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Abstract

Secure group messaging protocols provide end-to-end encryption for group communication. Prac-
tical protocols face many challenges, including mobile devices frequently being offline, group members
being added or removed, and the possibility of device compromises during long-lived chat sessions.
Existing work targets a centralized network model in which all messages are routed through a single
server, which is trusted to provide a consistent total order on updates to the the group state. In this
paper we adapt secure group messaging for decentralized networks that have no central authority.
Servers may still optionally be used, but their trust requirements are reduced.

We define decentralized continuous group key agreement (DCGKA), a new cryptographic primi-
tive encompassing the core of a decentralized secure group messaging protocol; we give a practical
construction of a DCGKA protocol and prove its security; and we describe how to construct a full
messaging protocol from DCGKA. In the face of device compromise our protocol achieves forward
secrecy and post-compromise security. We evaluate the performance of a prototype implementation,
and demonstrate that our protocol has practical efficiency.

1 Introduction

WhatsApp, Signal, and similar messaging apps have brought end-to-end encryption to billions of users
globally, demonstrating that the benefits of such privacy-enhancing technologies can be enjoyed by users
who are not technical experts. Modern secure messaging protocols used by these apps have several
important characteristics:

Asynchronous: A user can send messages to other users regardless of whether the recipients are cur-
rently online. Offline recipients receive their messages when they are next online again (even if the
sender is now offline). This property is important for mobile devices, which are frequently offline.

Resilient to device compromise: If a user’s device is compromised, and all of that device’s secret
key material is revealed to the adversary, the protocol nevertheless provides forward secrecy (FS):
any messages received before the compromise cannot be decrypted by the adversary. Moreover,
protocols can provide post-compromise security (PCS) [12]: users periodically update their keys so
the adversary eventually loses the ability to decrypt further communication. As secure messaging
sessions may last for years, these properties are important for limiting the impact of a compromise.

Dynamic groups: Group members can be added and removed at any time.
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In the case when only two users are communicating, the Signal protocol [36] is widely used. However,
generalizations of this two-party protocol to groups of more than two users are not straightforward. For
example, WhatsApp’s group messaging protocol does not provide PCS [40,47]. Signal implements group
messaging by sending each message individually to each group member via a two-party secure channel,
which is inefficient for large groups.

Secure group messaging protocols have been the subject of much recent cryptographic work, which we
summarize in Section 3. A notable example is the Messaging Layer Security (MLS) protocol, a standard
under development by an IETF working group [5,35], which provides FS/PCS and is designed to scale to
large groups. However, MLS assumes that all messages modifying the group state (i.e. adding/removing
members or performing key updates for PCS) are delivered to all members in the same order. If two
group members concurrently modify the group state, one of the requests must be rejected and retried.
This total order is typically enforced by routing all messages through a centralized, semi-trusted delivery
service, although in principle a blockchain with consensus protocol could also be used.

There are many systems in which such centralization is undesirable. Anonymity networks such
as Tor [16] or Loopix [37] rely crucially on the assumption that no single node is able to observe all
network traffic. Protesters use mesh networks, in which mobile devices exchange messages without any
servers, to avoid censorship [3, 42]. If the company operating a central server goes out of business,
a potentially difficult migration to another server is required [26]. Peer-to-peer content distribution
networks like IPFS1 and federated messaging systems such as Matrix2 avoid central nodes to improve
resilience. Blockchains reduce the degree of centralization, but instead have performance and scalability
problems [4].

In this paper, we present the first decentralized, asynchronous secure group messaging protocol sup-
porting dynamic groups. Our protocol works with any underlying network without requirements on
message ordering or latency: it can be deployed in peer-to-peer or anonymity networks, and it does not
require any servers or consensus protocol. If servers are optionally used, there is no need to trust them
to order messages correctly, and users can switch from one server to another (or use multiple servers at
the same time) without worrying about preserving message ordering during the switch.

Our protocol provides end-to-end encryption with forward secrecy and PCS, even when multiple
users concurrently modify the group state. It is practical, using only efficient and widely deployed
cryptographic primitives. It provides key agreement: messages to the group need only be encrypted and
sent once with small constant overhead, regardless of the group size. Group membership changes and
key updates (for PCS) require effort proportional to the group size.

The primary challenge in designing such a protocol is the fact that multiple group changes (adding
or removing users) may happen concurrently. As the protocol is asynchronous, group changes must take
effect immediately: we cannot wait for a quorum of group members or a set of servers to acknowledge
a change. In the case of a network partition, the group may be split into two or more subsets of users;
even if one subset cannot communicate with another, communication within each subset must still be
possible [20]. Thus, multiple group membership changes may accumulate within each subset, which need
to be reconciled when the partition heals. Our protocol ensures that all users converge to the same group
membership and the same keys in all of these cases.

In this paper we make the following contributions:

• We address the challenge of handling multiple concurrent group membership changes in security
protocols; no previous work on secure group messaging addresses this issue. We do this by intro-
ducing the concept of decentralized group membership (DGM) in Section 6.

• We define decentralized continuous group key agreement (DCGKA), a new security notion de-
scribing a protocol for key agreement in which symmetric keys change over time in response to

1https://ipfs.io/
2https://matrix.org/
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group membership changes and PCS key updates. Our definition generalizes continuous group key
agreement (CGKA) [2] to the decentralized setting.

• We construct an efficient protocol that implements DCGKA (Section 7), prove its correctness and
security (Appendix E), and show how to use it to implement secure group messaging (Section 7.6).

• We evaluate the performance of a prototype implementation of our protocol (Section 8). For groups
of 128 members, a key update operation takes 95 ms of CPU time per client and transmits 40 kB
of network traffic.

2 Goals and Assumptions

In this section we summarize the goals of our protocol and the threat model for which it is designed.
A secure group messaging protocol allows a group with a given set of users to be created, allows

group members to be added and removed, and allows messages to be sent to the current set of members.
We distinguish between application messages (messages that a user wishes to send to the group) and
control messages (sent by the protocol to update group state). The protocol must meet the following
security goals:

Confidentiality: An application message sent by a group member can only be decrypted by users who
are also members of the group at the time the message is sent.

Integrity: Messages cannot be undetectably modified by anyone but the member who sent them.

Authentication: The sender of a message cannot be forged, and only members can send messages to
the group.

Forward secrecy: After a group member decrypts an application message, an adversary who corrupts
that member cannot decrypt that message.

Post-compromise security (PCS): An adversary who corrupts a group member, learning their cur-
rent state, can only decrypt messages until that group member sends a PCS update message that
“heals” the compromise.

Eventual consistency: All group members receive the same set of messages (possibly in different
orders), and all group members converge to the same view of the group state as they receive the
same set of messages.

Our protocol ensures these security properties in the face of an adversary with the following capa-
bilities:

Active network attacks and malicious servers: The adversary can read, modify, inject, or drop
any messages sent over the network. If servers are used to relay messages, the adversary also fully
controls those servers.

Temporary device compromise: From time to time, the adversary can compromise one or more
group members’ devices and obtain a copy of their private state (including all secret keys) at that
moment.

While we can guarantee all of the security goals against network attacks at all time, a device compro-
mise inevitably temporarily impacts confidentiality, integrity, and authentication. For PCS we assume
that following a device compromise, the adversary does not use the private state it has acquired to imper-
sonate the compromised user until that user sends a PCS update message. This assumption is standard
in PCS protocols [12]. After the PCS update message is sent, the security properties are restored. In
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Table 1: Summary of related work as discussed in this paper.

Protocol Needs central
server

Broadcast
messages

Update Costs PCS & FS
PCS in face of

concurrent updates

MLS (TreeKEM) 3 3 O(logn) ½ (FS issues) Only one sequence heals

Re-randomized TreeKEM 3 3 O(logn) 3

Causal TreeKEM 71 3 O(logn) ½ (severe FS issues) Any sequence heals

Signal groups 71 7 O(n) ½ (PCS issues)2 [Optimal]2

Sender Keys 71 3 O(n2) FS only3 [Optimal]3

Megolm 71,4 3 O(n) PCS only

Our DCGKA protocol 7 3 O(n) 3 All but last can be concurrent

1 Does not specify how to determine group membership in the face of concurrent additions and removals.
2 Optimal PCS in the face of concurrent updates is possible by using a 2-party protocol with optimal PCS+FS in place of pairwise
Signal.
3 Optimal PCS in the face of concurrent updates is possible at O(n2) cost, but not used in practice.
4 Not asynchronous in the face of concurrent operations.

the case where multiple group members are corrupted, the group is healed once all corrupted members
send PCS update messages (possibly concurrently), and one PCS update is sent following all of those
messages.

In general, we assume that group members correctly follow the protocol. Our protocol offers limited
protection against malicious members (see Section 6); confidentiality is impossible if any group members
are controlled by the adversary.

We assume the existence of a Public Key Infrastructure (PKI) that allows group members to ob-
tain a correct public key for other users. Finally, we assume the standard security properties of the
cryptographic primitives we use: authenticated symmetric encryption, public-key encryption (PKE),
hash-based key derivation functions, and digital signatures.

3 Related Work

There are many existing secure messaging protocols [43]. Schemes for two-party communication, incor-
porating varying levels of post-compromise security and forward secrecy, have been studied extensively
over the past few years, starting with the Signal protocol [36] and its analysis [11], followed by several
new protocols and their analyses [6, 17, 23, 24, 38] as well as a modular analysis and generalization of
Signal [1].

Among group messaging protocols for more than two parties, relatively few are both asynchronous
and support dynamic groups, which we consider critical requirements for practical group messaging
on mobile devices. We focus on such protocols in our discussion below. See Table 1 for a high-level
comparison.

The MLS protocol, mentioned in Section 1, uses the TreeKEM key agreement protocol [5, 35].
TreeKEM is itself based on Asynchronous Ratcheting Tree [13], which was the first post-compromise
secure group messaging protocol, but which does not support dynamic groups. Update messages in
TreeKEM (i.e. adding or removing a group member, or performing a PCS key update) are O(log(n)) in
size, where n is the number of group members. The result is a single key that is shared by all group
members. This is achieved by arranging group members into a binary tree, with one leaf per group
member, and each member knowing the secret keys on their leaf node’s path to the root. However, MLS
is inherently centralized, requiring a strict total order on messages modifying the group state. This has
long been recognized as an issue with MLS [18,22,46], yet existing proposals for modifying MLS so that
it does not require a server-enforced ordering are inadequate. One proposal [5, §12.2] is for clients to
agree on the total order using a total order broadcast protocol [15]. However, total order broadcast is
equivalent to consensus [9], so this would be slow, and a group would be unable to process any messages
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if too many members were offline. Another proposal uses a technique for combining concurrent up-
dates [8, §5], but this approach does not apply to adding and removing group members, and it provides
weak PCS guarantees for concurrent updates.

Alwen et al. [2] introduce Re-randomized TreeKEM to strengthen TreeKEM’s forward secrecy. This
protocol is even harder to decentralize: group members update each other’s secret keys so that each
secret key is only used once, allowing them to be deleted for forward secrecy, but this approach breaks
if multiple concurrent messages are encrypted under the same public key.

In the other direction, Causal TreeKEM modifies TreeKEM to require only causally ordered message
delivery (see Section 5), at the cost of even weaker forward secrecy [45, §4]. Like our work, Causal
TreeKEM describes how to handle dynamic groups in the decentralized setting, although the protocol
description is largely informal. Also, its post-compromise security is weaker than for our DCGKA
protocol: after multiple corruptions, all corrupted group members must send PCS updates in sequence,
while our protocol allows all but the last update to be concurrent.

In contrast to MLS, Signal groups use a simple protocol: the sender of each application message
sends the message individually to each other group member using the two-party Signal protocol [40].
This approach quickly becomes inefficient in large groups, as every application message requires n − 1
two-party messages in a group of size n. Also, care is needed to achieve PCS: using the ordinary Signal
protocol, a group member effectively performs a PCS update only after receiving a message from every
other group member, which would never happen if one member is always offline.

Sender Keys is another simple protocol, used by WhatsApp [40, 47]. Each group member generates
a symmetric key for messages they send, and then sends this key individually to each other group
member using the two-party Signal protocol. For each message sent by this member to the group,
a new key is derived pseudorandomly from the previous key, providing a ratchet for forward secrecy.
Whenever a user is removed, each remaining group member generates a new key and sends it to the other
remaining members over the same two-party channels. This protocol could provide PCS by updating
keys periodically, but WhatsApp does not do this.

