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Public key cryptography is an indispensable component used in almost all of our present day digital infras-

tructure. However, most if not all of it is predominantly built upon hardness guarantees of number theoretic

problems that can be broken by large scale quantum computers in the future. Sensing the imminent threat

from continued advances in quantum computing, NIST has recently initiated a global level standardization

process for quantum resistant public-key cryptographic primitives such as public key encryption, digital

signatures and key encapsulation mechanisms. While the process received proposals from various categories of

post-quantum cryptography, lattice-based cryptography features most prominently among all the submissions.

Lattice-based cryptography offers a very attractive alternative to traditional public-key cryptography mainly

due to the variety of lattice-based schemes offering varying flavors of security and efficiency guarantees.

In this paper, we survey the evolution of lattice-based key sharing schemes (public key encryption and key

encapsulation schemes) and cover various aspects ranging from theoretical security guarantees, general

algorithmic frameworks, practical implementation aspects and physical attack security, with special focus on

lattice-based key sharing schemes competing in the NIST’s standardization process. Please note that our work

is focussed on the results available from the second round of the NIST’s standardization process while the

standardization process has progressed to the third and final round at the time of publishing this document.

Additional Key Words and Phrases: Lattice Based Cryptography, Public Key Encryption Schemes, Key Encap-

sulation Mechanisms, Key Exchange Schemes

1 INTRODUCTION
Public/Asymmetric key cryptography is one of the most important components of today’s digital

infrastructure. Most secure communication protocols and applications such as TLS, IPSec, and

DNSSEC heavily rely on the following public-key cryptographic primitives: Public-Key Encryption

(PKE), Digital Signatures (DS), Key Exchange (KEX) and Key Encapsulation Mechanisms (KEM)

based on either Rivest-Shamir-Adleman (RSA) or Elliptic Curve Cryptography (ECC). These classical

public key cryptographic schemes are built upon hard number theoretic assumptions such as integer

factorization and discrete logarithms which are considered computationally intractable by classical

computers. However, Peter Shor in 1994 devised a "quantum" algorithm that can solve the integer

factorization problem in polynomial time, provided there is a sufficiently large scale quantum

computer [159]. This sent shockwaves through the cryptographic community and effectively

rendered all public-key cryptographic systems in our digital infrastructure insecure in a probable

future with large scale quantum computers. Moreover, continuous advancements in the field of

quantum computing towards realizing large scale quantum computers [124] have prompted the

cryptographic community towards developing quantum attack resistant public-key cryptographic

primitives leading to a new area of cryptographic research called post-quantum cryptography or

quantum-safe cryptography.
Due to the looming threat of quantum computers, various government agencies, companies,

and standards agencies are looking to migrate towards post-quantum algorithms[49, 55]. As a
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Table 1. NIST Security Classification for Post-Quantum Cryptographic schemes

NIST security level Equivalent symmetric-key security
Category 1 Key search on a block cipher with 128-bit key (AES-128)

Category 2 Collision search on a 256-bit hash function (SHA256/ SHA3-256)

Category 3 Key search on a block cipher with 192-bit key (AES-192)

Category 4 Collision search on a 384-bit hash function (SHA384/ SHA3-384)

Category 5 Key search on a block cipher with 256-bit key (AES-256)

first significant step towards adopting post-quantum cryptography, NIST called for proposals for

standardization of post-quantum cryptographic schemes and in particular public-key encryption

(PKE), digital signature (DS) and Key-Encapsulation Mechanisms (KEM)[129]. They had defined

five levels of security to categorize the post-quantum secure schemes, based on the computational

resources required to break an equivalent NIST standardized symmetric cryptographic primitive

(Refer Tab.1). The first round started in December 2017 with 69 submissions (49 PKE/KEMs and 40

DS schemes) and after intense scrutiny and public feedback from the cryptographic community,

NIST selected about 26 algorithms (17 PKE/KEMs and 9 DS schemes) which can be broadly classified

into five main categories: (1) Lattice-based (2) Code-based (3) Hash-based (4) Multivariate Quadratic-

based and (5) Supersingular Isogeny-based cryptography. The main selection criteria in the first

round were theoretical post-quantum security guarantees and uniqueness of the scheme. However,

the second round will additionally focus on implementation aspects such as speed, efficiency,

bandwidth requirement along with protection against physical attacks. Among the second round

candidates, lattice-based cryptographic schemes form the largest category with 9 PKE/KEMs and 3

DS schemes.

Lattice-based cryptographic schemes form a very attractive alternative to current public-key

cryptographic schemes owing to a good balance of efficiency and security guarantees, with the

performance of some of the schemes being on par with or sometimes even better than the current

public-key cryptographic schemes. There exists a long line of ongoing work related to various

aspects of lattice-based cryptography such as development of practical schemes [12, 35, 37, 83],

theoretical cryptanalysis [59, 106], practical implementations on a variety of implementation

platforms [127], physical attacks [143, 144], misuse attacks [73] and even early adoption and

prototype testing of lattice-based schemes in real world secure protocols and applications [42, 110,

111]. Thus, lattice-based cryptographic schemes are well understood from a variety of aspects

right from theory until practice. Howe et al. [88] proposed a comprehensive survey of lattice-based

digital signature schemes in 2015 and Nejatollahi et al. [127] in 2018 reported a survey solely

focussing on the implementation aspects of lattice-based schemes. However in this paper, we focus

on lattice-based key sharing schemes and present a comprehensive and up-to-date survey which

include several candidates currently competing in round 2 of the NIST standardization process.

Though each of these schemes can also be used for both message encryption and sharing keys,

we will denote them together as key-sharing schemes for simplicity. We cover multiple aspects of

key-sharing schemes ranging from theoretical security, practical implementation considerations,

physical attacks and a comparative evaluation of performance of the schemes based on the state-of-

the-art results on various implementation platforms.

Our survey on lattice-based key sharing schemes is organized as follows. Section 2 contains

background details about hard problems governing lattice-based PKE/KEX/KEMs. Section 3 provides

a detailed overview and evolution of various lattice-based schemes reported in literature with

separate focus on the second round NIST candidates. Section 4 reviews and surveys the various

techniques known to efficiently implement the important sub-blocks of lattice-based schemes such
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as the polynomial/matrix multiplier and discrete distribution sampler. Section 5 provides a detailed

survey of physical attacks (side-channel and fault injection) and associated countermeasures for

lattice-based schemes. Section 6 performs a comparative evaluation of the second round lattice-based

NIST candidates based on the state-of-the art implementation results on a number of hardware and

software platforms. Finally, Section 7 provides a high level overview and comparison of lattice-based

schemes against other post-quantum schemes and concludes the paper.

2 BACKGROUND
2.1 Notations and Preliminaries
We establish some notations which we will use throughout the paper. Let Z𝑞 denote the residue
class ring of integers modulo 𝑞 and R𝑞,𝜙 (𝑥) = Z𝑞 [𝑥]/𝜙 (𝑥) denote the polynomial ring with 𝜙 (𝑥)
being the modular polynomial (For simplicitly, sometimes also denoted as R𝑞). Any letter in capital

and bold (A) denotes vector/matrix with elements in Z𝑞 , while letters in small case and bold (a)
denote polynomials or matrices/vectors of polynomials. Single elements in Z𝑞 are denoted in small

case. The operation ⌊𝑎⌉𝑞−>𝑝 = ⌊(𝑝/𝑞) · 𝑎⌉ denotes rounding an element 𝑎 from a modulus 𝑞 to

𝑝 . The operation | | · | |∞ denotes the 𝑙∞-norm. Conventional multiplication is denoted using (·) or
(×) and point-wise multiplication is denoted using (∗). Sampling an element 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑘−1)
in a multi-dimensional space K from a distribution D𝜎 with standard deviation 𝜎 is denoted as

𝑥 ← D𝜎 (K) with each element x𝑖 is sampled from D𝜎 . Uniform distribution is denoted asU. The

set of all prime numbers is denoted as P and a prime number 𝑥 is denoted as 𝑥 ∈ P. We denote the

space of integers formed using 𝑛 bits or𝑚 = 𝑛/8 bytes as B𝑚
or {0, 1}𝑛 .

2.2 Lattice Preliminaries

Fig. 1. Pictorial Representation of a 2D-lattice

A lattice is a geometric structure periodic in 𝑛-dimensional space that can be defined using a set

of 𝑘 linearly independent vectors B := (1, 2, . . . , 𝑘 ) ∈ R𝑛 together known as a basis of the lattice.
The lattice generated by a basis B with rank 𝑘 is the set of vectors

L(B) = L(1, 2, . . . , 𝑘 ) :=

{ 𝑖=𝑘∑
𝑖=1

𝛼𝑖 𝑖

����𝛼𝑖 ∈ Z}
Any lattice with dimension greater than 2 can have infinitely many bases. Two bases B1 and B2

generate the same lattice L if B1 = UB2 where U is a unimodular matrix with |𝑑𝑒𝑡 (U) | = ±1.

The fundamental domain of a lattice L is the fundamental parallelepiped P(B) = B · [− 1

2
, 1

2
)𝑛

centered around the origin. Cosets of the fundamental parallelepiped are disjoint and cover the

entire lattice. The length of the shortest non zero vector is defined as the minimum distance

𝜆1 (L) := (𝑚𝑖𝑛𝑣∈L/{0} | |𝑣 | |). Extending the same idea, 𝜆𝑖 (L) denotes the 𝑖𝑡ℎ successive minimum
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and the radius of the smallest origin-centered circle 𝑑 > 0 consisting of 𝑖 linearly independent

vectors 𝑣 such that𝑚𝑎𝑥𝑣∈L/{0} | |𝑣 | | < 𝑑 . We informally define some worst-case hard problems over

this lattice.

• Exact Shortest Vector Problem (Exact SVP): For a given lattice L(B), find the shortest vector

𝑣 ∈ L such that | |𝑣 | | = 𝜆1 (L).
• Approximate SVP (ASVP𝛾 ): For an approximation factor 𝛾 , find a solution 𝑣 ∈ L such that

| |𝑣 | | ≤ 𝛾 (𝑛) · 𝜆1 (L).
• GapSVP𝛾 : For a given lattice L, decide whether 𝜆1 (L) ≤ 1 or 𝜆1 (L) > 𝛾 (𝑛).
• Shortest Independent Vectors problem (SIVP𝛾 ): Find 𝑛 linearly independent vectors (1, . . . , 𝑛)
such that𝑚𝑎𝑥𝑣∈L/{0} | |𝑖 | | ≤ 𝛾 (𝑛)𝜆𝑛 (L).
• Bounded Distance Decoding Problem (BDD𝛾 ): Find 𝑣 ∈ L for a given target point 𝑡 ∈ R𝑛 and

an approximation factor 𝛾 (𝑛) such that | |𝑡 − 𝑣 | | < 𝛾 (𝑛) · 𝜆1 (L).
The best known algorithms to solve the above mentioned problems only yield sub-exponential

approximation factors (𝛾 = 2
𝜃 (𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑛)/𝑙𝑜𝑔 (𝑛))

) in polynomial time [115, 157], while algorithms

that can solve for poly(n) approximation factors require exponential time or space (2
𝜃 (𝑛)

) [3].

Cryptographic schemes built upon these problems construct their parameter sets which correspond

to polynomial approximation factors of the aforementioned problems, for which there are presently

no known quantum/classical algorithm that can solve them in polynomial time.

2.3 Foundations of Practical Lattice-based Cryptography
Practical cryptographic schemes can only be built upon average-case hard problems, but the

aforementioned problems are only provably hard in the worst case. Ajtai [4] in 1996 proposed

the Short Integer Solutions (SIS) problem and proved that its average case instance is provably

as hard as the worst case instances of certain lattice problems. Concurrently, Hoffstein, Pipher

and Silverman [83] proposed the Nth order Truncated Polynomial Ring Unit (NTRU) public-key
encryption scheme (NTRUEncrypt) which is built upon hard problems over algebraically structured

lattices better known as "NTRU" lattices, but does not have any such provable security guarantees.

Similar to the SIS problem, Regev [145] in 2005 proposed the Learning With Errors problem (LWE)

which also enjoys a worst-case to average-case hardness reduction to related lattice-problems.

Over the years, several variants of the LWE and the NTRU problem have been developed and all

lattice-based PKE/KEM/KEXs in the NIST process are based on either of these two problems.

2.3.1 The Learning With Errors Problem [145]. LWE is an average-case problem proposed by

Regev [145] related to the SIVP𝛾 and BDD𝛾 problem on standard euclidean lattices. Informally,

the LWE problem can be seen as solving an over-defined system of noisy linear equations. For

a given dimension 𝑛 ≥ 1, elements in Z𝑞 with 𝑞 > 2 and a gaussian error distribution D𝜎 , an

LWE instance is nothing but an ordered pair (A,𝑇 ) ∈ Z𝑛𝑞 × Z𝑞 where A← U(Z𝑛𝑞 ) is public and
𝑇 = A · S + 𝐸 with S ← D𝜎 (Z𝑛𝑞 ) and E ← D𝜎 (Z𝑞). There are two versions of the LWE problem

namely the decision LWE and search LWE problem. The search LWE problem requires to solve

for S given polynomially many LWE instances (A,𝑇 ). The decision LWE problem requires to

distinguish between samples drawn from the LWE distribution (A,𝑇 ) and random samples drawn

from U(Z𝑛𝑞 × Z𝑞). Regev [145] showed a quantum reduction from GapSVP𝛾 and SIVP𝛾 to the

Decisional LWE problem for 𝛾 = O(𝑛/𝛼), modulus 𝑞 ≤ 2
𝑝𝑜𝑙𝑦 (𝑛)

and error distribution of standard

deviation (𝛼 · 𝑞). Subsequent works [44, 134] also proposed classical reductions for polynomial

sized modulus 𝑞 = 𝑝𝑜𝑙𝑦 (𝑛). There are other proven variants of the LWE problem based on binary

secrets by Brakerski et al. [44] and sparse fixed weight ternary secrets by Cheon et al. [53].
Cryptographic schemes built upon the standard LWE problem suffered from quadratic key sizes

and computational times in the dimension of the lattice [145]. Inspired by the NTRU cryptosystem,
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Lyubashevsky, Peikert and Regev [121] also proposed a ring-based analogue of the LWE problem

known as the Ring-LWE problem (RLWE), whose security guarantees are based on hard problems

on the more algebraically structured "ideal" lattices, as opposed to standard euclidean lattices

in the case of standard LWE. They proved that SIVP𝛾 ≤ RLWE over arbitrary ideal lattices for

𝛾 = 𝑝𝑜𝑙𝑦 (𝑛)/𝛼 . Computations were mapped from matrix-vector to polynomials in the ring R𝑞 and

an RLWE instance consists of ordered pairs (a,t) ∈ (R𝑞×R𝑞) where a←U(R𝑞) and t = a ·s + e ∈ R𝑞

with s, e ← D𝜎 (R𝑞). Brakerski, Gentry, and Vaikuntanathan [43] proposed a generalized-LWE

problem (GLWE) which interpolates LWE and the RLWE problem. A GLWE instance is defined as

(a, t) = a ∗ s + e ∈ (R𝑘
𝑞 × R𝑞) where a ∈ U(R𝑘

𝑞 ), s ∈ D𝜎 (R𝑘
𝑞 ) and e ∈ D𝜎 (R𝑞). While the choice of

𝑅 = Z yields an LWE instance in (Z𝑛𝑞 × Z𝑞), choosing 𝑘 = 1 yields an RLWE instance in (R𝑞 × R𝑞).
Further, Langlois and Stehlé [112] quantumly approximated the hardness of the GLWE problem to

worst-case problems over module lattices, proposing the Module-LWE (MLWE) problem defined

over R𝑘
𝑞 with 𝑘 > 1. The MLWE problem provides flexibility since security can be scaled by simply

increasing the rank 𝑘 of the module without altering the underlying ring R𝑞 . MLWE schemes

are computationally as efficient as RLWE schemes since they also involve computations over

polynomials in rings, modulo a small constant factor increase in run-time (with the rank 𝑘). MLWE

instances also inherently possess lesser algebraic structure compared to RLWE instances [112] and

thus MLWE offer an attractive trade-off between security (standard LWE) and efficiency (RLWE).

