
COCO: Co-Design and Co-Verification of Masked Software Implementations on
CPUs

Barbara Gigerl
Graz University of Technology

Vedad Hadzic
Graz University of Technology

Robert Primas
Graz University of Technology

Stefan Mangard
Graz University of Technology

Roderick Bloem
Graz University of Technology

Abstract
The protection of cryptographic implementations against

power analysis attacks is of critical importance for many ap-
plications in embedded systems. The typical approach of
protecting against these attacks is to implement algorithmic
countermeasures, like masking. However, implementing these
countermeasures in a secure and correct manner is challeng-
ing. Masking schemes require the independent processing of
secret shares, which is a property that is often violated by CPU
microarchitectures in practice. In order to write leakage-free
code, the typical approach in practice is to iteratively explore
instruction sequences and to empirically verify whether there
is leakage caused by the hardware for this instruction se-
quence or not. Clearly, this approach is neither efficient, nor
does it lead to rigorous security statements.

In this paper, we overcome the current situation and present
the first approach for co-design and co-verification of masked
software implementations on CPUs. First, we present COCO,
a tool that allows us to provide security proofs at the gate-level
for the execution of a masked software implementation on a
concrete CPU. Using COCO, we analyze the popular 32-bit
RISC-V IBEX core, identify all design aspects that violate
the security of our tested masked software implementations
and perform corrections, mostly in hardware. The resulting
secured IBEX core has an area overhead around 10%, the
runtime of software on this core is largely unaffected, and the
formal verification with COCO of an, e.g., first-order masked
Keccak S-box running on the secured IBEX core takes around
156 seconds. To demonstrate the effectiveness of our sug-
gested design modifications, we perform practical leakage
assessments using an FPGA evaluation board.

1 Introduction

Since the rise of the Internet of Things (IoT), embedded de-
vices are integrated into a wide range of everyday services.
Often, these simple devices are part of larger software ecosys-
tems, which makes the protection of cryptographic keys on

these devices an essential but challenging task. Physical side-
channel attacks, such as power analysis, allow attackers to
extract cryptographic keys by observing a device’s power
consumption [11, 26, 36]. To prevent such attacks, embedded
devices typically employ dedicated countermeasures on the
algorithmic level. The most prominent example of such algo-
rithmic countermeasures against power analysis is masking,
essentially a secret sharing technique that splits input and in-
termediate variables of cryptographic computations into d+1
random shares such that the observation of up to d shares
does not reveal any information about their corresponding
native value [4, 6, 12, 19, 20, 23, 38].

Masking schemes typically have in common that they rely
on certain assumptions such as independence of leakage, i.e.,
independent computations result in independent leakage [37].
However, as pointed out by many academic works in the past,
such assumptions are typically not satisfied on CPUs. Coron
et al. [13] were among the first who showed that, e.g., memory
transitions in the register file or RAM can leak the Hamming
distance between two shares, thereby reducing the protection
order of masking schemes on CPUs. Later publications fol-
low up on these observations [14, 34], and amongst others,
formulate the so-called order reduction theorem [1]. This the-
orem states that dth-order protection under the assumption of
independent leakage reduces to

⌊ d
2

⌋
-th protection if effects

like memory transitions are taken into account. Consequently,
and without further assumptions on the hardware, achieving
second-order protection using masked software implementa-
tions can require computations with up to 5 shares.

This is a very significant overhead, and also the reason why
the goal in practice is to find strategies to cope with the leak-
age caused by the underlying CPUs and to achieve dth-order
protection with d +1 random shares. In order to test if such
implementations indeed provide the desired security level in
practice, research on the verification of masked cryptographic
implementations has gained a lot of attention during the last
years. The existing works can be roughly divided into two
sets: works based on empirical verification, and works based
on formal verification.

1

On the empirical side, authors have studied masking-related
side effects of certain microprocessors via leakage assess-
ments and then built corresponding hardened software im-
plementations [14, 34]. While their resulting masked imple-
mentations do in fact maintain their theoretical protection
in practice, they also come with a noticeable performance
overhead (by up to a factor of 15) that is caused by the nec-
essary software tweaks. Since leakage assessments are quite
labor-intensive, tools like PINPAS [16], or more recently,
ELMO [28] have been developed that can emulate power leak-
age for certain microprocessors. The authors of ROSITA [39]
have pushed this automation even further by also automating
the software patching process after leakage detection. A quite
different approach for achieving protection against power
analysis, which involves hardware modifications of RISC-V
processors, is shown in [24, 29].

On the formal side, tools like REBECCA [8] and
maskVerif [2] represent the first steps toward formal ver-
ification of masked implementations. Both tools are mainly
tailored to hardware implementations; maskVerif does of-
fer some support for software implementations but (1) can
only deal with code that is written in a special intermediate
language, and (2) uses a probing model that only considers
simple CPU side-effects such as register overwrites. More
recently, Belaid et al. presented Tornado [7], a compiler that
automatically generates masked software implementations
that are secure in the same model. A more fine-grained soft-
ware verification approach that utilizes annotated assembly
implementations is presented by Barthe et al. [5], while with
Silver [25], Knichel et al. promise improved verification ac-
curacy and performance for hardware implementations.

Our Contribution So far, the verification of masked soft-
ware implementations was only done in simplified settings
that require modified software implementations and do not
consider all possible side-effects, such as glitches at the gate
level, that occur when software runs on an actual CPU. There
still exists a noticeable gap between correctness proofs and
the resulting practical protection for masked software imple-
mentations. We close this gap by providing the following
contributions:

• We present COCO, a tool inspired by REBECCA, that
can formally verify the security of (any-order) masked,
RISC-V assembly implementations that are executed
on concrete CPUs defined by gate-level netlists. COCO
essentially provides hardware-level verification includ-
ing glitches for software implementations with constant
control flow.

• Using COCO, we analyze the design of the popular 32-
bit IBEX1 core and identify all hardware design aspects
that could prevent the leakage-free execution of our test
suite of masked software implementations on this CPU.

1https://github.com/lowRISC/ibex

• Based on this analysis, we present design strategies for
CPU and memory, that with low hardware overhead,
eliminate most of our discovered flaws in hardware,
while leaving behind a few select and easy-to-check con-
straints for masked software implementations.

• We show the practicality of this work by verifying a
variety of masked assembly implementations, includ-
ing various types of (higher-order) masked AND-gates,
a second-order masked Keccak S-box [21], and a first-
order masked AES S-box implementation [9]. We also
show examples where COCO identifies flaws in broken
masked software implementations and reports the cor-
responding execution cycle, as well as the location of
the leakage source within the IBEX netlist. To show the
effective robustness of our secured design, we perform
leakage assessments on an FPGA evaluation board.

• We publish COCO and our secured IBEX on Github2.

Outline In Section 2, we present COCO, a tool that can for-
mally verify the leakage-free execution of masked software
implementations directly on CPU netlists. Section 3 explains
how we analyze the popular 32-bit RISC-V IBEX core using
COCO, the discovered issues, and the resulting hardware mod-
ifications which enable leakage-free software execution. In
a similar spirit, Section 4 takes a look at data memory and
proposes solutions for how SRAM can be added to a CPU
core such that it can be included in COCO’s verification. Sec-
tion 5 describes COCO’s verification workflow in detail and
presents various verification runtime benchmarks as well as
the practical evaluation. We conclude our work in Section 6.

2 Verifying Software Implementations on
Hardware

In this section, we describe how we built COCO, a tool in-
spired by REBECCA [8], for the verification of masked soft-
ware implementations directly on CPU netlists. More con-
cretely, we show how the problem of verifying masked soft-
ware implementations can be mapped to a hardware verifica-
tion problem by treating software as a sequence of control
signals that dictate the data/control flow within a CPU. This
approach comes with the advantage that we can directly ver-
ify assembly implementations and observe all possible side-
effects that could reduce the protection order of the tested
software implementations. Previous works in this direction
require modified software implementations and only consider
a select amount of CPU side-effects that have been discovered
in empirical evaluations [2, 5].

First, we cover necessary background on masking and RE-
BECCA. We then show that the classical probing model [23]

2Link removed for review phase.

2

https://github.com/lowRISC/ibex

is not suitable for hardware/software co-verification and pro-
pose the so-called time-constrained probing model that can be
seen as a stricter version of previously used models for soft-
ware verification. We then discuss all improvements that we
performed on top of REBECCA, such that hardware/software
co-verification becomes feasible, ultimately leading to COCO.
COCO’s complete vcerification flow is described in Section 5.

2.1 Background on Masking

Masking is a prominent algorithmic countermeasure against
power analysis attacks [10]. In a nutshell, masking is a secret-
sharing technique that splits intermediate values of a computa-
tion into d +1 uniformly random shares, such that observing
up to d shares does not leak any information about the un-
derlying value. In classical Boolean masking, the sharing
of a native variable s, when split into d + 1 random shares
s0 . . .sd , must satisfy s = s0⊕ . . .⊕ sd . Hereby, s0 . . .sd−1 can
be chosen uniformly at random while sd = s0⊕ . . .⊕ sd−1⊕ s.
This ensures that each share si is uniformly distributed and
statistically independent of s.

When implementing masked cryptographic algorithms,
dealing with linear functions is trivial as they can simply be
computed on each share individually. However, implement-
ing masking for non-linear functions requires computations
on all shares of a native value, which is more challenging to
implement in a secure and correct manner, and thus the main
interest in literature [4, 6, 12, 19, 20, 23, 38].

2.2 Background on REBECCA

REBECCA [8] is a tool for the formal verification of masked
hardware implementations. Simply speaking, given the netlist
of a masked hardware circuit, together with labels that indicate
which input shares belong together, REBECCA can determine
if the separation between shares is preserved throughout the
circuit. More formally, REBECCA checks if a circuit is secure
in the glitch-extended version of the original probing model
by Ishai et al. [23], which we refer to as the classical probing
model.In the classical probing model, an attacker can place up
to d probing needles in a circuit, which allows the observation
of up to d intermediate values (gates or wires) throughout the
computation. Then, a circuit is said to be dth-order protected
if an attacker who combines the recorded information cannot
infer information about native values.

The Verification Flow of REBECCA REBECCA operates
on the netlist of a pipelined masked hardware circuit. The
circuit inputs are annotated with labels to express their pur-
pose in the masking scheme, which can either be a share, a
mask, or public. A share represents a share of a secret value,
a mask is a fresh uniformly-distributed random value, and
public means that it is not important for the masked imple-
mentation. These labels are propagated through all gates of

the circuit, following a list of propagation rules. The circuit
is not secure in the classical probing model if there is a gate
that correlates with a native secret.

