
On the Effect of the (Micro)Architecture on the
Development of Side-Channel Resistant Software

Lauren De Meyer, Elke De Mulder, and Michael Tunstall

Rambus Cryptography Research,
425 Market Street, 11th Floor, San Francisco,

CA 94105, United States
{ldemeyer,edemulder,mtunstall}@rambus.com

Abstract. There are many examples of how to assess the side-channel
resistance of a hardware implementation for a given order, where one
has to take into account all transitions and glitches produced by a given
design. However, microprocessors do not conform with the ideal circuit
model which is typically used to gain confidence in the security of mask-
ing against side-channel attacks. As a result, masked software implemen-
tations in practice do not exhibit the security one would expect in theory.
In this paper, we generalize and extend work by Papagiannopoulos and
Veshchikov to describe the ways in which a microprocessor may leak. We
show that the sources of leakage are far more numerous than previously
considered and highly dependent on the platform. We further describe
how to write high-level code in the C programming language that allows
one to work around common micro-architectural features. In particular,
we introduce implementation techniques to reduce sensitive combinations
made by the CPU and which are devised so as to be preserved through
the optimizations made by the compiler. However, these techniques can-
not be proven to be secure. In this paper, we seek to highlight leakage
not considered in current models used in proofs and describe some po-
tential solutions. We apply our techniques to two case studies (DES and
AES) and show that they are able to provide a modest level of security
on several platforms.

1 Introduction

Recent years have shown a surge in research on provably secure hardware imple-
mentations of cryptographic algorithms. While typical cryptographic algorithms
are mathematically secure in the black box model, i.e. knowledge of inputs and
outputs will not result in knowledge of the key, näıve implementations can eas-
ily leak secret information through some side-channel. Kocher [Koc96] demon-
strated that the computation time of a cryptographic operation could be used
to derive cryptographic keys. Later, Kocher et al. [KJJ99] demonstrated that
the instantaneous power consumption was related to data being manipulated
at a given point in time. This would allow an adversary to confirm hypotheses
on intermediate states of a cryptographic algorithm and, therefore, also confirm

hypotheses on portions of a cryptographic key. Attacks using side-channels have
since been extensively studied using other measurements, such as the electro-
magnetic field [GMO01,QS01], as well as the influence of using different distin-
guishers, such as Pearson’s correlation coefficient [BCO04] or mutual informa-
tion [GBTP08].

Countermeasures that prevent side-channel attacks on implementations of
cryptographic algorithms typically make intermediate states indistinguishable
from random values. For block ciphers, this typically consists of applying a ran-
dom mask to the plaintext by, for example, XORing with a random value, typi-
cally referred to as Boolean masking. The block cipher is implemented such that
all the intermediate states maintain some mask until the ciphertext is produced,
at which point the mask can be removed. Initial research into how best to apply
masking to an implementation of a block cipher was quite pragmatic [AG01],
whereas more recent research has started using formal proofs to guarantee ap-
propriate security properties [BBD+16]. However, the latter requires a thorough
understanding of a given platform and all of the mechanisms that may produce
side-channel leakage. If one does not completely capture all the possible mecha-
nisms, the benefit of a proof is somewhat limited. The majority of the research
in this field is on incorporating hardware platform artifacts, such as glitches and
memory transitions [FGP+18]. To the best of the authors’ knowledge, there are
no similar proofs for software implementations in the literature.

Side-channel attacks based on the micro-architectural features of micropro-
cessors have been explored in the literature, particularly by Aciiçmez et al. [AKS06,Acı07,AS08]
who published some of the first results in this area. Some more recent works are
more widely known as the Meltdown [LSG+18] and Spectre [KHF+19] attacks.
Attacks within this category make use of the effects of optimizations in a proces-
sor’s micro-architectural elements, such as the cache(s) or branch prediction unit,
to extract secret information based on the differences in timing and/or differ-
ences in power consumption. While these attacks typically require an adversary
to run code on the system under attack, the micro-architectural specification
is, in most cases, unknown and is inferred as part of the attack. Likewise, the
micro-architectural specification is typically not completely known when a given
cryptographic algorithm is implemented, and it is therefore difficult to predict all
ways in which an adversary may be able to find a side-channel. As a result, these
features are not often considered in the context of the masking countermeasure.