Another variant of the LWE problem proposed by Banerjee et al. [21] is the Learning with

Rounding (LWR) problem which works with deterministic errors by rounding to a smaller modulus.

An LWR instance (A,𝑇 ) ∈ Z𝑛𝑞 × Z𝑝 can be constructed as 𝑇 = ⌊A · S⌉𝑞→𝑝 with 𝑞 > 𝑝 ∈ Z+. The
search and decisional variants of the LWR problem are also as hard as the corresponding LWE

problems, given the same number of samples and there are no known attacks that specifically

exploit the LWR structure. Moreover, the LWR problem can also be refined to its ring and module

variants denoted as RLWR and MLWR problems respectively. One of their main advantages is

compactness since they use rounded keys and ciphertexts. Moreover, LWR-based schemes eliminate

need for error sampling since errors are deterministic through rounding. Chu [80] proposed another

interesting integer variant of the RLWE problem (I-RLWE) where the polynomial ring is simply

replaced with a big integer ring, by substituting the indeterminate 𝑥 in R𝑞 with 𝑞 ∈ Z+. Thus, the
instance operates over the ring Z/𝑁 , where 𝑁 = 𝜙 (𝑞). Chu also shows that the I-RLWE problem is

as hard as the RLWE problem.

2.3.2 NTRU Problem [83]. The hardness of the first practical lattice-based encryption scheme

NTRUEncrypt proposed by Hoffstein, Pipher and Silverman [83] in 1996 is based on its own NTRU
assumption or NTRU one-way function which involves factorization of polynomials in polynomial

rings. The NTRU problem or one-way function can be defined as follows: For a given small and

invertible p← D𝜎 (R𝑞), one is required to distinguish between structured samples g ·p−1 ∈ R𝑞 from

uniformly random samples inU(R𝑞) with g← D𝜎 (R𝑞). This problem was shown to be reducible

to an SVP over a special class of lattices known as NTRU lattices [57]. It is still not known if SVP

over NTRU lattices is as hard as SVP over general lattices. However, the NTRU problem gained a lot

of traction ever since its discovery in 1996 and has since then enabled to build asymptotically fast

and compact PKE schemes due to its use of arithmetic over efficient polynomial rings. One main

advantage of of NTRU cryptosystem is that it has survived cryptanalysis for almost 24 years now

and hence instills a lot of confidence in its security claims even while lacking provable security

proofs similar to LWE/R based schemes. There is a provably secure variant of NTRU proposed by

Stehlé and Steinfeld [163], but is seldom used in practice owing to poor performance.

2.3.3 Choice of Structured Vs Unstructured Lattices. While the standard LWE/R problem reduces to

worst-case hard problems over general "euclidean" lattices, the RLWE/RLWR and MLWE/MLWR
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problems only reduce to the worst-case hard problems over the more algebraically structured

ideal and module lattices respectively. The best known algorithms to solve the hard problems over

unstructured lattices do not perform asymptotically any better on structured lattices [94]. The best

known algorithms to solve the SVP𝛾 problem take quantum polynomial time for sub-exponential

factors 2
O(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑛) :𝑙𝑜𝑔 (𝑛))

on general lattices, but achieve slightly better approximation factors of

about 2
O(
√
𝑛)

on ideal lattices over a number of widely used class of rings [58, 59]. Such improvement

though still far from achieving polynomial approximation factors used in cryptographic schemes,

still poses a significant risk to structured lattice-based schemes, owing to possibly improved

cryptanalysis in the future. Moreover, these algorithms only improve solving Ideal SVP𝛾 and do not

translate to improved attacks on RLWE/MLWE instances. While solutions to the Ideal SVP problem

are ring elements, solutions to the RLWE/MLWE problems are present in modules of dimension

𝑘 +1 where 𝑘 is the rank of the module (i.e) 𝑘 = 1 for RLWE and 𝑘 > 1 for MLWE [59]. This presents

as a major hindrance towards extending attacks on Ideal SVP to RLWE/MLWE. There indeed exists

a tight reduction from MLWE to RLWE, but the difficulty of the attack scales significantly with

the dimension 𝑘 of the module, thus alluding that attacking MLWE is much more harder than the

RLWE or NTRU problem [8]. However, concrete hardness of structured RLWE/MLWE problems

are only analyzed as an LWE problem since the best known attacks do not exploit the structure

in the lattice. Thus, research on improved cryptanalysis forms a very important research topic

towards understanding this unknown security gap in lattice-based cryptography.

2.3.4 Choice of NTRU vs LWE/R. The choice between LWE/R or NTRU is not easy since there is

no clear distinction between the supremacy of the security guarantees offered by either of these

schemes. Though LWE enjoys provable security guarantees which NTRU lacks, there are some

notable questions raised against the concrete security guarantees of the LWE problem [28, 50].

Chatterjee et al. [50] stated that there is a 2
504

gap in tightness for a quantum reduction from SIVP𝛾

to decisional-LWE for dimension 𝑛 = 1024 and that non-tight worst-case to average-case reductions

cannot be simply viewed as better security guarantees than the classical NTRU problem. Bernstein

et al. in [28] also argue that LWE problems are only as hard as "SVP"-like problems and not the

classical SVP problems. Moreover, the parameters for LWE/R-based schemes are mainly selected

based on the best known attacks, considering the number of samples revealed to the adversary

and such parameters do not admit worst-case to average-case reduction [28]. In fact, there are also

certain reported attacks on concrete parameter sets of certain NTRU-based schemes [6, 106], but

none of them break the concrete parameters used in the NTRU PKE scheme or any of its variants.

Moreover, it was also shown that the NTRU problem is easier to solve than the RLWE problem for

certain extreme parametric choices (eg. large 𝑞 [106]), but is not known to be extendable to the

generic case. Thus, we speculate that is too early to decide between NTRU and LWE/R solely based

on the security claims, given the current state of cryptanalysis.

3 ALGORITHMS FOR LATTICE-BASED KEY SHARING
There are three different approaches to securely exchange a key between two untrusted parties.

They are public-key encryption schemes (PKE), key encapsulation mechanisms (KEM), and key

exchange schemes (KEX). While KEX schemes are "participatory" where both parties together

determine the shared secret key (similar to the Diffie-Hellman KEX scheme), PKE and KEM schemes

typically generate the shared key at one end and securely transport it to the other end. Thus PKE

and KEM schemes can together be referred to as "Key Transport" schemes.

A PKE scheme consists of a triple of procedures (KeyGen, Encrypt,Decrypt). Firstly, the KeyGen
procedure is used to generate a public-private key pair (𝑝𝑘, 𝑠𝑘) and subsequently, the generated

public key 𝑝𝑘 is used by the Encrypt procedure to encrypt a given message 𝑚 to generate the
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ciphertext 𝑐𝑡 . TheDecrypt procedure retrieves the message𝑚 from the ciphertext 𝑐𝑡 using the secret

key 𝑠𝑘 . A semantically secure encryption scheme PKE should ensure that ∀𝑚 ∈ M, Prob(𝑚′ =
𝑚 |Decrypt(Encrypt(𝑝𝑘,𝑚), 𝑠𝑘) = 𝑚′) = 1 − 𝜖 where 𝜖 ⪆ 0. The message 𝑚 is nothing but the

shared secret key when a PKE scheme is used for key-sharing. A KEM is also associated with three

corresponding procedures KeyGen, Encaps (encapsulation), Decaps (decapsulation) respectively.
But, a subtle difference between PKE and KEM arises from the way the shared secret key is generated.

In a PKE scheme, the shared secret key is an explicit input to the Encrypt procedure, while in a

KEM scheme it is an output (not a chosen input) of the Encaps procedure. A KEX scheme is very

similar to the Diffie-Hellman key exchange scheme wherein two parties exchange their public key

shares and subsequently utilize their secret keys to convert the public key shares to derive a shared

secret key. In the following discussion, we will trace the evolution of the various lattice-based

PKE, KEX and KEMs proposed in literature leading up to the current NIST candidates. We broadly

categorize them into two categories (1) LWE/R-based (2) NTRU-based schemes.

3.1 LWE/R-based schemes
The first practical lattice-based encryption scheme based on standard LWE was proposed by

Regev [145] in 2005, which subsequently underwent various improvements mainly to reduce key

and ciphertext sizes through a number of works [79, 123]. Subsequently, Lyubashevsky, Peikert

and Regev in their seminal work on RLWE [121] in 2010 adapted the same scheme to the RLWE

problem, proposing the now famously known "LPR encryption scheme" (referred to as LPREncrypt).
Subsequently, Lindner and Peikert [116] considerably improved the parameter sets for LWE and

RLWE-based PKE scheme, together forming the first works that laid the foundation for practical

LWE-based PKE schemes. Most of the subsequently proposed LWE/R-based PKE/KEMs including

several NIST candidates can be considered to be either tightly/loosely based on the framework of the

LPREncrypt scheme. We describe LPREncrypt scheme in detail as it captures the essence of multiple

LWE/R-based PKE and KEMs, but generalize its description so that specific parameterizations

such as structure of the underlying ring (R𝑞 , R𝑘×𝑘
𝑞 , Z𝑛×𝑛𝑞 ), relative sizes of the rounding moduli and

distribution of errors can be used to describe specific schemes utilizing this framework.

3.1.1 LPREncrypt PKE Scheme [121]: We define gen to be an extendable output function that takes

an input seed say 𝜌 ∈ {0, 1}∗ and outputs a matrix a ∈ R𝑘×𝑘
𝑞 . Message encoding (resp. decoding)

functions denoted as enc (resp. dec) are used to convert binary messages (∈ Z𝑛
2
) into elements in

the underlying ring and vice versa. The generalized version of the LPREncrypt framework can be

defined as follows:

• LPR.KeyGen(): Generate the public parameter a = gen(𝑝𝑢𝑏𝑙𝑖𝑐𝑠𝑒𝑒𝑑) ∈ R𝑘×𝑘
𝑞 and s, e ←

D𝜎 (R𝑘
𝑞 ). The LWE instance is calculated as t = a · s + e ∈ R𝑞 and is subsequently rounded as

t = ⌊t⌉𝑞→𝑝 ∈ R𝑝 . While the tuple (a, t) forms the public key 𝑝𝑘 , (s, e) forms the secret key 𝑠𝑘 .

• LPR.Encrypt(𝑝𝑘,𝑚 ∈ B∗): Generate three components s′, e′← D𝜎 (R𝑘
𝑞 ) and e′′← D𝜎 (R𝑞).

The message𝑚 to encrypted is first encoded to m̄ = enc(𝑚) ∈ R𝑞 . Subsequently, calculate

u = a · s′+e′ and v = t · s′+e′′+m̄. Subsequently, both (u, v) are rounded as u = ⌊u⌉𝑞→𝑝 ∈ R𝑘
𝑝

and v = ⌊v⌉𝑞→𝑡 ∈ R𝑡 and published as the ciphertext 𝑐𝑡 = (u, v).
• LPR.Decrypt(u, v, 𝑠𝑘): Decompress (u, v) as u′ = ⌊u⌉𝑝→𝑞 and v′ = ⌊v⌉𝑡→𝑞 and calculate

r = (v′ − u′ · s) ∈ 𝑅𝑞 , which when decoded as dec(r) yields the message m′.
Security and Correctness of LPREncrypt scheme: While we briefly explain its security and correct-

ness based on LWE, the same also holds for LWR or a combination of the LWE and LWR problem.

The LPR.KeyGen procedure just involves generation of the LWE instance (a, t). The computational

hardness of retrieving the private key from the public key directly comes from the search-LWE

problem. The LPR.Encrypt procedure generates two LWE instances, u (with a as public parameter)
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and v (using t). The message𝑚 is firstly encoded using a standard approach, where each bit is

encoded into a coefficient as follows: If bit is 1, coefficient is ⌈𝑞/2⌉, else 0. The encoded message is

added to v to essentially hide it within the LWE instance. Both u and v are rounded (for LWR or for

compactness) and output as the ciphertext 𝑐𝑡 . Subsequently, the decryption procedure computes

r = v′ − u′ · s where v′ and u′ are decompressed values of v and u respectively. Let the errors

introduced due to rounding x be denoted as ex. Then,

r = v′ − u′ · s
= t · s′ + e′′ + enc(𝑚) + ev − (a · s′ + e′ + eu) · s
= a · s · s′ + e · s′ + e′′ + enc(𝑚) + ev − (a · s′ + e′ + eu) · s
= enc(𝑚) + e · s′ + e′′ + ev − e′ · s − eu · s
= enc(𝑚) + ê (1)

The computed element r is approximately equal to the encoded form of the message𝑚 as can be seen

from Eqn.(1). As long as the total error ê is less than a certain threshold 𝑞𝑡 , decryption will result

in successful retrieval of𝑚. This PKE scheme can be converted into a KEM in a straightforward

manner and the standard approach for conversion is to compute a one-way function (hashH ) over

the message input𝑚, whose resultH(𝑚) is subsequently used as the message in the LPR.Encrypt
procedure, thus preventing the user from directly selecting the shared secret key.

3.1.2 Noisy Diffie Hellman Key-Exchange: Key exchange schemes similar to the Diffie-Hellman

KEX scheme but built upon the hardness of the LWE/R problem are referred to as "Noisy Diffie-

Hellman" KEX (Noisy − DH) schemes. The first such scheme based on LWE was proposed by Ding,

Xie, and Lin [66] and can be informally described as follows: Alice generates a public key share

b ∈ R𝑞 = a · s + e and sends it across to Bob. Bob similarly generates his own public key share

b́ = a · ś + é and also computes v́ = b · ś = (a · s · ś + e · ś). Bob sends the public-key share to Alice

who computes v = b́ · s = (a · s · ś + é · s). We can see that v and v́ are approximately equal to

a · s · ś albeit with some errors. Subsequently, an "error reconciliation" procedure is performed to

turn this approximate key agreement into an exact key agreement. Hints are provided by Bob to

Alice (typically one bit per coefficient) which will help Alice generate a shared secret key 𝑘 from

the approximate shared secret value.

Reconciliation Techniques: The first reconciliation technique proposed by Ding et al. [66] agreed
upon the least significant bits of the shared value but resulted in biased keys, unless post-processed

for uniform randomness. However, Peikert [136] proposed an improved technique which enables

to agree upon the most significant bit of the shared value to create unbiased keys. The basic idea is

as follows: the interval [0, 𝑞] is split into four quadrants and two pairs of consecutive quadrants

are mapped to 0 and 1 (or vice versa) such that there is maximum leeway for errors (so that every

coefficient lies far away from the partition boundaries). As long as the errors are bounded by a

certain value, Alice and Bob can correctly agree on a shared secret. Saarinen [153] proposed an

improved technique with lesser error probability by selecting only𝑚 out of the 𝑛 coefficients that

are close to the center of the partitions within a certain bound 𝑏. While the above techniques extract

one bit from a single reconciliation in Z𝑞 , Bos et al. [35] generalized it to extract multiple bits from

a single reconciliation, albeit at the cost of increased failure probability. Alkim et al. [12] proposed
another method of reconciliation based on lattice codes and quantizers which also featured much

higher error resilience. But, this technique was fairly complex and hence is not usually preferred

since it requires solving CVP over very small lattices. In general, reconciliation techniques con-

siderably reduce the size of the ciphertext. While PKE schemes require to send two components

(i.e) 2𝑛(⌈log
2
(𝑞)⌉) bits as part of the ciphertext, KEX schemes using reconciliation only send one
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component and a hint (typically a bit vector) which together yields about 𝑛(1 + ⌈log
2
(𝑞)⌉) bits

for the ciphertext. The security and correctness properties of the Noisy − DH KEX scheme can be

inferred in a similar manner as the LPREncrypt scheme. A KEX scheme can be converted into a

PKE scheme and vice versa. With reference to description of the Noisy − DH scheme, to convert a

KEX to a PKE scheme, Bob can simply choose a random secret𝑚 and compute 𝑐 ′ =𝑚 ⊕ 𝑘 and send

it to Alice along with the ciphertext 𝑐𝑡 . Alice can subsequently retrieve 𝑘 from 𝑐𝑡 and compute

𝑐 ′ ⊕ 𝑘 to retrieve𝑚.