The Sender Keys protocol has the advantage of not requiring a central server, but the disadvantage
is that PCS updates are expensive. Note that if one user is compromised, all of the sender keys become
known to the adversary. Since each user updates only their own sender key, in order to recover from the
compromise, each of the n group members needs to generate a new key and send it to each of the n− 1
other members, resulting in O(n2) messages over the two-party channels. Our DCGKA protocol builds
on Sender Keys but reduces the cost of PCS updates to O(n) (see Section 4).

An important detail that is not discussed in Causal TreeKEM, Signal groups or Sender Keys is how
to determine the group membership in the case of multiple concurrent additions and removals. For
example, in a group with members {A,B,C,D}, say A removes B from the group, while concurrently
B removes A. User C sees A’s removal first, while D sees B’s removal first. Who are the final remaining
group members? We discuss this and related problems in Section 6.

The Matrix Megolm protocol [33, 44] attempts to improve on Sender Keys. However, it handles
concurrency issues by allowing group members to request old encryption keys from each other, violating
both forward secrecy and asynchrony. Also, Matrix’s approach to group membership is centralized,
relying on a “homeserver” for each group that totally orders group membership operations [32].

DCGKA is based on CGKA, introduced by Alwen et al. [2]. Our construction for two-party secure
messaging is based on work by Jost et al. [24] and Durak and Vaudenay [17].

4 Protocol Overview

We now introduce our protocol for decentralized secure group messaging. We begin in this section by
presenting a high-level overview of the system architecture, before diving into the details in the following
sections.
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Secure Group Messaging: Section 7.6

Decentralized Continuous Group Key Agreement (DCGKA): Section 7

Two-Party Secure
Messaging (2SM):

Section 4.1

Public Key
Infrastructure (PKI):

Section 4.2

Decentralized Group
Membership (DGM):

Section 6

Authenticated Causal Broadcast (ACB): Section 5

Any network technology or topology

Figure 1: Modules that constitute our secure group messaging protocol.

At its core, our protocol builds on a simple idea: we establish two-party secure messaging channels
between every pair of group members, and periodically exchange fresh random secrets over those chan-
nels. The result is a key ratchet for each group member, which is used to encrypt application messages
sent by that member. Compared to the Sender Keys approach we reduce the cost of PCS updates and
define an explicit strategy for handling concurrent group membership changes.

We decompose the protocol into a set of modules as illustrated in Figure 1. Our abstraction for
network communication is Authenticated Causal Broadcast (ACB), which we discuss in Section 5. ACB
provides authenticated message delivery to a whole group and to individual members, but provides no
confidentiality. ACB makes no assumptions about the underlying network: it may optionally use any
number of untrusted servers to store and forward messages, and use broadcast features (e.g. IP multicast)
where available.

On top of this communication layer we use three modules: a two-party secure messaging protocol
(Section 4.1); a PKI for obtaining group members’ public keys (Section 4.2); and Decentralized Group
Membership (DGM), a scheme for unambiguously determining the current set of group members in the
face of concurrent additions and removals (Section 6).

These three modules are used by our DCGKA protocol (Section 7), which forms the core of our
secure group messaging protocol: a method for deriving fresh keys for each group member in response to
membership changes and messages received. Finally, we use these keys to encrypt application messages,
yielding a full secure group messaging protocol (Section 7.6). Each application message is only encrypted
once, regardless of the group size, and then distributed to group members through Authenticated Causal
Broadcast.

In our protocol, the cost of an application message is constant, while the cost of adding or removing
a user, and the cost of performing a PCS update, scale linearly with the number of group members.
This design is well suited for situations in which application messages are small and frequent, e.g. in
multiplayer games or in collaboration software such as multi-user document editors [25]. In contrast,
Signal groups incur linear cost for every application message sent.

The application can determine how frequently to perform PCS updates independently from the rate at
which application messages are sent. This is a trade-off between strength of PCS and network overhead:
more frequent PCS updates shorten the time window of vulnerability following a device compromise,
while increasing the network traffic and the number of cryptographic operations performed. For example,
a typical application might perform PCS updates once per day.

4.1 Two-Party Secure Messaging Scheme

We start by discussing two-party secure messaging, which our protocol uses to transport secrets from
one group member to another. We define the API of such a scheme as follows:

Definition 1. A bidirectional two-party secure messaging scheme 2SM = (2SM-Init, 2SM-Send, 2SM-Receive)
consists of the following algorithms:
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2SM-Init(sk, pk)

σ.mySks[0]← sk; σ.nextIndex← 1; σ.receivedSk← ε

(σ.otherPk, σ.otherPkSender, σ.otherPkIndex)← (pk, "other", 0)

2SM-Send(m)

(σ.mySks[σ.nextIndex],myNewPk)←$PKE-Gen()

(otherNewSk, otherNewPk)←$PKE-Gen()

plaintext← (m, otherNewSk, σ.nextIndex,myNewPk)

msg← (PKE-Enc(σ.otherPk, plaintext), σ.otherPkSender, σ.otherPkIndex)

σ.nextIndex++

(σ.otherPk, σ.otherPkSender, σ.otherPkIndex)← (otherNewPk, "me", ε)

return msg

2SM-Receive(c)

(ciphertext, keySender, keyIndex)← c

if keySender = "me" then

sk ← σ.mySks[keyIndex]; σ.mySks[≤ keyIndex]← ε

else sk ← σ.receivedSk

(m,σ.receivedSk, σ.otherPkIndex, σ.otherPk)← PKE-Dec(sk, ciphertext)

σ.otherPkSender← "other"

return m

Figure 2: Our two-party secure messaging protocol.

Initialization: 2SM-Init takes a public-key encryption (PKE) secret key sk for the local user and a
PKE public key pk for the other party, and outputs an initial state σ.

Send: 2SM-Send takes a state σ and a plaintext message m, and outputs a new state σ′ and a ciphertext
c.

Receive: 2SM-Receive takes a state σ and a ciphertext c, and outputs a new state σ′ and a plaintext
message m.

We assume that 2SM runs on top of the ACB layer, which retransmits any messages that were dropped
or tampered with, and authenticates message senders (see Section 5). The 2SM module therefore assumes
reliable delivery, and focuses on providing confidentiality with forward secrecy and PCS. The two parties
communicating via 2SM can send each other messages in any order, or even concurrently.

The Signal protocol is a popular implementation of 2SM, but it does not suffice for our purposes
because it heals from a corruption only after several rounds of communication, not with each message
sent. On the other hand, several other 2SM protocols proposed in the literature [17, 23, 24, 38] sacrifice
efficiency by not assuming authentic message delivery. We instead use a simplified variant of the protocols
by Jost et al. [24] and Durak and Vaudenay [17].

The specification of our 2SM protocol is given in Figure 2. Our starting point is an IND-CPA-secure
public-key encryption scheme PKE = (PKE-Gen,PKE-Enc,PKE-Dec) as defined in Appendix B. Each
party updates their public key every time they send a message, which easily provides PCS. To ensure
forward secrecy, when one party sends a message, they also generate a new PKE key pair for the other
party, include its secret key in the ciphertext, delete their own copy of the secret key, and keep the public
key for the next time they send a message. Upon receiving this message, the other party deletes their
old secret key and replaces it with the given one.
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Each of the functions in Figure 2 implicitly takes the current state σ as argument, and returns the
updated state σ′.

2SM-Send first generates new PKE key pairs for both parties, and stores the secret key for itself at
the next unused index in the array σ.mySks. The message m is then encrypted using σ.otherPk, which
is either the last public key we generated for the other party, or the last public key we received from
the other party, whichever was more recent. σ.otherPkSender is the constant string "me" in the former
case, and "other" in the latter case. otherPkSender and otherPkIndex are included in the message as
metadata to indicate which of the recipient’s public keys is being used.

2SM-Receive uses the message’s metadata to determine which secret key to use for decryption, as-
signing it to sk. In case it is a secret key generated by ourselves, that secret key and all keys with
lower index are deleted, indicated by σ.mySks[≤ keyIndex] ← ε, because we know these keys will never
be needed again. The algorithm then stores the new public and secret keys contained in the message.

In Appendix C we formalize and prove the security properties of our 2SM protocol.

4.2 Public Key Infrastructure

Like many other protocols, DCGKA requires a means for one user to obtain correct public keys for the
other group members. These public keys are then used to authenticate messages at the ACB layer, and
to initialize the 2SM protocol. We assume that each user is identified by an ID, and we model this
module as follows:

Definition 2. A Public Key Infrastructure scheme PKI = (PKI-PublicKey,PKI-SecretKey) consists of two
algorithms: PKI-PublicKey(ID, ID′) returns the public key of user ID for use by ID′, and PKI-SecretKey(ID, ID′)
returns the corresponding secret key. The latter function is only accessible to ID, while the former is
public.

Note that we do not allow the adversary to query PKI-SecretKey(ID, ID′) even after corrupting ID
(although it may learn the secret indirectly if ID stores it in their state). This is reasonable because in
our protocol, each secret key is only queried once, and hence it can be deleted from the PKI module
after it is queried. Moreover, group members can update their PKI key pairs each time they send a PCS
update message, thus healing from past corruptions.

In practice, instead of having strictly separate public keys for each ID′, public keys should be a prekey
bundle, containing both a long-term public key and an ephemeral prekey, and users should make a best
effort to ensure each of their ephemeral prekeys is used only once and is updated after a compromise.
Prekeys were introduced by Signal [31] and are standard for modern messaging protocols as they provide
asynchrony and forward secrecy for the first message, albeit typically with help from a semi-trusted
prekey distribution server. Trustworthy public key distribution is a longstanding problem [43, §IV], and
decentralization and ephemeral prekeys introduce more issues, but addressing them is outside of the
scope of this paper.

5 Authenticated Causal Broadcast (ACB)

In centralized group communication, users can rely on a server to provide a total ordering of messages,
but this is not the case when moving to a decentralized setting. For example, Figure 3 shows a scenario
that a decentralized secure messaging protocol needs to handle: in a group initially consisting of {A,B},
a network interruption makes A temporarily unable to communicate with B. During this interruption, A
adds a new group member C, and B adds a new group member D. Moreover, A and C send a sequence
of group messages, while B and D independently exchange a different set of messages. Eventually,
connectivity is restored, and all of the group members learn about each others’ messages.

In such a scenario, some messages are ordered relative to each other (for example, C can only send
messages to the group after it has been added), while others are not ordered (A’s addition of C is
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A

B

C

D

. . . . . . network partition. . . . . .

A adds C

B adds D

A adds C

B adds D

Figure 3: Concurrent group member additions during a network partition.

concurrent with B’s addition of D). We can formalize this partial ordering as the causal order on
messages [19,29]:

Definition 3. The causal order is the partial order ≺ on messages sent to a group. We have m1 ≺ m2

iff at least one of the following holds:

• m1 and m2 were sent by the same group member, and that member sent m1 before sending m2;

• m2 was sent by group member x, and m1 was received and processed by x before sending m2;

• there exists m3 such that m1 ≺ m3 and m3 ≺ m2.

We say m1 and m2 are concurrent if m1 ⊀ m2 and m2 ⊀ m1.
A group member processes messages in causal order if for every message m, before processing m,

the group member processes all preceding messages {m′ | m′ ≺ m}.

In a system that ensures processing in causal order, if one group member sends a sequence of successive
messages, then all group members will process those messages in the order they were sent. On the other
hand, if two messages are sent concurrently by two different group members, then other users may
process those messages in either order.

We can ensure causally ordered processing of group messages by attaching metadata to each message.
For instance, this metadata could be a vector clock [19, 34], or the hashes of the immediate causal
predecessors of the message. If a group member receives a message whose causal predecessors have
not yet arrived, it buffers that message until all causal predecessors have been processed. If necessary,
it requests retransmission of any dropped or corrupted messages. Assuming every group member can
eventually communicate with other members, every member will eventually receive all messages. The
metadata that enables causal ordering can also be used to prevent replay attacks by an active network
adversary.

Observe that, in contrast to totally-ordered broadcast, causal broadcast can be ensured using only
local checks by each group member, while totally-ordered broadcast requires coordination equivalent to
consensus [9]. Thus, causal broadcast is well suited to decentralized and asynchronous networks.

5.1 Broadcast and Direct Messages in Dynamic Groups

Our DCGKA protocol makes use of two types of message: broadcast messages are sent to all members
of the group, while direct messages are sent to one specified recipient. We make this distinction only for
reasons of efficiency; our security properties hold regardless of who receives which message.

