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Abstract. Physically unclonable functions (PUFs) are gaining attention as a promising
cryptographic technique, with the main applications including challenge-response
authentication and key generation (key storage). When a PUF is applied to these
applications, min-entropy estimation is essential. Min-entropy is a measure of the
lower bound of the unpredictability of PUF responses. Using the test suite of the
National Institute of Standards and Technology (NIST) specification (SP) 800-90B
is currently considered the best method for estimating the min-entropy of PUF
responses. Several previous studies have estimated the min-entropy of PUFs as well as
those of random number generators (RNGs). However, we feel doubtful about some of
these estimated results; for example, an evaluator can reorder PUF responses to make
the PUF performance appear much better. It is also known that the test suite of
NIST SP 800-90B has no suitable estimator. In particular, it has been reported that
concatenating PUF responses of two-dimensional PUFs, such as an SRAM PUF, into
one-dimensional data may obfuscate spatial correlations. In this paper, we explore
the inherent problems in min-entropy estimation by using our static random-access
memory (SRAM) PUF and our complementary metal-oxide-semiconductor (CMOS)
image sensor with a PUF (CIS PUF). We apply three orderings to the PUF responses
of our SRAM PUF and CIS PUF: row-direction ordering, column-direction ordering,
and random-shuffle ordering. We show how much the min-entropy estimated by
NIST SP 800-90B varies and discuss the estimation results. Next, we discuss the
threat of PUFs (i.e., predictability of PUF responses) when a digitizer in a PUF
has an offset error. PUF sources are generally defined as circuits and transistors
used to extract intrinsic physical properties and generate device-unique responses.
Variation in the manufacturing of circuits and transistors other than the PUF sources,
especially digitizers, may cause lower entropy. We call these circuits and transistors
“entropy-loss sources.” We investigate the effect of entropy-loss sources on min-entropy
theoretically and clarify how much the theoretical results differ from those estimated
by NIST SP 800-90B. Finally, we propose an entropy prediction scheme that considers
entropy-loss sources (offset error). We show through experiments that the proposed
scheme more accurately estimates the min-entropy of PUFs.
Keywords: Physically unclonable function (PUF) · Min-entropy · NIST SP 800-90B
· SRAM PUF · CMOS image sensor with a PUF (CIS PUF)

1 Introduction
Physically unclonable function (PUF) [1, 2] technology is a new cryptographic technique
that generates a device-unique identifier from random and uncontrollable variations in
manufacturing. Various PUFs and applications using them have been proposed so far.
When using PUFs in such applications, min-entropy estimation is essential. Entropy is a
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measure of the unpredictability of PUF responses, and min-entropy is used to establish
this lower bound and represents the worst-case scenario. Many studies have discussed
entropy estimation schemes for PUFs, and the entropy estimation suite of the National
Institute of Standards and Technology (NIST) special publication (SP) 800-90B [3], which
estimates the min-entropy of a random number generator (RNG), is becoming a primary
entropy estimation scheme of PUFs as well. Several researchers [4, 5, 6] have used it to
estimate the min-entropy of their proposed PUFs and to demonstrate their performances.

However, there are problems with entropy estimation using NIST SP 800-90B.
First, NIST SP 800-90B is an entropy estimation suite for RNGs that assumes sequential

data input. Since an RNG outputs data sequentially, simply inputting the data into the
entropy estimation suite is enough. However, with PUFs, an evaluator can intentionally
control the ordering of PUF responses by using PUF challenges. As an extreme example,
let us consider a device where the PUF response to odd-numbered PUF challenges is
‘1’ and to even-numbered challenges is ‘0’. When an evaluator reorders PUF responses
by using random PUF challenges, the data input to the entropy estimation suite seems
random. In other words, it becomes unclear whether the entropy estimation suite estimates
the min-entropy of the PUF responses or of the PUF challenges. In previous studies, there
has been no explanation of the ordering of PUF responses when inputting to the entropy
estimation suite. The validity of the performance evaluation results is thus unclear.

Next, the entropy estimation suite of NIST SP 800-90B is known to be unsuitable for
two-dimensional memory-based PUFs [7, 8, 9]. The entropy estimation suite is basically
designed to operate on one-dimensional data, such as RNGs. However, some previous
studies have collected PUF responses for multiple chips, concatenated them, and then
estimated the min-entropy, as the number of PUF responses obtained from a single chip is
less than that required for the entropy estimation suite. In this case, the assumption is
that the PUF model becomes a Maes’ model [10], as follows.

Rp,r,m =
{

0 (vp,r + np,r,m ≤ T )
1 (otherwise),

(1)

where vp,r is a manufacturing process variable of the r-th PUF source in the p-th device,
np,r,m is a noise variable of the r-th PUF source of the m-th measurement from the p-th
device, and T is a constant threshold parameter. p ranges from 1 to Npuf , where Npuf
is the number of devices (PUFs). r ranges from 1 to Nres, where Nres is the number
of PUF sources (PUF responses) per device (PUF). In this model, which represents
the relationship between PUF responses and manufacturing process variations, the PUF
sources and noise are assumed to be independent. When considering PUF entropy, it is
necessary to consider both of these effects. The effect of noise (reliability) on entropy is
an important research topic. When entropy due to reliability is excluded to simplify the
problem (i.e., np,r,m = 0), concatenating PUF responses then seems to be a reasonable
approach. However, this hypothesis is unrealistic because there are spatial correlations
between responses in PUFs, especially two-dimensional PUFs (e.g., SRAM PUF). Therefore,
the approach that concatenates PUF responses obfuscates the spatial correlations and may
cause overestimation of PUF entropy.

In this paper, we investigate how much the results of the entropy estimation suite
of NIST SP 800-90B vary with the ordering of PUF responses by using our prototyped
PUFs. One of the major causes of the spatial correlations between PUF responses is an
offset error of digitizers. We discuss the worst-case scenario of how well an attacker can
predict PUF responses output from digitizers with offset error and present a theoretically
calculated min-entropy from it. We also investigate how much the theoretical results differ
from those estimated by NIST SP 800-90B. Finally, we propose an entropy prediction
scheme that considers the offset error of digitizers.
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1.1 Related Work
The entropy of optical PUFs [2] and coating PUFs [11] has been widely studied [12, 13, 14].
Several studies on silicon PUFs [15, 16, 17, 18] have estimated the entropy by referring to
the secrecy rate [13], which takes into account reliability (i.e., the intra-Hamming distance
(intra-HD) [19]). Schaub et al. investigated the relationship between the entropy and
reliability of three well-known delay-based PUFs (ring-oscillator (RO) PUF [20], RO sum
PUF [21], and Loop PUF [22]) by using a stochastic model [23]. Since PUFs extract tiny
physical properties from random and uncontrollable variations in manufacturing, PUF
responses often contain noise. The reliability is a performance metric that indicates the
amount of noise in PUF responses. Since noise makes entropy estimation difficult, the
effect of noise on min-entropy is an important research topic.