Glitches may arise in hardware circuits, and are caused by
various physical hardware properties, including different wire
lengths. REBECCA takes glitches into account by modeling
the stable and transient correlation of gates. Stable correla-
tions refer to the final values of the signals, whereas transient
correlations refer to all intermediate signal values before the
circuit stabilizes.

Fourier Expansions and Leakage Checks In order to
check for correlation, REBECCA uses correlation sets, which
are derived from the Fourier expansion of Boolean func-
tions [31]. Fourier expansions represent Boolean functions
as a polynomial over the real domain {1,−1}. Examples of
Fourier expansions are shown in Appendix A.

A function correlates to a linear combination of its inputs if
the correlation term representing the linear combination has
a non-zero correlation coefficient. REBECCA applies a very
conservative over-approximation of these coefficients and
derives correlation sets from these. Correlation sets contain
terms with non-zero correlation coefficients while omitting
the exact value of the coefficients. A first-order leakage test
for a secret s checks whether a correlation set of any gate con-
tains a term where all shares of s are present without being
masked by a random value (a mask or an imcomplete sharing
of another secret). Explicitly constructing the correlation sets
and performing these checks is infeasible, which is why RE-
BECCA encodes everything as a pseudo-Boolean formula and
checks for satisfiability with the SMT solver Z3 [15].

2.3 Probing Models for Software Verification

The classical probing model allows an attacker to observe all
values and transitions at a chosen location within a hardware
circuit. While this freedom is non-problematic for pipelined
circuits, where at one location and between all clock cycles,
the computations are always unrelated, it is problematic for
software implementations. For example, consider the case
where an attacker is probing the write port of a CPU regis-
ter file. Then, no matter the used software masking scheme,
an attacker will always observe all intermediate values and
can break masking schemes with arbitrary protection order.
Consequently, when considering the verification of masked
software implementations, authors in the past have fallen back
to more restrictive (weaker) probing models.

For example, in case of tools like maskVerif or Tornado,
dth-order attacks on software implementations can observe
up to d intermediate values of the computation (+ transition
effects). This implicitly excludes the attacker from observing
more than two intermediate values at one probing location,
even though CPU registers very likely contain multiple inter-
mediate values throughout the software execution. While this

3

model is certainly weaker than the classical probing model,
it still captures the essence of higher-order attacks, i.e., the
complexity of finding and combining up to d+1 points within
a power trace of the entire computation.

Nevertheless, in COCO, we want to verify the leakage-free
execution of masked software implementation directly in hard-
ware and thus consider a stronger probing model that includes
all possible hardware side-effects. Therefore, we define the
so-called time-constrained probing model.

Time-Constrained Probing Model In the time-
constrained probing model, an attacker possesses d
probes. Each probe can be used to measure information in
one specific clock cycle and at one specific location. The
attacker can distribute the probes spatially and temporally,
as long as they only perform d measurements (probes)
at different locations in the same clock cycle or probes
at the same location in different clock cycles. Then, a
masked software implementation is dth-order secure in
the time-constrained probing model if an attacker cannot
combine the recorded information to learn anything about
native values.

In essence, our model combines the knowledge of both
the software and hardware components into a probing model
which ports existing software probing models into a hard-
ware setting. The time-constrained probing model is strictly
stronger than the software probing model with transitions,
as the attacker can observe any leakage (including glitches)
caused by hardware. As the attacker is limited to one clock
cycle per probing needle, the time-constrained probing model
simulates the full hardware probing model of pipelined cir-
cuits.

2.4 Co-Verification Methodology
While REBECCA is limited to the verification of pipelined
masked hardware circuits, COCO aims at the co-verification
of software and hardware, i.e., verifying the execution of
masked software implementations directly on a processor’s
netlist. Consequently, COCO requires some knowledge about
how concrete programs influence the data/control flow within
the CPU. We then need extend REBECCA such that the verifi-
cation method is aware of the software execution.

In the following, we first briefly outline the workflow of
COCO, broken into 4 steps. Steps 1-2 give intuition into how
the execution of software can be combined with an otherwise
purely hardware-focused verification method. Steps 3-4 then
describe COCO’s verification method. The remainder of this
section describes Step 3 in more detail, while a more thorough
explanation the SAT-encoding used in Step 4 is provided
in Appendix B.

Step 1 We use Verilator [40] to execute a masked assembly
implementation on a given CPU hardware design via a

Table 1: Definition of the correlation sets St
x and T t

x of gate x
in cycle t. We use the operator ⊗ as the element-wise multi-
plication of two correlation sets.

Gate type of x Definition of St
x Definition of T t

x

Constant {1} {1}
Negation x = ¬a St

a T t
a

Register x⇐R a St−1
a Ŝt−1

a ⊗ Ŝt
a

XOR x = a⊕b
St

a⊗St
b T̂ t

a ⊗ T̂ t
bXNOR x = a⊕b

AND x = a∧b
Ŝt

a⊗ Ŝt
b T̂ t

a ⊗ T̂ t
bOR x = a∨b

Multiplexer x = c ? a : b Ŝt
c⊗ (St

a ∪St
b) T̂ t

c ⊗ T̂ t
a ⊗ T̂ t

b

cycle-accurate simulation. From the simulation, we extract a
so-called execution trace which contains concrete values for
all CPU control signals in all execution cycles. the concrete
values of all CPU control signals in each clock cycle. We
require implementations with a constant control flow using
Boolean masking and therefore, these control signals are
the same for all inputs to that software implementation.

Step 2 We annotate which registers or memory locations
hold the shares of a native value at the start of the software
execution. Additionally, we need to specify the masking
order of the software implementation and the number of
cycles that should be verified.

Step 3 We capture the correlations of each logic gate and
register in the processor by constructing correlation sets
throughout each clock cycle. For this purpose, we improve
and extend the set of stable and transient propagation rules
used by REBECCA. Most importantly, we reformulate them
such that they can be made execution-aware. Knowing the
exact values of control signals at each point during the exe-
cution allows COCO to simplify the correlation sets under
certain circumstances. In turn, we obtain a tighter over-
approximation and reduce erroneous leakage reports.

Step 4 We encode the resulting correlation sets as a proposi-
tional Boolean formula and use a SAT-solver to check for
leakage. In case the implementation is insecure, the exact
gate in the netlist and execution cycle is reported. Tracking
correlation sets naively is infeasible since their size grows
exponentially with the number of secret shares and masks.
Our encoding includes the circuit structure, correlation prop-
agation rules and security constraints. Although REBECCA
already applies this approach, their SAT encoding is incom-
patible with our execution-aware propagation rules and not
efficient enough for circuits as large as processors. Details
on the SAT encoding are discussed in Appendix B.

Execution-Aware Stable Correlation Sets In COCO, we
apply an over-approximation of the Fourier expansions of
Boolean functions by building execution-aware correlation

4

sets St
x which track the non-zero correlation terms of gate x in

cycle t. For reasons of simplicity, we also define the biased
correlation set Ŝt

x = {1} ∪St
x. In Step 2 of the verification pro-

cess, we decide on the initial correlation terms by providing
labels for registers and memory locations. For example, if we
label register x as the first share s1 of the secret s, then its
initial correlation set is S0

x = {s1}. Correlation terms of con-
secutive gates are derived by propagating these labels through
the whole circuit, using the definitions of stable correlation
sets Table 1, until the initial registers are reached again. The
register’s labels are updated accordingly and the propagation
restarts. This process is repeated for every cycle, until the
execution finishes.

Table 1 shows the definitions of stable correlation sets
used by COCO. Constants only correlate to the constant term
1. Negations only change the sign of the coefficients in the
Fourier expansion, so the correlation set stays the same. Reg-
isters inherit the stable correlation set their input had at the
end of the last cycle. The stable correlation set of linear gates
(XOR, XNOR) is computed as the element-wise multiplication
(⊗) of the correlation set of the gate inputs. Similarly, the def-
inition for non-linear gates is calculated as the element-wise
multiplication of the biased correlation set of the gate inputs.

Unlike REBECCA, our verification tool supports multiplex-
ers. Therefore, in Equation 1, we propose the Fourier expan-
sion of multiplexer gates.

MUX F(c ? a : b) =
1
2

a+
1
2

b− 1
2

ac+
1
2

bc (1)

A detailed derivation of the coefficients is given in Section A.2.
Consequently, the correlation set for multiplexers combines
the stable correlation sets of all inputs.

The resulting over-approximation St
x is sound but not al-

ways tight. This means that the stable correlation set contains
at least all correlation terms with non-zero coefficients, but
might also contain terms that have a zero coefficient. In other
words, all real leaks are always detected, but sometimes leaks
could falsely be reported. Unlike REBECCA, COCO tightens
the over-approximation and circumvents the necessity to ap-
ply the full sets in some cases, which reduces the amount of
false positives. The propagation rules for gates which have at
least one public input can, depending on the concrete value
of the input, be simplified by substituting correlation sets
with constants. The concrete values can be obtained from
the execution trace. For example, if there exists a mulitplexer
c ? a : b and we know that c is public and has the concrete
value FALSE, the result of the multiplexer will only correlate
to terms in St

b.

Execution-Aware Transient Correlation Sets Hardware
effects like transitions and glitches cause information leaks,
which cannot be captured by stable correlation sets. There-
fore, we introduce transient correlation sets T t

x for a gate x
in cycle t and the biased representation T̂ t

x = {1}∪ T t
x . T t

x

AND
xa

b

 Comb. logic

Register

Cycle n Cycle n+1 Cycle n+2
Boolean values according to trace

b 1 0 0
x a 0 0

Stable correlation sets
St

x Sn
a {1} {1}
Transient correlation sets

T t
x T n

a T n+1
a {1}

Figure 1: Example of simplifications made to the propagation
rule of an AND gate in three consecutive cycles, exploiting
execution-awareness.

contains at least all the correlations an attacker can observe
throughout the duration of one cycle. Additionally, it contains
spurious terms that make efficient calculations easier while
still yielding an over-approximation, albeit a less tight one.

The transient correlation sets are shown in Table 1. For
constants and negations, the definition of the correlation sets
is identical to the stable case. An attacker probing a register
can learn the current stable value, the old stable value, and
their linear combination due to transition leakage. Therefore,
probing a register does not reveal any transient information,
as registers synchronize the circuit and do not change through-
out a clock cycle. Non-linear and linear gates leak the same
amount of information in the transient case. Glitches can
cause a linear gate to forward either of its inputs because
they do not necessarily update simultaneously. Similarly, due
to the transition from the previous stable signal value to the
current transient signal value, an attacker can observe both,
as well as their linear combination. The over-approximation
in Table 1 does not state this directly. Instead, this is implied
by the transient correlation sets for registers, which make
sure that an attacker probing any gate also sees the old stable
value of that gate. Therefore, as St−1

a ⊆ T t
a , gates using a as

an input observe both old and new signal values of a. In the
transient case, COCO treats multiplexers similarly to linear
and non-linear gates. Our over-approximation just assumes
that a multiplexer leaks all possible linear combinations of
the transient values of all of its inputs.