1.1 Our Contribution

Papagiannopoulos and Veshchikov [PV17] made some observations showing how
some micro-architectural features affect the side-channel leakage of first-order
masking on an AVR-based ATMega163. In the first part of this work, we confirm
and expand upon these results on multiple devices. We demonstrate that the
sources of side-channel leakage described by Papagiannopoulos and Veshchikov
are only a subset of the possible sources of leakage. We demonstrate some of these
sources of leakage using acquisitions taken while running small assembly code
examples. We further show that these types of leakage can invalidate the chosen

2

order of a masking scheme. We show that a provably secure function, resistant to
first-order side-channel analysis, leaks in the first-order despite the application of
numerous extra countermeasures. Likewise, Balasch et al. [BGG+15] claim that
a straightforward second-order masking scheme will provide first-order resistance
and can ignore micro-architectural considerations. We demonstrate that this is
not always true in practice with a counterexample.

In the second part, we describe techniques which can aid with the design of
side-channel resistant software implementations using compiled code, with sup-
porting case studies. A compiler will typically seek to remove any redundancy
in compiled code, which is problematic when implementing a masking scheme.
For example, if one were to apply Boolean masking to a cryptographic algorithm
in compiled code, the compiler would be likely to remove the mask in as many
places as it can. We propose techniques that can be used to produce a secure
masked implementation in the C programming language, where a compiler is
be obliged to maintain the masked implementation for all commonly used op-
timisation levels. We demonstrate the effectiveness of our method through case
studies tested on a variety of architectures and all commonly used optimization
levels. While the security of these implementations is only shown empirically,
i.e. no formal proofs are given, it does allow the portability of C code between
platforms with a high probability of success.

2 Preliminaries

2.1 Previous Work

There is a rich literature on attacks based on micro-architectural features [AKS06,Acı07,AS08,LSG+18,KHF+19],
but there have been relatively few publications on how micro-architectural fea-
tures affect the side-channel resistance of masking countermeasures implemented
on embedded devices.

One of the best known papers is by Balasch et al. [BGG+15], where the
authors discuss the notion of a security reduction for masked implementations
running in software. Proofs for software implementations should not only con-
sider value based leakages but have to take into account all possible transition
based leakages. In the case of what they call ’lazy engineering’, i.e. without ex-
tensive profiling of the platform to get a thorough understanding of all sources
of leakage, one has to assume that all possible combinations of intermediate val-
ues are possible, rather than the ones which are actually happening. This leads
to the conclusion that the security order gets divided by two. They validate
their experiments on an AVR-based ATMega163 8-bit microprocessor which has
a very clean and somewhat ideal leakage behavior. They test their implemen-
tation in various scenarios, one written in pure assembly and several versions
where they compile an implementation written in the C programming language
with a variety of optimization levels. All scenarios are tested up to 1 × 104

measurements with a fixed-versus-random t-test. The same theorem has been
validated by de Groot et al. [dGPdlP+17] where the authors implement a bit-
sliced implementation of the PRESENT cipher on an ARM Cortex-M4. Their

3

second-order implementation shows leakage in a second-order t-test, but up to
1×104 measurements, no first-order leakage is visible. In our work we invalidate
this theorem by giving a counterexample.

A third paper relevant for this discussion is by Papagiannopoulos and Veshchikov [PV17].
Its narrative is very close to some of what we are trying to demonstrate in this
paper, namely that there are various effects caused by the underlying hardware
which cause unexpected leakage. The authors discuss an overwrite effect, a mem-
ory remnant effect and a neighbor leakage effect on the AVR-based ATMega163.
While the overwrite leak is not unexpected, the latter two are nice examples
of how complex sources of leakage can be on a microprocessor. We generalize
and extend the description of these effects, and show that there are far more
possible sources of side-channel leakage than considered by Papagiannopoulos
and Veshchikov.