Several studies have also discussed the relationship between the characteristic of the
physical mechanisms behind the variation and PUF min-entropy. There have been studies
discussing a PUF-response bias, debiasing schemes, and entropy [24, 25, 26]. The PUF-
response bias, which is a research topic related to the mean of inter-HD [19], is basically
due to an unbalanced layout in an LSI chip. Gu et al. also studied the relationship between
uniqueness (i.e., inter-HD) and min-entropy [27]. They focused on the mean of inter-
HD, but even though the standard deviation is related to the dependence between PUF
responses, they did not discuss it. Xu et al. pointed out the importance of understanding
the physical mechanisms behind variations in flash-memory PUFs (FPUFs) [28]. They
reported that systematic layout variations and manufacturing lots might reduce entropy.
When such various causes of lower entropy are intertwined, NIST SP800-90B is a powerful
tool for estimating entropy. Therefore, the NIST entropy estimation suite is becoming a
primary entropy estimation scheme.

However, there is sometimes a case in which PUF responses cannot be directly inputted
to the NIST entropy estimation suite. It is well known that the pairwise comparison used
in RO PUFs reduces entropy, and the entropy is based on the frequency ordering of the ROs
[20]. Maes et al. reported that encoding the frequency ordering is required to remove the
dependencies between PUF responses [29]. It has also been reported that the NIST entropy
estimation suite is unsuitable for two-dimensional PUFs because concatenating either rows
or columns into one-dimensional data may obfuscate spatial correlations [7, 8]. Wilde et
al. studied the spatial correlation in a PUF [9]. A PUF designer thus needs to carefully
consider whether the entropy estimation suite can reliably estimate the min-entropy.

1.2 Our Contributions
Our study is not aimed at overturning the findings of previous studies but rather at alerting
PUF designers to the need for extreme caution in estimating entropy. This paper makes
the following contributions.

• Variation in estimating min-entropy of a PUF
If the entropy estimation suite correctly estimates the min-entropy of PUFs, the
results should be the same regardless of the ordering of the PUF responses. We
apply the three orderings to the PUF responses of our prototype static random-
access memory (SRAM) PUF [30, 31] and complementary metal-oxide-semiconductor
(CMOS) image sensor with a PUF (CIS PUF) [32] to investigate how much the
min-entropy estimates vary. We then discuss why the estimated results vary widely.

• Predictability of PUF responses due to offset error
We discuss the worst-case scenario of how well an attacker can predict PUF responses
due to offset error in digitizers. We present min-entropy theoretically considered
from the predictability of PUF responses. In general, the circuits and transistors
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used to extract the inherent physical properties from variations in manufacturing
and to generate PUF responses are called “PUF sources.” Circuits and transistors
other than the PUF sources also have variations in the manufacturing. In particular,
manufacturing variation in a digitizer that converts physical properties into numerical
values causes offset noise, which biases PUF responses and reduces PUF entropy.
We term these circuits and transistors “entropy-loss sources” since they reduce PUF
entropy. We investigate the effect of the entropy-loss sources on PUF entropy.

• Comparison between theoretical entropy and results estimated using NIST SP 800-
90B
We investigate how much entropy estimates based on theoretical considerations differ
from those using NIST SP 800-90B. We create numerical PUFs with entropy-loss
sources using numerical simulation. The theoretical entropy is calculated from the
parameters given to the numerical PUF. PUF responses generated from the numerical
PUFs are input to the entropy estimation suite of NIST SP 800-90B to estimate the
min-entropy. We compare both the entropy estimation results.

• Proposal of an entropy prediction scheme
We propose an entropy prediction scheme of PUFs with entropy-loss sources. We
demonstrate that the entropy of the numerical PUFs can be accurately predicted
using the proposed scheme. We also discuss the results of estimating the min-entropy
of our SRAM PUF and CIS PUF using the proposed scheme.

In Section 2 of this paper, we introduce our SRAM PUF and CIS PUF, which are used
to investigate the inherent issues in estimating PUF entropy using NIST SP 800-90B. We
also present our PUF models and the evaluation results using inter-HD. In Section 3, we
present the three orderings we applied to the PUF responses of our SRAM PUF and CIS
PUF and demonstrate that the results of the NIST SP 800-90B entropy estimation suite
vary with the ordering. In Section 4, we discuss the predictability of PUF responses by an
attacker and present a theoretically calculated min-entropy from the worst-case scenario.
In Section 5, we investigate how much the theoretical min-entropy estimates differ from
those estimated by the entropy estimation suite of NIST SP 800-90B. In Section 6, we
propose an entropy prediction scheme that considers offset error. We conclude in Section 7
with a summary of the key points.

2 SRAM PUF and CIS PUF
We use our SRAM PUF and CIS PUF to explore known problems in estimating PUF
entropy and to discuss the validity of the proposed entropy prediction scheme. In this
section, we introduce these PUFs, their models, and their performances evaluated using
the inter-HD metric [19].

2.1 SRAM PUF
An SRAM PUF is a well-known PUF that uses the initial values of an SRAM as PUF
responses [30, 31]. Two cross-coupled inverters in an SRAM cell are symmetrical, and
the SRAM cell ideally enters a metastable state during the power-up phase. However,
transistors consisting of cross-coupled inverters have mismatches due to manufacturing
process variations, and these mismatches are amplified by the positive feedback of the
cross-coupled inverters. Each SRAM cell thus boots up with an initial state of either ‘0’ or
‘1’. PUF sources of the SRAM PUF are assumed to be SRAM cells (two cross-coupled
inverters). Since each SRAM cell is composed of independent circuits, PUF sources are
assumed to be independent.
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Figure 1: (a) Block diagram and (b) photograph of our SRAM PUF

2.1.1 Our SRAM PUF

Figure 1 shows a block diagram and photograph of our SRAM PUF. We designed a PUF
test vehicle chip with a 180-nm CMOS process for benchmarking PUFs [33]. It has four
SRAM standard cells with 1K words (Column) of 16 bits (Row). We used the initial
values of the single SRAM standard cell as our SRAM PUF. There are thus 16 and 1,024
SRAM cells in each row and each column, respectively. The number of PUF-response bits
is 16,384 (=16× 210) bits.

2.1.2 SRAM-PUF Model

In several previous studies, it was assumed that entropy-loss sources (i.e., the variations in
the manufacturing of circuits and transistors (excluding PUF sources; i.e., SRAM cells))
are negligible. However, we argue that this assumption is unrealistic. Manufacturing
process variations of other circuits and transistors (entropy-loss sources; e.g., word lines,
bit lines, word-line buffers, and sense amplifiers) also affect PUF responses. Thus, we
intentionally include these manufacturing process variations in our SRAM-PUF model. In
contrast to the PUF model (Equation 1), the relationship between PUF responses and
manufacturing process variations is given as

Rp,rr,rc =
{

0 (vp,rr,rc + vrow
p,rr + vcolumn

p,rc ≤ 0)
1 (otherwise),

(2)

where vp,rr,rc is a manufacturing-process variable of the SRAM cell in the rr-th row and
rc-th column in the p-th device, vrow

p,rr is a manufacturing process variable based on the
common circuit (e.g., word line and word-line buffer) in the rr-th row in the p-th device,
and vcolumn

p,rc is a manufacturing process variable based on the common circuit (e.g., bit
line and sense amplifier) in the rc-th column in the p-th device (rr and rc range from 1 to
16 and from 1 to 1024, respectively, and vrow

p,rr and vcolumn
p,rc mean adding different offsets

to each row’s and each column’s PUF responses, respectively). When there are multiple
manufacturing process variables, as shown in Equation 2, the entropy per PUF is less than
the number of PUF-response bits. In general, the variation in column circuits, such as
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Figure 2: Heat map of PUF responses for our SRAM PUFs

sense amplifiers, is higher than that in row circuits and can affect PUF responses (PUF
entropy).

