The standard argument is applied to L = L+γL′, R = R+γR′, ycom ← ycom+γC1+γC2.
Plainly the matrix RLT then has a α2 contribution only at one point, so across O(n2 log n)
samples spans F n×n.

5.0.1 Batching

From Section 4.4, we can batch multiple invocations of Dory-Innerproduct and so we
similarly have an argument for a batch of Eval-VMV.

We can further optimize this batch argument by observing that the Sigma proofs in
Eval-VMV show knowledge of logarithms with respect to fixed bases Γ2,fin, H2, Γ1,fin, H1.
So by usual arguments these proofs can be linearly combined with random challenges
supplied by V , without altering soundness.

5.0.2 Concrete costs

For an n× n matrix M, the size of the public parameters is (n + 2)|G1|+ (n + 2)|G2|+
(3 log n + 4)|GT |, and running Gen requires sampling n + 2 elements of G1, n + 2
elements of G2, 3n pairings and log n additions in GT .

Running Commit on the matrix M requires sampling n + 1 elements of F , n multi-
exponentiations of size n + 1 in G1, a multi-pairing of size n, and an exponentiation
and addition in GT . Since the n multi-exponentiations in G1 are over fixed generators
(Γ1||H1), Pippenger-type savings of a factor 2 log n are available.

In addition to Dory-Innerproduct, computing Eval-VMV requires P perform three
exponentiations in G1 of size n and O(1) additional exponentiations in G1,G2,GT . The
messages from P to V have size 5|F |+ 2|G1|+ 2|G2|+ 3|GT |, and V’s computation is
5 exponentiations in |G2|, and 3 exponentiations in |G1|, an exponentiation in GT and 2
pairings.

6 Dory-PC
We recall the discussion in Section 2.5. Concretely, the evaluation of any multivariate
polynomial in x1 . . . xℓ of degrees d1, . . . , dℓ at some point r can be replaced by the
evaluation of a multilinear polynomial in r =

∑
i⌈log(di + 1)⌉ variables, where the

coefficients of the two polynomials are equal. Given a multilinear polynomial f on r
variables, we observe that:

f (⃗x) =
∑

b∈{0,1}r

fb
∏

i

xbi
i =

∑
v∈{0,1}r

f (v)
∏

i

(xivi + (1− xi)(1− vi))

which provides for the evaluation of the polynomial as a contraction of a 2 × . . . × 2
tensor T i1...ir with vectors given either the coefficients of f or its evaluations on {0, 1}r.
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Let m = ⌈r/2⌉. In either case, we can define a 2m × 2m matrix Mij by:

Mij = T i1...ir if i2r + j =
r∑

k=1

ik2r−k, Mij = 0 otherwise.

and then f (⃗x) = (1 − z)LTMR where L = ⊗m
i=1(ℓi, ri) and z = 0 for r even, L =

(1, z)⊗
(
⊗m−1

i=1 (ℓi, ri)
)

for z←$ F for r odd, and R = ⊗r
i=r−m+1(ℓi, ri). In the case where

we are given the coefficients of f , we take ℓi = 1, ri = xi. If we are given the evaluations
of f on the {0, 1} cube, we take ℓi = 1− xi, ri = xi. Note that the implicit extension to a
polynomial in 2m variables has no impact, as the additional variable is unconditionally
set to 0. So we have reduced polynomial evaluation to a vector-matrix-vector product,
where the vectors L, R have multiplicative structure.

Dory− PC directly uses the commitment scheme of Section 2.4, and uses Eval-VMV
as Eval.

Theorem 6.1. Dory− PC is an honest-verifier, statistical zero-knowledge, extractable
polynomial commitment scheme for r-variable multilinear polynomials.

Proof. Note that for uniformly random x ∈ F ℓ (and z←$ F for r odd), the vectors L, R
are random vectors with multiplicative structure. By the Schwartz-Zippel lemma, the
outer products RLT span F n×n, as otherwise there would be some non-zero polynomial
vanishing for all x.

Theorem 5.1 and Remark 5.1 then complete the proof.