Bos et al. [38] proposed the first practical instantiation of the noisy − DH scheme based on RLWE

with concrete parameters (𝑛 = 1024, 𝑞 = 2
32 − 1) achieving 128-bit post quantum security (referred

as BCNS KEX scheme). They also demonstrated its practical performance when implemented in a

custom post-quantum ciphersuite in the OpenSSL implementation of transport layer security (TLS)

protocol. Subsequently, Alkim et al. [12] enhanced theBCNS scheme to propose the nowwell known

"NewHope" KEX scheme (referred asNewHopeUSENIX). It incorporated a number of improvements

such as improved security analysis leading to efficient parameter sets (𝑛 = 1024), provably secure

use of a Centered Binomial distribution (CBD) for sampling (instead of discrete gaussian) and

improved error reconciliation with higher error margin. The same authors proposed another variant

of NewHopeUSENIX (referred as NewHopeSIMPLE) [11] which does not utilize reconciliation, but

adopts the "encryption" approach of the LPREncrypt schemes yielding similar performance, but

with a slight increase of 6.25% in bandwidth requirement. Bos et al. [35] concurrently proposed

the "Frodo" KEX scheme (referred to as Frodo_CCS) which is the only known KEX scheme based

on standard LWE. Subsequently, Sauvik et al. [33] proposed the 𝑠𝑝𝐾𝐸𝑋 scheme very similar to

Frodo_CCS, but based on LWR with sparse and ternary secrets. Usage of the LWR problem resulted

in ciphertexts that were 30% smaller compared to Frodo_CCS. Cheon et al. [53] also proposed

another KEX scheme very similar to Frodo_CCS, but based on the sparse LWE problem.

3.2 Security against Chosen Ciphertext Attacks
All the aforementioned LWE/R-based schemes are only secure in the chosen-plaintext model

(IND-CPA secure) and are not secure against an adversary who can adaptively decrypt arbitrary

chosen-ciphertexts. A scheme secure against such an adversary is said to be secure under the

indistinguishability under adaptive chosen ciphertext attack (IND-CCA secure) model. While IND-

CCA security is not really a strict requirement in ephemeral key-exchanges, it is however mandatory

when using long term public-private key pairs, which is common in most real world applications.

One of the main requirements for concrete parameterizations of PKE schemes to undergo

IND-CCA conversion is to have negligible decryption failure rate (Typically lower than 2
−128

).

But, the parameter sets of the aforementioned schemes were not designed for negligible failure

probability [127]. Oder et al. [131] proposed the first IND-CCA secure parameter sets for the

NewHopeSIMPLE PKE scheme, which reduced the failure rate from 2
−60

to 2
−216

at the cost of 23

bits of post-quantum security (from 256 to 233 bits) by simply reducing the standard deviation of

the error distribution. Subsequently, they proposed to use the post-quantum variant of the well

known Fujisaki-Okamoto transformation [77] (FO-transformation) by Targhi and Unruh [164]

(TU-variant) to convert an IND-CPA secure PKE scheme into an IND-CCA secure PKE scheme.

The main idea of the FO-transformation is to check for malformed ciphertexts and immediately

reject them upon detection. Thus, the adversary can only decrypt valid ciphertexts, while invalid

chosen ciphertexts always lead to a failure. It primarily works through usage of random oracles

(instantiated as hash functions). While its classical variant (secure in the classical random oracle

model (ROM)) utilizes two random oracles (H ,G), its post-quantum variant [164] requires three

oracles to guarantee post-quantum security (H ,G,H ′). The post-quantum (TU) variant of the

FO-transformation is briefly described as follows:
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• Enc(pk,𝑚𝑐𝑐𝑎): Let (c1, c2) be the ciphertexts of the IND-CPA secure LPREncrypt scheme for

the message𝑚𝑐𝑐𝑎 such that (u, v) = LPREncrypt(𝑝𝑘, 𝜈,H(𝜈 | |𝑚𝑐𝑐𝑎)), where 𝜈 ∈ {0, 1}∗ and
H(𝜈 | |𝑚𝑐𝑐𝑎) seeds a secure PRNG to deterministically generate secrets and errors. Define

𝑐1 = G(𝜈) ⊕𝑚𝑐𝑐𝑎 and 𝑐2 = H ′(𝜈). The tuple (u, v, 𝑐1, 𝑐2) is output as the ciphertext.
• Dec(pk,u, v,𝑐1, 𝑐2,s): Compute 𝜈 ′ = LPRDecrypt(u, v, s) and𝑚′𝑐𝑐𝑎 = 𝐺 (𝜈 ′) ⊕ 𝑐3, and verify if

(u, v) = LPREncrypt(𝑝𝑘, 𝜈, 𝐻 (𝜈 ′ | |𝑚′𝑐𝑐𝑎)) and if 𝑐4 = 𝐻
′(𝜈). If so, output𝑚′𝑐𝑐𝑎 , else ⊥.

One noticeable change in the FO-transformed decryption procedure is that a re-encryption is

performed after decryption which adds considerable performance overheads. Oder et al. [131]
reported a prohibitive increase of 27 times in the number of clock cycles for the decryption procedure

on the ARM Cortex-M4 microcontroller. While the original FO-transformation specified to output a

failure symbol upon decapsulation failure (explicit rejection), there exists a slightly modified variant

which proposed to output pseudorandom keys upon failure (implicit rejection). This relieves the

higher level protocol to check for decapsulation failures. While the above transformation yields

an IND-CCA secure PKE scheme, it can also be altered to yield an IND-CCA secure KEM and it is

worth noting that FO-transformation in the context of lattice-based schemes has only been used to

generate IND-CCA secure PKE and KEMs, but not KEX schemes.

Bernstein and Perischetti [30] propose the concept of "rigidity” for IND-CPA secure PKE schemes.

A PKE scheme is said to be rigid if Encrypt(pk,m) = 𝑐𝑡 ⇐⇒ Decrypt(ct, sk) = 𝑚. They state

that a rigid IND-CPA secure scheme can be converted to achieve IND-CCA security without

re-encryption. While correctness of the scheme implies the forward direction, re-encryption is

additionally employed during FO transformation to ensure the reverse direction holds as well. The

aforementioned LWE/R based schemes are not rigid and hence require re-encryption for IND-CCA

security. As we will see later in Sec.3.6, there are certain IND-CPA secure schemes achieve IND-CCA

security by avoiding re-encryption through rigidity [51].

3.3 NTRU-based schemes
TheNTRUEncrypt PKE scheme proposed by Hoffstein, Pipher and Silverman [83] in 1998 is the first

practical lattice-based PKE scheme proposed in literature. TheNTRUEncrypt scheme is based on the

NTRU one-way function and operates over the polynomial ring Z𝑞 [𝑥]/𝜙𝑡 with 𝜙𝑡 = (𝑥𝑛−1) = 𝜙1𝜙𝑛
where 𝜙1 = (𝑥 − 1) and 𝜙𝑛 = (𝑥𝑛−1 + 𝑥𝑛−2 + 𝑥𝑛−3 + . . . + 1). We define (𝑛, 𝑝, 𝑞) to be the tuple of

co-prime integers and polynomials f, g,m, r as small and ternary polynomials sampled from spaces

L𝑓 ,L𝑔,L𝑟 ,L𝑚 respectively. We also denote C(𝑚,𝜙𝑒 ) to be the set of invertible polynomials in the

ring Z𝑚 [𝑥]/𝜙𝑒 (𝑥). Please find below a brief algorithmic description of the probabilistic IND-CPA

secure NTRUEncrypt scheme.

• NTRU.KeyGen(𝑠𝑒𝑒𝑑): Generate a small polynomial f ∈ L𝑓 such that f ∈ C(2, 𝜙1𝜙𝑛) and
f ∈ C(𝑝, 𝜙1𝜙𝑛) and sample another polynomial g← L𝑔 . Subsequently, compute h = (𝑝 · g/f)
mod (𝑞, 𝜙1𝜙𝑛) and f𝑝 = 1/f mod (𝑝, 𝜙1𝜙𝑛). The quotient polynomial h is the public key while

the tuple (f, f𝑝 ) forms the secret key.

• NTRUPKE.Encrypt(𝑝𝑘 ,𝑚 ∈ L𝑚 , 𝑟𝑎𝑛𝑑 ∈ {0, 1}ℓ ): Sample a small random polynomial r← L𝑟

and compute c = (r · h +m) mod (𝑞, 𝜙1𝜙𝑛) where m is the message polynomial.

• NTRUPKE.Decrypt(𝑠𝑘, c): Compute a = (c · f) mod (𝑞, 𝜙1𝜙𝑛) and subsequently the message

polynomial m′ = (a · f𝑝 ) mod (𝑝, 𝜙1𝜙𝑛).
The key generation procedure KeyGen involves generation of the NTRU instance h = 𝑝 · g/f ,

which is the public key, while f, g together form the secret key. The hardness of retrieving the

secret key from the public key directly comes from the hardness of inverting the NTRU one-way

function. KeyGen involves computationally intensive operations such as sampling an invertible

polynomial and computing its inverse, thus making it the costliest procedure in the NTRUEncrypt
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scheme. The encryption procedure Encrypt generates a random r and hides a message polynomial

m within the NTRU instance to generate the ciphertext as (r · h +m). Subsequently, the decryption
procedure utilizes f and its inverses to retrieve m. One can also retrieve r as h has an inverse in the

ring. The correctness of the scheme is ensured by the Decrypt procedure as shown in Eqn.(2).

a = ((c · f) mod (𝑞, 𝜙1𝜙𝑛))
= (𝑝 · g · r +m · f) mod (𝑞, 𝜙1𝜙𝑛)

m′ = (𝑝 · g · r · f𝑝 +m · f · f𝑝 ) mod (𝑝, 𝜙1𝜙𝑛)
= m (2)

The encryption and decryption procedures are considerably much faster than KeyGen since they

only involve addition and multiplication of polynomials. In fact, the encryption procedure of

NTRUEncrypt only involves a single polynomial multiplication as opposed to two multiplications

in the LPREncrypt scheme. The original NTRUEncrypt scheme is also not perfectly correct and is

known to be susceptible to attacks exploiting decryption failures [90] and is also susceptible to

chosen ciphertext attacks [96]. Thus, a number of padding schemes were proposed, but were all

subsequently broken [128] until Howgrave-Graham et al. [91] proposed the "NAEP” padding scheme

considered secure even in the presence of decryption failures and is unbroken till date. In fact, an

instantiation of the NTRUEncrypt scheme implemented with the NAEP padding scheme known

as SVES − 3 (Short Vector Encryption Scheme) is already part of the IEEE standard 1363.1 [168].

The NAEP padding scheme involves additively masking the message m with a deterministically

generated ternary polynomial t as m′ = m − t which is subsequently used as the message to be

encrypted. The decryption procedure can recover m′ and further deterministically generate t and
subtract it from m′ to retrieve the message m.

Bernstein et al. [28] proposedNTRUPrime, an IND-CCA secure NTRU-based KEMwhich operates

over a modified ring Z[𝑥]/(𝑥𝑛 − 𝑥 − 1) with 𝑛 ∈ P, with the main motivation to avoid usage

of algebraically structured rings such as (Z𝑞 [𝑥]/(𝑥𝑛 − 1) with 𝑛 ∈ P) and (Z𝑞 [𝑥]/(𝑥𝑛 + 1) with
𝑛 = 2

𝑘
). Some noticeable departures from the NTRUEncrypt PKE scheme are as follows. Firstly,

NTRUPrime is a perfectly correct KEM (zero failure rate). It utilizes rounded ciphertexts which

implicitly generate the message𝑚 by rounding each coefficient of h · r to the closest multiple of 3.

Moreover, the public-key in NTRUPrime is computed as g/3 · f instead of 3 · g/f in NTRUEncrypt.
IND-CCA security is achieved using an FO-like transformation avoiding use of padding techniques.

Hülsing et al. [93] also proposed anNTRU-based IND-CCA secure KEM (referred to asNTRUHRSS),
which is a more simplified variant of the probabilistic NTRUEncrypt PKE scheme. The scheme

operates over two rings Z𝑞 [𝑥]/[𝜙𝑡 (𝑥)] and S = Z𝑝 [𝑥]/[𝜙𝑛 (𝑥)] (𝜙𝑡 and 𝜙𝑛 follow from our descrip-

tion of the NTRUEncrypt scheme). Both rings are utilized in such a way so as to avoid invertibility

tests during KeyGen. Moreover, the scheme does not restrict to sampling fixed weight polynomials

and also avoids message masking. The scheme is perfectly correct and achieves IND-CCA security

through the TU variant of the FO-transformation. Subsequently, Saito-Xagawa-Yamakawa [155]

proposed a slight variant ofNTRUHRSS KEM (referred asNTRU − SXY), but based on the determin-

istic variant of NTRUEncrypt PKE and consists of one less hash output compared to NTRUHRSS
KEM. Lyubashevsky and Seiler [122] recently proposedNTTRU (after the start of the NIST process),

an IND-CCA secure KEM based on the NTRUEncrypt scheme which operates over a different

ring Z𝑞 [𝑥]/𝜙 (𝑥) where 𝜙 (𝑥) = (𝑥𝑛 − 𝑥𝑛/2 + 1) is the 𝑛𝑡ℎ cyclotomic polynomial with 𝑛 = 2
𝑘 · 3ℓ .

Their proposed parameters allowed use of the efficient Number Theoretic Transform (NTT) for

polynomial multiplication which is a first for an NTRU-based scheme. It is worth noting that the

AVX2 implementation of NTTRU is faster by several factors (Ref Tab.4) compared to all lattice-based

round 2 NIST candidate PKE/KEMs.
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3.4 Use of Error Correcting Codes in lattice-based PKE/KEMs
As seen earlier, all LWE/R-based schemes are associated with a certain decryption failure probability.

Designers strive to achieve a zero or atleast negligible failure probability as it is mandatory to

achieve IND-CCA security, but also allows for a simpler and robust security analysis without

un-necessary caveats. It also reduces the attacker’s chances of triggering decryption failures which

could lead to possible attacks as shown in [25, 61, 73]. However, one obvious disadvantage is the

performance overhead incurred due to possible over-designing of the parameter set for zero or

negligible decryption failures. For instance, reducing the error sizes in LWE instances (or increasing

the rounding modulus in LWR) could lead to reduction in decryption failures, but also reduces

security against classical/quantum attacks. This security loss is usually offset by increasing the

lattice dimension, which comes with a certain cost on performance.

Alternatively, one could use certain other approaches such as improved message encoding

techniques (encoding one bit in multiple coefficients as used inNewHopeUSENIX [12]) or improved

reconciliation techniques [153, 165] to correct larger errors. But, one generic technique that is

gaining traction is utilization of Error Correcting Codes (ECCs) to artificially correct errors induced

in the message after decryption. The idea is to encode the message𝑚 ∈ {0, 1}𝑛 into a codeword

𝑐 ∈ {0, 1}𝑚 (i.e) 𝑐 = ECCEncode(𝑚) which is used as a modified input to be encrypted. The

decryption procedure then retrieves the codeword 𝑐 ′ ∈ {0, 1}𝑚 and utilizes the ECC’s decoding

procedure to retrieve 𝑚′ ∈ {0, 1}𝑛 . Correctness can be ensured as long as the error rate of the

scheme is less than the error correcting capability. An advantage of utilizing ECCs is that decryption

failure rate can be improved without affecting theoretical security guarantees of the scheme.