2.1.3 Performance Evaluation

First, we measured all the 16,384-bit PUF responses from 80 (= 4 × 20 chips) SRAM
PUFs 100 times and decided whether each PUF response was ‘0’ or ‘1’ by majority vote.
Figure 2 shows a heat map of the PUF responses for our SRAM PUFs. Red and blue
represent PUF response ‘1’ and ‘0’, respectively. PUF responses of all SRAM PUFs are
arranged in the column direction. As we can see, the distribution of PUF responses ‘1’
and ‘0’ seems random.

Next, we present the results of evaluating the performance of our SRAM PUF using
the inter-HD metric. We calculated the mean and standard deviation of inter-HD using all
the 16,384-bit PUF responses from 80 SRAM PUFs. As mentioned above, the number of
measurements of each PUF-response bit was 100. The mean and standard deviation were
0.4972 and 0.5742, respectively. The mean was approximately 0.5, which is the ideal value.
These results mean that the number of ‘0’ and ‘1’ responses was the same, which suggests
that our SRAM PUF can maintain high entropy. However, the standard deviation was
slightly higher than 0.5.

2.2 CIS PUF
Okura et al. developed a CIS PUF to enhance the security of IoT devices with CMOS
image sensors [32]. The reason we chose the CIS PUF as a case study is that the amount
of the variations is measurable. We purposely applied a PUF-response-generation scheme
that creates the entropy-loss sources to investigate inherent issues in estimating PUF
entropy.
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Figure 3: Block diagrams of (a) CIS PUF and (b) column circuit

2.2.1 Our CIS PUF

Our CIS PUF has two operation modes: image readout and PUF. In image readout mode,
it detects light and converts it into a 2M-pixel image. In PUF mode, all the photodiodes
are disabled, and PUF responses are generated from fixed-pattern noise (FPN), which is
based on manufacturing process variations. Figure 3 (a) shows a block diagram of our
CIS PUF. It is composed of a 2M (= 1980 × 1080) pixel array with a two-shared pixel
structure, a column amplifier, a column analog-to-digital converter (ADC), and digital
control blocks. The control-register signals switch between image readout mode and PUF
mode. Since CMOS image sensors typically have a column-parallel readout scheme, the
components of the CIS PUF are divided into 1920 independent column circuits like the
one shown in Figure 3 (b). Each column circuit is composed of 540-pixel cells, an amplifier,
and an ADC. There are 540 source-follower (SF) transistors shared by two photodiodes.
We hypothesize that the threshold-voltage (Vth) variation of the SF transistors is a PUF
source. In PUF mode, the correlated double sampling (CDS) function, which attenuates or
removes an undesired offset noise, is disabled and the digitized value of the Vth variation
is readout. In image readout mode, the Vth variation is removed by the CDS function. No
information about the PUF responses leaks from the 2M-pixel image. A diode-connected
clip transistor is used to reduce the supply-voltage/ground bounce during image readout
and to derive the Vth of the SF transistor during PUF-mode operation.

CMOS image sensors suffer from column FPN, which appears as stripes in the image
and results in significantly degraded image quality. The column FPN is mainly caused
by variations in the manufacturing of the amplifier and ADC. The PUF responses of
a CIS PUF are also affected by the column FPN, where the clip-transistor variation
is dominant. The PUF responses are generated by comparing the digitized values of
two selected SF-transistor variations. When two SF transistors are randomly selected,
variations of different clip transistors are added to those of the SF transistors. Thus, we
compared vertically adjacent SF transistors to generate PUF responses.
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We call the PUF-response-generation scheme in which the use of SF transistors does
not overlap, and vertically adjacent SF transistors are compared “vertical comparison.”
Since an identical clip transistor is used in the vertical comparison, the variation of the
clip transistor is canceled through the comparison, and the column FPN is removed. The
number of PUF responses is 270 (= 540

2 ) bits in each column. Since there are 1920 column
circuits, the number of PUF responses is 518K bits (= 1920× 270).

We purposely apply a PUF-response-generation scheme that differs from vertical
comparison to study the effect of variations in the manufacturing of clipping transistors
on entropy estimation. The PUF-response-generation scheme in which the use of SF
transistors does not overlap, and horizontally adjacent SF transistors are compared is
termed “horizontal comparison.” The number of PUF responses is 540 bits in each pair of
column circuits. Since there are 960 (= 1920

2 ) pairs of column circuits, the number of PUF
responses is 518K (= 960× 540) bits, the same as for vertical comparison.

2.2.2 CIS-PUF Model

The CIS-PUF model also includes variations in the manufacturing of circuits and transistors
(excluding PUF sources). Here, the PUF source is an SF transistor in a pixel cells. Each
manufacturing process variable of the pixel cell, including other circuits, is expressed as

v′p,rr,rc = vp,rr,rc + vrow
p,rr + vcolumn

p,rc , (3)

where vp,rr,rc is a manufacturing process variable of the SF transistor in the rr-th row and
rc-th column in the p-th device, vrow

p,rr is a manufacturing process variable of the common
circuit (e.g., v-scanner) in the rr-th row in the p-th device, and vcolumn

p,rc is a manufacturing
process variable of the common circuit (e.g., clip transistor) in the rc-th column in the p-th
device. PUF responses are generated by comparing the digitized values of two pixel-cell
variables. The difference between the pixel-cell variables of the vertical comparison is
expressed as

v′p,2×rr,rc − v
′
p,2×rr−1,rc = vp,2×rr,rc − vp,2×rr−1,rc + vrow

p,2×rr − v
row
p,2×rr−1

= ∆vp,rr,rc + ∆vrow
p,rr . (4)

The variation based on the column circuits, such as clip transistors, is canceled through the
comparison, and the column FPN is removed (i.e., ∆vcolumn

p,rc = 0) since identical variables
(vcolumn
p,rc ) are compared in the vertical comparison. The variation based on the less affected

row circuits remains as an entropy-loss source. A PUF-response bit of our CIS PUF using
the vertical comparison is modeled as

Rp,rr,rc =
{

0 (∆vp,rr,rc + ∆vrow
p,rr ≤ 0)

1 (otherwise),
(5)

where ∆vp,rr,rc is a differential variable in the rr-th row and rc-th column in the p-th
device, and ∆vrow

p,rr is a differential variable based on the row circuits (e.g., v-scanner)
in the rr-th row in the p-th device (rr and rc range from 1 to 1920 and from 1 to 270,
respectively).