Just like stable correlation sets, transient correlation sets
are also affected by concrete signal values obtained from the
execution trace. However, glitches make simplifications due
to execution awareness harder and less effective. They are
still possible, as long as we keep track whether a given signal
can cause a glitch or not. We use a method similar to what
was proposed by Thompson et al. [41] to track the stability of
a given signal. This method is summarized by the following
rules:

5

• Registers that have not changed their value during a
transition from cycle t − 1 to cycle t cannot produce
glitches, as their signals are inherently stable.

• If all inputs of a logic gate are stable, the output of the
logic gate cannot cause glitches either.

• Non-linear gates and multiplexers can still produce sta-
ble signals, even if one of its inputs is unstable. This
depends on the gate’s physical properties, which can pre-
vent glitches, e.g. AND gates with one unstable and one
stable FALSE input, OR gates with one unstable and one
stable TRUE input.

The gate stability propagates through the circuit for any
given clock cycle, starting at registers and continuing until the
stability of all gates is determined. After computing which
circuit gates produce stable signals, we use this to apply sim-
plifications to transient correlation sets using the same method
as for stable correlation sets.

Example of Execution-Aware Simplifications Consider
an AND gate x = a∧ b, where b is the output of a register
and a is calculated by some combinatorial logic, as shown in
Figure 1. For simplicity, assume that the value of b is public,
and that the value of a, as well as the stable and transient
correlation sets, do not change throughout cycles n to n+2,
i.e., Sn

a = Sn+1
a = Sn+2

a and T n
a = T n+1

a = T n+2
a .

From the execution trace we know that b = 1 in cycle n
and b = 0 in cycles n+ 1 and n+ 2. Knowing b allows us
to apply the simplifications Sn

x = Sn
a and Sn+1

x = Sn+2
x = {1} .

Now consider the same circuit when glitches are present, and
assume that b= 1 was a stable signal in cycle n. In cycle n+1,
it is possible that the signal from a arrives at x before the new
value b = 0. Therefore, the simplifications due to execution
awareness cannot be applied and, T n+1

x = T n
x = T n

a . However,
in cycle n+ 2, we can apply the simplification because the
value of b is stable and, thus, T n+2

x = {1} .

3 Problems and Fixes in the IBEX Core

In this section, we first describe the RISC-V IBEX core, our
target processor. We analyze the RISC-V IBEX core using
COCO to identify implementation details that prevent the
leakage-free execution of masked software implementations.
Afterwards, we propose corresponding fixes, either directly in
hardware, or as a constraint for masked software implemen-
tations. The outcome of our analysis is a secured hardware
design of the IBEX core. We discuss secure options for data
memory in Section 4 and then verify the entire design in
Section 5.

When executing a masked software implementation on
IBEX, secret shares are initially stored in the register file and
the data memory. The instructions of the program work on the
shares by changing them and moving them through the CPU

and the memory system. All these actions cause potential
leakage. In order to analyze and detect these leakage sources,
we work with a comprehensive set of masked software imple-
mentations that includes (higher-order) masked AND-gates, a
second-order masked Keccak S-box, and a first-order masked
AES S-box implementation. All test programs are written in
RISC-V assembly and then executed on the IBEX core, pro-
ducing a cycle-accurate execution trace. The execution trace
in combination with the exact storage location of the secret
shares (registers or memory locations) is then processed by
COCO, which automatically runs the verification and reports
leakage sources by specifying the exact cycle and gate in
the netlist. We then manually inspect the gate in the netlist,
introduce the corresponding hardware fixes and re-evaluate
the design until no leaks were dectected anymore.

Our analysis has revealed several leakages caused by the
IBEX core. First, COCO has confirmed the typical problems
of masked software implementations that have already been
identified by previous works, such as overwriting or succes-
sively accessing shares that correspond to the same native
variable [1,3,34,39]. While fixing such problems in hardware
would, in principle, be possible, it would be very costly. We
decided to accept these leakages and instead write all our
masked implementations in a way such that they fulfill the
following two constraints:

C1CORE Shares of the same secret must not be accessed within
two successive instructions.

C2CORE A register or memory location which contains one
share must not be overwritten with its counterpart.

However, although these design principles prevent known
leakage sources, COCO has revealed many more leakages.
In particular, it identified leakages in the register file, the
computational units (ALU, MD, and CSR) as well as in the
LSU. We now discuss all of these identified problems for the
different components of the CPU and present corresponding
solutions in hardware to prevent these leakages.

3.1 Targeted Processor Platform
The IBEX core3 is a free and publicly available 32-bit CPU
design that features a two stage in-order single-issue pipeline
that is divided into Instruction Fetch (IF) and Instruction De-
code/Execute (ID+EX). Its performance is roughly compara-
ble to the ARM Cortex-M0. The main components of IBEX
are the register file, the Arithmetic Logic Unit (ALU), the
Load-Store Unit (LSU), a unit for multiplications and divi-
sions (MD), the Control and Status Register (CSR) block, and
several functional units for processor control, including the
decoder and controller.

For our analayis we use IBEX core commit
863fb56eb166d. We configure IBEX to use the RV32I

3https://github.com/lowRISC/ibex

6

https://github.com/lowRISC/ibex

instruction set and the C (compressed instructions), M
(multiplication/division) and Zicsr (control and status
register) extensions. Other features like physical memory
protection and the instruction cache are disabled.

We select IBEX as the target core because it has a relatively
simple microarchitecture, which makes it easy to demonstrate
COCO and explain the hardware fixes. Although the core
complexity is rather low, it still contains the most important
components which are part of every modern processor, for
example the register file. Additionally, the IBEX core has
gained a lot of attention recently as beging part of the PULP
Platform [17] and the OpenTitan project [27].

However, we want to stress that COCO can be used to an-
alyze any other processor, as long as the netlist is available
in either Verilog or System Verilog and the masked software
implementations have a constant control flow. This includes
also larger RISC-V cores, for example the 32-bit CV32E40P
(formerly RI5CY) [32] and the 64-bit CVA6 (formerly Ari-
ane) [33], but also other non-RISC-V processors, for example
the ARM Cortex-M4. Note that the netlist does not necessar-
ily have to be open source. For example, users in industry to
which the netlist of the ARM Cortex-M4 was disclosed, could
use COCO to perform verification of ARM-based masked
assembly implementations. Additionally, the problems found
in the IBEX core are conceptually the same in larger cores,
since the basic building blocks are the same. Therefore, the
proposed solutions can also be easily mapped to larger cores.

3.2 Register File

The register file of the IBEX core consists of 32 32-bit regis-
ters, labeled x0-x31, where x0 is hard-wired to the value 0.
Although there exist multiple options of how concrete register
files could be constructed, on a conceptional level, the design
will be similar to the sketch shown in Figure 2a. There are
two read ports (A and B), and a write port, that are controlled
by 5-bit address signals. The 32 registers are connected to a
multiplexer tree of depth five, whose selection signals are the
respective bit of the read address. If an instruction writes a
value to a register, the 32-bit write data either originates from
the ALU, the CSR Unit, or the LSU. A multiplexer before
each register controls if the register content is updated, de-
pending on the write-enable signal, which is derived from the
address.

Problem: Switching Wires in the Multiplexer Tree The
transition from one secret share to another may be observable
on a wire connecting two levels of the multiplexer tree. This
happens primarily whenever two secret shares are read in con-
secutive cycles, but also when accessing registers unrelated to
secret shares. For instance, assuming that the secret shares are
in registers x1 and x2, reading register x3 in the first cycle and
x4 in the second cycle causes the fifth bit of the read address
to switch from one to zero. An attacker observes leakage on

the output wire of the first L0 multiplexer, which switches
from x1 to x2.

Problem: Glitchy Address Signals The read and write ad-
dress signals are not guaranteed to be glitch-free since they
come out of combinatorial logic. We identify the transitions
of the wires in the multiplexer tree as a source of leakage
because it can switch from the value of a secret share in the
register to the data written to any other register. Additionally,
transitions from one secret share to another can be observed
on the output of the multiplexers before a register.

Problem: Unintended Reads The IBEX core reads data
from the register file in every instruction, even in cases were
the current instruction does not require any operands. For
example, lw x1, 5(x20) will result in a read to registers
x20 and x5 because bits 15-19 and 20-26 of an instruction are
always interpreted as operand addresses.

Solution: Register Gating All three described problems
are difficult to address in software since their effects often
depend on the concrete hardware layout. A pure software
solution could eliminate the problem of unintended reads, but
becomes more complex as the length of a program grows and
is completely unfeasible for larger implementations. Software
mitigations are insufficient to solve the problem of glitchy
address signals and transition leakage in the multiplexer tree.
Therefore, we fix this problem in hardware using a gating
mechanism for each register, as shown in Figure 2b. After
each register, we place an AND gate, that takes the register
value as the first input operand. The second operand of this
AND gate is the register read address, encoded into a 32-bit
one-hot signal, where each bit represents the gate value for a
single register. Consequently, the whole multiplexer tree can
be replaced by a simpler tree of OR gates. From a verification
aspect, we discuss this solution in Figure 1. In this concrete
example, the one-hot encoded enable signal is stored in the
register while the combinatorial logic represents the CPU
register. Since at most one bit is set in the one-hot signal,
at most one register gate is opened, and either the correct
register value or zero can be read from the register file. This
gating mechanism prevents the problem of switching wires in
the multiplexer tree, and unintended reads because we only
enable gating when the instruction requires a read. We prevent
glitches on the one-hot signal by computing it in the IF stage,
and storing it in an intermediate register so that it is guaranteed
to be stable when it reaches the ID+EX stage. We apply the
gating mechanism to both read ports. Likewise, register writes
are also gated with a separate pre-computed value in a one-hot
register by placing an AND gate before the write multiplexer.

3.3 Computation Units
Computation units such as the ALU, MD, and CSR are di-
rectly connected to read ports of the register file. The results

7

x1

x2

x3

Read Port A

Read
Addr[4]

Read
Addr[5]

Read
Addr[5]Write x1

Data MUX MUX
L0

MUX
L0

MUX
L1

(a) Original register file. A multiplexer tree is used to read registers
based on the 5-bit read address. Writing is done via a multiplexer,
controlled by a 1-bit write-enable signal, which is derived from
the write address.

x1

x2

x3

Read Port A

M
U

X

Write x1

Data

Read Addr

 One-Hot

AND

 OR

5

32

Reg

AND

AND

AND

1

Reg

1

Write Addr

 One-Hot

5

32

(b) Secured register file. The register output is additionally gated and
the multiplexer tree is replaced by a tree of OR gates. The writing
mechanism remains unchanged, except that it is extended by an
additional AND gate for the write data.