How these types of message are implemented depends on the underlying network: if the network
only supports broadcast, then all direct messages can be bundled into a single broadcast message and
sent to the entire group. Each group member can then pick out the direct message intended for them
from the broadcast message. The DCGKA protocol ensures that users can only decrypt direct messages
intended for them. On the other hand, if the underlying network supports only unicast, any broadcast
messages can be sent to each group member by separate unicast.
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When group members are added and removed, it is unclear which users should receive a particular
broadcast message. For example, in Figure 3, DCGKA messages sent by C during the network partition
should eventually be delivered to B and D, even though at the time those messages were sent, C did
not know that D was a group member, and vice versa.

The DCGKA protocol has a precise way of determining group membership, which we discuss in
Section 6, and it ensures that the set of users who obtain the key to decrypt a particular application
message is exactly the set of group members at the time that particular message was sent. For this reason,
the Causal Broadcast layer may over-approximate the set of group members by potentially delivering a
message to more users than strictly necessary. DCGKA ensures that any excess recipients of a message
will not be able decrypt it.

The security game for DCGKA, presented in Appendix A, formalizes the assumptions on Causal
Broadcast. This game allows the adversary to read all messages sent via the network.

5.2 Authentication

Another requirement of our Causal Broadcast layer is that it authenticates the sender of every message,
preventing the adversary from modifying or injecting messages, or forging message senders. The simplest
way of doing this is by attaching a signature under the sender’s long-term identity key to each message.
However, this approach does not provide post-compromise security, since an adversary who corrupts a
group member once learns their long-term secret key forever.

No protocol is able to prevent an active attack by an adversary who corrupts the private state of
group member A and then injects a message posing as A before A sends an update message [12]. Some
two-party messaging protocols [17,23,24,38] provide limited security after such an attack, known as post-
impersonation security, but such properties are expensive to achieve and seem to have limited practical
use. Instead, our requirement is that such a corruption is healed by a PCS update: after A sends an
update message and a group member B receives that update, B will reject any messages by the adversary
impersonating A.

We use a post-compromise secure signature scheme, as defined by Cremers et al. [14, §5], which
augments an ordinary signature with the ability to update the public key. A simple and practical
protocol is as follows: when a group member performs a PCS update, they generate a new key pair, sign
the new public key using the old secret key, and include this information in the update message. They
also store the new secret key for use in signing future messages [14, §5.2].

Since causal order broadcast ensures that all messages from a given sender are processed in the order
they were sent, recipients of update messages can store the most recent public key for each group member
to check these chains of signatures.

6 Decentralized Group Membership (DGM)

We assume that every member of a group has the permission to add or remove other group members.
A more restrictive policy (e.g. allowing only designated administrators to change the membership) can
easily be implemented by ignoring changes made by unauthorized users.

Determining the “current” set of group members is challenging in a decentralized setting because
different users may process additions and removals of group members in different orders. Nevertheless,
when all of the membership changes have been processed, everyone must agree on who the group members
are. The difficulty of achieving this can be illustrated by three examples:

1. Two group members A and B concurrently remove each other. Do the removals both take effect,
cancel out, or something else? Note that among the remaining group members, some may see A’s
removal first, while others see B’s removal first. Ordinarily users would ignore messages sent by
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non-members, but in this case, users must take both removals into account, otherwise they will
end up with inconsistent views of the group membership.

2. While group member A removes B, B concurrently adds a new group member C. Should C be in
the group?

3. A group member A is concurrently added and removed. This can happen if A is initially in the
group, one member removes and then re-adds A, while concurrently another member only removes
A. Should A be in the group?

We define a Decentralized Group Membership (DGM) scheme to be an algorithm that determines
the members of a group, given a set of all membership changes that have occurred so far in the group’s
lifetime. Designers of a DGM algorithm have the freedom to answer policy questions like those above.

Definition 4. A group membership operation is a tuple of one of the following forms:

• ("create", sender, seq, IDs), representing the creation of a group whose members are the set of
users IDs.

• ("add", sender, seq, ID), representing the addition of user ID to the group.

• ("remove", sender, seq, ID), representing the removal of user ID from the group.

• ("ack", sender, seq, ackID, ackSeq), representing an acknowledgment of another operation as de-
scribed below.

Each operation contains sender, the ID of the user performing this operation, and seq, an integer se-
quence number (successive operations by the same user are given incrementing sequence numbers). An
acknowledgment also contains (ackID, ackSeq), the sender and sequence number of the prior operation
being acknowledged.

We define a causal order ≺ over these operations: op1 ≺ op2 if op1 and op2 have the same sender
and op1 has a lower sequence number than op2; or if op2 is an acknowledgment of op1; or if there exists
op3 such that op1 ≺ op3 and op3 ≺ op2.

Definition 5. A decentralized group membership (DGM) scheme is a function DGM that takes a set of
group membership operations and associated partial order ≺, and returns the set of IDs of current group
members.

6.1 Strong-Remove Decentralized Group Membership Scheme

We now define a particular DGM scheme that we call the strong-remove decentralized group membership
scheme (SR-DGM). This scheme errs on the side of removal in most situations where a user’s membership
in the group is ambiguous. We believe that this policy is desirable in practice, as it is easy to re-add a
group member who has been inadvertently removed, but it is impossible to reverse a leak of confidential
information that has occurred because a user believed to be removed was, in fact, still a group member.

In the design of our DGM scheme we are guided by one observation: a user who is being removed
from a group should not be able to circumvent their removal. For example, if B is being removed by
A, then B should not be able to evade removal by concurrently removing A. Moreover, if B is being
removed, B should not be able to evade removal by adding a new device C controlled by B. For these
reasons, our policy in example 1 of the previous section is that both removals should take effect, and C
should not be in the group in example 2.
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Definition 6. We define the function SR-DGM as follows. Let H be an input to SR-DGM, namely a
set of group membership operations with partial order ≺ as in Definition 4, with a unique operation
("create", ID0, seq, {ID1, . . . , IDn}) as the minimum element. Let H ′ be the set obtained by replacing
the "create" operation with operations minit = ("add", ID0, seq, ID0) ≺ ("add", ID0, seq, ID1) ≺ · · · ≺
("add", ID0, seq, IDn), which are less than all other operations. Define a directed acyclic graph G by:

• The vertices of G are all "add" operations in H ′.

• The edges of G are all pairs (m1,m2) such that m1 = ("add", ID1, , ID2), m2 = ("add", ID2, , ID3),
and m1 ≺ m2. Here stands for an arbitrary value.

ObtainGcancel by deleting fromG all edges (m1,m2) withm1 = ("add", ID1, , ID2) andm2 = ("add", ID2, , ID3)
such that ∃mrem = ("remove", , , ID2) ∈ H. m1 ≺ mrem ∧m2 ⊀ mrem. Then

SR-DGM(H) := {ID | ∃m = ("add", , , ID) ∈ H ′.
(∃ a path from minit to m in Gcancel) ∧
(@m′ = ("remove", , , ID) ∈ H. m ≺ m′)}.

In this definition, the paths in G show all of the ways that a given group member was added to the
group, tracing each of their additions back to the operation minit that created the group. Gcancel then
deletes the edges that were “canceled” by a remove operation, which happens if some operation mrem

canceled the effect of m1 either before or concurrently to m2. If mrem is causally greater than m2, then
the edge is not deleted, since then the sender of mrem was already aware of ID3 as a group member. The
group then contains all users whose add operation still connects back to minit, and which have not been
removed by a causally greater operation.

7 Decentralized Continuous Group Key Agreement (DCGKA)

We now turn to Decentralized Continuous Group Key Agreement, the core of our secure group messaging
protocol. DCGKA generates a sequence of update secrets for each group member, which can then be
used to encrypt/decrypt application messages sent by that member. Only group members learn these
update secrets, and fresh secrets are generated every time a user is added or removed, or a PCS update
is requested. The key agreement protocol ensures that all users observe the same sequence of update
secrets for each group member, regardless of the order in which messages are received.

7.1 The DCGKA Abstraction

Definition 7. A decentralized continuous group key agreement scheme consists of the algorithms DCGKA
= (init, create, add, remove, update, process). Except for init, all of the algorithms take a state γ and
further arguments as specified below, and return a 4-tuple (γ′, control, dmsgs, I). Here, γ′ is a new state,
control is a control message that should be broadcast to the group (or ε if no message needs to be sent),
dmsgs is a set of direct messages that should be sent to specified users, and I is a new update secret for
the current user. Algorithm process returns two update secrets: one for the sender of the message being
processed, and one for the current user.

Initialization: init takes the ID of the current user, and outputs an initial state γ.

Group creation: create takes a state γ and a set of IDs {ID1, . . . , IDn}, and creates a new group with
the specified users and itself as members.

Member addition: add takes a state γ and a user ID, and adds that user to the group.
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Member removal: remove takes a state γ and a user ID, and removes that user from the group.

PCS update: update takes a state γ and performs a key update for PCS.

Message processing: process is called when a control message is received. It takes a state γ, a user
ID (the message sender), a control message control, and a direct message dmsg (or ε if there is no
associated direct message).

All of the algorithms except init return a control message (to be broadcast) and a set of direct
messages. These messages must be distributed to the other group members through Authenticated
Causal Broadcast as discussed in Section 5, passing the control message to the process algorithm when it
is delivered. If direct messages are sent along with a control message, we assume that the direct message
for the appropriate recipient is delivered in the same call to process. Our algorithm never sends a direct
message without an associated broadcast control message.

Besides the control and direct messages, create, add, remove, and update each return a new update
secret for the current user performing this operation. When the control message from that operation is
received by another user, the process algorithm returns a control message and direct messages to acknowl-
edge the operation, and two update secrets: one for the user who initiated the create/add/remove/update,
and one for the current user processing the operation. Finally, when the acknowledgment message is
processed by another user, the process algorithm returns a new update secret for the sender of the
acknowledgment.

We capture the security properties of DCGKA and the adversary’s capabilities formally in the security
game in Appendix A. In summary, the adversary is given access to oracles to cause group members to
call the protocol algorithms, deliver messages in causal order, and corrupt group members (revealing
their current state). The adversary is also given a transcript of all messages sent. However, due to the
underlying Authenticated Causal Broadcast, the adversary is not allowed to modify messages, deliver
them out of causal order, or forge the sender at the DCGKA level. We show that an adversary, given
these capabilities, cannot distinguish update secrets from random with better than negligible probability.

7.2 Our DCGKA Protocol

Figure 4 contains the full specification of our protocol. The variable γ denotes the state, which consists
of the variables initialized in init. This state is implicitly input to and returned from each function. The
notation 2sm[·]← ε means that 2sm is a dictionary (hash table) where every key is initially mapped to
the default value ε, representing the empty string.

We start by discussing the algorithms create, update, and remove. They first generate a control mes-
sage describing the group membership operation, to be broadcast to the group. They then determine the
set of group members and pass that set to generate-seed, which generates a fresh random seed secret (with
bit length given by an implicit security parameter) and encrypts it individually for each group member
using the 2SM protocol from Section 4.1, returning a set of direct messages as (recipient, ciphertext) pairs.
If needed, encrypt-to initializes a 2SM protocol instance using the PKI. In the case of update and remove,
the set of group members is determined by the DGM algorithm discussed in Section 6. We also call
process-create, process-update, or process-remove as appropriate, which use the seed secret just generated
to compute an update secret I for the current user. The control message, set of direct messages, and
update secret I are then returned.