Similar to the vertical comparison, the difference between the pixel-cell variables of the
horizontal comparison is expressed as

v′p,rr,2×rc − v
′
p,rr,2×rc−1 = vp,rr,2×rc − vp,rr,2×rc−1 + vcolumn

p,2×rc − v
column
p,2×rc−1

= ∆vp,rr,rc + ∆vcolumn
p,rr . (6)

In contrast to the vertical comparison, the variation based on the less affected row circuits
is canceled through the comparison (i.e., ∆vrow

p,rr = 0), but the column FPN remains as an
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Figure 4: Heat maps of ADC outputs and PUF responses for a sample CIS PUF chip

entropy-loss source. A PUF-response bit of our CIS PUF using the horizontal comparison
is modeled as

Rp,rr,rc =
{

0 (∆vp,rr,rc + ∆vcolumn
p,rc ≤ 0)

1 (otherwise),
(7)

where ∆vp,rr,rc is a differential variable in the rr-th row and rc-th column in the p-th
device, and ∆vcolumn

p,rc is a differential variable based on the column circuits (e.g., clip
transistors) in the rc-th column in the p-th device (rr and rc range from 1 to 960 and from
1 to 540, respectively).

2.2.3 Performance Evaluation

First, we show heat maps of the ADC outputs and PUF responses. Figure 4 depicts the
measurement results for a sample CIS-PUF chip. The ADC outputs in Figure 4 (a) show
digitized values of 1920× 540 pixel cells. Red and blue mean that the ADC output value
is large and small, respectively. The column FPN clearly appears as stripes. The PUF
responses generated by vertical and horizontal comparisons are shown in Figures 4 (b)
and (c), respectively. Similar to the heat map for our SRAM PUF, red and blue represent
PUF response ‘1’ and ‘0’, respectively. Each PUF response is decided by a majority vote
of 100 measurements. Use of vertical comparison to generate PUF responses resulted in a
distribution of responses ‘1’ and ‘0’ that seems random. The effect of the column FPN
remains in the PUF-response distribution resulting from the horizontal comparison. The
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entropy with the horizontal comparison seems much lower than that with the vertical
comparison.

Next, we present the results of evaluating the performance of our CIS PUF using
the inter-HD metric. We generated all the 518K-bit (= 1920×540

2 ) PUF responses from
18 chips and calculated the mean and standard deviation of inter-HD. Similar to our
SRAM PUF, the number of measurements of each PUF-response bit was 100. With the
vertical comparison, the mean and standard deviation were approximately 0.5, which
indicates that the entropy is high. In contrast, the mean with the horizontal comparison
was approximately 0.5, but the standard deviation was 2.46. This was 5.5 times larger
than that with the vertical comparison. The stripes on the heat map in Figure 4 (c) are
related to the large standard deviation of inter-HD.

3 Min-Entropy Estimation using NIST SP 800-90B
In this section, we first introduce the NIST SP 800-90B and the two datasets we used to
estimate min-entropy. We then present the three orderings of the PUF responses that we
applied. When the horizontal comparison was applied to our CIS PUFs, the effect of the
column FPN remained in the PUF-response distribution. Therefore, we expect that the
entropy estimation results using NIST SP 800-90B will become lower when we emphasize
the column FPN in the ordering of PUF responses. We estimate min-entropy for our
SRAM PUF and CIS PUF and investigate how much the estimation results vary with the
ordering.

3.1 NIST SP 800-90B
The entropy estimation suite of NIST SP 800-90B is superior to other methods for
estimating the quality of an entropy source. Since some sources of entropy may have
unknown dependencies, ten kinds of entropy estimators are used in the entropy estimation
suite to minimize the probability that the estimation results are significantly overestimated.

NIST SP 800-90B requires a sequential dataset of at least 1,000,000 sample values.
After the required number of samples are collected, they are divided into two tracks (the
independent and identically distributed (IID) track and the non-IID track) using statistical
tests (chi-square statistical tests and permutation tests). Entropy is estimated separately
for each track.

For the IID track, the result estimated using the most common value (MCV) estimator
is used as the value of min-entropy. MCV estimation is the simplest because it is based
on the assumption that the sample values in the dataset do not correlate. The maximum
probability of the values in the dataset is measured, and the min-entropy of an independent
discrete random variable X is defined as

H∞(X) = − log2 max Pr(X = xi) (i = 1, .., n), (8)

where x1, x2, .., xn are possible values, and Pr(X = xi) is the probability of random
variable (X = xi). The ideal value per bit is 1.

For the non-IID track, ten kinds of estimators, including the MCV estimator, are
used: the collision estimator, the Markov estimator, the compression estimator, the t-tuple
estimator, the longest repeated substring (LRS) estimator, the multi most common in
window (MultiMCW) prediction estimator, the lag prediction estimator, the multiple
Markov model with counting (MultiMMC) prediction estimator, and the LZ78Y prediction
estimator. The minimum value of the ten estimates is taken as the min-entropy.

The collision estimator, devised by Hagerty and Draper [34], measures the mean number
of samples to the first collision. Using this number, it estimates the probability of the
most-likely output value. The Markov estimator is based on the assumption that the
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Table 1: Datasets for min-entropy estimation

SRAM PUF CIS PUF
No. of PUF responses per PUF 16,384 bits 518,400 bits
No. of PUFs per chip 4 1
No. of chips 20 18
Total no. of PUF responses 1,310,720 bits 9,331,200 bits

collected sample values obey a Markov model and measures the dependencies between
consecutive values. The compression estimator, also devised by Hagerty and Draper [34],
computes the entropy rate of a dataset on the basis of the Maurer Universal Statistic [35].
The t-tuple estimator measures the frequency of t-tuples (pairs, triples, etc.) that appear
in the dataset and provides an estimate based on the frequency of the most common
t-tuples. The LRS estimator computes the collision entropy on the basis of the number
of repeated tuples. The MultiMCW, lag, MultiMMC, and LZ78Y prediction estimators
(“predictors”) aim to guess the next sample given the previous one and provide an estimate
based on the probability of successfully predicting it. Each predictor consists of several
sub-predictors that compete, and the one with the highest prediction rate is selected. Each
sub-predictor of the MultiMCW predictor predicts the next sample on the basis of the
MCV in the sliding window for the previous sample. Each sub-predictor of the lag predictor
predicts the next sample on the basis of a specified lag. Each MMC sub-predictor of the
MultiMMC predictor records the observed frequencies for transitions from one sample
to the subsequent one and predicts the next sample on the basis of the most frequently
observed transition from the current sample. The LZ78Y predictor is loosely based on
LZ78 encoding with Bernstein’s Yabba scheme [36] for adding strings to the dictionary.

We estimated the min-entropies of our SRAM PUF and CIS PUF using the SP 800-90B
C++ code provided by NIST [37]. The symbol size can be set from 1 to 8 bits; we set it
to 1 bit due to the limited number of samples for our SRAM PUF.