A systematic study of the use of ECCs for lattice-based schemes was first done by Fritzmann et
al. [74] who investigated usage of modern and classical ECCs such as LDPC (Low Density Parity

Codes) [78] and BCH (Bose Chaudhuri Hocquenghem) codes [54] respectively to reduce decryption

failure rates for the NewHopeSIMPLE PKE scheme. Usage of ECCs come with an advantage of

reduced ciphertext sizes along with leeway to increase span of error distribution for increased

security. However, there is also an added disadvantage of performance penalty especially when

heavy error correcting codes such as BCH are used. Thus, it might better for schemes to design fairly

robust parameter sets with a low enough failure rate, which only requires light error correction

to achieve negligible failure rate, so as to not adversely impact performance. Three second round

NIST candidates utilize ECCs to achieve negligible decryption failure rate, about which we will

discuss in Sec.3.6.

3.5 Key Reuse in LWE/R-based schemes
Key-reuse or Key-caching is a commonly adopted technique in secure protocols such as the TLS

and IKE (Internet Key Exchange). In fact, the draft version of TLS 1.3 [1] allowed key reuse of the

client, but finally replaced it with a pre-shared key identity in the final standards [2]. Thus, security

analysis in practical scenarios such as key-reuse is thus important towards understanding issues

with practical deployment of lattice-based schemes. We consider a scenario where Alice and Bob

run an IND-CPA secure key-sharing procedure where Alice uses a long term public key to initiate

multiple key-exchange sessions with Bob.

Scott Fluhrer [73] proposed the first attack over IND-CPA secure noisy − DH KEX schemes such

as the BCNS [38] and Frodo_CCS [36] schemes exploiting key-share reuse. The main idea of the

attack is as follows: Bob constructs "handcrafted" public key shares and reconciliation hints and

uses it to perform multiple key-exchanges with Alice. The attacker assumes the presence of a key
mismatch oracle that provides a binary response (true or false) for the attacker’s guesses of the

shared secret key, which is a weaker assumption compared to a classical decryption oracle. The

attacker can correlate the oracle’s responses for his specially chosen ciphertexts to retrieve the
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complete secret key. Ding et al. [63] further proposed a variant known as the "signal leakage attack"

that works when the protocol is initiated by Bob (opposite direction). The adversary does not

assume an oracle but simply observes changes in the reconciliation hints based on the handcrafted

public-key shares to recover the secret key. Thus, KEX schemes are attackable through chosen-

ciphertext attacks which work irrespective of who initiates the protocol, as long as there is key-share

reuse by atleast one of the involved parties. While the initial key-reuse attacks were reported on

"reconciliation-based" KEX schemes [63, 65], key mismatch or plaintext checking oracle attacks

were subsequently generalized and extended to IND-CPA secure "encryption-based" PKE/KEMs by

a number of works [19, 25, 64, 142], thus showing that all IND-CPA secure LWE/R-based schemes

are vulnerable in key-reuse scenarios. These attacks do not work on IND-CCA secure schemes

since they always return a decapsulation failure for invalid ciphertexts and thus the attacker cannot

get any information about the output of the encapsulated decryption procedure. However, Bauer et
al. [25] suggested the possibility that side-channel leakage from the decapsulation procedure can be

exploited to instantiate a practical plaintext checking oracle to attack IND-CCA secure schemes. In

fact, concrete side-channel attacks were demonstrated over IND-CCA secure schemes by a couple

of works [68, 144], about which we will discuss in Sec.5.2.3.

This line of work brought to light a subtle but important caveat with respect to replacing classical

DH schemes with lattice-based PKE/KEM/KEXs for key exchange. Classical DH schemes are

participatory and symmetric and allow caching of public key shares at both ends (non susceptible to

key-share reuse attacks). But as we can see, long term keys can only be used with IND-CCA secure

lattice-based schemes that are non-participatory PKE/KEMs, which allow key caching only at the

decapsulator’s end. This thus restricts use of certain message flows in implicitly authenticated

key-exchange procedures common in several real-world security protocols as shown in [45], which

highlights a critical issue that lattice-based schemes cannot serve as direct drop-in replacements

for classical DH schemes in all possible scenarios.

3.6 Round 2 NIST candidates
In this section, we will briefly review the 9 lattice-based PKE/KEMs (7 LWE/R-based and 2 NTRU-

based) currently competing in the second round of the NIST standardization process. Since these

schemes undergo constant minor modifications to their specifications, we would like to clarify that

the discussions and comparisons presented below are based on details from the latest available

(dated) specification documents of the respective schemes (according to the second round) cited in

the references section.

3.6.1 LWE/R-based candidates: All NIST candidate PKE/KEMs based on LWE/R contain in their

core an IND-CPA secure PKE scheme based on the framework of the LPREncrypt PKE scheme,

unless otherwise specified. None of the underlying PKE schemes are participatory as the shared

key is generated at the encapsulator. Moreover, all the candidates offer IND-CCA security through

variants of the FO transformation [77, 164]. These candidates mainly differ based on multiple

parameters including but not limited to the structure of the underlying ring, relative sizes of the

rounding moduli, error distribution and choice of error correction code. All schemes provide three

parameter sets at NIST defined security levels 1, 3 and 5, unless specified otherwise.

Frodo: Frodo is a family of IND-CCA secure KEMs and the only candidate based on standard

LWE (referred as FrodoKEM) [10]. It utilizes a power of 2 modulus (𝑞 ≤ 2
16
) and is the only KEM

that samples errors from a rounded-gaussian distribution. The scheme offers two main advantages

(1) security based on standard LWE instills confidence in long-term security (2) Simplistic design

reducing potential for errors. But, the obvious disadvantage is the order of magnitude difference in

speed and bandwidth requirement compared to its structured counterparts.
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NewHope: NewHope is a suite of IND-CCA secure KEMs based on RLWE and very similar

to the NewHopeSIMPLE PKE scheme (referred as NewHopeKEM) [9]. NewHope operates over

Z𝑞 [𝑥]/(𝑥𝑛 + 1) (power of 2 cyclotomic ring) and parameters are chosen to admit use of the effi-

cient NTT-based polynomial multiplication, while secrets and errors are sampled from a narrow

CBD. Though NewHopeNIST offers competitive performance, one subtle disadvantage is that

NewHopeNIST only offers two parameter sets with NIST security level 1 (n = 512) and 5 (n = 1024)

due to restrictions on parameters (𝑛 = 2
𝑘
) to allow usage of NTT operation.

Kyber: Kyber is a suite of IND-CCA secure KEMs (referred as KyberKEM) based on MLWE

(KyberKEM) [14]. It operates over the module R𝑘
𝑞 , wherein the underlying ring R𝑞 is same as

that of NewHopeNIST and also utilizes NTT for polynomial multiplication. Secrets and errors are

sampled from a simple CBD distribution and ciphertexts are compressed for compactness. The

design of KyberKEM is very simple and its security is also very scalable (with dimension 𝑘 of the

module). One main disadvantage is the size of the public module a with 𝑘2
polynomials which is 𝑘

times more compared to an RLWE scheme with equivalent security.

Saber: Saber is a suite of IND-CCA secure KEMs very similar to KyberKEM, but based on MLWR

(referred as SaberKEM) [60]. SaberKEM operates in the same ring as KyberKEM, but utilizes a

power of 2 modulus, which simplifies modular arithmetic and accelerates sampling operations.

SaberKEM offers very competitive speeds along with bandwidth performance owing to use of

rounded/compressed elements.

LAC: LAC is a suite of cryptographic algorithms based on RLWE offering IND-CCA secure PKE,

KEM and KEX schemes. We refer to the latest specification of LAC (LAC-v3) [120] which we denote

as LACKEM. It is the only candidate that offers byte level moduli (q = 256/251) facilitating for band-

width efficiency and highly vectorized implementations. They operate over a similar cyclotomic

ring as NewHopeKEM and sample secrets and errors from a narrow CBD with fixed hamming

weight. The use of byte-size modulus comes with high decryption failures and a combination of

BCH and D2 error correcting codes are used to achieve negligible failure rates.

Round5: Round5 is a suite of cryptographic algorithms offering IND-CPA secure KEMs and IND-

CCA secure PKE based on the GLWR problem with sparse ternary secrets, which can be instantiated

as both an LWR/RLWR/MLWR problem (referred as Round5NIST) [18]. Round5 is based on a uni-

fied design with the same code base and thus offers flexibility. The operating ring is Z𝑞 [𝑥]/(𝜙 (𝑥))
with 𝜙 (𝑥) = 𝑥𝑛 + 𝑥𝑛−1 + . . . + 1 (prime cyclotomic ring). The operating modulus is a power of 2

(less than 2
16
) and the scheme utilizes a lightweight linear error correcting code known as "XEf”

for negligible failure rates [153]. Round5KEM also offers the best bandwidth performance among

lattice-based schemes mainly owing to use of sparse and ternary secrets along with rounded public

keys and ciphertexts.

ThreeBears: ThreeBears is a family of IND-CCA secure KEMs based on the Integer version of

the MLWE (I-MLWE) problem (referred as ThreeBearsNIST) [82]. This is the only LWE-based

candidate which is builds upon a "reconciliation-based" noisy − DH scheme that is subsequently

converted to a KEM, unlike other schemes which directly build upon the LPREncrypt style PKE
scheme. The scheme mainly involves computation with big integers and a simple Melas-type BCH

ECC is used to achieve negligible decryption failure rates. Three parameter sets are offered at NIST

security levels 2, 3 and 4.

3.6.2 NTRU-based candidates: Two schemes NTRUKEM and NTRUPrimeKEM are based on hard-

ness of the NTRU assumption and the framework of the NTRUEncrypt PKE scheme. An attractive

feature of both these schemes is that these KEMs are perfectly correct, devoid of any decryption

failures. Both the NTRU-based schemes offer very competitive performance for both encapsulation
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Table 2. Parameter sets of the second round NIST candidate PKE/KEMs based on the LWE/R and the NTRU
problem, which are grouped together based on NIST security levels 1, 3 and 5. However, schemes that do not
belong to same security level are explicitly mentioned in brackets. unless otherwise specified explicitly in
brackets. C denotes classical while PQ denotes Post-Quantum.

Scheme Parameter Hardness (Dimension,
Modulus)

Attack C/PQ
security
(bits)

Failure
Prob.

Size(bytes)

pk ct sk1

NIST Security Category 1
FrodoKEM FrodoKEM − 640 LWE 640, 2

15
Dual 148/108 2

−138.7
9616 9720 19888

NewHopeKEM NewHope512 RLWE 512, 12289 Dual 112/101 2
−213

928 1120 1888

LACKEM LAC − 128 − v3a RLWE 512, 251 Dual 148/141 2
−151

544 704 512

Round5PKE R5ND_1PKE_5d RLWR 508, 2
10

Hybrid 132/120 2
−142

461 636 493

Round5PKE R5N1_1PKE_0d LWR 636, 2
12

Hybrid 145/133 2
−146

5740 5804 5772

KyberKEM Kyber512 MLWE 256 x 2, 3329 Dual 111/100 2
−178

800 736 1632

SaberKEM LightSaber MLWR 256 x 2, 2
13

Primal 125/114 2
−120

672 736 2304

ThreeBearsKEM (2) BabyBear I-MLWE 312 x 2, 2
10

Primal 154/140 2
−156

804 917 40
2

NTRUKEM ntruhps2048677 NTRU 677, 2048 Hybrid -/144 0 931 931 1235

NTRUKEM ntruhrss701 NTRU 701, 8192 Hybrid -/134 0 1138 1138 1452

NTRUPrimeKEM (2) sntrup653 NTRU 653, 4621 Hybrid 129/117 0 994 897 1518

NTRUPrimeKEM (2) ntrulpr653 NTRU 653, 4621 Hybrid 130/118 0 897 1025 1125

NIST Security Category 3
FrodoKEM FrodoKEM − 976 LWE 976, 2

16
Dual 214/154 2

−199.6
15632 15744 31296

LACKEM LAC − 192 − v3a RLWE 1024, 251 Hybrid 278/267 2
−324

1056 1352 1024

Round5PKE R5ND_3PKE_5d RLWR 756, 2
12

Hybrid 194/176 2
−256

780 950 828

Round5PKE R5N1_3PKE_0d LWR 876, 2
15

Hybrid 192/175 2
−144

9660 9732 9708

KyberKEM Kyber768 MLWE 256 x 3, 3329 Dual 181/164 2
−164

1184 1088 2400

SaberKEM Saber MLWR 256 x 3, 2
13

Primal 203/185 2
−136

992 1088 2304

ThreeBearsKEM (4) MamaBear I-MLWE 312 x 3, 2
10

Primal 235/213 2
−206

1194 1307 40
2

NTRUKEM ntruhps4096821 NTRU 821, 4096 Hybrid -/178 0 1230 1230 1592

NTRUPrimeKEM sntrup761 NTRU 761, 4591 Hybrid 153/139 0 1158 1039 1763

NTRUPrimeKEM ntrulpr761 NTRU 761, 4591 Hybrid 155/140 0 1039 1167 1294

NTRUPrimeKEM (4) sntrup857 NTRU 857, 5167 Hybrid 175/159 0 1184 1312 1463

NTRUPrimeKEM (4) ntrulpr857 NTRU 857, 5167 Hybrid 176/160 0 1322 1184 1999

NIST Security Category 5
FrodoKEM FrodoKEM − 1344 LWE 1344, 2

16
Dual 279/201 2

−252.5
21520 21632 43088

NewHopeKEM NewHope1024 RLWE 1024, 12289 Dual 257/233 2
−216

1824 2208 3680

LACKEM LAC − 256 − v3a RLWE 1024, 251 Dual 316/301 2
−302

1056 1464 1024

Round5PKE R5ND_5PKE_5d RLWR 946, 2
11

Hybrid 256/232 2
−227

978 1301 1042

Round5PKE R5N1_5PKE_0d LWR 1217, 2
15

Hybrid 257/234 2
−144

14636 14724 14700

KyberKEM Kyber1024 MLWE 256 x 5, 3329 Dual 254/230 2
−174

1568 1568 3168

SaberKEM FireSaber MLWR 256 x 5, 2
13

Primal 283/257 2
−165

1312 1472 3040

ThreeBearsKEM PapaBear I-MLWE 312 x 4, 2
10

Primal 314/280 2
−256

1584 1697 40
2

and decapsulation along with compact keys and ciphertexts.

NTRU: NTRU is a family of perfectly correct IND-CCA secure KEMs (referred as NTRUKEM) [51]

and is a merger of two first round candidates NTRUEncrypt and NTRUHRSS KEMs. The scheme

is a variant of the NTRU − SXY KEM which supports parameter sets of both its aforementioned

parent schemes. This underlying PKE has the ability to check for invalid ciphertexts and hence is

rigid. Thus, it does not rely on re-encryption for IND-CCA security and is in fact the only scheme

that does not utilize re-encryption for IND-CCA security [30].

NTRUPrime: NTRUPrime is a family of perfectly correct IND-CCA secure KEMs (referred as

NTRUPrimeKEM) which come in two flavours - StreamlinedNTRUPrime and NTRULPRime [27].
The StreamlinedNTRUPrime is directly based on the NTRUPrime KEM [28], where the public

key is in a quotient form commonly used in NTRU-based schemes and ciphertexts in a rounded
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product form (h · r) with an implicit message. But, NTRULPRime is based on the "encryption-based"

LPREncrypt PKE scheme where the public key is a rounded product similar to an LWR instance.

The designers opted to go for both the approaches since it is not clear which of the quotient NTRU

or product NTRU is a safer option. Both the variants use rounded ciphertext components and hence

have very competitive bandwidth performance.

3.7 Concrete security analysis
In this section, we very briefly touch upon well known techniques to estimate concrete hardness

of lattice-based schemes, which also offer guidance to choose appropriate parameters to meet the

desired security levels. There are primarily two generic classes of attacks against lattice-based

schemes - (1) primal attack and (2) dual attack. Primal attack typically works by solving the search-

LWE problem as a unique SVP on the same lattice. The dual attack tries to solve the decisional-LWE

problem by reducing it to a SIS problem and in-turn into a problem of finding short vectors in a

related dual lattice. While primal attacks are considered for both LWE and NTRU schemes, dual

attacks are only considered for LWE schemes. It is also worth noting that both attacks do not

exploit any algebraic structure in any of the variants of the LWE/R or NTRU problem.