Control messages have the form ("type", seq, content), where seq sequentially numbers control mes-
sages from the same sender, and content depends on the type. When the control message and the
appropriate direct message are delivered, process is called, which in turn calls process-create, process-ack,
process-update, process-remove, process-add, or process-add-ack depending on the type indicated in the
control message. In the case of create/update/remove, after decrypting the seed secret in the direct
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init(ID)

γ.myId← ID

γ.mySeq← 0

γ.history ← ∅
γ.nextSeed← ε

γ.2sm[·]← ε

γ.memberSecret[·, ·, ·]← ε

γ.ratchet[·]← ε

process(sender, controlMsg, dmsg)

(type, seq, info)← controlMsg

if type = "create" then

return process-create(sender, seq, info, dmsg)

else if type = "ack" then etc . . .

create(ID1, . . . , IDn)

ids← {ID1, . . . , IDn}
control← ("create",++γ.mySeq, ids)

dmsgs← generate-seed(ids)

( , , I, )← process-create(γ.myId, γ.mySeq, ids, ε)

return (control, dmsgs, I)

process-create(sender, seq, IDs, dmsg)

op← ("create", sender, seq, IDs)

γ.history ← γ.history ∪ {op}
return process-seed(sender, seq, dmsg)

process-ack(sender, seq, (ackID, ackSeq), dmsg)

if (ackID, ackSeq) was a create/add/remove then

op← ("ack", sender, seq, ackID, ackSeq)

γ.history ← γ.history ∪ {op}
s← γ.memberSecret[ackID, ackSeq, sender]

if s 6= ε then

γ.memberSecret[ackID, ackSeq, sender]← ε

return (ε, ε, update-ratchet(sender, s), ε)

else if dmsg 6= ε then

s← decrypt-from(sender, dmsg)

return (ε, ε, update-ratchet(sender, s), ε)

else return (ε, ε, ε, ε)

update()

control← ("update",++γ.mySeq, ε)

recipients← member-view(γ.myId) \ {γ.myId}
dmsgs← generate-seed(recipients)

( , , I, )← process-update(γ.myId, γ.mySeq, ε, ε)

return (control, dmsgs, I)

process-update(sender, seq, , dmsg)

return process-seed(sender, seq, dmsg)

remove(ID)

control← ("remove",++γ.mySeq, ID)

recipients← member-view(γ.myId) \ {ID, γ.myId}
dmsgs← generate-seed(recipients)

( , , I, )← process-remove(γ.myId, γ.mySeq, ID, ε)

return (control, dmsgs, I)

process-remove(sender, seq, removed, dmsg)

op← ("remove", sender, seq, removed)

γ.history ← γ.history ∪ {op}
return process-seed(sender, seq, dmsg)

add(ID)

control← ("add",++γ.mySeq, ID)

c← encrypt-to(ID, γ.ratchet[γ.myId])

op← ("add", γ.myId, γ.mySeq, ID)

welcome← (γ.history ∪ {op}, c)
( , , I, )← process-add(γ.myId, γ.mySeq, ID, ε)

return (control, {(ID,welcome)}, I)

process-add(sender, seq, added, dmsg)

if added = γ.myId then

return process-welcome(sender, seq, dmsg)

op← ("add", sender, seq, added)

γ.history ← γ.history ∪ {op}
if γ.myId ∈ member-view(sender) then

γ.memberSecret[sender, seq, added]←
update-ratchet(sender, "welcome")

Isender ← update-ratchet(sender, "add")

else Isender ← ε

if sender = γ.myId then return (ε, ε, Isender, ε)

control← ("add-ack",++γ.mySeq, (sender, seq))

c← encrypt-to(added, ratchet[γ.myId])

( , , Ime, )← process-add-ack(γ.myId,

γ.mySeq, (sender, seq), ε)

return (control, {(added, c)}, Isender, Ime)

process-add-ack(sender, seq, (ackID, ackSeq), dmsg)

op← ("ack", sender, seq, ackID, ackSeq)

γ.history ← γ.history ∪ {op}
if dmsg 6= ε then

γ.ratchet[sender]← decrypt-from(sender, dmsg)

if γ.myId ∈ member-view(sender) then

return (ε, ε, update-ratchet(sender, "add"), ε)

else return (ε, ε, ε, ε)

process-welcome(sender, seq, (adderHistory, c))

γ.history ← adderHistory

γ.ratchet[sender]← decrypt-from(sender, c)

γ.memberSecret[sender, seq, γ.myId]←
update-ratchet(sender, "welcome")

Isender ← update-ratchet(sender, "add")

control← ("ack",++γ.mySeq, (sender, seq))

( , , Ime, )← process-ack(γ.myId, γ.mySeq,

(sender, seq), ε)

return (control, ε, Isender, Ime)

generate-seed(recipients)

γ.nextSeed ←$KGen

return {(ID, encrypt-to(ID, γ.nextSeed)) |
ID ∈ recipients}

process-seed(sender, seq, dmsg)

recipients← member-view(sender) \ {sender}
if sender = γ.myId then

seed← γ.nextSeed; γ.nextSeed← ε

else if γ.myId ∈ recipients then

seed← decrypt-from(sender, dmsg)

else

control← ("ack",++γ.mySeq, (sender, seq))

return (control, ε, ε, ε)

for ID ∈ recipients do

s← HKDF(seed, ID)

γ.memberSecret[sender, seq, ID]← s

s← HKDF(seed, sender)

Isender ← update-ratchet(sender, s)

if sender = γ.myId then return (ε, ε, Isender, ε)

control← ("ack",++γ.mySeq, (sender, seq))

allMembers← member-view(γ.myId)

forward← {(ID, encrypt-to(ID,
γ.memberSecret[sender, seq, γ.myId])) |
ID ∈ allMembers \ (recipients ∪ {sender})}

( , , Ime, )← process-ack(γ.myId, γ.mySeq,

(sender, seq), ε)

return (control, forward, Isender, Ime)

encrypt-to(recipient, plaintext)

if γ.2sm[recipient] = ε then

sk ← PKI-SecretKey(γ.myId, recipient)

pk ← PKI-PublicKey(recipient, γ.myId)

γ.2sm[recipient]← 2SM-Init(sk, pk)

(γ.2sm[recipient], ciphertext)←
2SM-Send(γ.2sm[recipient], plaintext)

return ciphertext

decrypt-from(sender, ciphertext)

if γ.2sm[sender] = ε then

sk ← PKI-SecretKey(γ.myId, sender)

pk ← PKI-PublicKey(sender, γ.myId)

γ.2sm[sender]← 2SM-Init(sk, pk)

(γ.2sm[sender], plaintext)←
2SM-Receive(γ.2sm[sender], ciphertext)

return plaintext

update-ratchet(ID, input)

(updateSecret, γ.ratchet[ID])←
HKDF(γ.ratchet[ID], input)

return updateSecret

member-view(ID)

ops← {m ∈ γ.history | m was sent or acked by ID

(or the user who added ID, if m precedes the add)}
return SR-DGM(ops)

Figure 4: Our DCGKA Protocol.
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message, process-seed computes new update secrets for the sender of the control message (Isender) and
for the recipient (Ime).

7.3 Computing Update Secrets

Update secrets are computed as follows. First, the seed secret and a user ID are passed to a key
derivation function (KDF) to produce a unique secret for each group member. For a seed secret sent
by user sender, where seq is the sequence number of the appropriate control message, the state variable
γ.memberSecret[sender, seq, ID] stores the per-member secret derived from that seed for member ID. We
propose using a HMAC-based KDF or HKDF [27,28], like the Signal protocol [36], but other constructions
with similar properties could be used instead.

Next, the per-member secret is passed to the update-ratchet function, which again uses the HKDF to
implement a separate key ratchet for each member. The ratchet state for user ID is stored in γ.ratchet[ID];
each invocation of update-ratchet produces a new ratchet state and a new update secret. Formally, this
ratchet can be modeled as a PRF-PRNG, as proposed by Alwen et al. [1, §4.3]. A PRF-PRNG combines
a sequence of input secrets into a output secret, such that the output secret is indistinguishable from
random provided that either the last input secret or the last state was uncompromised. In addition,
multiple distinct inputs on the same state produce outputs that look random and independent, like a
PRF.

Key agreement requires that any group member who computes such a ratchet obtains the same
sequence of update secrets. This in turn requires that everyone uses the same sequence of per-member
secrets as input to the ratchet, even though different group members may receive messages containing
seed secrets in a different order. In order to achieve this, we rely on the fact that Causal Broadcast
preserves the order of messages per sender. When a group member updates their own ratchet as a result
of receiving a control message, they also broadcast an acknowledgment control message to the group.
Other group members update the ratchet for the sender of the acknowledgment on receipt of that "ack"
(this is done in the process-ack function). Because every group member sees the control messages from
a sender in the same order, the ratchet updates for that sender are also performed in the same order.

In order to ensure forward secrecy, the per-member secret and previous ratchet state are deleted as
soon as the new ratchet state and update secret have been computed. Seed secrets are likewise deleted
as soon as they have been used. As the ratchet is a one-way function, once an update secret has been
returned, it and any prior secrets cannot be computed again. Additionally, we require that the 2SM
channels also ensure forward secrecy and PCS (see Appendix C).

7.4 Adding Group Members

An existing group member who wishes to add a new member calls the add algorithm, passing in the
ID of the user to be added. This information is broadcast to the group in a control message, and
additionally we construct a welcome message that is sent to the new member as a direct message. The
welcome message contains the current ratchet state of the sender of the add operation, encrypted using
a 2SM channel, and the history of group membership operations (necessary so that the new member can
evaluate the DGM function).

Unlike create, update, and remove, no seed secret is generated in the add algorithm; instead, ev-
ery group member moves their ratchet forward deterministically by calling update-ratchet with the
constant value "add". This is sufficient because all existing group members are allowed to know the
next update secrets following the add operation. Since the welcome message included the ratchet state
of the sender just before the add, the added user can compute the update secret for the sender in
process-welcome by also calling update-ratchet(sender, "add"). The added user’s own ratchet is initial-
ized by starting in the empty state ε and calling update-ratchet with a per-member secret obtained
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from update-ratchet(sender, "welcome"). The other existing group members can similarly initialize their
instances of the ratchet state for the new user since they already have the ratchet state for sender.

Next, the newly added user needs to initialize their ratchet state for all of the other group members
besides the user who added them. These are not sent by the adding user, but by the respective owners of
those ratchets. When a group member processes an "add" control message, it replies with an "add-ack"

control message, and additionally sends a direct message to the added user, containing their ratchet
state encrypted using a 2SM channel. As the new member receives these acknowledgments, it builds up
its collection of ratchet states and obtains an update secret for each existing group member.

Care is required when an add operation occurs concurrently with update or remove operations. For
example, in a group with members {A,B,C}, say A performs an update while concurrently C adds D
to the group. When A distributes a new seed secret through 2SM-encrypted direct messages, D will not
be a recipient of one of those direct messages, since A did not know about D’s addition at the time of
sending.

In this example, B may receive the add and the update in either order. If B processes A’s update
first and then adds D, the seed secret from A is already incorporated into B’s ratchet state at time time
of adding D, and B sends this ratchet state to D along with the aforementioned "add-ack" message.
On the other hand, if B processes the addition of D first, when B subsequently processes A’s update,
B updates its ratchet with a per-member secret that D does not know, and so D cannot perform the
same update on its copy of B’s ratchet.

Since key agreement requires all group members to use the same sequence of inputs to a given ratchet,
this missing per-member secret needs to be forwarded to the new user D. This is done in the process-seed
function, which computes the set:

member-view(γ.myId) \
(
recipients ∪ {sender}

)
,

where sender is the user who initiated the update/remove (A in our example) and recipients are the
recipients of the update/remove. This expression computes the set of users whose additions have been
processed by the current user γ.myId, but who were not yet known to sender when they sent the message.
Along with the "ack", each of these users is sent a 2SM-encrypted direct message containing the per-
member secret that the current user is incorporating into their ratchet. This forwarded secret allows the
recipient, in process-ack, to update the ratchet for the ack’s sender accordingly.

Note that this forwarding does not violate forward secrecy: an application message sent to the
group can still only be decrypted by those users who were group members at the time of sending. The
forwarding process only ensures that all current group members obtain the same ratchet states and
update secrets, even though different members may process concurrent member additions and PCS key
updates in different orders. In the example above, if B first processes the addition of D, the forwarding
process allows D to decrypt messages sent by B after B has processed A’s update.

To simplify the presentation in Figure 4, we assume that if the same user is added more than once
to the same group, then each user addition results in a separate protocol instance. It is also possible
to extend the protocol with explicit handling of the case where the same user is added multiple times,
possibly concurrently, as we show in Appendix D.

7.5 Security Analysis

Our DCGKA protocol achieves almost optimal DCGKA security. The exception occurs in the face of
concurrent updates or removals: if the adversary corrupts two group members A and B, who then both
concurrently send updates (or are removed), the adversary can use the two corrupted states together
to learn the update secrets for messages that are causal successors to both updates. This is contrary
to the definition of DCGKA security with optimal PCS, defined in Appendix A, which states that the
group state should heal from these corruptions once each corruption is causally succeeded by an update
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message. In principle this could be addressed by performing additional updates if concurrent updates or
removals are detected, but a better solution in practice is to simply perform PCS updates frequently in
any case.

Thus we prove DCGKA security with respect to a weaker security notion, formalized by the predicate
dom-safe in Appendix E. If the adversary corrupts multiple group members, this security notion requires
that those corruptions are healed only once all corrupted group members have sent updates and one of
these update messages is causally greater than all of the others. Concurrent update messages can then
heal a corruption of any one of the updating group members, but cannot heal a corruption of multiple
group members until another update message is sent that is causally greater than all of them.