3.2 Datasets
The datasets we used to estimate min-entropy are summarized in Table 1. We define
an SRAM standard cell with 1K words (Column) of 16 bits (Row) as our SRAM PUF and
aim to estimate the entropy of a single SRAM PUF. All PUF responses were generated
100 times under typical conditions (1.8 V, 25 ◦C), and whether each PUF-response bit was
‘0’ or ‘1’ was decided by majority vote to exclude entropy due to reliability. The number
of PUF-response bits in our SRAM PUF was 16,384 (=16× 210), less than that required
for the entropy estimation suite. Although there were four SRAM PUFs on a chip, the
number of required samples was not reached even if their responses were concatenated.
We thus concatenated the PUF responses for 20 chips, mimicking previous studies. The
total number of samples (PUF-response bits) was thus 1,310,720 bits, barely meeting the
criteria of NIST SP 800-90B. Similarly, all PUF responses for our CIS PUF were generated
100 times under typical conditions (2.8 V, 25 ◦C), and whether each PUF-response bit
was ‘0’ or ‘1’ was decided by majority vote. The number of PUF response bits in our CIS
PUF was 518K (= 1920×540

2 ), less than the number required. We thus concatenated the
PUF responses for 18 chips to estimate min-entropy. The total number of samples was
thus approximately 10M bits, sufficient for NIST SP 800-90B.

3.3 Response Ordering
If the hypothesis that PUF responses are generated from only independent circuits as
shown in Equation 1 is correct, the estimation results should be the same regardless of
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Table 2: Estimation results for our SRAM PUF

Ordering
Row Column Random

Min-entropy 0.875779 0.728256 0.991752
Chi-square X X
Permutation X
MCV 0.991752 0.991752 0.991752
Collision 0.875779 0.946370 –
Markov 0.987185 0.995143 –
Compression 0.884535 0.728256 –
t-Tuple 0.927891 0.888295 –
LRS 0.987152 0.974152 –
MultiMCW 0.990197 0.992418 –
Lag 0.912400 0.912325 –
MultiMMC 0.987595 0.912523 –
LZ78Y 0.988912 0.992865 –

response ordering. We thus tested three orderings: row-direction ordering, column-direction
ordering, and random-shuffle ordering.

• Row-direction ordering:
Row-direction ordering is based on the assumption of a simple readout. We arranged
the PUF responses assuming incrementation of the access address of an SRAM
and general readout scheme of an image sensor. The datasets for row-direction
ordering were constructed by concatenating the rows (i.e., R1,1,1, R1,1,2, R1,1,3, ...,
R1,1,Ncolumn , R1,2,1, R1,2,2, R1,2,3, ..., R1,2,Ncolumn , R1,3,1, ..., R1,Nrow,Ncolumn , R2,1,1,
..., RNchip,Nrow,1, RNchip,Ncolumn,2, RNchip,Ncolumn,3, ..., RNchip,Nrow,Ncolumn).

• Column-direction ordering:
As mentioned above, manufacturing process variations based on column circuits
(entropy-loss sources) cannot be ignored. The column-direction ordering was aimed
at emphasizing the dependencies (offset effects due to entropy-loss sources) in PUF
responses. The datasets for column-direction ordering were constructed by concate-
nating the columns (i.e., R1,1,1, R1,2,1, R1,3,1, ..., R1,Nrow,1, R1,1,2, R1,2,2, R1,3,2,
..., R1,Nrow,2, R1,1,3, ..., R1,Nrow,Ncolumn , R2,1,1, ..., RNchip,1,Ncolumn , RNchip,2,Ncolumn ,
RNchip,3,Ncolumn , ..., RNchip,Nrow,Ncolumn).

• Random-shuffle ordering:
Random-shuffle ordering is based on the assumption of random PUF challenges. The
PUF responses of each chip were thus arranged using the identical rule. The datasets
for random-shuffle ordering were constructed by concatenating randomly shuffled
PUF responses (e.g., R1,216,477, R1,324,94, R1,79,152, ..., R1,333,318, R2,216,477, R2,324,94,
R2,79,152, ..., R2,333,318, R3,216,477, ..., RNchip,216,477, RNchip,324,94, RNchip,79,152, ...,
RNchip,333,318).

3.4 Estimation Results for our SRAM PUF
The estimation results for the min-entropy of our SRAM PUF are summarized in Table 2.
A checkmark represents that the statistical tests are passed. When we applied the random-
shuffle ordering to the PUF responses, the entropy estimation suite determined the PUF
responses to be IID, and the result estimated by the MCV estimator was 0.991752 bits
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Table 3: Estimation results for our CIS PUF

Horizontal comparison Vertial comparison
Ordering Ordering

Row Column Random Row Column Random
Min-entropy 0.933645 0.035471 0.883727 0.996587 0.996587 0.996587
Chi-square X X X
Permutation X X X
MCV 0.989872 0.989872 0.989872 0.996587 0.996587 0.996587
Collision 0.940284 0.423148 0.971080 – – –
Markov 0.990410 0.699929 0.991603 – – –
Compression 0.934433 0.284987 0.883727 – – –
t-Tuple 0.933645 0.035471 0.939267 – – –
LRS 0.996167 0.071218 0.962016 – – –
MultiMCW 0.983936 0.045914 0.985152 – – –
Lag 0.992932 0.046004 0.997805 – – –
MultiMMC 0.989258 0.045914 0.990085 – – –
LZ78Y 0.989918 0.046004 0.989965 – – –

per bit. We tried a few times, but always got the same results. This is close to the
ideal value, meaning that our SRAM PUF can deliver a high performance. However, the
hypothesis that PUF responses with row-direction and column-direction orderings are IID
was rejected by the statistical tests. In particular, the column-direction ordering failed
both the chi-square and permutation tests. The result with row-direction ordering was
0.875779 bits per bit, about 88 % less than that with random-shuffle ordering. With
column-direction ordering, the result estimated by the compression estimator was minimal:
0.728256 bits per bit, which was about 73 % less than that with random-shuffle ordering.
Even though the same PUF responses were used, the estimation results varied depending
on how they were ordered.

3.5 Estimation Results for our CIS PUF

First, for reference, we estimated the min-entropy of our CIS PUF using the vertical
comparison. The results are summarized in Table 3. Similar to the results of our SRAM
PUF, a checkmark represents that the statistical tests are passed. The entropy estimation
suite determined the PUF responses to be IID regardless of the ordering of PUF responses.
The min-entropy was 0.996587 bits per bit and was close to the ideal value, indicating that
our CIS PUF using vertical comparison can deliver a high performance.