2.2 Adversary models

The typical adversary model used in masked implementations is the d-probing
model by Ishai et al. [ISW03], which assumes that an adversary can access up
to d intermediate variables in a computation. Hence, if L(x) denotes the leakage
function on an intermediate x and V is the set of all intermediate values, then
let L be the set {L(x),∀x ∈ V}. The information available to the adversary is
any subset S ⊂ L with |S| ≤ d. While this model is now considered invalid
for proving the security of masked hardware implementations, it remains the
standard model for proofs of masked software implementations. An important
foundation of masking and the probing model is the independent leakage as-
sumption (ILA) [CJRR99,PR13], which assumes that side-channel information
depends only on intermediates and not on their combinations.

Balasch et al. [BGG+15] noted that one must also take account of transitions
between variables. Hence, the set L should be extended as follows:

L = {L(x), ∀x ∈ V} ∪ {T (x, y), ∀x, y ∈ V}

with T (x, y) some leakage function on two intermediates. One possible way to
model transitions is by means of an XOR: T (x, y) = L(x ⊕ y). A more generic
transition model considers the concatenation of two values: T (x, y) = L(x||y).

The inclusion of more generic probes in the probing model by means of con-
catenating different intermediate variables has become a common method for in-
cluding physical defects in theoretical models [DBR19]. Glitch-extended probes
were first proposed by Reparaz et al. [RBN+15], and, later, the robust prob-
ing model by Faust et al. [FGP+18] describe using glitch-extended probes for
coupling and memory transitions. However, actually modelling coupling effects
with glitch-extended probes was shown to be problematic by Levi et al. [LBS19].
Moreover, it remains unclear how these theoretical models can be formulated to
correspond to realistic leakage behaviours to model leakage for software imple-
mentations.

4

2.3 Leakage Detection

A common method to verify whether implementations leak sensitive informa-
tion is the Test Vector Leakage Assessment (TVLA), proposed by Goodwill et
al. [GJJR11]. TVLA uses a t-test to evaluate the difference in means between
acquisitions taken with random plaintext and those with a fixed plaintext. This
method allows to target all intermediates in the computation and is therefore
considered non-specific. Assuming the sets of measurements with random plain-
text and fixed plaintext are respectively denoted R and F , we compute the
t-statistic as follows:

t =
µ(R)− µ(F)√
σ2(R)
|R| + σ2(F)

|F|

(1)

where µ and σ2 are functions that return the sample mean and sample variance,
respectively. When the t-statistic surpasses 4.5σ in absolute value, the null hy-
pothesis that the means of the two sets R and F are equal is rejected, which
points to some leak of sensitive information.

Note that the presence of leakage does not automatically imply that this
leakage is exploitable or even that an attack exists.

2.4 Target Microprocessors

In this paper we use implementations on a variety of microprocessors for illustra-
tive purposes. The microprocessors were chosen to demonstrate that our work
applies to a range of complexity levels. These microprocessors are:

STM32F303RCT7: The STM32F3 series features a single 32-bit ARM Cortex
M4 core running at 72 MHz. We use the variant that can be mounted on the
ChipWhisperer CW308 UFO Board and use a ChipWhisperer Lite board to
capture power traces. An unprotected implementation would typically show
fixed-versus-random leakage after around 10 traces.

NXP LPC2124: The LPC2124 is an ARM7TDMI microprocessor. For our
evaluations we used a 14.7 MHz clock and took acquisitions from a cou-
pling capacitor using an electromagnetic probe. With this setup, an un-
protected implementation would typically show fixed-versus-random leakage
after around 100 acquisitions.

Xilinx Zynq zc702: The Zynq zc702 microprocessor contains two ARM7 cores
and FPGA fabric. We used one ARM7 core for our implementations, clocked
at 667 MHz, and the FPGA provided a means of triggering an oscilloscope
in a convenient way. The ARM7 cores have a large cache and use branch
prediction. Furthermore, they use out of order execution to attempt to op-
timize code on-the-fly. We took acquisitions from a coupling capacitor using
an electromagnetic probe. In our reference setup, an unprotected implemen-
tation would typically show fixed-versus-random leakage after around 300
acquisitions.

5

Intel Atom N455: The Intel Atom N455 contains a single core clocked at 1.66
GHz. As above, we took acquisitions from a coupling capacitor using an
electromagnetic probe, an unprotected implementation would typically show
fixed-versus-random leakage after around 500 acquisitions. In this case we
used a linux operating system and compiled our source code using the target
board. This is in contrast to the other tested microprocessors where we used
bare metal implementations.