Figure 2: Original and secured register file of the IBEX core.

produced by them go directly into a multiplexer, selecting
the intended computation result for the register write port. In
other words, the IBEX computation units are always active,
even when they are not required by the current instruction.

Problem: Always-Active Computation Units Assume
the b-bit secret s is shared into two shares s0 = (s0,1, ...s0,b)
and s1 = (s1,1, ...s1,b), such that s = s0⊕ s1. Traditionally, s0
and s1 are both stored in one register each, but there are other
ways the bits of shares can be stored. For example, in 2017,
Barthe et al. [4] proposed parallel implementations of higher-
order masking schemes, where s0 and s1 are distributed over
b registers r1, ...rb. In their scheme, the first bit of r1 stores
s0,1, while the second bit stores s1,1.

The standard IBEX core does not allow leakage-free imple-
mentations of such masking schemes since parts of ALU, MD,
and CSR units are always active and combine the bits of each
read port signal. More concretely, when using a parallelized
masking scheme, the execution of a simple bit-wise and in-
struction leaks since, e.g., the adder unit combines the bits
from the first input operand, and thus might leak s0,1⊕ s1,1.

Solution: Computation Unit Gating The problem of
always-active computation units is very hard to mitigate in
software. Therefore, we use a gating mechanism in hardware
similar to the one in the register file. More concretely, we use
additional AND gates at the inputs of each computation that
are connected to respective enable bits, which are precom-
puted in the IF stage and depend on the next instruction. This
also has the other positive side-effect that the reduced circuit
activity results in an overall lower power consumption of the
CPU, reducing the overall switching activity in the circuit.

3.4 Load/Store Operations

The LSU implements a state machine that is responsible for
communicating with the external memory. The state machine
mainly handles the correct interaction with data/instruction
memory including misaligned memory accesses.

Problem: Hidden LSU State Accessing 32-bit words at
addresses that are not 32-bit aligned always results in two
consecutive fetch operations of the corresponding memory
words. An internal register is then used to buffer the first
memory word until the second memory word is available.
This internal buffer is only updated once a misaligned memory
access occurs. Programs can, therefore, cause unintended
leaks by loading a share into the LSU buffer. The value in this
buffer will then potentially be combined with all values that
traverse the LSU from this time on.

Solution: Clear Hidden LSU State We can avoid this leak-
age source in software by performing a misaligned memory
access to a non-secret value, which clears the LSU buffer.
However, we solve this problem in hardware since it does not
produce any additional overhead, and no additional software
design constraints are necessary. A memory access executed
by the IBEX core requires at least two clock cycles. In the
last cycle, the read memory word is given back to the LSU.
In fact, clearing the hidden LSU buffer in the first cycle, i.e.,
at the beginning of a memory access, eliminates this leakage
source.

8

3.5 Hardware Overhead

In order to analyze the additional hardware overhead of the se-
curity fixes implemented in our design, we compare the chip
area in kGE as well as the maximum operating frequency of
the IBEX base design with our secured design. We use Ca-
dence Genus Synthesis Solution 19.11-s087_1 for synthesis.
The used technology is f130LL.

We disable the ungroup_ok option for all modules in the
core, which preserves the hierarchy of the design. This allows
us to investigate the area consumption of every submodule
on its own, although it might prevent certain optimizations.
We can also exclude the area consumed by SRAM and the
instruction ROM from the analysis since they do not belong
to the IBEX core.

Table 2 shows the area consumption of the IBEX core in dif-
ferent configurations. The unmodified IBEX core (design #1)
requires in total 20.2 kGE. Enabling secure register reads by
gating (design #2) increases the total chip area by 1.5 %. This
is mainly due to the additional two 32-bit registers required
in the IF stage. The size of the register file even decreases,
because OR gates replace the multiplexer tree. However, regis-
ter writes introduce more area overhead due to the additional
AND gates. In design #5, main overhead comes from the
four 1-bit gating-registers in the IF stage and the AND gates
used for gating in the total core overhead. In summary, all
our security fixes increase the total area of the IBEX core by
9.9 %.

We do not expect a major latency overhead of our modifi-
cations. In the core, we mainly shifted the address decoding
from ID to IF stage, which might slightly increase the latency
of the IF stage. The same holds for the ID stage, where the
multiplexer tree is replaced by a tree of OR gates and a layer
of additional AND gates. The computation unit gating and
clearing the hidden LSU state will also affect latency in the ID
stage. Latency considerations according to the SRAM are dis-
cussed in Section 4. However, we keep a detailed investigation
as an open research question for the future.

4 Problems and Fixes in Data Memory

In this section, we discuss how data memory, more specifically
SRAM, can be integrated into our secured IBEX core so we
can formally prove the leakage-free execution of masked soft-
ware implementations for the entire system. Typically, micro-
processors such as ARM Cortex-M devices feature a Harvard
architecture, which means that dedicated memory modules are
used for data/instruction memory (based on SRAM/Flash tech-
nology). Especially on low-end devices, without sophisticated
branch prediction and cache architectures, this design choice
improves overall performance since simultaneous memory
accesses to both memory modules are possible. For our pur-

Design
Total Register File IF stage

Total Overhead Total Overhead Total Overhead
#1 Base design 20.2 - 9.8 - 3.0 -
#2 BD + secure
register read

20.5 1.5 % 9.4 −4.1 % 3.6 29 %

#3 BD + secure
register write

21.9 8.4 % 11.0 12.2 % 3.4 13 %

#4 BD + secure
register read/write

22.1 9.4 % 10.7 9.1 % 4.0 33.3 %

#5 BD + disabled
MD/ALU/CSR
unit

20.4 0.9 % 9.8 0 % 3.1 3.3 %

#6 Secured design 22.2 9.9 % 10.7 9.1 % 4.0 33.3 %

Table 2: Area consumption of the IBEX core in kGE. The
area consumption of the whole design (Total) and parts (reg-
ister file, IF stage) are reported. The area consumption of the
ID+EX stage is omitted because there is no overhead. The to-
tal area overhead of the design with all security fixes enabled
is around 10%.

poses, dealing with instruction memory is comparably easy
since instructions only dictate the data/control flow. They are
not directly involved in any computations and are thus not
labeled as shares in our verification. Hence, from a hardware
perspective, we do not need to take any special precautions
when adding instruction memory to our IBEX core.

The situation becomes more complicated for data memory,
as it plays an important role for masked software implementa-
tions that cannot hold all intermediate values of a computation
in its register file. At first glance, one could consider applying
the same design strategy, as used for the register file (cf. Fig-
ure 2b), also to the data memory. However, one-hot encoding
does not scale well with larger address spaces and would re-
sult in impractical hardware overhead. Consequently, we need
to discuss options that keep the hardware overhead reason-
able while still allowing correctness proofs for the entire CPU
design. In the following, we discuss two such options that
utilize partially one-hot encoded address signals and result
in different trade-offs between hardware overhead and the
number of rules that need to be followed by masked software
implementations. The first option utilizes one-hot encoding
in the upper address bits, i.e., for selecting SRAM blocks,
and does not make any assumptions on the inner workings
of the SRAM blocks. The second option describes how one-
hot encoding in the lower address bits can be used to build
“glitch-free” SRAM blocks that can then easily be added to
our IBEX core without any hardware overhead.

4.1 MSB One-hot Address Encoding

The first viable option of using partial one-hot encoding for
data memory involves using one-hot encoding for the higher
bits of the address signal, as illustrated in Figure 3a. In this
example, we consider the case of a low-end 32-bit device with

9

SRAM Block SRAM Block SRAM Block SRAM Block

13

Reg Reg

5 8

 One-Hot

32

En En En EnWA WA WA WA

32

Output

OR

OR

Read Addr [2:14]

Word Address
1

28

8

(a) Using glitchy SRAM blocks. The stable one-
hot encoding of the higher address bits is computed
outside of the SRAM blocks.

SRAM Cells SRAM Cells SRAM Cells SRAM Cells

Read Addr [2:14]

13

8 5

 One-Hot

WL

32

Output

MUX

MUX

2

1

5

Block Address

Word Address

Reg

 One-Hot

WL

Reg

 One-Hot

WL

Reg

 One-Hot

WL

Reg

SRAM Block

Reg
32

(b) Using glitch-free SRAM blocks that compute a stable
one-hot encoding of the lower address bits. The word line
(WL) selects the active word (see also Figure 4).

Figure 3: Two options of adding SRAM to our IBEX core.

32KB of RAM that can be addressed on word granularity with
13-bit address signals (i.e., using bits 2 to 14 from the original
32-bit signal). First, we extract 13 bits from the original 32-bit
address signal. This 13-bit signal is then further split up into a
5-bit block address (later expanded to a 32-bit one-hot signal)
and an 8-bit word address for selecting a word within one
SRAM block. This design choice ensures that no glitches can
occur across SRAM blocks, yet they could still occur between
the words of a single SRAM block. More concretely, when
considering a masked software implementation that operates
on a secret s, represented by the shares s = s1⊕ s2, then our
construction results in the following software constraints for
SRAM usage:

C1SRAM Storing both, s1 and s2, in separate SRAM blocks
is fine as long as they are not accessed in immediate
succession.

C2SRAM Storing s1 and s2 within the same SRAM block can
result in potential leaks and thus needs to be avoided.

The hardware overhead of utilizing one-hot encoding in the
higher address bits is mainly determined by the additionally
needed one-hot encoder circuitry and one 40-bit register. On
the other side, when comparing Figure 3a to Figure 3b, one
can also see that the MUX-tree, used for selecting the SRAM
output, can be replaced by a simpler, and thus cheaper OR-
tree. Overall, and when compared to the typical area of SRAM
blocks, we do not expect any noticeable hardware overhead
of this construction. From a latency perspective, there is no
delay as long as the one-hot encoding can be performed in

the cycle before the actual lookup. We expect this to hold for
most designs.

4.2 LSB One-hot Address Encoding

Another option of utilizing partially one-hot encoded address
signals consists of using one-hot encoding only for certain
less significant bits of the address signal, as illustrated in Fig-
ure 3b. In this case, the 13-bit address signal is divided into
an 8-bit block address (for specifying the SRAM block) and
a 5-bit word address that is later expanded to a 32-bit one-hot
signal (for specifying a word within an SRAM block). This
construction will, similarly to the register file, as discussed
previously (cf. Section 3.2), eliminate glitches between words
of the same SRAM block, except for the case when they
are accessed in immediate succession. Consequently, when
operating with the shares s1 and s2, masked software imple-
mentations need to follow the following constraints:

C1SRAM Storing both, s1 and s2, within the same SRAM block
is fine as long as they are not used in immediate succes-
sion.