The estimation results for our CIS PUF using horizontal comparison are also summarized
in Table 3. The hypothesis that the PUF responses are IID was rejected by the
statistical tests regardless of the ordering. The estimation results varied widely with
the ordering. With the row-direction and random-shuffle orderings, all the estimators
estimated high entropy even though there are clear dependencies between PUF responses
in each column, as shown in Figure 4 (c). The estimation results were approximately 0.9
bits per bit. With the column-direction ordering, the estimation results of some estimators
were an order of magnitude smaller than those of the other estimators. In particular, the
estimation result for the t-tuple estimator was only 0.035471 bits per bit, about 4 % less
than those with the row-direction and random-shuffle orderings.
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3.6 Discussion
We have shown that the results of the entropy estimation suite vary with the ordering of
PUF responses. The estimation results were minimal when we applied the ordering that
emphasized the dependencies between PUF responses (i.e., column-direction ordering). The
above results indicate that the manufacturing process variation based on column circuits
may affect the min-entropy. The results for our CIS PUF using the horizontal comparison
provide a good example. There are stripes in the heat map of the PUF responses, as
shown in Figure 4 (c), and there are clear dependencies between PUF responses in the
same column. An attacker can predict PUF responses or narrow down the candidates by
assuming that PUF-response bits in the same column are most likely the same. However,
this can be disguised by ordering PUF responses as if the PUF entropy is better. It is thus
inappropriate to show only entropy estimation results without explaining how the PUF
responses are ordered.

Although the distribution of PUF responses ‘0’ and ‘1’ in the heat map for our SRAM
PUF seems random and the inter-HD results were good, we infer from the estimation
results that there were at least some dependencies between the PUF responses in each
column. Therefore, it is necessary to carefully discuss the possibility of offset errors in
sense amplifiers and so on.

4 Predictability of PUF Responses
In this section, we discuss how well an attacker can predict PUF responses when a digitizer
in a PUF has an offset error. In other words, we examine the worst-case scenario of a PUF
with entropy-loss sources.

Let us consider the case of generating IDs from PUF responses output from the same
digitizer, though it may be a bit of an extreme example. Nres PUF sources are connected
to a digitizer, and each PUF source outputs ‘0’ or ‘1’ as a PUF response. The relationship
between PUF responses and manufacturing process variations is thus given by

Rp,rr,rc =
{

0 (vp,r + vdigit
p ≤ T )

1 (otherwise),
(9)

where vp,r is a manufacturing process variable of the r-th PUF source in the p-th device,
vdigit
p is a manufacturing process variable of the digitizer (entropy-loss source) in the p-th
device, and T is a constant threshold parameter. As in the PUF model in Equation 1,
p ranges from 1 to Npuf , and r ranges from 1 to Nres. We assume normal distributions
for vp,r and vdigit

p : vp,r ∼ N (µv, σ2
v) and vdigit

p ∼ N (µvdigit , σ2
vdigit). The manufacturing

process variation of the digitizer is added as a threshold offset to each device and causes
dependencies between PUF responses. This PUF model is a simpler version of our SRAM-
PUF model (Equation 2) and our CIS-PUF models (Equations 5 and 7). Npuf becomes
the number of devices multiplied by the number of columns. The PUF model with an
entropy-loss source is not limited to memory-based PUFs, such as the SRAM PUF and
CIS PUF. In arbiter-based PUFs, an arbiter circuit is a digitizer and has an offset-time
error due to manufacturing variations. The previous study [38] reported that the standard
deviation of the offset-time distribution on the arbiter circuit in arbiter PUFs (APUFs)
was 31.1 % that of the delay-time-difference distribution on the 128-stage selector chain.

We created PUFs using numerical simulation by Equation 9 to determine the appearance
probabilities of the output IDs, which are generated using all the PUF responses. As
an example, we plot the appearance probabilities of the output IDs of a numerical PUF
with eight PUF sources (i.e., Nres = 8) in Figure 5. Since each output ID is created from
the 8-bit PUF responses, the IDs range from 0 to 255. T was set to 0, and the mean
and standard deviation of vp,r were set to 0.00 (= µv) and 1.00 (= σv), respectively (i.e.,
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vp,r ∼ N (0.00, 1.002)). First, both the mean and standard deviation of vdigit
p were set to

0.00 (i.e., vdigit
p = 0). This means that the variation in the manufacturing of the digitizer

was negligible. We generated 1,000,000 numerical PUFs and investigated the appearance
probabilities of the output IDs. As shown in Figure 5 (a), all the IDs were output with
equal probability, and the appearance probability was approximately 0.004 (= 1

256 ). The
entropy calculated from this probability was approximately 8 (= − log2(0.004)) bits. When
normalized by the number of PUF-response bits, the entropy is 1 bit per bit, which is
basic common sense.

Next, increasing the standard deviation of vdigit
p to 0.25 (i.e., vdigit

p ∼ N (0.00, 0.252))
maximized the appearance probability of the “0” ID (all ‘0’ bits) and “255” ID (all ‘1’
bits), as shown in Figure 5 (b). The appearance probability was approximately 0.0091,
and the entropy calculated from it was 0.847 (= − log2(0.0091)

8 ) bits per bit. This bias
in the appearance of IDs was due to the manufacturing process variable of the digitizer
(entropy-loss source). The above appearance probability and entropy can be theoretically
calculated as follows. The probability of the PUF-response bit being ‘0’ at any offset
(xoffset), which is caused by vdigit

p , is expressed as a cumulative distribution function (CDF):

cdf(xoffset) =
∫ xoffset

−∞

1√
2πσ2

v

e−
(x−µv)2

2σ2
v dx. (10)

Since the number of PUF sources is Nres, the probability of all the PUF-response bits
being ‘0’ is the Nres power of cdf(xoffset). The appearance probability of the “0” ID can
be calculated by integrating it with respect to xoffset:

Pr(X = 0) =
∫ ∞
−∞

1√
2πσ2

vdigit

e
−

(xoffset−µ
vdigit)2

2σ2
vdigit · cdf(xoffset)Nres dxoffset. (11)

The appearance probability of the ID for which the PUF-response bits are all ‘1’ is
calculated in the same way. The appearance probabilities of the other IDs (e.g., the “1”,
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estimates

“2”, and “128” IDs) can also be also calculated theoretically. The min-entropy normalized
by the number of PUF-response bits is calculated using

H∞ = − log2 max Pr(X = xi)
Nres

= − log2 Pr(X = 0)
Nres

. (12)

For PUFs with entropy-loss sources, the worst-case scenario is when an attacker predicts
the ID in which the PUF-response bits are all ‘0’ or all ‘1’. The result of Equation 11 is the
maximum probability that the attacker will succeed in predicting the ID. It may be rare to
generate IDs using PUF responses outputted from the same digitizer. However, as long as
the PUF responses are used, it necessary to consider the risk that the attacker can predict.

These results indicate that identical PUF-response bits are generated with high prob-
ability due to entropy-loss sources (i.e., variations in the manufacturing of circuits and
transistors (excluding PUF sources)). Specific IDs tend to be output with high probability.
These features can be understood from the heat map of PUF responses in Figure 4 (c), in
which the stripes mean that identical PUF-response bits appear with high probability in
each column. In other words, an attacker can roughly guess the probability of a certain ID
appearing even without knowing the ratio of the variations between the PUF sources and
entropy-loss sources. The attacker can thus predict an ID, narrow down the candidate
IDs, or find a device with a vulnerable ID.