3 Masked Software Implementations and the ILA

In this section, we investigate how masked software implementations, which are
proven to be secure in the probing model [ISW03], exhibit leakage when de-
ployed on a CPU. The independent leakage assumption (ILA) essentially does
not hold, which means security in the probing model does not imply security
in practice. On the one hand, understanding where leakage comes from is an
important prerequisite for designers to create secure masked implementations.
On the other hand, this section also demonstrates the complexity of solving the
leakage problem at the assembly level and the need for a more comprehensive
approach.

3.1 The CPU Datapath

Figure 1 shows a simplified example architecture of a processor that we will
refer to later in this section. At this point, we are only interested in the flow
of sensitive data, so we omit the control logic for readability. We also assume
timing leakage has been taken care of and ignore branching instructions. Note
that every processor is different and that this is merely one example among many
possible datapaths.

Fig. 1. CPU Datapath (simplified)

In the following, we will list some effects in different components in the
CPU data path, which break the ILA. These effects are often caused by mem-
ory transitions, a well-known effect that has been discussed in many previous

6

works [CGP+12,BGG+15,PV17]. When value x at a particular memory location
is overwritten by value y, the power consumption or electromagnetic radiation
will depend on a combination of the two values (T (x, y)). However, previous
treatments have mostly focused on its occurrence in CPU storage units such as
RAM memory and the register file. We will see that the overwrite effect also
plays a significant role in memory-independent instructions.

Examples of how transitional leakages break the ILA include but are not
limited to the following:

Load/Store Instructions. The memory overwrite effect, caused by subsequent
store instructions at the same address, is well-known and has been amply dis-
cussed in literature [BGG+15,PV17]. This problem is relatively straightforward
to avoid with a proper allocation of addresses to different variables.

Independent of the memory address, there is also a leakage effect, caused by
the use of the memory-related CPU instructions: load and store. The load/store
combination effect, causes the read (resp. written) data of consecutive load (resp.
store) instructions to leak. This issue was already identified by Papagiannopoulos
and Veshchikov [PV17] as the “Memory Remnant Effect”, but no explanation
was given. In fact, in a lot of cases, this effect is equivalent to the memory
overwrite effect, occurring in a CPU register. Consider, for example, Figure 1,
where loaded data is stored in a dedicated data register (“Ld Data”), before
it reaches the register file. The same can be true for stored data (“Str Data”
in Figure 1). Even when such registers are not present in the CPU, the “Read
Data” and “Write Data” bus transitions can cause this effect. If the write and
read data paths have common hardware, such as registers or buses, the data
read from a load instruction could potentially also be combined with the stored
data of the previous/next store operation.

Hence, the data involved in consecutive load/store instructions (even when
separated by several other instructions) may be combined in a transitional leak-
age effect. Which instructions are combined and how strong the leakage effect
is, depends on the specific layout of the CPU datapath and is typically difficult
to predict. Consider, for example, a data memory with two read or write ports.
It is near impossible for the code developer to know which value goes through
which port.

ALU Instructions. The Arithmetic Logic Unit (ALU) is the main block for
all arithmetic and logic instructions, but is also used for address calculations.
Its multi-functionality results in a large number of shared data paths and thus
potential leakage.. Its inputs go through a variety of operators of which only
one result is stored and used, but it is possible that some combination of A ?1
B and A ?2 B is leaked, where ?1, ?2 can be any two operators. To the best of
our knowledge, the potential combination effects of the ALU have not previously
been discussed.

It is clear that consecutive operands and outputs of the ALU will leak jointly
if (like in Figure 1) the ALU is separated from other CPU stages by registers
(“A”, “B” and “ALU out”).

7

Beyond this, there are a number of interconnections and registers within the
ALU block which can result in less predictable leaks, even among non-consecutive
instructions. Consider for example a forwarding register to mitigate data haz-
ards by allowing a newly computed result to be the operand of the next ALU
operation, without requiring write-back to the register file. A transition in this
register can cause the outputs of two completely different ALU operations to
be combined, even if they are separated by many other instructions. Data from
independent instructions may also be combined in one of the many multiplexers
that are required for the versatility of the ALU. The complexity of this CPU
component makes it impossible to exhaustively enumerate all its effects.