Theorem 8. Model each pair (PKI-PublicKey(ID, ID′),PKI-SecretKey(ID, ID′)) as a random public-key
encryption key pair, with PKI-PublicKey(ID, ID′) public but PKI-SecretKey(ID, ID′) callable only by ID.
Model HKDF as a random oracle. Let λ be the bit length of random values output by KGen and HKDF,
and let the 2SM protocol use a (t′, εpke)-CPA-secure PKE scheme. Then the protocol in Figure 4 is non-
adaptively (t, c, n,dom-safe, SR-DGM, ε)-secure in the sense of Definition 9 in Appendix A, for t ≈ t′

and

ε = 2c

(
2qn2εpke + qnt2−λ +

(
qn

2

)
2−λ

)
.

The proof appears in Appendix E.
Another security consideration of our protocol is that all group membership operations (including the

IDs of users being added or removed) are sent in plaintext. This simplifies some edge cases: for example,
it allows concurrently added group members to add these operations to their γ.history, enabling them to
correctly compute the DGM function. We leave metadata privacy for these group membership operations
for future work.

7.6 From DCGKA to Decentralized Secure Group Messaging

Once DCGKA has established a key ratchet for each group member that is shared among the group
members, it is straightforward to use this to implement decentralized secure group messaging. Every
application message is encrypted using symmetric keys derived from the sender’s key ratchet, like in the
two-party Signal protocol and MLS. Here decentralization is no issue because Signal and MLS already
allow application messages to be interleaved, or even delivered out-of-order within fixed “epochs”.

More formally, when one of the algorithms in Figure 4 returns an update secret I for group member
A, the secret I should be used to initialize a protocol for forward-secure authenticated encryption with
associated data (FS-AEAD), as defined by Alwen, Coretti, and Dodis [1, §4.2]. FS-AEAD allows for
symmetric-key message encryption and decryption, like AEAD, but using different deterministically-
derived keys for each message, deleting each key after it is used for forward secrecy. The FS-AEAD
protocol should be used for application message encryption by A, and for decryption by the other group
members, until the next time the DCGKA protocol outputs an update secret for A. The sequence
number of A’s last ratchet update should be included in the associated data of these messages, so that
recipients know which FS-AEAD protocol state to use for decryption.

8 Performance

In this section we examine the performance of our protocol as a function of n, the number of group
members.

8.1 Asymptotic Performance Analysis

In general, causal broadcast requires additional metadata in every message to establish the causal order-
ing. The size of this metadata is proportional to the number of concurrently sent messages by different
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group members, O(n) in the worst case [10]. However, we are able to reduce this overhead to zero
because our DCGKA protocol does not require full causally ordered delivery. Instead, DCGKA only
requires that:

• each group member’s messages are delivered in order;

• acknowledgment messages are delivered after the message they acknowledge.

The acknowledgment messages and the sequence numbers that are already contained in DCGKA mes-
sages in plaintext are sufficient to ensure this. Additionally, Authenticated Causal Broadcast requires
a PCS signature to authenticate the sender of each message (Section 5.2), adding a constant-size over-
head to each message. The encryption that is applied to application messages (Section 7.6) and direct
messages (2SM) also adds a constant overhead. Each direct message also requires a constant number of
public-key operations on both the sender and the recipient side.

Each create, update, or remove DCGKA operation broadcasts one constant-size control message and
sends O(n) constant-size direct messages. Each other group member replies by broadcasting a constant-
size acknowledgment, resulting in O(n) network traffic overall. The operation requires O(n) public key
operations at the sender, and O(1) public key operations for each other group member.

Add operations send one constant-size control message and one direct message (the welcome mes-
sage to the new user), and require O(1) public key operations at the sender. Each other group member
broadcasts a constant-size acknowledgment and sends one constant-size direct message to the new mem-
ber, resulting in O(n) network traffic overall. The acknowledgments require in total O(n) public key
operations by the added user and O(1) public key operations by each other group member. The welcome
message contains the history of group membership operations; in principle, its size is proportional to
the number of previous membership operations and their acknowledgments—typically O(n2). In prac-
tice, the welcome message only needs to include enough data to be able to evaluate the DGM function.
Techniques from Conflict-free Replicated Data Types (CRDTs) [39, 41] can be used to design efficient
representations of group membership history.

As an optimization, a group member can choose to delay sending acknowledgments until the next
time it performs a PCS update, membership operation, or wants to send an application message. This
may allow the protocol to coalesce multiple acknowledgments into a single message. Such a delay does
not affect the security properties of the protocol.

This analysis assumes that the underlying network supports broadcast messaging. If it does not, each
broadcast message must become O(n) unicast messages. However, these O(n) messages need not all be
sent by the same sender: many group members (and, optionally, some number of untrusted servers)
can be involved in disseminating a broadcast message by using a suitable network topology, e.g. a mesh
network or gossip protocol. In many such scenarios, the cost of a broadcast message to each group
member remains O(1).

8.2 Implementation and Empirical Measurements

We have implemented a prototype of our DCGKA algorithm in around 3500 lines of Java. The im-
plementation is available as an open-source project on GitHub.3 We use a Java implementation of
Curve25519 [7];4 all other cryptographic primitives use the built-in cryptography providers of the JVM.
We ran the evaluation using OpenJDK 8 on a single machine with 16 GiB memory and an 8-core Intel
i7 processor.

Our implementation demonstrates that the performance of DCGKA is good enough for practical use
in medium-sized groups of up to 128 members, even with an implementation that is not highly optimized.
In our experiments we execute multiple test scenarios consisting of an initial group setup followed by a

3https://github.com/trvedata/key-agreement
4https://github.com/trevorbernard/curve25519-java
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single group membership, PCS update, or message send operation. We measure the network traffic and
CPU time resulting from that operation (including the processing of messages at all group members,
and including any acknowledgments). We run all clients as separate threads in a single process and pass
messages as serialized byte arrays. Hash functions and symmetric encryption use a 128-bit security level.
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Figure 5: The total data volume sent by all clients while executing each type of operation, for groups
ranging from 8 to 128 members. Broadcast messages are counted as a single outgoing message.

8 16 32 64 128
Group size

10 1

100

101

102

Se
nd

er
: C

PU
 ti

m
e 

[m
s]

8 16 32 64 128
Group size

Re
cip

ie
nt

s:
 C

PU
 ti

m
e 

[m
s]

create add remove message update

Figure 6: The CPU time (on a single core) to execute an operation, per sender or recipient, for groups
ranging from 8 to 128 members. The error bars show the standard deviation over 25 independent
executions.

Figure 5 shows that the total traffic for creating a group, adding a group member, or removing a
group member grows linearly with the group size, as expected. Creating a new group of 128 members
results in 43.4 kB being sent, and PCS updates (39.6 kB) and the group membership operations add
(75.5 kB) and remove (39.3 kB) are in the same order of magnitude. Sending an application message
incurs a constant overhead of 139 bytes regardless of group size. For our evaluation we send a 32 byte
payload.

Figure 6 shows that the average computational effort on the sender or recipient side does not exceed
150 ms for group creation, PCS update, and membership operations on groups up to 128 members. For
groups up to 64 members, the CPU times are less than 50 ms. Sending and receiving messages is very
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fast, taking less than 2 ms regardless of group size. Comparing these results with an average mobile
network latency of around 50 ms, these results support our conclusion that DCGKA is practicable for
real-world applications with medium-sized groups.

9 Conclusions and Future Work

In this paper we have shown, for the first time, how to enable secure group messaging with strong security
guarantees (end-to-end encryption with forward secrecy and post-compromise security) in a decentralized
and asynchronous setting. While the basic idea of sending secrets over two-party secure channels is
simple, many details require careful design in order to meet our objectives: in particular, defining the set
of current group members in the face of concurrent additions and removals, and ensuring that all group
members obtain the same keys when users are added concurrently with other group members performing
PCS updates.

Centralized protocols avoid such challenges by sequencing all updates through a semi-trusted server
or consensus protocol. However, such centralization is undesirable in many settings, such as anonymous
communication (mix networks), mesh networks, and peer-to-peer settings. By avoiding such centraliza-
tion, our protocol allows secure group messaging to be deployed on any type of network, regardless of
its topology. Even during a network partition, any subset of group members who are able to physically
exchange messages can continue to communicate, update keys, and add or remove group members as
usual. This gives our protocol much better robustness and censorship resistance than approaches based
on a server that can become a single point of failure.

The downside of our protocol is that group membership operations and PCS key updates have
O(n) cost in computation and network traffic for a group with n members, whereas the centralized MLS
protocol requires only one broadcast message of size O(log n) for the same operations [5]. We have shown
in Section 8 that our O(n) cost is acceptable even for groups of over 100 members. For significantly larger
groups, the MLS approach may be preferable, since MLS is designed to allow up to 50,000 members
per group. However, it is debatable whether secure messaging for groups of thousands of people has a
plausible threat model: large groups are more easily infiltrated by agents of the adversary, making the
protocol’s confidentiality properties irrelevant.

Beyond this paper, there are many open problems and interesting directions for future work:

Breaking the Ω(n) barrier. Is it possible to design a decentralized group messaging protocol that
scales sub-linearly with the group size? It would be interesting to either break through the Ω(n)
barrier (while maintaining FS and PCS), or to prove its impossibility. One approach might be to
use constant-size puncturable public keys [21].

Metadata privacy. It would be desirable to protect metadata such as group membership operations
from eavesdroppers. This is complicated by the fact that new group members must be able to
learn about group membership operations that are concurrent to their addition.

Malicious user tolerance. Our protocol assumes that all group members follow the protocol correctly;
a malicious group member can put the group into an inconsistent state by sending different en-
crypted seed secrets to different recipients as part of the same update. A more robust protocol
would detect and prevent such protocol violations.

Tolerating bad randomness. Our 2SM protocol is vulnerable if a user’s random number generator
is compromised. We believe this can be addressed by combining new and old key pairs in a
homomorphic way, as in [24].

Stronger security proofs. Our security proofs make some simplifying assumptions: we consider only
non-adaptive adversaries; we ignore the effects of bad or leaked randomness, or users who fail to
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erase old secrets; and we treat hash functions as random oracles. It would be preferable to reduce
these assumptions if possible.
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A Security Game for DCGKA

The correctness and security of a DCGKA scheme are formally captured by the security game in Figure 7.
The game definition and our description of it are based on the CGKA version introduced by Alwen
et al. [2, §3.2]. DGM denotes the DGM scheme that we are using to determine group membership. The
game is a key indistinguishability game, parameterized by the random bit b, which determines whether
challenges return actual update secrets or random values. The adversary’s goal is to guess b.

Initialization The init oracle sets up the game and all the variables needed to keep track of the
execution. The random bit b is used for real-or-random challenges. The dictionary γ keeps track of
all of the users’ states, while counter[ID] stores the number of messages that have been sent so far
by ID. Note that these counters are never reset, unlike the variable ctr in the CGKA security game,
which is reset with each CGKA epoch. controlMsgs[ID, c] stores the c-th control message generated by
ID, while directMsgs[ID, c, ID′] stores the corresponding direct message intended for ID′. Corresponding
to controlMsgs[ID, c], I[ID, c] stores the update secret output by the sender, needsResponse[ID, c] stores
whether recipients are required to return an acknowledgment when processing controlMsgs[ID, c] (i.e.,
it is an output of create add, remove, or update), and, challenged[ID, c] stores whether I[ID, c] has been
challenged or revealed by the adversary. Additionally, for each user ID′, delivered[ID, c, ID′] indicates
whether controlMsgs[ID, c] has been delivered to ID′. Finally, addTarget[ID, c] is ID′ if controlMsgs[ID, c]
is an add message that added ID′, or ε if it is not an add message.

Both controlMsgs and directMsgs are marked public, indicating that they are readable by the adver-
sary.

Group Creation The create-group oracle causes ID0 to create a group with members ID0, . . . , IDn.
It requires that no previous messages have been sent, i.e., the game has just started (if the require
statement fails, the game aborts and the adversary loses). To avoid trivial protocols that do not output
any update secrets, create must output a non-ε control message and update secret; if not, we reveal b
to the adversary, indicated by the keyword win. We store the returned messages and update secret,
increment the sender’s counter, and mark the message as delivered to its sender. Here we use the notation
directMsgs[ID0, 1]← dmsgs to mean directMsgs[ID0, 1, ID

′]← dmsg for each pair (ID′, dmsg) ∈ dmsgs. To
avoid trivial protocols, we set needsResponse[ID0, 1] ← true, ensuring that other group members will
output response messages and update secrets of their own when processing the create message.