C2SRAM Storing s1 and s2 in different SRAM blocks can result
in potential leaks and thus needs to be avoided.

When looking at the standard design of SRAM cells in Fig-
ure 4, one can observe that the word line (WL) needs to be a
one-hot encoded signal while each bit line (BL) is connected
to one bit location of all words within one SRAM block,
thereby essentially functioning as an OR gate. On a concep-

10

BL0 ~BL0

WL0

BL1 ~BL1

WL1

Output0 Output1

SA SA

NOT

NOT

NOT

NOT

NOTNOT

NOT NOT

WL

Figure 4: Typical layout of SRAM cells. Each pair of NOT
gates represents a 1-bit memory cell. The one-hot encoded
word line (WL) selects the active word. The bit line BLi
connects bits at location i from all words. The negated BL
signal, together with the differential sense amplifier (SA), help
achieving stable output values faster.

tional level, this is similar to the construction in Figure 3b,
were we use additional registers to ensure a stable WL signal.

In other words, if a given SRAM block has a layout that
already achieves internally stable WL signals in practice then
no hardware modifications are required and an ordinary MUX-
based output selector can be used. Of course, it is generally
not easy to tell if, or to what extent, an off-the-shelf SRAM
block fulfills this requirement since they are full custom and
partially analog blocks. In a typical SRAM row decoder de-
sign, an individual WL signal is derived by a single, wide
NOR gate with a fan-in that is equal to the number of bits in
the word address (see Section 2.7 in [35]). Roughly said, if
the address signal is stable, then the low combinatorial depth
of the row decoder likely only causes small glitches that could
then be compensated with the custom circuit layout. Besides
that, stable WL signals are also desirable from a power and
latency perspective since (1) each WL signal can drive up
to 64 transistors, glitches can hence significantly impact the
power profile, and (2) the time until the differential sense am-
plifier (SA) output is stable strongly depends on the presence
of glitches on the WL signals, which in return reduces the
maximum operating frequency.

5 Co-Verification with COCO

In this section, we discuss the details of the workflow of
COCO, our verification tool, and report the runtime effort for
each step. We evaluate COCO using several benchmarks, in-
cluding first-order and higher-order masked implementations
executed by the secured IBEX processor and show that COCO
can efficiently verify those. We run all our evaluations using
a 64-bit Linux Operating System on an Intel Core i7-7600U
CPU with a clock frequency of 2.70 GHz and 16 GB of RAM.

Additionally, we practically evaluate our design using a first-
order t-test on a SAKURA-G FPGA evaluation board.

5.1 Verification Flow
The verification flow implemented by COCO consists of four
steps, as illustrated in Appendix C. The four steps are divided
into three preprocessing steps (1)-(3), and the final verifica-
tion step (4). The preprocessing steps are needed to join the
masked assembly implementation of the cipher with the IBEX
System Verilog sources into one single VCD execution trace,
which is then used during verification. For all our experiments,
we use the secured IBEX processor, which consists of the se-
cured core and memory, as described in Sections 3 and 4. In
detail, the verification flow is as follows:

(1) The masked implementation of the target cipher is com-
piled using the 32-bit RISC-V assembler. The resulting
binary file is then converted into a Verilator [40] testbench.

(2) We use Yosys [44] to parse the hardware model, a set
of System Verilog files, of the secured IBEX processor.
Yosys (Yosys Open SYnthesis Suite) is an open-source
framework which synthesizes and optimizes the model
and produces a netlist of the circuit in Verilog format and
as a graph, with gates as nodes and wires as edges.

(3) We run Verilator using the testbench created in (1) and
the circuit netlist created in (2). It produces an execution
trace of the masked cipher executed by the secured IBEX
processor in VCD format.

(4) In the last step, the actual verification is done using a
Python script. The script’s input are the circuit graph, the
VCD execution trace and the verification configuration.
The verification configuration consists of the register label
file, which specifies which registers or memory locations
contain shares of a secret and which contain fresh ran-
domness, the verification mode (stable or transient), the
number of cycles which should be verified and the order of
the masked cipher. Finally, the verification process outputs
whether the execution is leakage-free or not, together with
the cycle and gate number in which the leakage occurred.

Since the System Verilog support of Yosys is limited, we
use the Symbiotic EDA Edition of Yosys (0.8+472), which
works with a frontend of Verific in order to support System
Verilog. Verilator 4.010 is used to create the execution traces.
A Python script is used to create the SAT formulas, which are
later solved by CaDiCaL 1.0.3.

In our experiments, we cannot work with real SRAM blocks
for data RAM. Usually, one would use pre-build and pre-
configured SRAM modules and instantiate them with a macro
in the Verilog code. However, in that case, we can neither
trace the behavior of the block during execution nor label
memory cells. Therefore, we create a Verilog hardware model

11

according to the LSB one-hot address encoding scheme, as
described in Figure 3b, which behaves like a real SRAM
module. The module is divided into 16 blocks consisting of 8
32-bit words each. Furthermore, we configure IBEX core to
use 1 kilobyte of instruction memory for all test cases except
the DOM AES S-box, where we use 4 kilobytes.

5.2 Evaluation of Preprocessing Steps (1) - (3)
COCO’s preprocessing steps aim at preparing all resources
for the verification. The runtime of the testbench creation
(1) takes about 0.04 s for all our experiments. The runtime
of the tracing part (3) is determined by the circuit size and
number of cycles it needs to execute the masked software
implementation with IBEX and takes 0.003 s per cycle. The
parsing step (2) has to be run only once for the whole secured
IBEX and takes about 7 min and depends mostly on the circuit
size, including the size of instruction and data memory.

The result of (2) is a netlist of the secured IBEX proces-
sor in graph representation. The IBEX core, excluding data
and instruction memory, consists of almost 27 000 gates. It
is important to note that our hardware design is orders of
magnitudes larger than designs considered by other verifica-
tion tools. For example, REBECCA [8] performs verification
on hardware circuits consisting of at most 200 registers and
3 000 non-linear gates, while maskVerif [2] and Silver [25]
consider circuits with up to 300 and 1 000 probing positions.

5.3 Evaluation of the Verification Step (4)
The verification results of the masked software implementa-
tion run on the secured IBEX processor, and their verification
runtime are shown in Table 3. The table states the testcase in
RISC-V assembly and how many cycles the execution takes.
We report the number of labels provided by the user, divided
into shares and fresh randomness. It is very important to note
that each of these shares or random values is either 32 bit
or 16 bit wide. Other verification methods often argue that a
hardware circuit computing a masked cipher treats each bit
in the same way, so it is sufficient to view a 32-bit register as
one single share. However, in the IBEX processor, this is not
the case, since logic in different computation units tends to
treat each register bit differently. Therefore, we must label and
check all 32 bits individually. The verification results when
labeling fewer bits can be seen in Appendix D.

The selection of masked circuits covers different masked
GF(2) multipliers (AND gates), including the Domain-
Oriented Masking (DOM) AND, Ishai-Sahai-Wagner (ISW)
AND, Threshold Implementation (TI) AND and Trichina AND,
but also larger implementations like the Keccak S-box and the
AES S-box. Furthermore, we show that it is feasible to verify
second-order and third-order implementations. Our bench-
marks focus on the verification of non-linear parts of cipher
implementations, similar to REBECCA, maskVerif and Sil-

ver, although the linear parts could easily be added to the
implementation. COCO verifies all tested first-order masked
multipliers in transient mode in less than 20 s. Larger test-
cases, for example, the DOM AES S-box, can be verified in a
few hours. The total verification time depends on the number
of shares, and random values as well as the software runtime,
i.e., how many cycles need to be verified. There still exist
several ways to optimize verification with COCO, including
the parallelized solving of SAT equations.

In addition, we want to point out that errors in implementa-
tions can be found efficiently. Implementations marked with
é refer to implementations which cause side-channel leakage
when executed with the secured IBEX because (1) masking is
either done incorrectly on the algorithmic level, or (2) mask-
ing is correct on the algorithmic level but software constraints
are not satisfied. DOM AND reg.é is a first-order DOM multi-
plier based on [20], in which fresh randomness is added to the
shares too late. The stable verification reports an error in cycle
12 in a gate belonging to the ALU. DOM Keccak S-box reg.é,
based on [21], does not follow constraint C2CORE. This flaw
is reported by transient verification in cycle 70 and appears
directly on the read port of the register file. The verification
runtime of an insecure implementation is similar to that of a
secure implementation because the verification terminates as
soon as the leakage check for any share fails.

5.4 Practical Evaluation

The purpose of COCO is to verify the security of masked
software implementations at the level of gate-level netlists of
the underlying hardware. The main application for the tool are
ASIC designs of processors, where COCO allows to perform
a verification of the final netlist of a design before tape-out.
The fabrication of an ASIC is clearly beyond the scope of this
paper. However, in order to show that our approach indeed
leads to secure implementations in practice, in this section we
map a sample of a verified netlist to an FPGA and perform an
empirical analysis.

Several things need to be considered when doing this map-
ping. When synthesizing hardware designs for FPGAs, the re-
sulting netlist does not contain typical CMOS building blocks
but rather, among others, lookup tables (LUTs) that are con-
figured to match the original hardware design on a logical
level but not on netlist-level. This is especially problematic
since FPGA synthesis tools tend to merge multiple logic gates
into single, typically 3 to 6-bit LUTs. The resulting hardware
will still be equivalent from a pure logic perspective, how-
ever, certain characteristics such as the strict separation of
registers in our secured register file can get lost in the transla-
tion process. Therefore, we manually map the ASIC netlist
of the original and the secured IBEX core to FPGA netlists
that match the ASIC netlists as closely as possible. This step
involves, amongst others, ensuring that every logic gate is
represented by a single dedicated LUT. Since this process is

12

Name Runtime Leaking Input Fresh Verif. Runtime
(cycles) Cycle Shares Randomness Stable Transient

First-order
DOM AND reg. [20] 13 - 4×32 bit 32 bit 3 s 11 s
DOM AND reg.é 13 12 4×32 bit 32 bit 2 s 12 s
DOM AND [20] 39 - 4×32 bit 32 bit 9 s 32 s
ISW AND reg. [23] 13 - 4×32 bit 32 bit 5 s 13 s
TI AND reg. [30] 17 - 6×32 bit - 5 s 17 s
Trichina AND reg. [42] 19 - 4×32 bit 32 bit 5 s 19 s
DOM Keccak S-box reg. [21] 89 - 10×32 bit 5×32 bit 25 s 2.6 m
DOM Keccak S-box reg.é 88 70 10×32 bit 5×32 bit 20 s 2 m
DOM Keccak S-box [21] 219 - 10×32 bit 5×32 bit 1 m 3.9 m
DOM AES S-box [9] 1900 - 16×16 bit 34×16 bit 18 m 4.75 h

Second-order
DOM AND reg. [20] 34 - 6×32 bit 3×32 bit 9 s 43 s
DOM Keccak S-box [21] 474 - 15×32 bit 15×32 bit 3 m 1.3 h

Third-order
DOM AND reg. [20] 65 - 8×32 bit 6×32 bit 44 s 2.5 m

Table 3: Verification of masked software implementations on secured IBEX using COCO. é indicates intentionally broken
implementations. Testcases with reg. omit memory accesses and perform all computations using registers. Runtimes stem from
single-threaded executions on an Intel Core i7 notebook CPU with 16 GB of RAM.