Register File Operands. The register file is involved in almost every type of
instruction (load, store and ALU instructions). Regardless of the type of in-
struction, it is known that the transition of a particular register from one value
to another causes the register overwrite effect, similar to the memory overwrite
effect. Again, this effect can be avoided with a proper register allocation.

Under the hood, the register file is not a mere collection of independent flip
flops. A network of read and write lines connects the different cells with each
other, resulting in a register combination effect: access to one CPU register can
cause the combined leakage of the value in that register with a value stored in
another register. One instance of this was observed by Papagiannopoulos and
Veshchikov [PV17] and designated the “Neighbour Leakage Effect”, although it
is not entirely clear what defines the neighbour relationship. They performed an
experimental analysis but no general conclusions can be made for all processors.
Since it is time consuming to find out which registers exhibit the neighbourhood
relationship in a particular device, a safe strategy is to assume that any two (or
more) elements stored in the register file at the same time, can leak together.

And Much More... The CPU does not only introduce leakage among equal in-
structions. Consider for example register “B” in Figure 1, which is used both for
the data of a store instruction and the second operand of an ALU instruction.
Something similar can be said for the “Write Data” bus of the register file, which
is the output of a multiplexer choosing between the data of a load instruction
and the output of the ALU. In reality, processors are more complicated than in
Figure 1 and many more shared paths between different instructions can exist,
breaking the independent leakage assumption of the probing model.

3.2 Case Studies and Platform Dependency

In order to prevent undesirable combinations of intermediates in masking algo-
rithms, some instruction-level mitigations have been proposed. Papagiannopou-
los et al. [PV17] for example proposed to use dummy load (resp. store) instruc-
tions to isolate the loading (resp. storing) of shares of the same variable from
each other. To deal with the register combination effect, they propose to clear
the register file as much as possible.

8

In this section, we experiment with these flushing and clearing instructions.
The results show that the need for and effect of such instructions is different for
every platform. Moreover, since it is infeasible to identify all transitional leakage
sources in each CPU, these extra instructions may not be sufficient to secure an
implementation.

Flushing Instructions. To flush the load/store datapath, one can load/store some
random value, as was done by Papagiannopoulos et al. [PV17]. Flushing the
ALU datapath is more complicated. In this work, we try to clear the registers
and buses in the datapath by repeating an ALU instruction with random data.
Again, given the complexity of the ALU, this method still does not provide a
guarantee that data is not combined in another path (e.g. a forwarding register).

Clear Registers. To counteract the register combination leakage, Papagiannopou-
los et al.propose to clear unused variables from the register file. This solution is
quite over-cautious and results in a large overhead that is even expensive than
a second-order secure implementation (see [PV17, Table 1]).

It is much more efficient to only clear registers when necessary, under the
assumption that any combination of two or more registers in register file can
leak. This assumption is still somewhat conservative, but results in a much faster
implementation than the always-clear approach. We will assume in this section
that the register file leakage does not combine more than two values and only
leaks pairs of intermediates stored at the same time. We note however, that this
may not be true in general.

A Note on Instruction Reordering. These flushing and clearing instructions only
make sense if the order of execution of the instructions is fixed. Some processors
use instruction reordering as an optimization mechanism. In that case, clearing
some registers before loading others or flushing operations may have no effect at
all.

Application. A relevant example for software masking is the conversion from
Boolean to arithmetic masking by Goubin [Gou01], which comes with a proof
of security. Despite this proof, TVLA shows clearly that this simple function
exhibits a lot of leakage when deployed on a device. We demonstrate this below
on three different platforms. Additionally, we apply each of the described mit-
igations, separately and combined. The results show a large variability in the
effects on different platforms and the success of the different mitigations. The
assembly code for the experiments can be found in Appendix A.

Results. We show the results on three different platforms in Figures 2 to 4. It is
clear that distinct platforms show distinct behaviour. On the Zynq board, the
extra instructions are able to eliminate the leakage with up to 250 000 power
traces. In contrast, the extra instructions seem to have only limited effect on
the NXP device. We also see that ALU instructions on the Zynq board may

9

contribute considerably to transitional leakages, since the ALU flush instruc-
tions alone already significantly increase the number of traces required to detect
leakage.