The best known algorithms to solve such problems typically rely on lattice-reduction algorithms

and BKZ is the most common algorithm used, given the limited number of LWE/NTRU samples

available to the adversary (samples are constructed from the public key/ciphertext) [157]. The

BKZ algorithm in turn involves polynomially many calls to an SVP oracle operating over a small

dimension 𝛽 . Schemes however ignore the polynomial factor and conservatively only evaluate the

cost for a single SVP call in dimension 𝛽 . Two well known techniques for solving SVP are (1) sieving

and (2) enumeration. Enumeration requires super exponential time but very limited memory and is

typically more efficient in lower dimensions, but sieving which consumes exponential time and

memory space is widely considered to be better for high dimensions used in lattice-based schemes.

The cost of sieving in the RAM model in a dimension 𝛽 is estimated to be 𝛽 · 2𝑐𝛽 + 𝑜 (𝛽) and one of

the best known and commonly agreed upon heuristic complexity to solve it classically is 2
0.292𝛽

while it is 2
0.265𝛽

assuming a quantum speedup due to the Grover’s algorithm (𝛽 factor is usually

ignored for conservatism). Concrete security estimates done using this cost model are well known

as core-sieve (classical) or Q-core-sieve (quantum) respectively. While this is the most commonly

used cost model, several other cost models exist in literature, each associated with a certain set

of assumptions about the operation and memory access costs. We refer to the work of Albrecht

et al. [7] who perform a concrete and detailed security analysis of all the round 1 lattice-based

NIST candidates based on both the primal and dual attacks considering a wide range of cost models

available in literature.

However, there exists another class of attacks called hybrid attacks which use a combination

of lattice-reduction and combinatorial techniques sometimes yielding better attacks than primal

and dual attacks [89]. Among the 9 NIST candidates, hybrid attacks have shown to be performing

better on NTRU-based schemes NTRUKEM, NTRUPrimeKEM and Round5PKE with sparse secrets

and some variants of LACKEM. It is worth noting that the estimator of Albrecht et al. [7] does not
take hybrid attacks into consideration. Please refer Tab.2 for some representative parameter sets of

the all the second round NIST candidate PKE/KEMs secure in the IND-CCA security model.

1
The secret key of ThreeBears is chosen to be a short random seed (40 bytes) for compactness. Thus, this seed needs to be

expanded into a pseudorandom element using a deterministic function before being used for computation.

2
We do not directly compare the secret key sizes as some schemes such as ThreeBears choose to use a short random seed as

the secret key which is pseudonrandomly expanded before being used for computation, while other schemes choose to

directly denote the pseudorandom element as the secret key.
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4 BUILDING BLOCKS FOR PRACTICAL LATTICE-BASED CRYPTOGRAPHY
The two most computationally intensive operations used in lattice-based cryptography are polyno-

mial/matrix multiplication and discrete distribution sampling. Thus, the performance and efficiency

of any lattice-based scheme mainly hinges on the way these operations are implemented. In this

section, we will review in detail the various implementation aspects (algorithmic and design

optimizations) of these sub-blocks used in lattice-based key-sharing schemes.

4.1 Polynomial/Matrix Multiplication
Polynomial multipliers are utilized in almost all lattice-based NIST candidates in the second round

except FrodoKEM which operates over matrices and vectors. We consider four main parame-

ters/factors which heavily influence the adopted technique to perform polynomial multiplication,

(1) Operating modulus: 𝑞 (2) Degree of polynomial: 𝑛 (3) Polynomial Ring: R𝑞 (4) Nature of operands:

e.g. sparse/non-sparse, binary/ternary/large. We together refer to them as the Impl_factors. We

can also orthogonally decompose the operation of polynomial multiplication into two layers (1)

High-Level Polynomial Arithmetic and (2) Low-levelModular Arithmetic. Some of the standard high-

level algorithmic approaches towards polynomial multiplication include Schoolbook method [107],

Karatsuba [104], Toom-Cook [166] and Number Theoretic Transform (NTT) [56]. The choice of a

particular technique is based on the consideration of all the aforementioned Impl_factors.

4.1.1 Number Theoretic Transform. : The NTT approach for polynomial multiplication is typically

utilized in polynomial rings such as Z𝑞 [𝑥]/(𝑥𝑛 + 1) with 𝑛 = 2
𝑘
and 𝑞 ∈ P satisfying 𝑞 ≡ 1 mod

2𝑛. Such a value of 𝑞 ensures the presence the 2𝑛𝑡ℎ root of unity in [0, 𝑞] which facilitates full

factorization of (𝑥𝑛 + 1) in the ring into linear factors (such 𝑞 is referred to as max split modulus).
In such a case, the polynomial multiplication operation (along with reduction) can be implemented

as "negacyclic" convolution using the Number Theoretic Transform (NTT) which is a ring based

analogue of the efficient Fast Fourier Transform (FFT). Modular multiplication of two polynomials

a and b in the ring can be computed as a · b = NTT
−1 (NTT(a) ∗ NTT(b)), which involves 2

forward NTTs and 1 inverse NTT (2 NTT and 1 NTT
−1
). Both NTT and NTT−1

can be computed in

O(𝑛𝑙𝑜𝑔2 (𝑛)) time and the point-wise multiplication operation (∗) in O(𝑛) time and thus NTT-based

polynomial multiplication can be computed in O(𝑛𝑙𝑜𝑔2 (𝑛)) time. One advantage of NTT is that it

is homomorphic with respect to addition/subtraction (i.e) NTT(a ± b) = NTT(a) ± NTT(b). This
saves un-necessary back and forth conversions and also enables schemes to generate ciphertexts

in the NTT domain [9]. But, NTT is not homomorphic with respect to the rounding operation

and hence is generally not attractive for LWR-based schemes, eg. SaberKEM and Round5PKE have

opted not to use NTT. Moreover, NTT is also an isomorphism (bijective mapping onto itself) and

thus uniformly random polynomials or vectors of polynomials can be directly sampled in the NTT

domain, saving about 𝑘2
NTT operations (𝑘 is rank of the module).

Algorithmic Description: The NTT uses the power of 𝑛𝑡ℎ and 2𝑛𝑡ℎ roots of unity in Z𝑞 as pre-

computed constants (referred together as twiddle factors (Γ)). The NTT is computed in 𝑙𝑜𝑔2 (𝑛)
stages with each stage consisting of 𝑛/2 independent "butterfly" operations. A "butterfly" operation

takes three inputs (𝑎, 𝑏, Γ) and involves one multiplication, one subtraction and one addition to gen-

erate an output pair (𝑐, 𝑑). One can opt between two types of butterfly operations - (1) Cooley-Tukey
butterfly: (𝑐, 𝑑) = (𝑎 + Γ · 𝑏, 𝑎 − Γ · 𝑏) and (2) Gentleman-Sande butterfly: (𝑐, 𝑑) = (𝑎 +𝑏, (𝑎 −𝑏) · Γ).
The pairs of coefficients and the twiddle factors used in a butterfly operation depend upon the stage

of the NTT. Apart from the NTTs, NTT-based multiplication also involves some overhead steps

such as pre-scaling, post-scaling and reordering of the inputs. However, intelligent algorithmic

optimizations involving use of alternate butterfly structures and modified twiddle factors suggested

by Roy et al. [149] and Pöppelmann et al. [140] eliminated all the overhead steps by integrating
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them into the NTT transform.

Implementation Aspects: The NTT operation is an in-place computation and thus does not consume

extra stack space, but is memory intensive involving lot of load and store operations. Thus reducing

reducing memory operations tremendously improves speed of the NTT operation. Well known

techniques for improved memory accesses include (1) Merging multiple stages of NTT using

vectorized load and store instructions and computation through effective utilization of available

registers [13, 41] (2) Packing multiple coefficients of a butterfly operation in a single memory

location and dynamically changing the relative location of the coefficients after each stage such that

coefficient pair required for next stage are stored together [149] (3) Address-based partitioning of

the coefficients in multiple memory modules which can be retrieved simultaneously enabling single

cycle butterfly operations in hardware [22, 138]. It is worth noting that there is also an out-of-place

variant of NTT known as constant-geometry NTT. The in-place NTT involves accessing coefficients

in different order depending upon the stage of the NTT, while the constant-geometry NTT accesses

the coefficients in the same order in every stage of the computation, which heavily simplifies

the read-write control logic, but requires additional memory. While in-place NTT is the popular

choice, constant-geometry NTT has been utilized in hardware implementations to simplify control

logic [22].

Another aspect with respect to implementing NTT is generation and utilization of the twiddle

factors. Most implementations (mostly SW) adopt the standard approach of pre-computing the

twiddle factors [62, 140] which can be memory hungry on embedded platforms. One can also

completely generate all the twiddle factors online in conjunction with the NTT operation using a

dedicated multiplier in HW [16], but could affect performance on SW platforms. However, one could

trade performance for memory by pre-computing a portion of the twiddle factors and generating

the others on the fly, as done by Alkim et al. [13, 22]. NTT can also be heavily parallelized in

hardware by computing multiple butterfly operations in parallel, in pursuit for very fast NTT

implementations, however it also complicates memory access scheme with complex control logic

as shown in [52, 109, 161].

NTT over alternate rings: Lyubashevsky and Seiler [158] recently proposed possibility of performing

efficient NTT operations in a new ring Z𝑞 [𝑥]/(𝑥𝑛 − 𝑥𝑛/2 + 1) where the modular polynomial is an

𝑛𝑡ℎ cyclotomic polynomial with 𝑛 = 2
𝑘 · 3ℓ . For (𝑛, 𝑞) = (768, 7681), they showed that (𝑥𝑛 −𝑥𝑛/2 +1)

can be factorized in the ring upto cubic factors, leaving 𝑛/3 polynomials each with degree 3. Thus,

pointwise multiplication in the case of Z𝑞 [𝑥]/(𝑥𝑛 + 1) is replaced with multiplication of 𝑛/3 cubic

polynomials modulo (𝑥3 − 𝛾𝑖 ) for (i = 0, . . . , 𝑛/3 − 1), each of which requires 11 multiplications

and 6 additions. The AVX2 implementation of this NTT with (𝑛, 𝑞) = (768, 7681) was shown to be

twice as fast as NTT in the ring Z𝑞 [𝑥]/(𝑥𝑛 + 1) with (𝑛, 𝑞) = (256, 7681). This could open doors to

attractive possibilities such as having NewHopeKEM in dimension 𝑛 = 768 offering NIST level 3

security and also possibly identifying several other rings where efficient NTT is possible.

4.1.2 Karatsuba and Toom-Cook Algorithm: Other standard well known approaches towards poly-

nomial multiplication are Karatsuba [104] and Toom-Cook [166] (a generalization of Karatsuba),

both of which are asymptotically faster than the schoolbook approach and typically used when

application of NTT is not possible. Karatsuba multiplication is a divide-and-conquer approach

which involves splitting multiplication of two 𝑛-degree polynomials into three (instead of four)

multiplications of 𝑛/2-degree polynomials. This splitting is done recursively until the school-book

approach outperforms Karatsuba over small degree polynomials. Toom-Cook involves splitting

polynomials into more than two parts (Toom-3 with five multiplications of 𝑛/3 length polynomials
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or Toom-4 with seven multiplication of 𝑛/4 length polynomials). The efficiency comes from trad-

ing multiplications with the cheaper additions. While modular reduction after multiplication is

integrated into the NTT, it has to be done separately when using Karatsuba or Toom-Cook.

Both Karatsuba and Toom-Cook are out-of-place computations and recursive in nature and

hence consume extra stack space. Karmakar et al. [105] proposed to utilize an in-place variant of

the Karatsuba multiplication algorithm to implement SaberKEM on the memory constrained ARM

Cortex-M0 microcontroller, which however comes at a cost on performance (≈ 2𝑥 ). They are also

highly memory intensive with numerous loads and stores. Thus, several works have proposed

efficient techniques to minimize time due to load-store operations by making use of vectorized

load-store instructions and efficiently utilizing all the available registers for computation [102, 105].

Kannwischer et al. [102] recently proposed fast polynomial multiplication routines utilizing an

optimal combination of Karatsuba, Toom-Cook and schoolbook multiplication for polynomial rings

Z𝑞 [𝑥]/(𝜙 (𝑥)) where𝑞 = 2
𝑘
. They perform an automated exploration for the optimal combination of

the three techniques for different polynomial degrees. They also utilized several low assembly level

optimizations to achieve the fastest multiplication routines for two NIST candidates SaberKEM and

NTRUKEM on the ARM Cortex-M4. It is worth noting that the fastest AVX2 optimized polynomial

multplication in the ring Z𝑞 [𝑥]/(𝑥𝑛 − 1) with 𝑞 = 2
𝑘 , 𝑛 ∈ P was reported by Hülsing et al. [93] who

also used an optimal (but adhoc) combination of Karatsuba, Toom-Cook and schoolbook techniques

coupled with low-level assembly optimizations.

4.1.3 Other Specialized Routines. While the Karatsuba and Toom-Cook multiplication algorithms

are efficient for a general case, it might be possible in some cases to exploit certain special structures

within the operand polynomials. For example, when one of the operand polynomials is small

(binary or ternary) and sparse, multiplication can simply be done using adders and shifters (eg.

LAC, NTRUKEM and NTRUPrimeKEM). In some cases, this was found to be more efficient than

utilizing asymptotically better techniques such as the NTT, Karatsuba or Toom-Cook [48, 139].

Several works have also addressed the performance issues of polynomial multiplication in the

ring Z𝑞 [𝑥]/(𝑥𝑛 − 1) (NTRUEncrypt scheme) by considering it as a convolution operation. Several

hardware implementations for performing fast convolution of sparse and binary polynomials have

been proposed [20, 99, 113]. Liu et al. [117] proposed a generic technique to perform truncated

polynomial multiplication in the same ring using low-cost LFSR (Linear Feedback Shift Register)

and the same technique has been adopted in several recent works to perform high speed polynomial

multiplication [71, 72]. In fact, this technique has shown to be adaptable to multiply in several other

rings and can (with high resource utilization) perform 𝑛-degree truncated polynomial multiplication

in about 𝑛 clock cycles (linear time).

4.1.4 Low Level Modular Arithmetic: Utilizing efficient modular reduction techniques is integral to

achieving high performance since it is the most utilized atomic computation in the scheme and

in particular during polynomial multiplication, to limit the width of the product. The operating

modulus 𝑞 is crucial in choosing the modular reduction technique. Some standard choices are (1)

𝑞 = 2
𝑘
used in schemes such as SaberKEM, NTRUKEM and Round5PKE (2) 𝑞 ∈ P used in schemes

such as NewHopeKEM, KyberKEM, NTRUPrimeKEM and LACKEM. When 𝑞 = 2
𝑘
, reduction is

almost free since it can be simply done by ignoring the MSBs of the product. However when 𝑞

is a prime, there are several efficient (division-less) techniques known to perform reduction such

as naïve schoolbook reduction, Montgomery reduction [125] and Barrett reduction [23]. Naïve

schoolbook reduction is typically used when coefficients are represented as single/double-precision

floating point numbers (e.g. in floating-point based AVX2 accelerated NTT implementations on

Intel x-64 [9, 12]). It simply involves multiplication with an approximate precomputed inverse

of the modulus 𝑞 yielding an approximate quotient, which is subsequently multiplied with the
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modulus and subtracted from the input to yield the result. This is convenient since vectorized

floating-point multiplications are faster than integer multiplication on AVX2 Intel processors.

However, on embedded platforms where floating point arithmetic is not possible, well known

integer reduction techniques such as barrett and montgomery reduction are utilized. Barrett

reduction is used to perform one-time reductions of numbers which can typically fit in one word (not

too large) eg. output of addition. It is an optimized and more efficient form of the naïve schoolbook

reduction technique which involves smaller multiplications and arithmetic shift operations [23].