0 2000 4000 6000 8000
samples

0

50

100

150

200

250

|t
-v

al
ue

|

0 2000 4000 6000 8000
samples

0

2

4
4.5

6
|t

-v
al

ue
|

Figure 5: T-test scores of the original (left) and the secured (right) register file during the execution of a first-order DOM Keccak
S-box using 100 000 power traces.

mostly manual, and thus very time consuming, we decided
to focus our leakage assessment only on the most important
parts of the secured IBEX which are needed to execute crypto-
graphic implementation: the register file and a simple ALU.

In our experiments, we compare the execution of a masked
Keccak S-box computation using (1) the basic register file as it
can be found in the original IBEX core, (2) the secured register
file including (one-hot encoded) gated reads and writes (cf.
Section 3.2). Following the guidelines of Goodwill et al. [18],
we use Welch’s t-test to show practical first-order protection
of first-order masked software implementations. The basic
idea is to measure the significance of the difference of means
of two distributions by constructing two trace sets, one with
random inputs and one with constant inputs. In the case of a
masked implementation it means that the secret, native inputs
are fixed, while the masks and shares are generated randomly.
The null-hypothesis is that both trace sets have equal means,
i.e., they cannot be distinguished from each other. The null-
hypothesis is rejected with a confidence greater than 99.999%
if the absolute t-score t stays below 4.5.

For our experiment, we execute the register-only (reg.) vari-
ant of the DOM first-order masked Keccak S-box, as intro-

duced in Table 3. In order to measure the power consumption,
we use the SAKURA-G board [22] equipped with a Xilinx
Spartan-6 FPGA. We connect the board to a PicoScope 6404C
at 312.5 Ms/s sampling rate, the IBEX components operate
at a clock frequency of 8 MHz.

Figure 5 shows the results of our leakage assessment us-
ing 100 000 traces. The left presents the t-test results for
the original, unprotected register file during the execution of
the first-order DOM Keccak S-box. As expected, the t-test
shows significant peaks over the 4.5 border which indicates
first-order side-channel leakage. The right presents the t-test
results for the same code when running on our secured ver-
sion of the register file. Here, the leakage assessment reveals
no significant peaks, which indicates that our secured design
works as expected.

6 Conclusion

In this paper, we presented COCO, the first tool for co-design
and co-verification of masked software implementations on
CPUs. COCO takes a CPU netlist, together with a masked as-
sembly implementation, and then formally verifies its leakage-

13

free execution down to the gate-level. While previously pre-
sented software verification approaches mainly work on algo-
rithmic level and model only a few select CPU side-effects,
COCO can detect any CPU design aspect that could reduce
the protection order of masked software implementations.

We show the practicality of our work, by analyzing the
popular 32-bit RISC-V IBEX core with COCO. We detect
various design aspects that reduce the protection order of our
tested software implementations and propose respective fixes,
mostly in hardware. Our resulting secured IBEX core has an
area overhead of about 10%, the runtime of software on this
processor is largely unaffected, and the formal verification
with COCO of an, e.g., first-order masked Keccak S-box run-
ning on this core takes around 156 seconds. We demonstrate
the effectiveness of the proposed design modifications in a
practical evaluation on an FPGA.

References

[1] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Os-
car Reparaz, and François-Xavier Standaert. On the cost
of lazy engineering for masked software implementa-
tions. In Smart Card Research and Advanced Applica-
tions - 13th International Conference, CARDIS 2014,
Paris, France, November 5-7, 2014. Revised Selected
Papers, volume 8968 of Lecture Notes in Computer Sci-
ence, pages 64–81. Springer, 2014.

[2] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-
Alain Fouque, Benjamin Grégoire, and François-Xavier
Standaert. maskverif: Automated verification of higher-
order masking in presence of physical defaults. In Com-
puter Security - ESORICS 2019 - 24th European Sym-
posium on Research in Computer Security, Luxembourg,
September 23-27, 2019, Proceedings, Part I, volume
11735 of Lecture Notes in Computer Science, pages
300–318. Springer, 2019.

[3] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-
Alain Fouque, Benjamin Grégoire, and Pierre-Yves
Strub. Verified proofs of higher-order masking. In
Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I, volume 9056
of Lecture Notes in Computer Science, pages 457–485.
Springer, 2015.

[4] Gilles Barthe, François Dupressoir, Sebastian Faust,
Benjamin Grégoire, François-Xavier Standaert, and
Pierre-Yves Strub. Parallel implementations of masking
schemes and the bounded moment leakage model. In
Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Paris, France,

April 30 - May 4, 2017, Proceedings, Part I, volume
10210 of Lecture Notes in Computer Science, pages 535–
566, 2017.

[5] Gilles Barthe, Marc Gourjon, Benjamin Grégoire, Maxi-
milian Orlt, Clara Paglialonga, and Lars Porth. Masking
in fine-grained leakage models: Construction, imple-
mentation and verification. IACR Cryptol. ePrint Arch.,
2020:603, 2020.

[6] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue,
Emmanuel Prouff, Adrian Thillard, and Damien
Vergnaud. Private multiplication over finite fields. In
Advances in Cryptology - CRYPTO 2017 - 37th Annual
International Cryptology Conference, Santa Barbara,
CA, USA, August 20-24, 2017, Proceedings, Part III, vol-
ume 10403 of Lecture Notes in Computer Science, pages
397–426. Springer, 2017.

[7] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier,
Matthieu Rivain, and Raphaël Wintersdorff. Tornado:
Automatic generation of probing-secure masked bit-
sliced implementations. In EUROCRYPT (3), volume
12107 of Lecture Notes in Computer Science, pages 311–
341. Springer, 2020.

[8] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina
Könighofer, Stefan Mangard, and Johannes Winter. For-
mal verification of masked hardware implementations
in the presence of glitches. In Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Pro-
ceedings, Part II, volume 10821 of Lecture Notes in
Computer Science, pages 321–353. Springer, 2018.

[9] Joan Boyar and René Peralta. A small depth-16 cir-
cuit for the AES s-box. In Information Security and
Privacy Research - 27th IFIP TC 11 Information Se-
curity and Privacy Conference, SEC 2012, Heraklion,
Crete, Greece, June 4-6, 2012. Proceedings, volume 376
of IFIP Advances in Information and Communication
Technology, pages 287–298. Springer, 2012.

[10] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and
Pankaj Rohatgi. Towards sound approaches to counter-
act power-analysis attacks. In Advances in Cryptology
- CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-
19, 1999, Proceedings, volume 1666 of Lecture Notes
in Computer Science, pages 398–412. Springer, 1999.

[11] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Tem-
plate attacks. In CHES, volume 2523 of Lecture Notes
in Computer Science, pages 13–28. Springer, 2002.

14

[12] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin,
Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen.
Masking AES with d+1 shares in hardware. In Crypto-
graphic Hardware and Embedded Systems - CHES 2016
- 18th International Conference, Santa Barbara, CA,
USA, August 17-19, 2016, Proceedings, volume 9813
of Lecture Notes in Computer Science, pages 194–212.
Springer, 2016.

[13] Jean-Sébastien Coron, Christophe Giraud, Emmanuel
Prouff, Soline Renner, Matthieu Rivain, and Praveen Ku-
mar Vadnala. Conversion of security proofs from one
leakage model to another: A new issue. In Constructive
Side-Channel Analysis and Secure Design - Third In-
ternational Workshop, COSADE 2012, Darmstadt, Ger-
many, May 3-4, 2012. Proceedings, volume 7275 of Lec-
ture Notes in Computer Science, pages 69–81. Springer,
2012.

[14] Wouter de Groot, Kostas Papagiannopoulos, Antonio
de la Piedra, Erik Schneider, and Lejla Batina. Bitsliced
masking and ARM: friends or foes? In Lightweight
Cryptography for Security and Privacy - 5th Inter-
national Workshop, LightSec 2016, Aksaray, Turkey,
September 21-22, 2016, Revised Selected Papers, vol-
ume 10098 of Lecture Notes in Computer Science, pages
91–109. Springer, 2016.

[15] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3:
an efficient SMT solver. In Tools and Algorithms for
the Construction and Analysis of Systems, 14th Inter-
national Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings, volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer,
2008.

[16] J. den Hartog, J. Verschuren, E. P. de Vink, J. de Vos,
and W. Wiersma. Pinpas: A tool for power analysis of
smartcards. In International Conference on Information
Security (SEC2003), pages 453–457, 2003.

[17] ETH Zurich. Pulp platform. https:
//pulp-platform.org/. Retrieved on Septem-
ber 15th, 2020.

[18] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj
Rohatgi. A testing methodology for side-channel resis-
tance validation. In NIST Non-Invasive Attack Testing
Workshop, 2011.

[19] Hannes Groß and Stefan Mangard. Reconciling d+1
masking in hardware and software. In Cryptographic
Hardware and Embedded Systems - CHES 2017 - 19th

International Conference, Taipei, Taiwan, September 25-
28, 2017, Proceedings, volume 10529 of Lecture Notes
in Computer Science, pages 115–136. Springer, 2017.

[20] Hannes Groß, Stefan Mangard, and Thomas Korak.
Domain-oriented masking: Compact masked hardware
implementations with arbitrary protection order. In
Proceedings of the ACM Workshop on Theory of Im-
plementation Security, TIS@CCS 2016 Vienna, Austria,
October, 2016, page 3. ACM, 2016.

[21] Hannes Groß, David Schaffenrath, and Stefan Mangard.
Higher-order side-channel protected implementations of
KECCAK. In Euromicro Conference on Digital System
Design, DSD 2017, Vienna, Austria, August 30 - Sept. 1,
2017, pages 205–212. IEEE Computer Society, 2017.