Adding, removing, and performing updates The three oracles add-user, remove-user, and send-update
allow the adversary to cause some user to call the corresponding algorithm. The predicate valid-member
ensures that the sender has received a message before, so that their control messages are related to
the existing group. In contrast to the CGKA security game, we do not make any check that the re-
quested group membership operations are “reasonable”, e.g., the removed user is already in the group.
This is because the DGM scheme may assign some significance to seemingly redundant or unreasonable
operations.
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Delivering control messages The oracle deliver(ID, c, ID′) delivers controlMsgs[ID, c] (together with
the direct message directMsgs[ID, c, ID′]) to user ID′. It first makes several ordering-related checks, which
formalize the precise delivery requirements for messages (discussed briefly in Section 5):

• The predicate in-history is used to ensure that ID′ has not already been delivered this message or
a causally later one. The latter case can occur if ID′ was already delivered a message adding them
to the group which is causally greater than this message, hence should have informed of ID′ of any
relevant metadata about this message.

• The predicate should-receive ensures that ID′ is eligible to receive this message. We dictate that
ID′ is eligible to receive the message if they consider themselves group members after receiving
the message, taking into account all messages they have received already. This rules out confusing
situations in which group members consider themselves not in the group, but allows them to receive
messages besides just the ones they should be able to decrypt—in particular, messages concurrent
to their own addition. Allowing group members to receive messages concurrent to their addition
allows us to simplify our DCGKA protocol, since then group members can learn the metadata
(but not update secrets) of group membership changes and acknowledgments concurrent to their
addition, which are impossible to include in the message adding them to the group.

• The predicate causally-ready ensures that ID′ processes messages in causal order, by requiring them
to have received all causally lesser messages.

• The exception to this rule is encoded by add-ready: a group member may receive a message adding
them to the group without receiving prior messages. In particular, the first message a group
member receives will always be the message adding them to the group. However, this would get
confusing if a group member was added to the group, removed, and then re-added later, and they
were allowed to receive the second add message before receiving all messages in between the first
add and remove, since they would later have to go back and process old messages. To avoid this,
add-ready requires ID′ to first receive any causally prior messages that they should-decrypt.

These restrictions on the adversary’s ability to deliver messages are reasonable because they can easily
be enforced by the Authenticated Causal Broadcast layer, as discussed in Section 5.5

After checking these conditions, the oracle delivers the message to ID′. To ensure correctness, we
mandate that the output secret I is correct (i.e., equal to the update secret returned when its sender
processed the message) if ID′ should be able to decrypt it. This occurs precisely if they were an intended
recipient of the message.

Finally, delivering the message may cause ID′ to return a response control message, which is handled
like any other generated message. The variable mustRespond mandates that this response exists and has
an associated update secret if it is required by needsResponse (i.e., the delivered message was output by
create, add, remove, or update) and ID′ should be able to decrypt the processed message. A response is
also required if the message adds a group member, from the perspective of ID′, since the added group
member needs an update secret from ID′ in order to decrypt their application messages; this is checked
by adds-member. If a response is not required, ID′ may choose to output a response regardless, in which
case we do not require their response to have an associated update secret.

Challenges and corruptions Challenges and corruptions are handled as in the CGKA security game.
In order to capture that update secrets must look random, the attacker is allowed to issue a challenge for
any update secret, using challenge. The attacker may instead directly reveal the update secret using

5The Causal Broadcast layer can enforce the restriction in add-ready by including, along with each message adding ID′,
a vector clock describing the causally maximal prior messages T satisfying should-decrypt(T, ID′). The Causal Broadcast
layer for ID′ would then delay processing the add message until its own vector clock was at least as large.
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reveal. To model forward secrecy and post-compromise security, the attacker is allowed to learn the
current state of any user by calling the oracle corrupt. Note that because of our requirements about
when users output update secrets and response messages, we do not have to worry about trivial protocols
that give the adversary nothing to challenge.

Avoiding trivial attacks At the end of the game, a safety predicate P (specified as a parameter
to the security game) is evaluated on the sequence of queries q1, . . . ,qq made by the adversary. If
P(qq, . . . ,qq) is false, the adversary loses. The safety predicate is meant to prevent trivial attacks, in
which the adversary corrupts a group member’s state and then uses it directly to decrypt an update
secret. Changing P changes the precise PCS and FS guarantees required by the security game.

The particular safety predicate safe in Figure 9 describes optimal PCS and FS, including optimal
PCS in the face of concurrent updates: after multiple corruptions, update secrets must be safe once all
corrupted group members update, even if they all update concurrently. To define safe, we first define
a predicate corrupts(qcorr,qchall), which determines whether, in the absence of PCS and removals, the
query qcorr allows the adversary to trivially learn the update secret challenged by qchall, by corrupting a
group member who was added to the group causally prior to the challenged message, before that group
member received the message. Observe that using ∀(i, j) (¬corrupts(qi,qj)) in place of our actual safety
predicate would model forward secrecy: the adversary may only corrupt users who were added after a
challenged message or had already received the challenged message. Instead, safe merely requires that
each corruption was healed, either because the corrupted group member was no longer in the group
at the time of the message, or because the corrupted member sent an update message after they were
corrupted and causally prior to the challenged message.

Thus corruptions of a group member after they receive the challenged message are allowed, expressing
FS, and corruptions healed by an update causally prior to the challenged message are allowed, expressing
PCS. Furthermore, group membership is enforced cryptographically, since the adversary is free to corrupt
the states of any group members who are not intended recipients of the challenged message, modeling
collusion between those members.

However, some protocols only achieve weaker forms of PCS or FS, including our own (cf. the last
two columns in Table 1). Thus we instead prove security of our DCGKA protocol with respect to the
security predicate dom-safe defined in Appendix E, which allows slightly sub-optimal PCS in the face
of concurrent updates.

Advantage In the following, a non-adaptive (t, c, n)-attacker is an attacker A that runs in time at
most t, makes at most c challenge queries, references at most n IDs, and must specify the sequence
of queries it plans to make in advance, before seeing the result of any queries. The attacker wins the
DCGKA security game if it correctly guesses the random bit b in the end and the safety predicate P
evaluates to true on the queries made by the attacker. The advantage of A against a DCGKA scheme
DCGKA with respect to the safety predicate P and DGM scheme DGM is defined by

AdvDCKGA,P,DGM
dcgka-na (A) := 2

∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣ .
Definition 9. A DCGKA scheme DCGKA is non-adaptively (t, c, n,P,DGM, ε)-secure if for all non-
adaptive (t, c, n)-attackers A,

AdvDCKGA,P,DGM
dcgka-na (A) ≤ ε.

B Public-Key Encryption

We reproduce a standard definition of public-key encryption for use in our two-party secure messaging
protocol.
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Definition 10. A public-key encryption (DCGKA) scheme PKE = (PKE-Gen,PKE-Enc,PKE-Dec) con-
sists of the following algorithms:

Key generation PKE-Gen outputs a fresh key pair (pk, sk).

Encryption PKE-Enc takes a public key pk and a message m, and outputs a ciphertext c.

Decryption PKE-Dec takes a secret key sk and a ciphertext c, and outputs a message m.

Correctness of a PKE scheme is defined by

Pr[(pk, sk)←$PKE-Gen, c←$PKE-Enc(pk,m),

m′ ← PKE-Dec(sk, c) : m′ = m] = 1

for all messages m.
We require IND-CPA security. This means that for the security game, the challenger generates a

key pair (pk, sk)← PKE-Gen and a challenge bit b, gives pk to the adversary, and then inputs messages
m0,m1 of the same length from the adversary, returning PKE-Enc(pk,mb). The adversary wins if they
correctly guess the bit b. The advantage of an adversary A against a PKE scheme PKE is

AdvPKEpke-ind-cpa(A) := 2

∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣ .
Definition 11. A PKE scheme PKE is (t, ε)-CPA-secure if for all attackers A running in time t,

AdvPKEpke-ind-cpa(A) ≤ ε.

C Security of Our Two-Party Secure Messaging Scheme

In this section, we define and prove the security of our two-party secure messaging scheme 2SM from
Section 4.1.

C.1 Security Game

Our 2SM security game is essentially the two-party restriction of our DCGKA security game, with
every message counting as an update message, except that we use IND-CPA security instead of secret
indistinguishability. The oracles of our security game appear in Figure 10.

The init oracle sets up the game and all the variables needed to keep track of the execution. The
random bit b is used for IND-CPA challenges. The states of the two parties, A and B, are initialized using
key pairs for a public-key encryption scheme PKE. ciphertextsA[c] and plaintextsA[c] store the ciphertext
and plaintext, respectively, for the c-th message sent by A, and likewise for B. The ciphertexts arrays
are marked public, indicating that they are readable by the adversary, and the parties’ public keys are
returned to the adversary.

After calling init, the adversary is free to call the remaining oracles to simulate message sending
and receiving, corrupt the parties’ states, and issue IND-CPA challenges. Note that deliver-A enforces
authentic in-order delivery of messages from B (if the require statement fails, the game aborts and the
adversary loses). However, messages can be arbitrarily delayed, and messages from the two parties may
be interleaved. deliver-A checks that A correctly decrypts the original plaintext, enforcing correctness
(otherwise win reveals b to the adversary).

At the end of the game, the predicate 2SM-safe in Figure 11 is evaluated on the sequence of
queries q1, . . . ,qq made by the adversary, and if it is false, the adversary loses. This is to prevent
trivial attacks, in which the adversary corrupts a group member’s state and then uses it directly to
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decrypt a message. Specifically, 2SM-safe(q1, . . . ,qq) fails to hold if there are queries qi = corrupt-A,
qj = challenge-B(m0,m1) such that A had not yet received the message corresponding to qj at the
time of qi, unless A healed this corruption by sending a message after qi that was delivered to B before
qj , and likewise with A and B swapped.

An attacker wins the 2SM security game if it correctly guesses the random bit b in the end and the
safety predicate 2SM-safe evaluates to true on the queries made by the attacker.

Definition 12. A non-adaptive (t, q)-attacker is an attacker A that runs in time t, makes at most q
queries, and must specify the sequence of queries it plans to make in advance, before seeing the result
of any queries. The advantage of A against a 2SM scheme 2SM is

Adv2SM2sm-na(A) := 2

∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣ .
Definition 13. A 2SM scheme is non-adaptively (t, q, ε)-secure if for all (t, q)-attackers A,

Adv2SM2sm-na(A) ≤ ε.

C.2 Security Proof

Theorem 14. The 2SM scheme defined in Figure 2 is non-adaptively (t, q, 2qεpke)-secure, where εpke is
such that the PKE protocol is (t′, εpke)-secure for t′ ≈ t.

Proof. Let q1, . . . ,qq be the sequence of queries made by the adversary, which we can fix in advance
because it is non-adaptive. Without loss of generality these queries satisfy 2SM-safe. Similarly, we
assume the adversary never fails a require clause. Then in terms of the bit b sampled at the beginning
of the game,

Adv2SM2sm-na =∣∣∣Pr[A outputs 1 | b = 1]− Pr[A outputs 1 | b = 0]
∣∣∣.

We now proceed with a hybrid argument. Let H0 denote the original security game. Let H1 be
the same game but without the win condition in deliver-A and deliver-B. It is not difficult to check
that our 2SM protocol is correct, i.e., the parties always correctly decrypt messages assuming authentic
in-order delivery to each party, so these games are equivalent.

Next, let SA be the set of all queries qi calling send-A or challenge-A that are uncompromised,
which we define by: for all queries qj = corrupt-B, the implication in 2SM-safe holds for qi and qj .
Let SB be analogous and S = SA∪SB. By safety, S includes all challenge-A and challenge-B queries.

Define hybrids H1 = H0
2 , H

1
2 , . . . ,H

|S|
2 by: H i

2 is the same as H1, except for the first i queries in S,
the outputs of 2SM-Send in those queries use PKE-Enc(otherPk, r) in place of

PKE-Enc(otherPk, (m, otherNewSk, nextIndex,myNewPk)),

where r is a random value of the same length as (m, otherNewSk, nextIndex,myNewPk). (In the corre-
sponding receive queries, we use the correct value (m, otherNewSk, nextIndex,myNewPk) as the decrypted
ciphertext.)

We claim that given an adversary distinguishing between H i−1
2 and H i

2 (more formally, distinguishing
between the distributions resulting from H i−1

2 with a fixed value of b and H i
2 with the same value of

b), we can construct an adversary of comparable efficiency winning the IND-CPA game for PKE. Let
qrepl be the query replaced in H i

2, and assume it is a send-A or challenge-A query. Let otherPk be
the public key used for encryption in qrepl. There are two cases to consider: either otherPk was received
from B, possibly as the public key in 2SM-Init (if the last A query, excluding corrupt-A, was receive-A
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or init), or it comes from a key pair generated by A (if the last A query, excluding corrupt-A, was
send-A or challenge-A).