While the Barrett reduction is used for general primes, specialized routines can be used if the prime

has a certain special structure. For instance, NewHopeKEM utilizes the prime 𝑞 = 2
13 +2

12 +1 while

KyberKEM works with 𝑞 = 2
13 − 2

9 + 1. Several reported works have demonstrated that modular

reduction using these special primes can be done be efficiently by trading multiplication operations

with shift and add operations [119, 158].

However when back to back multiplications are performed, montgomery reduction is the most

common technique used to typically reduce large double-word integers. Let us consider computation

of 𝑠 mod 𝑞 where 𝑠 = 𝑚𝑞 + 𝑡 and 𝛽 = 2
ℓ
is the minimum word size that can fit 𝑞. It involves

calculating Hensel remainder 𝑡 ′ = 𝑠𝛽−1
mod 𝑞 (instead of 𝑠 mod 𝑞) where 𝑠 = 𝑚𝑞 + 𝑡 ′𝛽 , which

can be done using cheap multiplications modulo 𝛽 . In an NTT computation, the other operand is

always a constant twiddle factor Γ, thus the factor 𝛽−1
can be easily removed using Γ𝛽 mod 𝑞 as a

modified constant. Naïve calculation of Hensel remainder involves performing two double word

multiplications, but Seiler [158] proposed an efficient technique that only requires two cheaper single

word multiplications which independently operates over the high and low words of s. This allowed
to vectorize upto 16 integer reductions as compared to just 4 floating point reductions on an AVX2

supported platform, subsequently yielding the fastest NTT on AVX2 (4.2× faster than the fastest

floating-point based NTT of [9]). Subsequently, Lyubashevsky and Seiler [122] proposed another

improvement which saved one more multiplication with 𝑞−1
through precomputing additional

modified twiddle factors. However, the same techniques do not apply to the ARM Cortex-M4

platform since high and low words of the product cannot be separately computed [102].

4.2 Polynomial Inversion
Finding inverses of polynomials in the ring is another crucial operation for NTRU-based schemes

which forms a major bottleneck in the key-generation procedure. A well known technique to com-

pute inverses is the extension of Euclid’s GCD algorithm [97], but it consists of several conditional

branches dependent on the input (which is usually secret). Thus, the common technique used

in cryptography (eg. ECC scalar multiplication) is to use Fermat’s little theorem, implemented

as a chain of multiplications and multi-squarings [26]. NTRU-based schemes require to compute

inverses in the ring modulo 𝑞 = 3, 𝑞 = 2
𝑘
and 𝑞 ∈ P and different techniques are used depending

on the type of modulus. A standard technique to perform inversion modulo 𝑞 = 2
𝑘
was proposed

by Silverman [160], which works by first computing inverse modulo 2 and subsequently a variant

of the Newton’s iteration to compute modulo 2
𝑘
. The first step of inversion modulo 2 is done

using Fermat’s little theorem and Hülsing et al. [93] identified that it can effectively be computed

as a series of bit permutations. While this technique is fast, inversion modulo 𝑞 = 3 or 𝑞 ∈ P is

computed using the slower almost-inverse algorithm [97], which involves a series of multiplications

and divisions by 𝑥 until the degree of the input is zero. Recently, Bernstein and Bo-Yin Yang [31]

proposed an improvement of the Euclid’s gcd algorithm whose AVX2 implementation could yield

a 1.7× speed-up compared to the AVX2 implementation of the almost-inverse algorithm in the

NTRU − HRSS KEM [93]. This inverse procedure to date is the fastest for a generic prime and has

also been used to optimize inversions in implementations of NTRUKEM and NTRUPrimeKEM.
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4.3 Discrete Distribution Samplers
Research on efficient polynomial multiplication has matured so much that the sampling/generation

of the long polynomials/matrices is now the major bottleneck in most lattice-based schemes. We can

broadly classify the sampling operation into two types (1) Sampling uniformly random components

in [0, 𝑞] and (2) Sampling from a small distribution. Sampling in both these cases requires a large

pool of randomness which is usually gained from PRNGs.

4.3.1 Uniform Sampling in [0, 𝑞]. Rejection sampling is a simple technique used to sample uni-

formly from a given range [0, 𝑞]. It involves uniformly sampling in the range [0, 2𝑘 ] where
𝑘 = ⌈𝑙𝑜𝑔2 (𝑞)⌉ and selecting those less than 𝑞 as valid samples. This technique though fairly

simple, suffers from very high rejection rates (1 − 𝑞/2𝑘 ), as high as 50% for certain primes. Gueron

and Schlieker [81] proposed to accept samples from a wider range [0, 5𝑞] for 𝑞 = 12289 and sub-

sequently reduce them to [0, 𝑞] which brought down the rejection rate from 25% to 6%. On the

contrary, for a simple choice of 𝑞 = 2
𝑘
completely eliminates the need for rejection sampling as all

samples can be accepted by sampling the appropriate number of bits [105]. This technique is used

to sample the public element A ∈ Z𝑛×𝑛𝑞 /a ∈ R𝑘×ℓ
𝑞 in most if not all lattice-based schemes.

4.3.2 Error Sampling. Initial instantiations of the LPREncrypt or the Noisy − DH scheme specified

to sample both the secrets and errors from short discrete gaussian distributions. This subsequently

lead to a line of works related to efficient implementations of discrete gaussian samplers on both HW

and SW platforms [148, 150]. Some of the most efficient proposals for discrete Gaussian samplers

are the cumulative distribution table (CDT) sampler [135], Bernoulli sampler [67], the Knuth-Yao

sampler [108], and discrete Ziggurat sampler [47]. However, the notion of using discrete gaussian

distribution for PKE/KEMs was challenged by Alkim et al. in [12] who argued that high quality

gaussian distribution is only required for schemes relying on zero-knowledge proofs (identification

and digital signature schemes) and subsequently proved that sampling from a simpler CBD with

sufficient standard deviation can also yield secure LWE instances for PKE/KEMs. Moreover, gaussian

samplers were also shown to be vulnerable to side-channel and fault attacks by a number of reported

works [46, 69, 70]. We refer the reader to [85] for more details on the various gaussian samplers

used in lattice-based schemes. Subsequently, most lattice-based PKE/KEM schemes resorted to

sampling from simpler distributions such as CBD, uniform and binary/ternary polynomials with

fixed/variable hamming weight. Samples from a CBD with standard deviation 𝜎 =
√
𝑘/2 can be

easily computed as

∑𝑘
𝑖=0
(𝑏𝑖 − ´𝑏𝑖 ) where 𝑏𝑖 , ´𝑏𝑖 are uniform independent bits [12, 120]. Naïve rejection

sampling is used to sample from short uniform distributions [37]. However, FrodoKEM is the only

KEM that still relies on sampling from a rounded gaussian distribution, which is done using a

constant-time inversion sampling based on look-up tables [10].

Though most lattice-based schemes sample from relatively simple distributions, discrete distri-

bution samplers still form the main bottleneck mainly due to a high requirement of randomness

for sampling very long polynomials or large matrices. Most NIST candidates have resorted to using

NIST standardized constructions such as SHAKE [32], SHA-256/SHA-512 and AES in counter mode

as cryptographically secure PRNGs to generate randomness. In fact, implementations of most

schemes spend a majority of time in just operation of the PRNGs [71, 103] and this is especially

true in schemes based on standard LWE or MLWE with a very large public parameter A. Several

works demonstrate that use of simpler cryptographic constructions such as Trivium stream cipher

in [86] and SNEIK lightweight block cipher in [151] or simple statistical randomness sources such

as xoshiro-128** PRNG [40] result in several factor improvement in overall speed of the scheme.

5 PHYSICAL ATTACKS ON LATTICE-BASED CRYPTOGRAPHY
There also exists a large body of work done on physical security of lattice-based schemes such as

Side-Channel Attacks (SCA) and Fault Attacks (FA). The adversary is assumed to have physical
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access to the device computing the cryptographic algorithm and this attacker model is especially

relevant to embedded devices deployed in cyber physical systems (CPS). In this section, we review

the various physical security aspects of lattice-based schemes against side-channel and fault attacks.

5.1 SCA over NTRU-based schemes
The polynomial multiplier within NTRU based schemes has been the main target of SCA over

NTRU-based schemes. Lee et al. [114] proposed the first SPA (Simple Power Analysis) and DPA

(Differential Power Analysis) style attacks on the sparse binary polynomial multiplier used in the

NTRUEncrypt scheme. The attack mainly targeted the accumulator which is updated only when

the partial product is non-zero, denoting multiplication with s[𝑖] = 1. Three countermeasures were

proposed (1) Random initialization of the accumulator (2) Additive masking of the secret (with

random integer or polynomial) and (3) Shuffling the order of access of secret coefficients. The

first countermeasure succumbed to second order DPA and second countermeasure was claimed to

have weakness against SPA. The authors only considered the combination of the first and third

countermeasure to be reasonably secure. Wang et al. [169] subsequently broke Lee et al.’s combined

countermeasure using a first order collision attack. They proposed a new "Random Key Rotation"

technique (multiplication of operands with 𝑥𝑖 and 𝑥 (𝑁−𝑖) resp. in the polynomial ring modulo

(𝑋𝑛 − 1)) as a potential countermeasure against their attack. Schamberger et al. [156] extended
the attack of Lee et al. [114] to sparse trinary secrets and also demonstrated second order CPA

attacks over the additive masking (with polynomials) countermeasure. They also evaluated the

combination of random key rotation with shuffling countermeasure and found no second order

leakage even with 2 million measurements. Huang et al. [92] proposed a range of Vertical CPA

(VCPA), Horizontal In-Depth CPA (HIDCPA) and Online Template Attacks (OTA) against a school-

book polynomial multiplier used in NTRUPrimeKEM, where each coefficient of the product is

computed individually. They also analyze the strength of the random initialization countermeasure

and shuffling countermeasure, but demonstrate their susceptibility to CISPA (Chosen Input SPA)

attacks and show that the countermeasure of additively masking both the ciphertext and the secret

thwarted their attacks and hence can considered to be secure.

5.2 SCA over LWE-based schemes
5.2.1 SCA over polynomial/matrix-vector multiplier. Primas et al. [141] reported the first attack on

the NTT-based polynomial multiplier used in the RLWE-based LPREncrypt scheme implemented on

the ARM Cortex-M4 microcontroller. The attack only requires a single trace and works by matching

templates with all the modular reduction operations within NTT. Subsequently, the probabilities of

intermediates from template matching are combined into an NTT-like graph structure and a belief

propagation (BP) algorithm [133] is applied to reveal the secret key. The attack also leveraged upon

information from non-constant time DIV operations and required about 100 million templates.

Subsequently, Pessl et al. [137] improved the attack that required just 233 templates to attack a

constant-time implementation of KyberKEM. The improvements were mainly due to (1) Templating

based on hamming weights of loads and stores instead of actual value of operands (2) Use of

improved belief propagation algorithm. The only concrete countermeasure against this attack is to

shuffle the order of butterfly operations within NTT.

Aysu et al. [15] reported standard SPA and DPA style attacks over a HW implementation of

a binary schoolbook polynomial multiplier, which mainly targeted the accumulator, which adds

up partial products. Their attack uses standard DPA to target the multiplier using an "extend and

prune" strategy, wherein the (𝑖 + 1)𝑡ℎ coefficient is recovered assuming all previous 𝑖 coefficients

are retrieved/known. They proposed random initialization of the accumulator as a potential coun-

termeasure against first order DPA, but demonstrated its susceptibility to second order DPA. Aysu
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et al. [17] subsequently proposed single trace horizontal attacks on generic schoolbook multipli-

ers used within HW designs of the NewHopeUSENIX and FrodoCCS KEX schemes on FPGAs.

Their attack however utilizes "horizontal" DPA and the same "extend and prune" strategy in a

greedy fashion, resulting in a full key-recovery using just a single trace over FrodoCCS. Bos et
al. [39] investigated feasibility of similar single trace attacks over software implementations of

the FrodoCCS KEX scheme. They rely on matching template of the accumulator values instead of

DPA and subsequently apply two variants of the "Extend and Prune" strategy (1) greedy pruning

(always pick single best candidate for each coefficient) and (2) Relaxed pruning with b candidates

(Selecting b best candidates for each coefficient). They showed that relaxed pruning with a large "b"

results in better success rates across all parameter sets of FrodoCCS and FrodoKEM. They also draw

an interesting inference that schemes working in larger dimensions (theoretically more secure)

are more susceptible to single trace attacks than those working in smaller dimensions. Standard

countermeasures such as shuffling the order of accumulation and insertion of dummy operations

protect against such attacks. Zijlstra et al. [170] perform a comprehensive evaluation of the cost of a

range of SCA countermeasures for the polynomial multiplier in FPGAs. They propose a number of

countermeasures including (1) low cost novel masker decoder (20% lesser area compared to [147])

(2) redundant representation of secret coefficients as masking countermeasure (adding random

multiples of modulus 𝑞 as masks). They also implement known countermeasures such as (1) random

key rotation [169] (2) blinding countermeasure proposed by Saarinen et al. [152] (Multiplication of

both operands with random integers) (3) Shuffling of the order of butterfly operations within NTT.

5.2.2 Masking LWE-based schemes. Reparaz et al. [147] proposed the first masking scheme for

the decryption procedure of the RLWE-based LPREncrypt scheme. The idea was to additively split

the secret key into two shares and perform the decryption procedure separately with the two

shares, which are later combined using a novel bespoked masked decoder to retrieve the key bit.

Reparaz et al. [146] subsequently proposed a simpler masking approach exploiting the additively

homomorphic property of the LPREncrypt scheme (i.e) Decrypt(c1 + c′
1
, c2 + c′

2
) = Decrypt(c1, c2)

⊕ Decrypt(c′
1
, c′

2
). The ciphertext is masked in the decryption procedure using another ciphertext

corresponding to a random message𝑚𝑟 . This masked ciphertext is subsequently decrypted to a

masked message which is xored with𝑚𝑟 to retrieve the correct message. But, both the masking

schemes incur a heavy performance penalty and suffer from high decryption failures which also do

not make them suitable for IND-CCA security. Subsequently, Oder et al. [131] proposed an improved

holistic masking scheme with negligible decryption failure rate for the RLWE-based LPREncrypt
IND-CCA secure PKE scheme. The central idea of their masking scheme is to encrypt two message

shares (𝑚,𝑚′) separately into two ciphertexts which can be separately decrypted and subsequently

combined to retrieve the message 𝑚 ⊕ 𝑚′. They also propose a masked decryption procedure

with a perfectly correct masked decoder which performs an arithmetic to boolean masking before

decoding. The polynomial multiplier is additionally protected with the random key rotation and

multiplicative masking countermeasure [152]. Multiple other operations identified as vulnerable

such as the binomial sampler, XOFs and the final ciphertext comparator were also masked. The

resulting masked decryption procedure incurred a heavy performance penalty of about 5.7 times

compared to the unmasked case on the ARM Cortex-M4 microcontroller.

5.2.3 SCA over Error Correcting Codes. Some recent works have shown that error correcting codes

implemented within LWE-schemes contain exploitable SCA vulnerabilities. D’Anvers et al. [68]
demonstrated practical key-recovery attacks against the IND-CCA secure LACKEM scheme by

utilizing difference in execution times of error correcting procedures based on the validity of the

codewords. They showed that the timing leakage can be used to instantiate a plaintext checking
oracle and a chosen ciphertext attack can lead to full key recovery. Ravi et al. [144] subsequently

reported similar side-channel assisted chosen-ciphertext attacks over several LWE/R-based NIST
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candidates. They could get information about validity of codewords for chosen ciphertexts from EM-

leakage leading to key-recovery over Round5KEM and LACKEM schemes. They also extended their

attack to schemes which do not use ECCs by utilizing leakage about the output of the encapsulated

IND-CPA secure decryption procedure from the FO transformation. They claim that the only

concrete countermeasure against their attack is to mask all the vulnerable operations [131], but

masking schemes for ECC is currently not known and thus creates an interesting research direction.