[22] Hendra Guntur, Jun Ishii, and Akashi Satoh. Side-
channel attack user reference architecture board
SAKURA-G. In IEEE 3rd Global Conference on Con-
sumer Electronics, GCCE 2014, Tokyo, Japan, 7-10 Oc-
tober 2014, pages 271–274. IEEE, 2014.

[23] Yuval Ishai, Amit Sahai, and David A. Wagner. Private
circuits: Securing hardware against probing attacks. In
Advances in Cryptology - CRYPTO 2003, 23rd Annual
International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings, vol-
ume 2729 of Lecture Notes in Computer Science, pages
463–481. Springer, 2003.

[24] Pantea Kiaei and Patrick Schaumont. Domain-oriented
masked instruction set architecture for RISC-V. IACR
Cryptol. ePrint Arch., 2020:465, 2020.

[25] David Knichel, Pascal Sasdrich, and Amir Moradi. SIL-
VER - statistical independence and leakage verification.
IACR Cryptol. ePrint Arch., 2020:634, 2020.

[26] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Dif-
ferential power analysis. In CRYPTO, volume 1666
of Lecture Notes in Computer Science, pages 388–397.
Springer, 1999.

[27] lowRISC contributors. Open titan. https://
opentitan.org/. Retrieved on September 15th, 2020.

[28] David McCann, Elisabeth Oswald, and Carolyn Whit-
nall. Towards practical tools for side channel aware
software engineering: ’grey box’ modelling for instruc-
tion leakages. In 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, Au-
gust 16-18, 2017, pages 199–216. USENIX Association,
2017.

[29] Elke De Mulder, Samatha Gummalla, and Michael Hut-
ter. Protecting RISC-V against side-channel attacks.
In Proceedings of the 56th Annual Design Automation

15

https://pulp-platform.org/
https://pulp-platform.org/
https://opentitan.org/
https://opentitan.org/

Conference 2019, DAC 2019, Las Vegas, NV, USA, June
02-06, 2019, page 45. ACM, 2019.

[30] Svetla Nikova, Christian Rechberger, and Vincent Rij-
men. Threshold implementations against side-channel
attacks and glitches. In Information and Communi-
cations Security, 8th International Conference, ICICS
2006, Raleigh, NC, USA, December 4-7, 2006, Proceed-
ings, volume 4307 of Lecture Notes in Computer Sci-
ence, pages 529–545. Springer, 2006.

[31] Ryan O’Donnell. Analysis of Boolean Functions. Cam-
bridge University Press, 2014.

[32] OpenHW Group. Cv32e40p. https://github.
com/openhwgroup/cv32e40p, Retrieved on Septem-
ber 15th, 2020.

[33] OpenHW Group. Cva6. https://github.com/
openhwgroup/cva6. Retrieved on September 15th,
2020.

[34] Kostas Papagiannopoulos and Nikita Veshchikov. Mind
the gap: Towards secure 1st-order masking in software.
In Constructive Side-Channel Analysis and Secure De-
sign - 8th International Workshop, COSADE 2017, Paris,
France, April 13-14, 2017, Revised Selected Papers, vol-
ume 10348 of Lecture Notes in Computer Science, pages
282–297. Springer, 2017.

[35] Andrei Pavlov and Manoj Sachdev. CMOS SRAM
Circuit Design and Parametric Test in Nano-Scaled
Technologies: Process-Aware SRAM Design and Test.
Springer Publishing Company, Incorporated, 1st edition,
2008.

[36] Jean-Jacques Quisquater and David Samyde. Elec-
tromagnetic analysis (EMA): measures and counter-
measures for smart cards. In E-smart, volume 2140
of Lecture Notes in Computer Science, pages 200–210.
Springer, 2001.

[37] Mathieu Renauld, François-Xavier Standaert, Nicolas
Veyrat-Charvillon, Dina Kamel, and Denis Flandre.
A formal study of power variability issues and side-
channel attacks for nanoscale devices. In Advances
in Cryptology - EUROCRYPT 2011 - 30th Annual Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, Tallinn, Estonia, May 15-19,
2011. Proceedings, volume 6632 of Lecture Notes in
Computer Science, pages 109–128. Springer, 2011.

[38] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt
Gierlichs, and Ingrid Verbauwhede. Consolidating mask-
ing schemes. In Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 16-20, 2015, Proceedings, Part

I, volume 9215 of Lecture Notes in Computer Science,
pages 764–783. Springer, 2015.

[39] Madura A. Shelton, Niels Samwel, Lejla Batina,
Francesco Regazzoni, Markus Wagner, and Yuval
Yarom. Rosita: Towards automatic elimination of power-
analysis leakage in ciphers. CoRR, abs/1912.05183,
2019.

[40] Wilson Snyder. Verilator. https://www.veripool.
org/wiki/verilator. Retrieved on July 10th, 2020.

[41] Sarah Thompson and Alan Mycroft. Abstract inter-
pretation of combinational asynchronous circuits. In
Static Analysis, 11th International Symposium, SAS
2004, Verona, Italy, August 26-28, 2004, Proceedings,
volume 3148 of Lecture Notes in Computer Science,
pages 181–196. Springer, 2004.

[42] Elena Trichina. Combinational logic design for AES
subbyte transformation on masked data. IACR Cryptol.
ePrint Arch., 2003:236, 2003.

[43] Grigori S Tseitin. On the complexity of derivation in
propositional calculus. In Automation of reasoning,
pages 466–483. Springer, 1983.

[44] Claire Wolf. Yosys open synthesis suite. http://www.
clifford.at/yosys/. Retrieved on July 10th, 2020.

16

https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/cva6
https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator
http://www.clifford.at/yosys/
http://www.clifford.at/yosys/

A Fourier Expansions of Boolean Functions

AND W (a∧b) =
1
2
+

1
2

a+
1
2

b− 1
2

ab

OR W (a∨b) =−1
2
+

1
2

a+
1
2

b+
1
2

ab

XOR W (a⊕b) = ab

XNOR W (a⊕b) =−ab

NOT W (¬a) =−a

MUX W (c ? a : b) =
1
2

a+
1
2

b− 1
2

ac+
1
2

bc

A.1 AND Gate

W (c?a : b) = p0 + p1 ·a+ p2 ·b+ p3 ·ab


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ·


p0
p1
p2
p3

=


1
1
1
−1



⇒


p0
p1
p2
p3

=


0.5
0.5
0.5
−0.5


A.2 Multiplexers

W (c?a : b) =p0 + p1 ·a+ p2 ·b
+ p3 · c+ p4 ·ab

+ p5 ·ac+ p6 ·bc

+ p7 ·abc

We can build a an equation system using all possible input
combinations for the variables a, b, and c and then solve for
the unknown coefficients p0 to p7 as shown below.



1 1 1 1 1 1 1 1
1 −1 1 1 −1 −1 1 −1
1 1 −1 1 −1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 −1 1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 −1 1 1 1 −1


·



p0
p1
p2
p3
p4
p5
p6
p7


=



1
1
−1
−1
1
−1
1
−1



⇒



p0
p1
p2
p3
p4
p5
p6
p7


=



0
0.5
0.5
0
0
−0.5
0.5
0



B Details on the Improved SAT Encoding

In the following paragraphs, we use L = LM ∪
⋃

i LSi to de-
note the set of initial labels, consisting of LM (set of labels
of initial fresh random values) and LSi (set of labels of ini-
tial shares of the ith secret bit). Furthermore, L(x) is the
initial label of x. We use the correlation sets CorrP,CorrQ and
CorrR with their corresponding propositional variable sets
VarP = {pl | l ∈ L}, VarQ = {ql | l ∈ L}, VarR = {rl | l ∈ L}.
Each of the variables in a variable set corresponds to one of
the initial labels.

Encoding Correlation Sets The propositional formula is
constructed such that each term of a correlation set CorrP cor-
responds to an assignment of the corresponding propositional
variables VarP. In other words, the propositional variables
in VarP are constrained such that only terms appearing in
the correlation set CorrP can have corresponding satisfying
variable assignments. For example, given the initial labels
L = {s1,s2,m1} and a correlation set CorrP = {s1s2,s1m1},
then a corresponding variable set VarP would only al-
low the satisfying assignments {ps1 =>, ps2 =>, pm1 =⊥}
and {ps1 =>, ps2 =⊥, pm1 =>}. The propositional formula
achieves this by encoding the behavior of the propagation
rules from Table 1, in addition to the initial labeling.

First, we label registers and memory locations and translate
this initial labeling into a conjunction of variables so that
they can only be satisfied by one assignment. The desired
assignment sets the variable corresponding to the label to >,
and all other variables in the variable set to ⊥. Therefore,
each of the initially labeled registers or memory locations x
produces the constraint shown in Equation 2 for the 0th clock
cycle.

qL(x))∧
∧

l∈L ,l 6=L(x)

¬ql (2)

Encoding biased correlation sets involves building an ex-
pression which says that either the new variable set is the
same as the old one, or all variables are assigned to ⊥ (the
bias). Given CorrQ = CorrR∪{1} , the variable sets VarQ and
VarR are constrained by Equation 3 with the free variable
f . Whenever the solver assigns f => while searching for a
satisfying assignment, the variables in VarQ and VarR must be
equal. Similarly, when f =⊥, all variables in VarQ are also
⊥. ∧

l∈L
ql ↔ (f ∧ rl) (3)

The propagation rule for multiplexers needs a similar con-
straint, where an union of two correlation sets is required.
That is, given the propagation rule CorrQ = CorrP ∪CorrR
and corresponding variable sets VarQ, VarP and VarR, we add
the constraint shown in Equation 4 to the propositional for-
mula. Here, f is again a free variable, and whenever f =>

17

then all variables from VarQ must equal their corresponding
variables from VarR, and VarP otherwise.∧

l∈L
(f → (ql ↔ ql))∧ (¬ f → (ql ↔ rl)) (4)

Finally, we encode the element-wise multiplication over
two correlation sets as a Boolean constraints using Tseitin
transformations [43] of Boolean functions. In particular, the
propagation rule CorrQ = CorrP⊕CorrR, constrains the cor-
responding variable sets VarQ, VarP and VarR as shown in
Equation 5. ∧

l∈L

ql ↔ (pl⊕ rl) (5)

Encoding Side-Channel Leakage In addition to the con-
straints required for the correct encoding of correlation sets,
the solver also needs to encode the conditions under which
information leakage occurs. As discussed in the previous sec-
tion, information about a native secret is only leaked if all
shares of the secret are present in a term of the correlation
set, without being masked by a random value. Given a cor-
relation set CorrQ and its variable set VarQ, as well as the
free propositional variables fi, the constraint in Equation 6
is satisfiable under the assumption of

{
f j =>

}
, if and only

if the correlation set CorrQ leaks information about the j-th
secret bit. (∧

m∈LM

¬qm

)
∧
∧

i

∧
s∈LSi

(fi↔ qs) (6)

Although Equation 6 allows us to check whether a given
correlation set leaks information about the individual secrets,
we need to apply it to each combination of at most d cor-
relation sets separately, in order to prove dth order probing
resistance. Since we intend to verify implementations with
thousands of such correlation sets, this enumerative approach
is not ideal, especially when multiple probes are allowed.
Instead, we give each transient correlation set CorrR and its
corresponding variable set VarR an activation variable f . Then,
we construct correlation set CorrR as CorrR = CorrQ ∪{1}
and constrain its variable set VarR according to Equation 3.
The propositional variable f is then an activation variable
and when f =⊥, then all variables in VarR are also set to ⊥.
Finally, we create a set of variables VarC = {cl | l ∈ L}, such
that its variables are equal to the XOR over all variable sets
that correspond to biased transient correlation sets CorrQ as
shown in Equation 7.