Since the vectors L, R have multiplicative structure, the remarks made in Section 4.3.1
apply; V’s use of the vectors L, R are restricted to computing products:

⟨L,⊗m−1
i=0 (αi, 1)⟩, ⟨R,⊗m−1

i=0 (α−1
i , 1)⟩

which can be computed in O(m) operations in F given x, αi,α−1
i .

6.1 Concrete costs

Let n =
∏

i(di + 1), and let |M| = O(n) be the number of non-zero entries in the matrix
M. In the worst case di = 4 and m = 3

2 log 5 log n + O(1). For multilinear or univariate
polynomials m = 1

2 log n + O(1).
Using the fact that the 2m × 2m matrix has at most |M| non-zero entries, P’s time

to run Commit is dominated by |M|+ 2m exponentiations in G1 and 2m pairings. From
Section 5.0.2, P’s time to run Eval is dominated by O(2m) pairings.

In the interactive setting, the size of the messages from the Prover to the Verifier is
(6m+7)|GT |+(3m+3)(|G2|+|G1|)+8|F |, and the Verifier computation is an 9m+O(1)
sized multi-exponentiation in GT and O(1) additional exponentiations and pairings. To
construct a polynomial commitment, we compile with the Fiat-Shamir heuristic, in which
case the communication complexity is the size of the P to V messages, and both P ,V
must do O(m) additional work to compute the Verifier challenges.
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6.2 Batching

Given a batch of ℓ polynomials with individual mi ≤ m, we can use batching to reduce
the communication complexity and computational work of V substantially. Using the
approach of Section 5.0.1, the total size of the messages from P to V is:

(6m + 3ℓ+ 5)|GT |+ (3m + 2ℓ+ 2)(|G2|+ |G1|) + 8|F |,

The complexity of P remains O(ℓ×2m) pairings, though concretely a factor of 3 is saved
in the implied constant. However, deferring V’s computations as before, the V’s group
operations can be reduced to an exponentiation in GT of size 9m+3ℓ+6, exponentiations
in G1 and G2 of size 3m + 2ℓ + 2, and a multi-pairing of size 4. Unfortunately, the
computations with vectors L, R cannot be efficiently batched, and so V still performs
2ℓm multiplications and additions in F .

7 Implementation
We implemented Dory to provide polynomial commitments for dense multilinear poly-
nomials, building on framework for non-interactive arguments and dense multilinear
polynomials in the Spartan library [34]. This took ∼ 3400 LOC. Our implementation
used the BLS12-381 curve as implemented in RELIC [3]. Our Rust wrapper for RELIC
implements fast algorithms for computing (multiple) multi-exponentiations and torus
based compression for serialization of elements of GT in ∼ 3200 LOC.

The implementation was evaluated on a machine with an Intel Xeon E5–1660 v4 CPU
at 3.2 GHz. All measurements were taken for a single core. We compare with Spartan-PC,
a discrete-log based extractable polynomial commitment scheme implemented in the
Spartan library [34], which is a highly optimized derivative of the commitment scheme
in [37] using Curve25519 as implemented by curve25519-dalek for its curve arithmetic.

Prover Time for Commit: We report results for a variety of polynomial sizes in
Figure 3. As can be seen, Dory is slower than the baseline, by a consistent factor ∼ 5,
matching the relative speed of G1 arithmetic on the implementations of Curve25519 and
BLS12-381 as seen in Figure 2.

210 212 214 216 218 220 222 224 226 228 230

Spartan-PC 0.0123 0.0365 0.145 0.451 1.58 5.57 19.8 74.3 289 1190 4530
Dory-PC 0.607 0.157 0.525 1.89 6.57 23.7 87.4 346 1780 6650 26100

FIGURE 3—P’s performance (in s) for varying sizes of multilinear polynomials.

Commitment Size: We report results for a variety of polynomial sizes in Figure 4.
Unsurprisingly, Dory has a constant sized commitment whilst the commitment of Spartan-
PC grows as n1/2, so for all tested sizes the Dory’ commitment is smaller.