In our worst-case scenario, the min-entropy can be theoretically calculated from
Equation 12. We investigated the relationship between the standard deviation of an
entropy-loss source (σvdigit) and the min-entropy. The solid lines in Figure 6 show the
theoretical results. T was set to 0, and the mean and standard deviation of vp,r were set
to 0.00 (= µv) and 1.00 (= σv), respectively (i.e., vp,r ∼ N (0.00, 1.002)). The mean of
vdigit
p was set to 0.00 (= µvdigit), and the standard deviation of vdigit

p was set from 0.0 to
0.6 in 0.05 increments (= σvdigit). The number of PUF sources (Nres) was set to 128, 256,
512, and 1024. There are thus theoretical estimates for 52 conditions. We found that the
entropy estimate decreased exponentially with increasing variation of entropy-loss sources
(i.e., vdigit

p ). The entropy estimate decreased more when the number of PUF sources was
large (i.e., more PUF sources were connected to an entropy-loss source (digitizer)). These
results were independent of the absolute value of the standard deviations of PUF sources
and entropy-loss sources and were determined by the ratio of both the standard deviations.
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Table 4: Example probabilities of a 2-bit value (ID)

2-bit value Probability
0 0.4
1 0.1
2 0.1
3 0.4

5 Comparison with results estimated using NIST SP 800-
90B

In the previous section, we estimated the min-entropy from theoretical considerations.
The results of the entropy estimation suite of NIST SP 800-90B are expected to be the
same as the theoretical estimates. In this section, we investigate how much the theoretical
estimates calculated using Equation 12 differ from the results estimated using NIST SP
800-90B. We also discuss the comparison results.

5.1 Comparison results
We created numerical PUFs using Equation 9 for this purpose. The parameters we set are
the 52 conditions used in the previous section. The number of PUFs (Npuf ) was set so
that the number of samples for the entropy estimation suite is 1G bits. We concatenated
the PUF responses and estimated the min-entropy of each 1G-bit dataset. We then picked
up the minimum estimate among the estimates calculated from the ten estimators of NIST
SP 800-90B. The number of samples required by the entropy estimation suite is 1M, but
we increased the number to 1G because of the wide variation in the estimation results.
Since the estimation results still varied slightly, we estimated min-entropy under each
condition ten times.

The dashed lines in Figure 6 show the results estimated using NIST SP 800-90B.
When the manufacturing variation of entropy-loss sources was 0 (i.e., σvdigit = 0), or the
manufacturing variation of entropy-loss sources was more than half that of PUF sources
(i.e., σvdigit ≥ 0.5 × σv), there was little difference between the estimated results and
theoretical estimates. However, the entropy estimation suite overestimated under the other
conditions. The difference was up to six times.

The minimum estimates were the results of either the t-tuple estimator or compression
estimator, with the t-tuple estimator often computing the minimum estimate. The t-tuple
and compression estimators competed to compute a minimum estimate. Which estimate
was minimum was related to the ratio σ

vdigit
σv

. When σ
vdigit
σv

was 0.2, their estimates were
close. Sometimes the t-tuple estimator computed the minimum estimate, and sometimes
the compression estimator did. When σ

vdigit
σv

was greater than 0.2, the t-tuple estimator
computed the minimum estimate; otherwise, the compression estimator computed the
minimum estimate.

5.2 Discussion
We now explain why the t-tuple estimator is unsuitable for PUFs with entropy-loss sources
and why it always overestimate the theoretical estimate.

The t-tuple estimator measured tuples consisting of sample values across the IDs. As a
result, it overestimated min-entropy. Let us consider a simple example of a 2-bit value
(ID) with the probabilities shown in Table 4. Suppose the dataset is

S = (0 3 0 0 1 3 3 0 2 3), (13)
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where the number of samples (L) is 10. The MCV estimator measures the proportion of
the MCV (pmcv) in the dataset; pmcv = 0.4 is derived from the number of “0”s and “3”s.
The t-tuple estimator is an extension of the MCV estimator and first finds the largest
t such that the number of occurrences of the most common t-tuple in the dataset is at
least 35. The number of occurrences of the most common i-tuple (Q[i]) is measured for
i = 1, 2, ..., t. Next, it computes an estimate on the maximum individual sample value
probability:

Pmax[i] =
(

Q[i]
L− i+ 1

) 1
i

(i = 1, 2, ..., t). (14)

Next, the maximum probability is selected (i.e., pt−tuple = max(Pmax[1], ..., Pmax[t])). If
we assume that the cutoff in this example is 3 instead of 35, the largest t is 1, and Q[1] = 4
is derived from the number of “0”s and “3”s. The pt−tuple is 0.4, which is equal to the
MCV-estimator result (i.e., pt−tuple = pmcv). The entropy estimated from this result is
0.6610 (= − log2(0.4)

2 ) bits per bit.
If the 2-bit values are split into 1-bit symbols, the dataset is represented as

S = (0 0 1 1 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1), (15)

where the number of samples (L) is doubled to 20. Q[1] = 10 is the number of ‘0’s and
‘1’s, Q[2] = 6 is derived from the number of tuples “00” and “11”, and Q[3] = 3 is derived
from the number of tuples “000”, “001”, and “011”. Pmax[1], Pmax[2], and Pmax[3] are 0.5,
0.5620, and 0.5503, respectively, and pt−tuple is 0.5620. The entropy estimated from this
result is 0.8314 (= − log2(0.5620)) bits per bit, which is larger than that calculated using
2-bit symbols. The t-tuple estimator thus overestimates entropy.

The reason for this overestimation is counting tuples across 2-bit values. When
measuring the number of occurrences of the most common 2-tuples (Q[2]), the occurrence
ratios of “00”, “01”, “10”, and “11” should be the same as those in Table 4. However,
tuples extending across the 2-bit values are also counted. Since the ratios of “00”s, “01”s,
“10”s, and “11”s across the 2-bit values are the same, their addition changes the occurrence
ratio of “00”, “01”, “10”, and “11” to 0.325 : 0.175 : 0.175 : 0.325, and the maximum
appearance probability is reduced. The t-tuple estimator thus overestimates entropy. This
mechanism is the same regardless of tuple size.

From the above explanation, a simple solution is to measure the appearance probability
of each ID. In particular, when a digitizer in a PUF has an offset error, the ID consisting
of all ‘0’ bits or all ‘1’ bits should be measured. This method is practically impossible
because it requires an unrealistic number of PUF devices.

6 Proposal of Entropy Prediction Scheme

6.1 Proposed Scheme

In our proposed scheme, digitizers (entropy-loss sources) are assumed to be independent,
as shown in the PUF model of Equation 9. We assume that the manufacturing variations
of PUF sources and entropy-loss sources follow a normal distribution. We measure the
number of IDs that include an equal number of ‘0’ and ‘1’ and calculate their appearance
probability. The appearance probability of a single ID is very low, but the total number of
the relevant IDs is high. Therefore, it may be possible to measure with a realistic number
of PUF devices. In contrast to Equation 11, this appearance probability can be shown as
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follows.