5.3 FA over NTRU-based schemes
Kamal and Youssef [98] proposed the first Differential Fault Analysis (DFA) of the NTRUEncrypt
scheme which works by faulting some coefficients (in unknown locations) of the input to the

final multiplication in its decryption procedure. The attacker compares the faulty output from the

correct output to retrieve the secret key. This attack works with success probability (1− 1/𝑝) where
NTRUEncrypt is instantiated with parameters (𝑛, 𝑝, 𝑞). The attacker assumes that he can get direct

access to decryption output and hence this attack does not work in an IND-CCA secure setting.

Subsequently, the same authors reported a protected implementation of the NTRUEncrypt scheme

against their attack using redundancy and checksum-based countermeasures [100].

5.4 FA over LWE/R-based schemes
Valencia et al. [167] perform a fault vulnerability analysis of RLWE-based PKE schemes for

key/message recovery based on various fault models such as bit flips, zeroing and instruction

skips. However, most of their proposed attacks required high number of faults assuming very

powerful fault models. However, Ravi et al. [143] performed the first practical electromagnetic

injection fault attack on LWE-based PKE/KEMs inducing a very small number of faults that resulted

in a scenario where s = e resulting in trivially solvable LWE instances leading to key/message

recovery. Thus, a simple countermeasure against their attack would be to check the equality of

the secret s and error e. Howe et al.et al. [84] proposed to perform a number of statistical tests

such as 𝑡-tests and chi-squared tests to test the validity of the generated secrets and errors. They

also reported an efficient hardware implementation of a protected CDT sampler with reasonable

performance overhead. Fritzmann et al. [76] reported an implementation of a fault-attack resistant

NTT accelerator protected using the Dual Modular Redundancy (DMR) countermeasure. They

perform simulated fault injection and show that the DMR countermeasure enables to achieve fault

detection rates as high as 80%. Arpan et al. [95] presented SPQCop, the first side-channel protected

lattice-based cryptoprocessor on the Zynq 7000 SoC and Zynq UltraScale+ FPGA integrated with a

number of low cost fault propagation and DMR countermeasures to protect critical signals and logic

circuitry against fault attacks, coupled with SCA countermeasures such as instruction shuffling

and random delays which only introduced an additional 5% increase in resource utilization.

6 RESULTS AND COMPARISON
In this section, we attempt to perform a comparative evaluation of speed, efficiency and bandwidth

performance of the second round NIST candidates on both hardware (HW) and software (SW)

platforms. NIST recommended the following platforms for fair evaluation of the candidates [5] (1)

High End SW: Intel x64 running Windows or Linux, (2) Embedded SW: ARM Cortex-M4 32-bit

microcontroller and (3) Embedded HW: Artix-7 FPGA.

There are a number of notable benchmarking efforts for implementation of PQC schemes.

pqm4 [103] is one such benchmarking and testing framework containing state-of-the-art implemen-

tations of PQC schemes on the ARM Cortex-M4 microcontroller. Open Quantum Safe (OQS) [126]

is another project with C implementations of PQC schemes whose main aim is to prototype and

subsequently enable integration of PQC schemes into practical protocols and applications such as

TLS and IPSec. It is worth noting that OpenOQS has integrated PQC primitives into a post-quantum
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secure fork of the OpenSSL library [162]. eBATS (ECRYPT Benchmarking of Asymmetric Systems)

is another well known benchmarking platform for public-key cryptographic schemes, which now

also includes results for efficient implementations of PQC schemes benchmarked on a variety

of high end software platforms [29]. In-spite of existence of several benchmarking frameworks,

we identify some reasons why it is too early to directly rank the schemes based on performance:

1) Benchmarking is an ongoing exercise and hence not all schemes are fully optimized for the

considered implementations platforms 2) Most schemes spend a significant amount of time in

generating randomness using different techniques and there is no agreed upon common technique

used by all schemes 3) Certain optimization techniques though applicable for multiple schemes,

have not yet been utilized in implementations of all the relevant schemes.

6.1 Analysis of Communication Bandwidth:
We perform a comparative evaluation of the bandwidth performance based on the parameter

set table in Tab.2. We only focus on public key and ciphertext sizes, since the secret key is not

exchanged/communicated during the protocol. As shown in practical experiments of PQC schemes

over TLS [101, 132], communication bandwidth serves as the main bottleneck over communication

links where packet loss rates are just more than 3-5%. When comparing LWE and LWR, LWR

in general offers better sizes owing to the use of rounded keys and ciphertexts. We can also

see that the standard LWE-based FrodoKEM has an order of magnitude higher public key and

ciphertext sizes compared to the structured lattice-based schemes, however the standard GLWR

variant of the Round5PKE scheme has much lower bandwidth (by ≈ 1.3 − 1.6×) owing to the

use of sparse ternary secrets and rounded public key and ciphertext components. Bandwidth

requirements for all structured lattice-based schemes are similar ranging from 0.6 − 2.2𝐾𝐵 across

all security levels. Among them, Round5PKE parameters based on RLWR offer the most compact

keys and ciphertexts, while all other structured lattice-based schemes also offer very similar sizes

for equivalent security. Round5PKE is followed by SaberKEM (MLWR) and LACKEM (RLWE).

LACKEM offers very compact sizes mainly due to the use of a byte-size modulus. KyberKEM
(MLWE) and ThreeBearsKEM (I-MLWE) offer the next best key and ciphertext sizes (although very

comparable to SaberKEM).NewHopeKEM based on RLWE offers the largest sizes among structured

lattice-based schemes at NIST security level 5, mainly due to large 𝑛. As far as NTRU-based schemes

are concerned, they offer slightly larger sizes compared to structured LWE/R-based schemes.

6.2 Implementation Results on Software Platforms:
In this discussion, we review some recent results from implementation of lattice-based schemes

on the NIST recommended embedded software platform, the ARM Cortex-M4 microcontroller.

Karmakar et al. [105] proposed a speed optimized implementation of SaberKEM on the ARMCortex-

M4microcontroller through SIMD accelerated Karatsuba and Toom-Cook polynomial multiplication.

Their implementation also adopted a "just-in-time" approach to generate the public parameter

(a with 𝑘2
polynomials) so as to reduce memory usage by generating and multiplying a in parts.

Subsequently, Kannwischer et al. [102] proposed the most optimized polynomial multiplication

routines in the ring Z𝑞 [𝑥] with 𝑞 = 2
𝑘
on the ARM Cortex-M4 (applicable to SaberKEM and

NTRUKEM), which improved speeds of SaberKEM by about 20%. The fastest implementation of

Round5KEM was proposed by Saarinen et al. [154] through use of techniques such as (1) Sparse

ternary polynomial multiplication only using additions and subtractions (2) efficient sampling of

sparse ternary polynomial with reduced rejection rates. Botros et al. [41] proposed a high-speed

and memory optimized implementation of KyberKEM on the ARM Cortex-M4 utilizing techniques

such as (1) Merge multiple levels of NTT to reduce number of loads and stores (2) Utilization of

SIMD instructions (3) "Just-in-time" approach for multiplication with public parameter a.
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Table 3. Performance evaluation of the second round lattice-based KEMs on the ARM Cortex-M4 microcon-
troller obtained from state-of-the-implementations in the pqm4 library [103]. All the considered parameter
sets in the table offer NIST security level 3. Cycles are specified in units of ×10

3 and stack usage in bytes.

Scheme Parameter Set Impl. KeyGen Encaps Decaps
Cycles
(×10

3)
Stack
(bytes)

Cycles
(×10

3)
Stack
(bytes)

Cycles
(×10

3)
Stack
(bytes)

NewHope NewHope1024 (5) m4 1162 2852 1696 5052 1620 5052

LAC LAC − 192 − v3a opt 1377 14620 2215 17492 3030 20220

Round5
R5ND_3KEMCCA_5d m4 723 5620 1082 6212 1359 7148

R5N1_3KEMCCA_0d m4 722 6132 1067 6652 1296 7756

Kyber Kyber768 m4 893 3284 1050 2980 987 3012

Saber Saber m4 895 13244 1162 15524 1204 16620

ThreeBears MamaBear (4) opt 1274 3580 1493 3452 2125 6060

NTRU ntruhps4096821 m4 211767 34520 1218 24912 1066 23968

NTRUPrime
sntrup761 m4 827 28444 1311 34732 1494 39692

ntrulpr761 m4 11350 28671 789 28604 742 27756

Frodo
FrodoKEM − 640 (1) m4 79332 26596 79746 51972 79227 72596

FrodoKEM − 976 m4 187071 33800 253736 57968 254195 58112

Howe et al. [87] proposed an efficient implementation of FrodoKEM (only for parameters with

NIST security level 1 and 3) on the ARM Cortex-M4, which addressed the main challenge of memory

usage given the very large matrices used in FrodoKEM. This was achieved using techniques such

as (1) "Just-in-time" approach combined with on-the-fly computations to optimize stack usage

for matrix-matrix multiplication and (2) Efficient usage of available registers for reduced loads

and stores. Subsequently, Bos et al. [40] improved the speed of the FrodoKEM − 640 variant on
the ARM Cortex-M4 by about 30 − 40% through better memory access techniques coupled with

utilization of SIMD instructions for matrix-vector multiplication. They also showed that using

AES as PRNG doubles the speed, while use of a SR-PRNG xoshiro-128** [34] improved the speed

by about 4×. This clearly demonstrated that the sampling operation is the bottleneck in case of

FrodoKEM. The most optimized implementation ofNewHopeKEM on the ARM Cortex-M4 is based

on the optimized implementation ofNewHopeUSENIX by Alkim et al. [13] with full assembly-based

optimized implementation of the NTT transform utilizing techniques such as unrolling and merging

multiple layers of the NTT operation. State-of-the-art implementations of other schemes on the

ARM Cortex-M4 are just adaptations of the reference implementations of the respective schemes.

6.2.1 Comparative Evaluation on ARM Cortex-M4: We compare the two main performance pa-

rameters on the ARM Cortex-M4 microcontroller (1) Speed and (2) Stack Utilization, in the same

order. For a fair, simple and objective comparison, we compare the performance of schemes only

based on parameters that offer NIST level 3 security. This choice is motivated by the following

reasons: (1) Parameter sets with NIST level 3 security offer good balance between security (Level 5)

and efficiency (Level 1) and hence appear to be the most widely usable, unless either security or

efficiency is prioritized (2) Schemes should compare in a similar way in other security levels also,

barring a few discrepancies. Since NewHopeKEM and ThreeBearsKEM do not offer parameter sets

for level 3 security, we conservatively utilize numbers from NewHope1024 (level 5) andMamaBear
(level 4) respectively. Please refer Tab.3 for the speed and stack usage of the schemes on the ARM

Cortex-M4 microcontroller. Apart from FrodoKEM − 976 whose numbers are taken from [87], all

others are taken from implementations in the pqm4 library The library contains three types of

implementations - (1) ref - reference implementation in C, (2) opt - optimized in C and (3) m4 -
optimized with Cortex-M4 assembly instructions.

, Vol. 1, No. 1, Article . Publication date: October 2020.



Lattice-Based Key Sharing Schemes: A Survey 27

Table 4. Comparative performance evaluation of the second round lattice-based PKE/KEMs on the Intel x64
platform. All the considered parameter sets in the table offer NIST security level 3, unless specified otherwise.
Cycles are specified in units of ×10

3.

Scheme Parameter Device Impl. Time (kcycles)
KeyGen Encaps Decaps

NewHope NewHope1024 (5) Core i7-4770K (Haswell) AVX2 132 212 220

LAC LAC − 192 − v3a Core i7-4770S (Haswell) AVX2 29 46 64

Round5
R5ND_3KEM_5d Core i7 opt 72 119 171

R5N1_3KEM_0d Core i7 AVX2 4181 4585 4816

Kyber Kyber768 Core i7-4770K (Haswell) AVX2 62 83 70

Saber Saber Core i7-6600U AVX2 104 122 120

ThreeBears MamaBear (4) Core i3-6100U (Skylake) opt 79 96 156

NTRU
ntruhps4096821 Core i7-4770K (Haswell) ref. 31835 1856 4920

ntruhps2048677 (1) NA AVX2 277 35 69

NTRUPrime sntrup761 Xeon E3-1220 v3 (Haswell) opt 810 49 59

NTRUPrime ntrulpr761 Xeon E3-1220 v3 (Haswell) opt 44 72 86

Frodo FrodoKEM − 976 Core i7-6700 (Skylake) AVX2 8579 9302 9143

NTTRU (Post-NIST) NTTRU (1) Core i7-6600U (Skylake) AVX2 6.4 6.1 7.9

With respect to KeyGen, StreamlinedNTRUPrimeKEM is the slowest among all lattice-based

schemes primarily due to costly polynomial inversions and invertibility tests, but the performance

gap might not reflect an accurate picture since it is only a reference implementation (unopti-

mized). Moreover, KeyGen of NTRULPRimeKEM is 10× faster than StreamlinedNTRUPrimeKEM
and 3× faster than NTRUKEM (even on using optimized routine from [102]), since it generates an

LWR-like instance devoid of any inversions or invertibility checks. RLWR-based Round5KEM
provides the fastest KeyGen routine followed by KyberKEM and SaberKEM which also have

comparable runtimes. NewHopeKEM at security level 5 is about 5× slower than Round5KEM
mainly due to its larger degree. As expected, KeyGen in Frodo is one to two orders of magnitude

slower than structured lattice-based schemes, but it is notable that standard LWR-based variant of

Round5KEM is comparatively much faster (≈ 9×). With respect to Encaps and Decaps, KyberKEM,

SaberKEM along with NTRUKEM offer the best speeds compared to the other schemes. In par-

ticular, KyberKEM and SaberKEM provide the best times for Encaps, while NTRUKEM has the

fastest time for Decaps mainly because it does not compute re-encryption for IND-CCA security.

Round5KEM and ThreeBearsKEM have the next best runtimes with costlier Decaps routines. In
particular, Decaps of RLWR-based Round5KEM in particular is about 1.7× slower than NTRUKEM.

Numbers for both the variants of NTRUPrimeKEM are an order of magnitude higher, but should

provide much better runtimes with dedicated optimizations. FrodoKEM has the slowest speeds for

Encaps andDecaps (68−70×worse thanNTRUKEM) but the standard LWR variant of Round5KEM
is about 10× faster than FrodoKEM.

With respect to stack usage, KyberKEM consumes the least stack space (≈ 3KB) among all the

NIST candidates owing to the use of memory optimized in-place NTT computation [41]. Encaps
of ThreeBears has comparable stack usage, but stack usage doubles for Decaps, probably due to

the decoding procedure of Melas BCH ECC. RLWR-based Round5KEM and LACKEM offer the

next best stack usage numbers (though 2.3 − 2.8× worse than KyberKEM). It is interesting to note

that stack usage of LACKEM for Encaps and Decaps is almost twice as that of KeyGen, probably
due to the usage of BCH error correcting code. SaberKEM though fast, consumes almost 5× more

stack space than KyberKEM mainly due to the use of the Karatsuba and Toom-Cook algorithm

for polynomial multiplication. Stack utilization of NewHopeKEM is also high (5 − 6× worse than

Encaps and Decaps of KyberKEM) mainly owing to the use of a very large degree polynomial

(𝑛 = 1024). The stack usage of StreamlinedNTRUPrimeKEM is comparable with SaberKEM (16−19
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KB) while that of NTRULPRimeKEM and NTRUKEM are much higher (22 − 26 KB). Finally as

expected, FrodoKEM consumes the largest stack space among all the considered NIST candidates

owing to the use of very large matrices and vectors. In fact, FrodoKEM at security level 5 does not

even fit on the ARM Cortex-M4.

6.2.2 Comparative Evaluation on Intel x-64: We also review results on the high-end Intel-x64 CPUs

in Tab.4. Most schemes have reported numbers for AVX2 vectorized implementations, while some

have optimized non-vectorized implementations, and others only have reference implementations.