In the first case, because qrepl is uncompromised and B deletes the secret key corresponding to
otherPk as soon as it is used, no corrupt-B query reveals this secret key to the adversary. Hence we can
reduce the PKE IND-CPA game to the H i−1

2 /H i
2 distinguishing game by simulating H i−1

2 (with the PKE
game’s public key substituted for otherPk at the time its key pair is generated, either in the 2SM game’s
init oracle or in algorithm 2SM-Send) until we get to the 2SM-Send call in qrepl. In that algorithm, we
use the PKE game’s encryption oracle in place of

PKE-Enc(otherPk, (m, otherNewSk, nextIndex,myNewPk)),

passing (m, otherNewSk, nextIndex,myNewPk) and a random string of the same length as arguments. We
then continue simulating H i−1

2 , exploiting the fact that we can do this without knowing the secret key
corresponding to otherPk. This simulates either H i−1

2 or H i
2 depending on the value of the bit b in the

IND-CPA game for PKE.
In the second case, because qrepl is uncompromised, we also have that qprev is uncompromised,

where qprev is the last send-A or challenge-A query issued before qrepl. Since qprev was replaced in a
previous hybrid step, in both H i−1

2 and H i
2, the encrypted portion of qprev’s message encrypts a random

plaintext. In particular, it is independent of the value of otherNewSk used in qprev, which is the secret
key corresponding to the otherPk used in qrepl. Thus we can simulate qprev without knowing otherNewSk.
This lets us again reduce the PKE IND-CPA game to the H i−1

2 /H i
2 distinguishing game.

Finally, the adversary’s advantage in H
|S|
2 is 0, since the game does not depend on the bit b.

Remark 15. One threat not modeled by our security definition is bad or leaked randomness. Our
protocol is vulnerable to this threat: if the adversary learns all random values used in a call to 2SM-Send,
they partially compromise both parties. We believe this can easily be fixed by combining newly received
key pairs with old ones in a homomorphic way, as in [24], at the expense of incompatibility with practical
primitives like X25519 [30].

D Multiple additions and removals of the same user

A group member may be added multiple times concurrently, or added, removed, and then added back
at a later time. The pseudocode in Figure 4 does not handle this case explicitly, but we can account for
concurrent additions, by replacing the process-welcome function with the version shown in Figure 12.

This version takes the union of the added member’s history with adderHistory, so it contains all
messages causally prior to a message they have received. This may cause the added member to skip over
other add messages without getting to send an add-ack; thus the added member forwards their current
ratchet state to any users they do not recognize in the welcome-ack message. They also forward their
per-member secret as needed, like in process-seed. Observe that add-remove-add sequences are handled
naturally, with other group members forwarding their current ratchet states in response to the second
addition, thus skipping over any ratchet states that the recipient missed while they were removed.

E DCGKA Security Proof

We now prove the security of our DCGKA protocol (Theorem 8).
As described in Section 7.5, we achieve slightly suboptimal PCS in the face of concurrent updates.

We formalize the weakened security property that we do achieve by replacing the predicate safe in the
DCGKA security game with the predicate dom-safe defined in Figure 13. It differs from safe in that it
additionally checks that for each challenge qi, there is a fixed update, remove, or create query qd whose
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message causally dominates all of the update messages message(qk) and removals used to heal qi from
corruptions.

For removals, more specifically, instead of allowing corruptions of any user who is not an intended
recipient of the challenged message, we only allow corruptions of a user who is not an intended recipient
of the dominating message message(qd) and who was not added back to the group between qd and the
challenged message. A special case of this is that if A and B are removed concurrently and then both
corrupted, we do not claim security for subsequent messages until after an update or remove qd which
dominates both removals. This expresses the fact that A and B can collude to decrypt the intermediate
messages. However, we do claim security if only A (resp., only B) is corrupted, as can seen by taking
qd to be A’s removal query, so A cannot decrypt the intermediate messages without collusion.

Given this safety predicate, the basic idea of our security proof is that all 2SM instances used by
message(qd) are uncompromised, hence qd’s seed secret is unknown to the adversary. The same then
holds for the challenged update secret, since that secret factors in qd’s seed secret via the key ratchet.
Later corruptions by the adversary are foiled by forward secrecy, which we guarantee by using the key
ratchet and deleting secrets after use.

Lemma 16 (Correctness). Our DCGKA protocol is correct. I.e., for any adversary, none of the win
clauses in the security game will ever be triggered. This holds even if we relax the requirement of causally
ordered delivery to the weaker ordering requirement described in Section 8, by replacing the predicate
causally-ready(ID, c, ID′) in oracle deliver with the predicate

ack-order-ready(ID, c, ID′) :=(
(∀c′ ≤ c) (in-history(ID, c′, ID′))

)
∧(

(controlMsgs(ID, c) is an ack, add-ack, or wel-ack of

T ∈ controlMsgs) =⇒ in-history(T, ID′)
)

Proof sketch. All 2SM protocol messages decrypt correctly because for each pair of users ID, ID′, all 2SM
messages from ID to ID′ are delivered in order, and because we use the PKI correctly.

Next, all calls to member-view are correct, in the sense that for each pair of users ID, ID′, at any time,
letting T be the most recent control message sent by ID′ that ID has received, a call to member-view(ID′)
by ID returns the same set as a call to member-view(ID′) made by ID′ immediately after generating
T . This holds by our ordering requirements, the fact that all group members acknowledge all add and
remove messages they receive (including ones concurrent to their own addition, unless subsumed by
a double-add of themselves), and the fact that all group members eventually put all remove and add
messages (plus acks of those messages) in their own history sets. The latter fact holds noting that
group members take the union with their adder’s history each time they are added, and they receive all
messages concurrent to their own addition (unless subsumed by a double-add of themselves).

Next, we have the invariant: for each pair of users ID, ID′ with states γ, γ′, respectively, at any time,
letting T be the most recent control message sent by ID′ that ID has received and such that ID was an
intended recipient of T (i.e., should-decrypt(T, ID)), γ.ratchet[ID′] has the same value that γ′.ratchet[ID′]
had immediately after generating T .

Initially, this is true as all users’ ratchet states are all ε. Subsequently, we break into cases depending
on T , noting that γ.ratchet[ID′] only changes when processing messages from ID′, and that such messages
are delivered in order by assumption. If T is a create, update, remove, or ack message, then both ID and
ID′ derive the same per-member secret for ID′, hence update the ratchet states identically. Note that
for an ack message, we make use of the assumption that ID received the acknowledged message before
the ack, hence ID has the per-member secret available. We also use the fact that if T is an ack and ID
could not decrypt the acknowledged message, then ID′ forwards their per-member secret to ID in the
direct message. Add, add-ack, and welcome-ack messages are similar, noting that all recipients ratchet
their states forward even if they were not intended recipients, but with some special cases concerning
the added user:
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• All group members in the added user’s view of the group (after processing the addition) receive
the added user’s per-member secret: they can either compute it directly from the adder’s ratchet,
or are forwarded it by the added user in memberFwd.

• All group members in the added user’s view of the group know the added user’s previous ratchet
state when processing the welcome-ack: the first time the user is added, everyone knows this is
just ε. On subsequent adds, any members who do not know the previous ratchet state, because the
added user did not previously consider them group members, are forwarded it by the added user
in ratchetFwd. Note that this case and the previous case are disjoint, so ratchetFwd ∪memberFwd
contains at most one entry per user.

• The added user knows all other group member’s previous ratchet states when processing their
add/add-ack: these are forwarded to the added user in the add message (in the adder’s case) or in
the add-ack messages (all others).

Finally, going through the proof of the previous invariant, it is easy to see that at every point, ID also
outputs the correct update secret when processing T . Furthermore, users always output non-ε update
secrets and response messages when required by the security game.

Proof of Theorem 8. Fix a non-adaptive (t, c, n) attacker A. Let q1, . . . ,qq be the sequence of queries
made by A. Without loss of generality these queries satisfy dom-safe. Similarly, we assume the
adversary never fails a require clause. Then in terms of the bit b sampled at the beginning of the game,

AdvDCGKA,dom-safe,SR-DGM
dcgka-na =∣∣∣Pr[A outputs 1 | b = 1]− Pr[A outputs 1 | b = 0]

∣∣∣.
We now proceed with a hybrid argument. Let H0 denote the original game. At the top level, we

pass through c hybrid games H1, . . . ,Hc, where in the i-th hybrid, the first i challenge queries return a
random value regardless of b (among other changes). Then Hc does not depend on b, so the adversary’s
advantage is 0. Thus it remains to bound the adversary’s ability to distinguish between the games
H0, . . . ,Hc (i.e., between the distributions corresponding to these games with a fixed value of b—since
there are two distributions for each game, our bound gets an extra factor of two).

We explain the step from H0 to H1; the remaining steps are analogous, giving ε a factor of c.
Let qchall be a challenge query. By assumption, the conclusion of dom-safe holds for qchall. Let

qdom be the update, remove, or create query guaranteed by dom-safe. Define a hybrid H0.1 which is
the same as H0, except that we replace the following 2SM messages with encryptions of random values
of the same length as the original inputs:

• all direct messages sent along with message(qdom) (where message(qdom) denotes the control mes-
sage generated by qdom)

• for each add message not causally less than message(qdom) and not causally greater than message(qchall),
all direct messages sent along with the add message or its corresponding add-ack, or welcome-ack
message.

By the security of our 2SM protocol, the adversary’s advantage in distinguishing H0.1 from H0 is at
most n2ε2sm ≤ 2qn2εpke, noting that n2 upper bounds the number of 2SM channels and q upper bounds
the number of queries to each 2SM channel. Indeed, if A could distinguish between one of these message
replacements, then we could make an adversary for the corresponding pair of group members’ 2SM
channels, which makes the same corruptions asA restricted to that group member, and which successfully
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challenges the replaced message, by simulating the DCGKA game to A. The resulting 2SM adversary
satisfies the 2SM safety predicate by dom-safe, which ensures that all replaced messages (which are
the challenged messages in the 2SM game) are uncorrupted. Note that in this reduction, we exploit our
assumption that we model each PKI key pair (PKI-PublicKey(ID, ID′),PKI-SecretKey(ID, ID′)) as a fresh
output of PKE-Gen. This allows us to substitute the public keys returned by the 2SM game, which also
come from fresh outputs of PKE-Gen, in place of PKI-PublicKey(ID, ID′) and PKI-PublicKey(ID′, ID) when
we give those values to A in the simulated DCGKA game, where ID, ID′ are the users in the replaced 2SM
channel. Also, because the PKI secret keys are independent for each pair ID, ID′, we do not need need
to know PKI-SecretKey(ID, ID′) or PKI-SecretKey(ID′, ID) to simulate the rest of the DCGKA game—a
fact which would not hold if we only had a single PKI key pair for each user.

In H0.1, all values available to the adversary can be written as functions of:

(a) secret values remaining in group members’ states immediately after they processed message(qchall)
(the most that the adversary can learn through later corruptions)

(b) update secrets corresponding to messages causally greater than or equal to message(qdom) but not
causally greater than or equal to message(qchall) (which the adversary can learn through reveal
or challenge queries)

(c) a single value (encompassing all remaining secrets in the protocol) which is independent of the
seed secret of qdom.

To see this, we consider all values available to the adversary. Note that when discussing various “in-
dependent” values, we mean that they are independent when all considered together in the sense of
(c).

• Protocol messages: All protocol messages not causally greater than or equal to message(qdom) are
independent of the seed secret of message(qdom), since it was generated at random during qdom.
The replacements for the direct messages of message(qdom) in H0.1 are likewise independent, as are
the replacements for the direct messages of the add, add-ack, and welcome-ack messages specified
in the definition of H0.1. All other messages are functions of independent random values (i.e.,
other seed secrets, for create, update, remove, and ack messages) and (a) (for add, add-ack, and
welcome-ack messages causally greater than message(qchall)). Note that by the delivery ordering
requirements, it is not possible to have an add message causally less than message(qdom whose
add-ack or welcome-ack is causally greater than message(qdom, so the above cases (not causally
greater than or equal to message(qdom); causally greater than message(qchall); or replaced in H0.1)
do indeed include all add, add-ack, and welcome-ack messages.

• Return values of corrupt queries: Corruptions of group members with message(qchall) in their
history (at the time of the corruption) return functions of (a) and independent random values
(e.g., other seed secrets). Corruptions of group members with message(qdom) not in their history
are independent since the seed secret was generated at random during qdom, and a group member’s
state can only be a function of message(qdom) when it is in their history. Corruptions of group
members who are not intended recipients of qdom are independent since their states do not depend
on the seed secret. No other corruptions are allowed by dom-safe.