Pr(HW(X) = Nres
2 ) =

(
Nres
Nres

2

)
×
∫ ∞
−∞

1√
2πσ2

vdigit

e
−

(xoffset−µ
vdigit)2

2σ2
vdigit

·cdf(xoffset)
Nres

2 · (1− cdf(xoffset))
Nres

2 dxoffset. (16)

The number of combinations refers to that of IDs that include an equal number of ‘0’ and
‘1’. The remainder of this equation relates to the appearance probability of each ID. We
then predict the variation ratio of entropy-loss sources to PUF sources (i.e., standard-
deviation ratio σ

vdigit
σv

) from the measurement result. We calculate the min-entropy using
Equation 12.

6.2 Discussion for Numerical PUFs
We measured the number of relevant IDs from the 1G-bit PUF responses output from
the numerical PUFs created in Section 5. We then compared these results with those
calculated using Equation 16. Figure 7 shows a comparison of the measurement results
with the theoretical results. The solid lines in this figure show the theoretical results using
Equation 16, and the dashed lines show the measurement results counted from 1G-bit
PUF responses. Both the results matched approximately. We created ten numerical PUFs
for each condition, but there was no difference in the results. These findings demonstrate
that our entropy-prediction scheme provides a more accurate estimate of the min-entropy
of PUFs with entropy-loss sources than the entropy-estimation suite of NIST SP 800-90B.

6.3 Discussion for our SRAM PUF
We estimated the min-entropy of our SRAM PUF by using our entropy-prediction scheme.
First, we calculated HW values by adding PUF-response bits in each column. Since there
are 1024 SRAM cells in each column, the HW value ranges from 0 to 1024. The total
number of columns is 1280 (= 16 bits × 80 SRAM PUFs), as shown in Figure 2. We then
measured the appearance probability of IDs that include an equal number of ‘0’ and ‘1’
(Pr(HW(X) = 512), and found that it was approximately 0.018. The variation ratio of
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Table 5: Comparison of appearance probability

No. of SRAM cells 128 256 512 1024
Theoretical appearance probability 0.0666 0.0448 0.0291 0.0179
Measured appearance probability 0.0656 0.0466 0.0326 0.0180
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Figure 8: Relationship between appearance probability and min-entropy

entropy-loss sources to PUF sources (i.e., σvdigit
σv

) was predicted to be approximately 0.038.
The estimation result of our entropy-prediction scheme was 0.6367 bits per bit.

We should point out that the same variation ratio of 0.038 was approximately obtained
even if the number of SRAM cells was reduced by selecting them in each column. Table 5
summarizes the theoretical appearance probabilities calculated from the variation ratio of
0.038 and Equation 16 and the appearance probability results measured from the PUF
responses.

In contrast, the estimation result with the column-direction ordering of our SRAM PUF
was 0.728256 bits per bit when using the entropy estimation suite of NIST SP 800-90B. In
other words, there was a difference between the results of our entropy-prediction scheme
and the entropy estimation suite. We transpose the results of numerical PUFs in Figures 6
and 7 into the relationship between the appearance probability and min-entropy, as shown
in Figure 8. The variation ratio of 0.018 is an area where both the estimates differ. This
figure shows that it is no wonder the entropy estimation suite estimates the min-entropy
of our SRAM PUF to be close to 0.8. The estimated result of 0.728256 was due to the
small sample size of 1.3M. It was within the margin of error. We conclude that our
entropy-prediction scheme exactly estimates the min-entropy based on our worst-case
scenario.

6.4 Discussion for our CIS PUF
We discuss the validity of the estimation results for our CIS PUF using the horizontal
comparison. We measured the digitized values through the ADC and calculated the means
and standard deviations of ∆vp,rr,rc and ∆vcolumn

p,rc in Equation 7. We calculated the mean
and standard deviation of ∆vp,rr,rc from all the digitized differential values. Next, we
calculated the mean of the digitized differential values for each column and took it as the
column mean. We calculated the mean and standard deviation of ∆vcolumn

p,rc from all the
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Table 6: Results of our CIS PUF using horizontal comparison

Standard-deviation ratio Min-entropy
NIST SP 800-90B – 0.0355

Measurement (ADC outputs) 0.593 0.0311
Proposed scheme 0.710 0.0271

column means. In addition, we calculated the mean of the digitized differential values for
each row and took it as the row mean. We calculated the mean and standard deviation of
∆vrow

p,rr from all the row means for reference. The mean and standard deviation of ∆vp,rr,rc
were −0.995 and 168.088, respectively. The mean and standard deviation of ∆vcolumn

p,rc were
−0.995 and 99.717, respectively. The mean and standard deviation of ∆vrow

p,rr were −0.995
and 5.746, respectively. The ratio of ∆vcolumn

p,rc to ∆vp,rr,rc in standard deviation was 0.593.
The theoretical estimate calculated using these results and Equation 12 was 0.0311, which
is close to the estimation result in Table 3. We conclude that this estimation result was
close to that of NIST SP 800-90B (as shown in Figure 6) because the variation ratio of
entropy-loss sources was higher than 0.5.

Next, we estimate the min-entropy by using our entropy-prediction scheme. We
calculated HW values by adding PUF-response bits in each column. Since there are 540
pixel cells (SF transistors) in each column, the HW value ranges from 0 to 540. The total
number of columns is 17,280 (= 960columns× 18chips), as shown in Figure 4(c). We then
measured the appearance probability of IDs that include an equal number of ‘0’ and ‘1’
(Pr(HW(X) = 270), and it was approximately 0.0026. The variation ratio of entropy-loss
sources to PUF sources (σvdigit

σv
) was predicted to be approximately 0.710. The estimate of

our entropy-prediction scheme was 0.0271. The above results are summarized in Table 6.
Our entropy-prediction scheme roughly estimated the same variation ratio calculated from
the ADC outputs. The min-entropy of our CIS PUF using horizontal comparison was
estimated to be approximately 0.3.

7 Conclusion

In this paper, we examined the inherent problem that an evaluator can fake the PUF
performance (PUF entropy) when using the entropy estimation suite of NIST SP 800-
90B. The investigations using our SRAM PUF and CIS PUF showed that the estimated
min-entropy differed by as much as one order of magnitude in some cases.

In previous studies, PUF responses from several chips have been concatenated to meet
the criteria of NIST SP 800-90B. However, this approach is known to obfuscate the spatial
correlation between PUF responses. We focused on the case where a digitizer in a PUF
adds a different offset to PUF responses. We studied the worst-case scenario in which the
PUF response is predicted and showed the min-entropy considered from it. We created
several PUFs using numerical simulation and showed how much the min-entropy we studied
differs from the results estimated using NIST SP 800-90B. Our findings showed that, except
for extreme conditions (e.g., when there is no manufacturing variation in a digitizer, or a
digitizer has a significant effect on the PUF responses), the estimated results of NIST SP
800-90B were larger. We thus proposed a new prediction scheme to solve the problem of
PUF entropy estimation. Using numerical PUFs and our SRAM PUF and CIS PUF, we
showed that our proposed prediction scheme exactly estimates the min-entropy based on
our worst-case scenario.
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