For a simple and objective comparison, we only tabulate implementation numbers for parameter

sets with NIST level 3 security, unless specified otherwise. We only focus on stark differences from

results on ARMCortex-M4 (Tab.3). In that respect, we can see thatNTRULPRimeKEM and LACKEM
offer the fastest time for KeyGen among all the schemes, followed by KyberKEM, ThreeBearsKEM,

RLWR-based Round5PKE, SaberKEM and NewHopeKEM (level 5) in the same order. Moreover,

the performance gap between runtime of KeyGen ofNTRUKEM and StreamlinedNTRUPrimeKEM
compared with other structured lattice-based schemes has been drastically reduced owing to the

use of fast modular inversion of [31] and AVX2 accelerated multiplications. Moreover, optimized

implementations of NTRUPrimeKEM provide one of the best runtimes for Encaps and Decaps
routines, followed by AVX2 accelerated LACKEM and KyberKEM. ThreeBearsKEM also provides

very comparable runtimes for KeyGen and Encaps but a slower (≈ 2×) Decaps routine (possibly
due to Melas BCH decoder), similar to LACKEM with the heavy BCH decoder. Moreover, better

numbers for NewHopeKEM can be expected across all three procedures with the use of the fastest

AVX2 NTT implementation of [158].

6.3 Implementation Results on FPGA and ASICs:
In this section, wewill review some recent and relevant works on fully HWandHW/SW co-designed

implementations of lattice-based schemes and its sub-blocks on FPGAs, ASICs and heterogenous

SoCs. Oder et al. [130] reported the first HW design for the IND-CPA secure NewHopeSIMPLE
PKE scheme, on the Artix-7 FPGA with the main design objective of low-area utilization. While this

implementation worked with a sequential NTT module, Kuo et al. [109] subsequently proposed

a faster design of the IND-CPA secure NewHopeUSENIX KEX scheme utilizing a highly parallel

NTT module with four parallel butterfly operators which yielded a 19× speedup, but at the cost
of 4× higher area utilization on the same FPGA. Arpan et al. [95] presented SPQCOP, the first

side-channel resistant fully HW based cryptoprocessor for NewHopeUSENIX, NewHopeSIMPLE
andHila5 on Zynq 7000 SoC and Zynq UltraScale+ FPGA. Their design is heavily pipelined and also

maximally utilizes the available DSPs and BRAMs to yield high frequency and high performance

designs. Though they were able to achieve 1.4× higher frequency than [109] for NewHopeUSENIX
on the Zynq 7000 SoC, they were 2.2× slower than [109] due to the high latency incurred due

to heavy pipelining. Howe et al. [87] proposed the first HW implementation of FrodoKEM on

the Artix-7 FPGA. Their design was based on an efficient kernel for the matrix-vector multiplier

which loops over the individual rows and uses a ”just-in-time" approach to perform matrix-matrix

multiplication. There are no existing dedicated FPGA implementations for the other lattice-based

NIST candidates. Banerjee et al. [22] proposed "Sapphire“, the first and only ASIC-based crypto

processor for several lattice-based KEMs such as NewHopeKEM, FrodoKEM and KyberKEM, with

the main design objective of energy efficiency. Their design is based on (1) configurable NTTmodule

based the constant-geometry NTT architecture working with multiple single port RAM modules

enabling single cycle butterfly operations and (2) Configurable discrete distribution Sampler.

There were a number of works which focussed on accelerating certain sub-blocks within lattice-

based schemes. Fritzmann et al. [76] proposed the first HW/SW co-design for lattice-based PKE

schemes with a dedicated NTT and SHAKE accelerator hardened against fault attacks using the
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DMR countermeasure for the RISC-V architecture. They observe a 13× improvement in the total

run time of IND-CPA secure NewHopeKEM PKE scheme compared to a pure SW implementation

on RISC-V. Fritzmann et al. [75] designed a power efficient NTT on ASIC using optimization

techniques such as clock-gating and operand-isolation and observe about 33-35% reduction in power

consumption of the NTT operation. Song et al. [161] subsequently reported an implementation of a

high performance and highly configurable accelerator based on highly parallelized NTT operations

prototyped in a 2.05mm
2
40nm CMOS ASIC test chip.

Basu et al. [24] utilized a High-Level Synthesis (HLS) framework to perform HW benchmarking

of the several first round NIST candidates such as FrodoKEM, NewHopeKEM, SaberKEM and

NTRUHRSS KEM on both FPGA and ASIC. We do not go into specific details, but highlight a few

takeaways from their exercise (1) At security level 1 and 3, KyberKEM and SaberKEM on FPGA

are ideal for low latency applications on FPGAs (2) At security level 1, NTRUHRSSKEM offers the

best latency-power tradeoff on FPGA (3) At security level 1, NTRUHRSSKEM and NewHopeKEM
offer the lowest latencies and FrodoKEM consumes the least power on ASICs.

Farahmand et al. [72] reported HW/SW co-designed implementations for Round 1 NTRU-based

candidates such as NTRUEncrypt, NTRU − HRSS, StreamlinedNTRUPrimeKEM and

NTRULPRimeKEM on the Zynq UltraScale+ FPGA. They only offloaded the polynomial multiplica-

tion to HW and implemented them using fast LFSR structures [117, 118]. Subsequently, the same

authors also performed detailed benchmarking of HW/SW co-designed implementations of about

five Round 2 NIST candidates which include FrodoKEM, SaberKEM, Round5PKE, NTRUKEM and

NTRUPrime on the same platform [71]. However, they offloaded multiple operations to HW chosen

based on two criteria: (1) Operations that consumemore than 90% of the total time and (2) Operations

that can be highly parallelized in HW. They evaluated the performance of different schemes and

propose concrete rankings for the same. For encapsulation - SaberKEM, Round5PKE, NTRUKEM,

StreamlinedNTRUPrimeKEM, FrodoKEM and NTRULPRimeKEM. For decapsulation - SaberKEM,

Round5PKE, NTRUKEM, StreamlinedNTRUPrimeKEM, NTRULPRimeKEM and FrodoKEM. They

also observed that FrodoKEM consumed the least resources (FF and LUTs on FPGA) among all

the schemes, owing to its simpler design. The new bottleneck in most schemes after the HW/SW

partitioning is either hashing or generating randomness through a custom randombytes() function,
with each scheme utilizing varying proportions of the same. Thus, these rankings are not absolute

and could possibly be subjected to changes if different PRNGs are used. We do not perform a

comparative evaluation of the HW results mainly due to the diversity in the reported implementa-

tions which were done on different target platforms aimed to satisfy different design objectives.

Moreover, factors such as use of different operations for randomness generation does not offer a

level ground for fair comparison of the schemes.

7 OVERVIEW AND GENERAL TRENDS
In this section, we perform a high level comparative evaluation of lattice-based PKE/KEMs depend-

ing upon security and performance from reported state-of-the-art implementations on various

platforms. We also briefly state advantages and disadvantages of lattice-based PKE/KEMs and

compare them against schemes from other types of post-quantum cryptography.

Security: Firstly, unstructured lattice-based schemes have stronger theoretical security guarantees

compared to structured lattice-based schemes. Thus, standard LWE based FrodoKEM and variants of

Round5KEM based on standard-LWR could be utilized for very sensitive applications requiring long

term-security. Among structured lattice-based schemes, module lattice-based schemes (KyberKEM
and SaberKEM) seem to possess lesser algebraic structure and hence more confidence in security

than ideal lattice-based schemes (NewHopeKEM and LACKEM). However when comparing NTRU

against LWE/R, there is no definitive distinction in terms of security, but one could choose to
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be conservative by going for schemes based on polynomials rings with less algebraic structure.

In that respect, NTRUPrimeKEM and RLWR-based Round5KEM are based on less structured

non-cyclotomic rings compared to the prime cyclotomic rings used in NTRUKEM or power of 2

cyclotomic rings with max-split modulus in NewHopeKEM and KyberKEM and min-split modulus

in SaberKEM and LACKEM. In fact, ThreeBearsKEM also relies on a non-cyclotomic polynomial

but is based on a very recent variant of I-MLWE and hence requires more cryptanalytic efforts.

Performance: It is very clear that performance of structured lattice-based schemes is far more

superior compared to unstrucutred lattice-based schemes, which is also confirmed by experimental

results from practical deployment of lattice-based schemes in TLS [42, 110, 111]. However, it is much

harder to make a general distinction between structured lattice-based schemes just on the basis of

performance, as different platforms seem to favour different schemes. For example, NTRU-based

schemes seem to perform very well on AVX2 platforms barring the KeyGen procedure which

involves costly inversions and invertibility tests. Thus, they might be very well be suitable for

static IND-CCA PKE/KEMs on high-end servers where the key-generation costs are amortized. In

general, schemes such as Round5KEM, SaberKEM and KyberKEM provide high performance across

all embedded hardware and software platforms. Moreover, the scalable security feature also comes

as an added advantage for module lattice-based schemes such as KyberKEM and SaberKEM. While

NewHopeKEM does not compare well in security level 3, it has competitive parameter settings

in security level 5. If I-MLWE instills good confidence in its long term security, then ThreeBears
also offers a very attractive alternative in terms of migration, since it can be adapted to work with

existing big-integer arithmetic HW and SW modules within smart cards and crypto accelerators.

As for FrodoKEM, it yields very low footprint in HW designs owing to its very simple design and

hence could be suitable for low speed and resource constrained HW platforms [24, 71].

Advantages:

• Lattice-based cryptography offers a wide range of PKE/KEM/KEXs with varying trade-offs

between security and efficiency guarantees (i.e) plain LWE, R/MLWE, ILWE and NTRU.

• Theoretical security guarantees of lattice-based schemes are well studied and in-fact, concrete

security estimates of lattice-based schemes are very conservative keeping in mind the scope

for improved cryptanalysis in the future (Refer Sec.3.7).

• Practical performance of lattice-based schemes are well studied on a variety of hardware

and software platforms and are second to none when compared against other post-quantum

cryptographic schemes. In fact, some variants of NTRU are standardized [168] and a few

others lattice-based schemes have also been deployed as part of real-world test trials in secure

protocols such as the TLS [42, 110, 111].

• Physical attacks and countermeasures over lattice-based schemes are also very well studied

when compared to other post-quantum cryptographic schemes.

Disadvantages:

• There is an unknown security gap in lattice-based cryptography between structured and

unstructured lattice-based schemes. Though it appears to be less likely to be bridged in the

near future [59], improved attacks exploiting algebraic structures could significantly impact

security of structured lattice-based schemes, given that the best known attacks against several

schemes do not currently exploit any algebraic structure.

• A study by Brendel et al. [45] showed that lattice-based schemes cannot come in as simple

drop-in-replacements to classical "symmeteric" Diffie-Hellman style key exchange schemes

due to the inherent asymmetry in IND-CCA secure lattice-based PKE/KEMs. Such issues

related to practical deployment requires more attention.
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• Passively secure lattice-based PKE/KEMs are vulnerable to chosen ciphertext attacks in the

presence of a plaintext checking oracle [65, 73] and such attacks have also been extended to

IND-CCA secure schemes through exploitation of side-channel information [68, 144]. These

works demonstrate easy susceptibility of lattice-based PKE/KEMs to side-channel attacks

thus highlighting the need for concrete and efficient masking countermeasures.

Comparison with other post quantum PKE/KEMs:Apart from lattice-based PKE/KEMs, there are seven

other candidate PKE/KEMs from code-based cryptography and one candidate from Supersingular

Isogeny-based cryptography (SI) in the second round of the NIST standardization process. SIKE is

the only SI-based IND-CCA secure KEM in the NIST process. It offers the lowest key and ciphertext

sizes among all post quantum PKE/KEMs (100-500 bytes). But, the speed of SIKE is about 1 to 2 orders
of magnitude worse than all lattice-based PKE/KEMs across several implementation platforms.

Practical experiments in [111] showed that TLS connections using SIKE for key-exchange were

only performing better than structured lattice-based schemes for the slowest 5% of the connections

marred by high packet loss rate, clearly demonstrating that the slow performance of SIKE clearly

outweighs the advantages of small key and ciphertext sizes in the context of TLS.

There are two broad classes of code-based KEMs - (1) Classical McEliece or Niederreiter schemes

based on binary Goppa codes and (2) schemes based on more structured quasi-cyclic (QC) codes.

ClassicMcEliece and NTS − KEM are two candidates based on the more conservative binary Goppa

codes characterized by very large public key sizes (200 KB upto 1.5 MB) and very slow key genera-

tion times (2 orders of magnitude slower than FrodoKEM on AVX2). However, they offer very small

ciphertext sizes (comparable with SIKE) and much faster encapsulation/decapsulation procedures

that are comparable but still slower than structured lattice-based schemes. There are five other

schemes based on the the less conservative and structured quasi-cyclic codes, which compare much

better in terms of performance against lattice-based schemes. In particular, rank-metric based

schemes such as ROLLO built upon quasi cyclic low rank parity check codes (QC-LRPC codes)

offers the smallest key and ciphertext sizes (comparable with SIKE) followed by other schemes

such as RQC, LEDAcrypt (based on QC-LDPC) and BIKE (based on QC-MDPC) which offer key

and ciphertext sizes that compare very favorably with structured lattice-based schemes such as

KyberKEM, SaberKEM and Round5PKE. With respect to performance (based on numbers from

AVX2 implementations), these structured code-based schemes have comparable yet slightly slower

performance numbers compared to the aforementioned structured lattice-based schemes. Moreover,

structured lattice-based schemes currently have very optimized implementations with superior

numbers on the embedded ARM Cortex-M4 compared to code-based schemes [103].

Status of Third Round of NIST PQC project: The NIST standardization process is currently in its third

round at the time of publishing this document. Among the 26 schemes in the second round, seven

schemes have been selected as the main finalist candidates while eight other schemes have been

selected as alternative finalist candidates. Among the lattice-based PKE/KEMs, Module LWE/LWR

based schemes such as Kyber and Saber along with NTRU were selected as the main finalist

candidates, while FrodoKEM and NTRUPrime were selected as the alternative candidates.

The main priority for standardization of PKE/KEMs as far as NIST is considered is that, it

should have acceptable performance for most practical use cases. Thus, all lattice-based PKE/KEMs

selected as the main finalist candidates are based on structured lattices. In particular, Module-

LWE/LWR schemes were selected mainly owing to (1) more confidence in security of low rank

module LWE/LWR schemes compared to their ring counterparts and (2) high implementation

performance. The other advantage is that the Module-LWE/LWR problem provides straightforward

adjustment of performance/security trade-offs by simply adjusting the module parameters. NTRU
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was also selected as the main finalist candidate owing to its long established history of resisting

cryptanalysis.

FrodoKEM was selected as an alternative finalist candidate mainly owing to its superior theo-

retical security guaranteeS over its structured counterparts and would be considered as a backup

if new cryptanalytic results are reported against structured lattice-based schemes. NTRUPrime

was also selected as an alternative finalist since (1) its security guarantees are similar to that of

the Classical NTRU and (2) owing to its use of a non-cyclotomic ring, unlike most structured

lattice-based schemes.

8 CONCLUSION
We present a detailed survey of post quantum secure lattice-based key sharing schemes categorized

into PKE, KEX and KEM schemes. We have covered various aspects starting from the underlying

hardness guarantees, generic algorithmic frameworks, building blocks of implementations of lattice-

based schemes, security against physical attacks and a comparative evaluation of the different

lattice-based schemes on a variety of hardware and software implementation platforms with main

focus on the schemes competing in the second round of the NIST standardization process. The field

of lattice-based cryptography has matured immensely with respect to all the aforementioned aspects

and given the current state-of-the-art results, lattice-based cryptographic schemes offer a very

attractive alternative for public-key cryptography in the era of quantum computers. Please note that

our work is focussed on the results available from the second round of the NIST’s standardization

process while the standardization process has progressed to the third and final round at the time of

publishing this document.
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