∧
l∈L

(
cl ↔

⊕
VarR

rl

)
(7)

The resulting variable set VarC represents all possible com-
binations of transient correlation sets. As we want to check

for dth order probing resistance, we additionally specify that
only up to d activation variables can be set to >. In turn, this
constraint limits the number of probes that are considered,
since whenever an activation variable f of some transient
correlation set CorrR is set to ⊥, all variables in VarR are also
set to ⊥, effectively ignoring them for the XOR.

18

C Verification Flow of COCO

Masked

Cipher

Create

Testbench

Verilator

Testbench

Parse

.sv

.sv

Secured IBEX

Circuit Graph

Netlist

Trace
Execution

Trace

Verify

Yes, secure.

No, not

secure. Leak

in cycle ...

at gate ...

1

2

3

.S .py

.ys

.vcd
.py

.json

.v

Verilator

RISC-V

ASM

Verification

Configuration

Yosys

4

Cadical

.c

Figure 6: Verification flow of COCO. The workflow consists of four steps, the creation of the testbench (1), parsing (2), trace (3)
and verification(4). In the end, COCO either confirms that the execution is secure or points out the flaw(s) in a specific gate, in a
specific cycle.

19

D Runtime Details

Input Fresh Stable Transient
Shares Randomness Total Constr. Formula SAT Solver Total Constr. Formula SAT Solver

First-order
DOM AND reg.

4 × 1 bit 1 bit 3 s 3 s 0 s 9 s 9 s 0 s
4 × 4 bit 4 bit 3 s 3 s 0 s 12 s 12 s 0 s
4 × 8 bit 8 bit 3 s 3 s 0 s 9 s 9 s 0 s

4 × 16 bit 16 bit 3 s 3 s 0 s 12 s 12 s 0 s
4 × 24 bit 24 bit 3 s 3 s 0 s 12 s 12 s 0 s
4 × 32 bit 32 bit 3 s 3 s 0 s 11 s 11 s 0 s

DOM AND reg.é
4 × 1 bit 1 bit 2 s 2 s 0 s 4 s 4 s 0 s
4 × 4 bit 4 bit 3 s 3 s 0 s 9 s 9 s 0 s
4 × 8 bit 8 bit 2 s 2 s 0 s 8 s 8 s 0 s

4 × 16 bit 16 bit 2 s 2 s 0 s 12 s 11 s 1 s
4 × 24 bit 24 bit 4 s 4 s 0 s 11 s 10 s 1 s
4 × 32 bit 32 bit 2 s 2 s 0 s 12 s 10 s 2 s

DOM AND
4 × 1 bit 1 bit 8 s 8 s 0 s 24 s 24 s 0 s
4 × 4 bit 4 bit 7 s 7 s 0 s 24 s 24 s 0 s
4 × 8 bit 8 bit 7 s 7 s 0 s 24 s 24 s 0 s

4 × 16 bit 16 bit 7 s 7 s 0 s 25 s 25 s 0 s
4 × 24 bit 24 bit 10 s 10 s 0 s 28 s 28 s 0 s
4 × 32 bit 32 bit 9 s 9 s 0 s 32 s 32 s 0 s

ISW AND reg.
4 × 1 bit 1 bit 3 s 3 s 0 s 10 s 10 s 0 s
4 × 4 bit 4 bit 3 s 3 s 0 s 9 s 9 s 0 s
4 × 8 bit 8 bit 3 s 3 s 0 s 9 s 9 s 0 s

4 × 16 bit 16 bit 5 s 5 s 0 s 11 s 10 s 0 s
4 × 24 bit 24 bit 4 s 4 s 0 s 12 s 12 s 0 s
4 × 32 bit 32 bit 5 s 5 s 0 s 13 s 12 s 1 s

TI AND reg.
6 × 1 bit - 3 s 3 s 0 s 12 s 12 s 0 s
6 × 4 bit - 4 s 4 s 0 s 12 s 12 s 0 s
6 × 8 bit - 4 s 4 s 0 s 13 s 13 s 0 s

6 × 16 bit - 3 s 3 s 0 s 17 s 17 s 0 s
6 × 24 bit - 4 s 4 s 0 s 14 s 14 s 0 s
6 × 32 bit - 5 s 5 s 0 s 17 s 17 s 0 s

Trichina AND reg.
4 × 1 bit 1 bit 5 s 5 s 0 s 15 s 15 s 0 s
4 × 4 bit 4 bit 4 s 4 s 0 s 14 s 14 s 0 s
4 × 8 bit 8 bit 4 s 4 s 0 s 14 s 14 s 0 s

4 × 16 bit 16 bit 4 s 4 s 0 s 14 s 14 s 0 s
4 × 24 bit 24 bit 4 s 4 s 0 s 14 s 14 s 0 s
4 × 32 bit 32 bit 5 s 5 s 0 s 19 s 19 s 0 s

20

Input Fresh Stable Transient
Shares Randomness Total Constr. Formula SAT Solver Total Constr. Formula SAT Solver

First-order
DOM Keccak S-box reg.

10 × 1 bit 5 × 1 bit 15 s 15 s 0 s 57 s 57 s 0 s
10 × 4 bit 5 × 4 bit 18 s 18 s 0 s 1 m 1 m 0 s
10 × 8 bit 5 × 8 bit 21 s 21 s 0 s 1 m 1 m 2 s

10 × 16 bit 5 × 16 bit 19 s 18 s 1 s 1 m 1 m 6 s
10 × 24 bit 5 × 24 bit 18 s 18 s 0 s 2 m 1.5 m 17 s
10 × 32 bit 5 × 32 bit 25 s 23 s 2 s 2.6 m 1.8 m 47 s

DOM Keccak S-box reg.é
10 × 1 bit 5 × 1 bit 15 s 15 s 0 s 55 s 54 s 1 s
10 × 4 bit 5 × 4 bit 16 s 16 s 0 s 1 m 1 m 2 s
10 × 8 bit 5 × 8 bit 16 s 16 s 0 s 1 m 1 m 4 s

10 × 16 bit 5 × 16 bit 20 s 20 s 0 s 1 m 1 m 23 s
10 × 24 bit 5 × 24 bit 21 s 20 s 1 s 2 m 1.1 m 28 s
10 × 32 bit 5 × 32 bit 20 s 19 s 1 s 2 m 1.2 m 51 s

DOM Keccak S-box
10 × 1 bit 5 × 1 bit 38 s 38 s 0 s 2 m 2 m 0 s
10 × 4 bit 5 × 4 bit 37 s 37 s 0 s 2 m 2 m 0 s
10 × 8 bit 5 × 8 bit 40 s 40 s 0 s 2 m 2 m 1 s

10 × 16 bit 5 × 16 bit 38 s 38 s 0 s 2 m 2 m 4 s
10 × 24 bit 5 × 24 bit 41 s 40 s 1 s 3 m 2.5 m 10 s
10 × 32 bit 5 × 32 bit 1 m 1 m 1 s 4 m 3.5 m 27 s

Second-order
DOM AND reg. (Order 2)

6 × 1 bit 3 × 1 bit 9 s 9 s 0 s 24 s 24 s 0 s
6 × 4 bit 3 × 4 bit 6 s 6 s 0 s 24 s 24 s 0 s
6 × 8 bit 3 × 8 bit 9 s 8 s 1 s 27 s 26 s 1 s

6 × 16 bit 3 × 16 bit 9 s 9 s 0 s 32 s 30 s 2 s
6 × 24 bit 3 × 24 bit 10 s 9 s 0 s 30 s 27 s 2 s
6 × 32 bit 3 × 32 bit 9 s 8 s 1 s 43 s 37 s 6 s

DOM Keccak S-box (Order 2)
15 × 1 bit 15 × 1 bit 1 m 1 m 0 s 5 m 5 m 1 s
15 × 4 bit 15 × 4 bit 1 m 1 m 1 s 5 m 5 m 28 s
15 × 8 bit 15 × 8 bit 1 m 1 m 3 s 10 m 7 m 4 m

15 × 16 bit 15 × 16 bit 2 m 1 m 15 s 23 m 6 m 17 m
15 × 32 bit 15 × 32 bit 3 m 2 m 1 m 1.3 h 6 m 1.2 h

Third-order
DOM AND reg. (Order 3)

8 × 1 bit 6 × 1 bit 11 s 11 s 0 s 43 s 43 s 0 s
8 × 4 bit 6 × 4 bit 12 s 12 s 0 s 44 s 43 s 1 s
8 × 8 bit 6 × 8 bit 13 s 12 s 1 s 52 s 47 s 6 s

8 × 16 bit 6 × 16 bit 18 s 13 s 5 s 1 m 47 s 19 s
8 × 24 bit 6 × 24 bit 23 s 15 s 8 s 2 m 54 s 40 s
8 × 32 bit 6 × 32 bit 44 s 21 s 23 s 2.5 m 1.1 m 1.4 m

Table 4: Runtime details of COCO’s verification process.

21

	Introduction
	Verifying Software Implementations on Hardware
	Background on Masking
	Background on REBECCA
	Probing Models for Software Verification
	Co-Verification Methodology

	Problems and Fixes in the IBEX Core
	Targeted Processor Platform
	Register File
	Computation Units
	Load/Store Operations
	Hardware Overhead

	Problems and Fixes in Data Memory
	MSB One-hot Address Encoding
	LSB One-hot Address Encoding

	Co-Verification with Coco
	Verification Flow
	Evaluation of Preprocessing Steps (1) - (3)
	Evaluation of the Verification Step (4)
	Practical Evaluation

	Conclusion
	Fourier Expansions of Boolean Functions
	AND Gate
	Multiplexers

	Details on the Improved SAT Encoding
	Verification Flow of Coco
	Runtime Details