Fig. 2. TVLA results of the Boolean-to-arithmetic conversion on NXP LPC2124

Fig. 3. TVLA results of the Boolean-to-arithmetic conversion on Xilinx Zynq

3.3 Discussion

It is clear from this section and from previous works that security proofs of
masking in the regular probing model [ISW03] do not give any guarantees for
security in practice on real devices. Moreover, the experiments in this section
show that incorporating all possible CPU combinations into a single theoretical
model (such as the robust probing model) may not be feasible.

Firstly, we have demonstrated that every platform gives different leakage be-
haviours. A single conclusion cannot be drawn on which of the described leakage
effects occur. Flushing and clearing instructions can be effective in some cases
with up to 2.5 × 105 traces. However, with more traces, even more unexpected
combinations may be made by the CPU. Such instructions do not have the same
effect on different platforms. On devices with instruction reordering, they may
be completely ineffective.

10

Fig. 4. TVLA results of the Boolean-to-arithmetic conversion on STM32F3

Secondly, we argue that one cannot identify the combinations of variables to
include in the model (e.g. by means of extended probes [FGP+18]). If a detailed
description of the architecture is available, a designer can carefully determine the
required countermeasures, but this is tedious work and open-source processors
are rather rare in industry. Moreover, even given complete detail of the device,
it is not always possible to predict the effect of the countermeasures (e.g. in-
struction reordering or dual port memory). In the absence of knowledge about
the data paths, one can use flushing operations after every normal instruction
(a very expensive option) or one can try to reverse engineer the architecture by
trial-and-error. Neither option seems very practical and cost efficient.

Thirdly, let’s compare the problem of modeling the CPU combinations to the
challenge of modeling glitches. In the latter case, it is possible to simplify the
problem by assuming any or indeed the worst-possible glitch can occur [DBR19].
Naturally, the masking schemes in that model might be more expensive than
strictly necessary. This is the price that is paid to obtain provable security at a
high level, where implementation and platform details can be ignored. Were we
to do the same for CPU combinations, the matter of how many combinations to
include and where to put the limit is not as clear as for glitches. It is difficult to
imagine the cost of a masking scheme that is provably secure in a model that can
guarantee security in practice on any device with any number of traces. There is
clearly a trade-off between the effort spent on securing an implementation and
its efficiency.

The example in this section is small, compared to for example an entire
masked AES encryption. Clearly, a more comprehensive methodology is required
to make masked software implementations secure in practice.

4 High-level (C) Implementations

In this section, we take a step back from the architectural details of the processor
and look at the problem from a higher level. We propose solutions that start from
a provably secure first-order implementation in the probing model in C and then
turn this into a solution on a platform which does not follow the model. As argued
above, at the time of writing, it does not seem straightforward to come up with

11

a model which is generic enough to capture a wide variety of microprocessors
and a pragmatic approach is required.

On the cost of Lazy Engineering. Balasch et al.[BGG+15] show that the “lazy”
engineer can obtain d-th order side-channel security in practice by using a theo-
retically 2d-th order secure masking scheme, i.e. twice the order of the masking
scheme that one would näıvely assume. This would have a large impact on code
size and execution time, and below we show that this approach is not necessarily
sufficient by providing a counterexample.

We implemented a second-order Boolean masked AES in C, based on the
implementation described by Grosso et al.[GPS14], using optimization flag -O0

and programmed it onto a STM32F3 microprocessor. We conducted a leakage
detection test, as described in § 2.3, with 2.5 × 105 traces each capturing two
complete masked SubBytes evaluations and the beginning of a third. The re-
sults are shown in Figure 5, where significant leakage can be seen, providing a
counterexample to the suggestion given by Balasch et al. [BGG+15]. The in-
puts (plaintext and key) were sent to the device in shared form, so the leakage
can only originate from the implementation itself. This shows that with enough
traces, even a second-order secure implementation can leak in practice.

Changing one of the low level sub functions in that implementation to do
the calculations differently made the leakage disappear. Note that this low level
function does not use all shares.