210 212 214 216 218 220 222 224 226 228 230

Spartan-PC 1032 2056 4104 8200 16392 32776 65544 131080 262152 524296 1048584
Dory-PC 192 192 192 192 192 192 192 192 192 192 192

FIGURE 4—Commitment size (in bytes) for varying sizes of multilinear polynomials.
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Prover Time for Eval: We report results for a variety of polynomial sizes in Figure 5.
Note that in both cases, the O(n) time to evaluate the polynomials is included; for
Spartan-PC this linear scaling becomes dominant for n ≥ 220, whilst for 220 ≥ n ≥ 212

the O(n1/2) scaling of the group operations is apparent. Across the range 212–220, Dory
is concretely less efficient by factors of ∼ 40–100. This should be unsurprising, as
Dory performs 6 pairings and 3 multiplications in each of G1,G2 for each pair of
multiplications Spartan-PC performs in G1; scaling from the micro-benchmarks in
Figure 2 would suggest that Dory should be ∼ 100× slower in this context.

210 212 214 216 218 220 222 224 226 228 230

Spartan-PC 4.23ms 5.03ms 10.1ms 22.0ms 53.6ms 0.157 0.623 2.63 10.3 54.1 248.7
Dory-PC 0.247 0.475 0.853 1.62 3.11 5.97 11.8 24.5 53.5 132 419

FIGURE 5—P’s performance (in s) to prove the evaluation of varying sizes of multi-
linear polynomials.

Proof size: We report results for a variety of polynomial sizes in Figure 6. Dory’ proofs
are consistently larger than those of Spartan-PC by a factor ∼ 24. This is this is the ratio
between 6|GT |+ 3(|G2|+ |G1|) in the BLS12-381 curve and 2|G1| in Curve25519, and
so is the ratio between the log n contributions to the proof size in the two systems.

210 212 214 216 218 220 222 224 226 228 230

Spartan-PC 464 528 592 656 720 784 848 912 976 1040 1104
Dory-PC 10048 11632 13216 14800 16384 17968 19552 21136 22720 24304 25888

FIGURE 6—Proof size (in bytes) for varying sizes of multilinear polynomials.

Verifier Time for Eval: We report results for a variety of polynomial sizes in Figure 7.
Unsurprisingly, Dory’s V shows O(log n) complexity, concretely running in∼ 17.5(10+
log n)ms. The Verifier of Spartan-PC scales like n1/2, and is concretely slower that
Dory’s Verifier for n > 224.

210 212 214 216 218 220 222 224 226 228 230

Spartan-PC 1.65 1.72 3.05 5.21 8.96 16.4 29.7 55.9 110 216 433
Dory-PC 35.7 40.9 44.9 48.1 51.6 55.1 58.5 61.2 64.3 68.6 71.4

FIGURE 7—Verifier performance (in ms) to verify an evaluation of varying sizes of
multilinear polynomial.

Batching: To validate the benefits of batching, we use the batch argument to open
multiple committed polynomial evaluations. This naturally impacts the time taken for
Prover to run Eval, the resulting proof size, and the Verifier’s time taken to run Eval on
the batch. We report results for a variety of batch sizes in Figure 8.

As can be seen, the marginal costs to increase the batch size are small; the marginal
Prover time is ∼ 640ms, the marginal contribution to the proof size is 912 bytes, and the
marginal Verifier time is ∼ 2.2ms. On the Prover, this speedup is a by a constant factor
∼ 9.5× over proving each evaluation separately; for proof sizes and the Verifier this is
an asymptotic saving by a factor log n.
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Batch size 1 2 3 4 5 6 7 8 9 10

Prover Time (s) 6.04 6.71 7.36 7.96 8.70 9.28 9.89 10.5 11.2 11.8
Proof Size (bytes) 19208 20120 21032 21944 22856 23768 24680 25592 26504 27416
Verifier Time (ms) 48.2 50.6 53.2 54.7 56.5 57.9 59.5 62.7 64.3 67.8

FIGURE 8—Prover time, proof size and verification time to validate variable sized
batches of multilinear polynomial evaluations of size 220
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