• Return values of reveal queries and other challenge queries: The challenged variable in the
security game ensures that message(qchall) is never revealed. Queries for messages causally greater
than or equal to message(qchall) are functions of (a) and independent values, while queries causally
less than message(qdom) are easily independent. The remaining queries are included in (b).

The values included in (a) are functions of:
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(a1) per-member secrets of qdom for group members besides the sender of message(qchall)

(a2) per-member secrets of arbitrary other messages for group members besides the sender of message(qchall)

(a3) ratchet states resulting from qchall

(a4) group members’ 2SM states after processing message(qchall).

Here we use the fact that group members delete nextSeed and entries in memberSecrets from their states
as soon as those values are used.

Part (a2) is obviously independent of the seed secret of qdom in the same sense as (c), so it is
not a concern. The same holds for (a4) because the 2SM protocol does not store any information
related to message plaintexts. The values included in (a1), (a3), and (b), together with the challenged
update secret, are all derived from the seed secret of qdom via a tree of HKDF applications. Specifically,
at the root of this tree is the seed secret seed of qdom. The root’s children are the corresponding per-
member secrets HKDF(seed, ID1), . . . ,HKDF(seed, IDm), where {ID1, . . . , IDm} are the intended recipients
of message(qdom). Each of these per-member secrets then combines with a previous ratchet state (or ε,
if qdom is a create message) to continue a key ratchet. At points where an add occurred, the adder’s key
ratchet splits in two, with the second branch corresponding to the key ratchet of the added user. Note
that this is the case regardless of whether or not the add message is the first received by the added user,
since the added user always updates their ratchet state with their per-member secret derived from the
adder’s key ratchet.

Observe that after truncating this tree to the minimum subtree T containing all of the values in (a1),
(a3), (b), and the challenged update secret, these values are all at separate leaves of T , i.e., no value is
a descendant of another.

Let H0.2 be the game which is the same as H0.1, except we replace all values appearing in T with
random and independent values. Since seed is already random and independent of all other information
available to the adversary (i.e., (a2), (a4), and (c)), we model HKDF as a random oracle, and the only
values in T available to the adversary are at separate leaves, there are only two ways the adversary can
distinguish these two games: either due to an input collision in H0.1 (i.e., distinct nodes generated from
the same HKDF inputs), or by inverting one of the HKDF applications. The latter occurs with probability
at most qnt2−λ, since there are at most qn nodes in the tree (n per query). The former occurs with
probability at most

(
qn
2

)
2−λ, since each pair of HKDF inputs either includes distinct constant values (e.g.,

IDs) or include a value of length λ that is random and independent of other HKDF inputs (by induction
from the root of the tree upwards). Hence the adversary’s advantage in distinguishing H0.2 from H0.1

is at most qnt2−λ +
(
qn
2

)
2−λ.

Finally, in H0.2, the challenged update secret has been replaced with a random value independent of
all information known by the adversary. Hence we may take H1 = H0.2.
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init

b←$ {0, 1}
∀ID : γ[ID]← init(ID)

counter[·]← 0

public controlMsgs[·, ·]← ε

public directMsgs[·, ·, ·]← ε

I[·, ·]← ε

needsResponse[·, ·]← false

challenged[·, ·]← false

delivered[·, ·, ·]← false

addTarget[·, ·]← ε

reveal(ID, c)

require I[ID, c] 6= ε

require ¬challenged[ID, c]
challenged[ID, c]← true

return I[ID, c]

challenge(ID, c)

require I[ID, c] 6= ε

require ¬challenged[ID, c]
I0 ← I[ID, c]

I1 ←$KGen()

challenged[ID, c]← true

return Ib

corrupt(ID)

return γ[ID]

create-group(ID0, {ID1, . . . , IDn})

require controlMsgs is empty

require ID0 /∈ {ID1, . . . , IDn}
(γ[ID0], control, dmsgs, I)←

create(γ[ID0], ID1, . . . , IDn)

if control = ε ∨ I = ε then win

controlMsgs[ID0, 1]← control

directMsgs[ID0, 1]← dmsgs

I[ID0, 1]← I

needsResponse[ID0, 1]← true

counter[ID0]← 1

delivered[ID0, 1, ID0]← true

add-user(ID, ID′)

require valid-member(ID) ∧ ID 6= ID′

c← ++counter[ID]

(γ[ID], control, dmsgs, I)← add(γ[ID], ID′)

if control = ε ∨ I = ε then win

controlMsgs[ID, c]← control

directMsgs[ID, c]← dmsgs

I[ID, c]← I

needsResponse[ID, c]← true

addTarget[ID, c]← ID′

remove-user(ID, ID′)

require valid-member(ID) ∧ ID 6= ID′

c← ++counter[ID]

(γ[ID], control, dmsgs, I)←
remove(γ[ID], ID′)

if control = ε ∨ I = ε then win

controlMsgs[ID, c]← control

directMsgs[ID, c]← dmsgs

I[ID, c]← I

needsResponse[ID, c]← true

send-update(ID)

require valid-member(ID) ∧ ID 6= ID′

c← ++counter[ID]

(γ[ID], control, dmsgs, I)← update(γ[ID])

if control = ε ∨ I = ε then win

controlMsgs[ID, c]← control

directMsgs[ID, c]← dmsgs

I[ID, c]← I

needsResponse[ID, c]← true

deliver(ID, c, ID′)

require controlMsgs[ID, c] 6= ε

require ¬in-history[ID, c, ID′]
require should-receive(ID, c, ID′)

require causally-ready(ID, c, ID′)∨
add-ready(ID, c, ID′)

(γ[ID′], control, dmsgs, I, I′)←
process(γ[ID′], ID, controlMsgs[ID, c],

directMsgs[ID, c, ID′])

if should-decrypt(ID, c, ID′) then

if I 6= I[ID, c] then win

else if I 6= ε then win

mustRespond←
(
needsResponse[ID, c] ∧

should-decrypt(ID, c, ID′)
)
∨

adds-member(ID, c, ID′)

if mustRespond ∧ (control = ε ∨ I′ = ε)

then win

if control 6= ε then

c′ ← ++counter[ID′]

controlMsgs[ID′, c′]← control

directMsgs[ID′, c′]← dmsgs

I[ID′, c′]← I′

needsResponse[ID′, c′]← false

delivered[ID, c, ID′]← true

Figure 7: Oracles of security game for DCGKA(DGM)
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valid-member(ID) := ∃(T ∈ controlMsgs) (delivered[T, ID])

in-history(ID, c, ID′) := ∃(T ∈ controlMsgs)
(
controlMsgs[ID, c] � T ∧ delivered[T, ID′]

)
causally-ready(ID, c, ID′) := ∀(T ∈ controlMsgs)

(
T ≺ controlMsgs[ID, c] =⇒ in-history(T, ID′)

)
add-ready(ID, c, ID′) := (addTarget[ID, c] = ID′)∧

∀(T ∈ controlMsgs)
(
should-decrypt(T, ID′) =⇒ delivered[T, ID′]

)
should-decrypt(ID, c, ID′) := ID′ ∈ DGM

(
{T ∈ controlMsgs | T � controlMsgs[ID, c]}

)
should-receive(ID, c, ID′) := ID′ ∈ DGM

(
{T ∈ controlMsgs | T � controlMsgs[ID, c] ∨ in-history(T, ID′)}

)
adds-member(ID, c, ID′) :=

(
let S = {T ∈ controlMsgs | in-history(T, ID′)} in

(DGM(S ∪ {controlMsgs[ID, c]}) \ DGM(S) 6= ∅)
)

Figure 8: Predicates used in the security game. Here we use delivered[T, ID] as an abbreviation for
delivered[ID′, c′, ID] when T = controlMsgs(ID′, c′), and likewise for inputs to the predicates.

corrupts(qi = challenge(ID, c),qj = corrupt(ID′)) :=(
ID′ was added to the group by a

message � message(ID, c)
)
∧

(delivered[ID, c, ID′] was false at the time of qj)

safe(q1, . . . ,qq) :=

∀
(
(i, j) s.t. qi = challenge(ID, c) for some ID, c and

qj = corrupt(ID′) for some ID′
)(

corrupts(qi,qj) =⇒

¬should-decrypt[ID, c, ID′] ∨
∃k
(
qk = update(ID′) ∧ k > j ∧

message(qk) � controlMsgs[ID, c]
))

Figure 9: Safety predicate safe and its helper predicate corrupts. Here message(qk) denotes the control
message generated during qk.
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init

b←$ {0, 1}
(pkA, skA)←$PKE-Gen()

(pkB , skB)←$PKE-Gen()

γA ← 2SM-Init(skA, pkB)

γB ← 2SM-Init(skB , pkA)

public ciphertextsA[·], ciphertextsB [·]← ε

plaintextsA[·], plaintextsB [·]← ε

nextSendA, nextSendB ← 1

nextDeliveredA, nextDeliveredB ← 1

return (pkA, pkB)

corrupt-A

return γA

send-A(m)

plaintextsA[nextSendA]← m

(γA, ciphertextsA[nextSendA])← 2SM-Send(γA,m)

nextSendA ← nextSendA + 1

deliver-A

require nextDeliveredB < nextSendB

(γA,m)← 2SM-Receive(γA, ciphertextsB [nextDeliveredB ])

if m 6= plaintextsB [nextDeliveredB ] then win

nextDeliveredB ← nextDeliveredB + 1

challenge-A(m0,m1)

require |m0| = |m1|
send-A(mb)

Figure 10: Oracles of security game for 2SM (A only; oracles for B are analogous).

2SM-safe(q1, . . . ,qq) :=

∀
(
(i, j) s.t. qi = challenge-C(m0,m1) for some

C ∈ {A,B} and qj = corrupt-C for C 6= C
)(

(qi’s ciphertext was not delivered by the time of qj)

=⇒ ∃k
(
(qk = send-C(m) or

challenge-C(m′0,m
′
1)) ∧ k > j ∧ (qk’s ciphertext

was delivered by the time of qi)
))

Figure 11: Safety predicate 2SM-safe. Note the similarity to safe in Figure 9.
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process-welcome(sender, seq, (adderHistory, c))

oldHistory← γ.history

γ.history← γ.history ∪ adderHistory

γ.ratchet[sender]← decrypt-from(sender, c)

γ.memberSecret[sender, seq, γ.myId]←
update-ratchet(sender, "welcome")

Isender ← update-ratchet(sender, "add")

ratchetFwd← ∅; perMemberForward← ∅
if oldHistory 6= ∅ then

allMembers← member-view(γ.myId)

ratchetFwd← {(ID, ("ratchet",
encrypt-to(ID, γ.ratchet[γ.myId]))) |
ID ∈ allMembers \ SR-DGM(oldHistory)}

memberFwd← {(ID, ("member", encrypt-to(ID,
γ.memberSecret[sender, seq, γ.myId)) |
ID ∈ allMembers \member-view(sender)}

control← ("wel-ack",++γ.mySeq, (sender, seq))

( , , Ime, )← process-wel-ack(γ.myId,

γ.mySeq, (sender, seq), ε)

return (control, ratchetFwd ∪memberFwd, Isender, Ime)

process-wel-ack(sender, seq, (ackID, ackSeq), dmsg)

if dmsg 6= ε then

(type, s)← decrypt-from(sender, dmsg)

if type = "ratchet" then

γ.ratchet[sender]← s

else γ.memberSecret[ackID, ackSeq, sender]← s

return process-ack(sender, seq, (ackID, ackSeq), ε)

Figure 12: Handling the case when the same user is added multiple times.

dom-safe(q1, . . . ,qq) :=

∀
(
i s.t. qi = challenge(ID, c) for some ID, c

)
∃d
((

qd = update(−), remove(−), or create(−)
)
∧(

message(qd) � controlMsgs[ID, c]
)
∧

∀
(
j s.t. qj = corrupt(ID′) for some ID′

)(
corrupts(qi,qj) =⇒(
¬should-decrypt[message(qd), ID

′]∧
@a (qa = add(−, ID′)∧

message(qa) ⊀ message(qd)∧
controlMsgs[ID, c] ⊀ message(qa))

)∨
∃k
(
qk = update(ID′) ∧ k > j ∧

message(qk) � message(qd)
)))

Figure 13: Safety predicate dom-safe for our protocol. The predicate corrupts is defined in Figure 9,
while message(q) denotes the control message generated during q.
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