Fig. 5. First-order TVLA of a second-order secure AES with 2.5×105 traces. Maximum
t-value vs Number of traces (left) and t-test statistic vs time samples (right)

On Compilers. When a compiler operates on source code it is given complete
freedom to produce assembly code that conducts the required operations. That
is, the compiler has no obligation to follow any structures imposed in the source
code as long as the functionality remains the same.

Without loss of generality, we consider that a compiler will typically trans-
form source code into a generic assembly language using basic building blocks,
with little regard for speed or code size, to produce an intermediate representa-
tion. This representation is then optimized to reduce execution time and/or code
size. The optimizations that are applied can be crudely controlled by specifying

12

an optimization level. A given compiler will typically have lists of transforma-
tions and optimizations that are conducted depending on the desired optimiza-
tion level. The optimized intermediate representation is then passed to a back-
end that produces machine code for a given platform, while performing further
optimizations particular to that platform.

To produce a side-channel resistant implementation of a block cipher in a
high-level language, such as C, one needs to write source code, such that an op-
timizer cannot remove the side-channel resistance. This is somewhat problematic
since side-channel resistance is typically achieved with redundant representations
and code sections that always execute in the same way. A compiler could use code
that varies from one execution to another if the resulting code is faster and/or
smaller. Likewise, a compiler will seek to remove redundancy since that will pro-
duce smaller and faster code. The challenge is to write source code which allows
a compiler to produce small and efficient machine code, without debilitating the
side-channel countermeasures.

4.1 Implementation techniques

In the following paragraphs we will discuss some techniques which can be used
to ensure that security is maintained when implementing side-channel resistant
instances of cryptographic algorithms in C. Arguably, it is better to profile a
device and tailor the implementation to fit the platform [BGG+15]. This would
require platform specific development which can become time consuming when
developing code for a wide variety of platforms.

Secret-Invariant Instructions One of the most leaky types of side-channel
is caused by writing code where the sequence of instructions depends on secret
related data. Some block ciphers, e.g. DES, contain a lot of bitwise operations
which are especially prone to generating if/then/else constructs. To prevent this
from happening the algorithm description often has to be reworked such that the
optimization algorithms do not favor conditioning on values e.g. by moving to
a table based implementation. This prevents an adversary deducing information
from inspecting a trace of some side-channel, typically referred to as simple
power analysis.

Avoiding Code Optimization through Partitioning Functions An in-
tuitive approach to implementing a side-channel resistant instance of a block
cipher in software would be to use the ideas used for threshold implementa-
tions [NRR06]. While originally designed for hardware, the ideas translate eas-
ily into software and several examples are available in the literature [SBM18].
Nikova et al. [NRS11] introduced threshold implementations by applying multi-
party computation techniques to masking schemes. An important concept for
threshold implementations is non-completeness, i.e. a threshold implementation
makes use of sub-functions which are independent of at least one input share.

13

The most straightforward way to write a software instance of a threshold
implementation countermeasure would be to implement functions that each op-
erate on a subset of shares of a secret values. One might assume that no leakage
would occur and that a compiler can optimize a given function with no risk of
leakage occurring. However, function calls can be quite costly as, for example,
many registers may need to be pushed on the stack. A compiler may, therefore,
simply remove the function call and replace it with the code from the function.
This can then be optimized together with the calling code, which removes the
partitioning effect required for a threshold implementation.

Current compilers typically compile source files independently to produce
object files, that are then linked using a linker to produce the final machine code.
While there are linkers that can optimize code, it typically has to be specified
explicitly when running the linker. By default, they do not optimize code, so
one can partition functions by ensuring that they are in separate source files.
Fortunately, this is common practice for embedded platforms as linkers are also
usually unable to pull individual functions out of object files. One would typically
implement one function per source file to minimize the amount of unused code
from uncalled functions.

Implicit share use and avoiding excessive share usage In many cases, as
will also be demonstrated in the case studies later on, it is possible to introduce
implicit shares through changing the cryptographic sub-functions slightly.

A simple example can explain the concept. In many software implementa-
tions, look-up tables are used to create efficient code for nonlinear operations.
The idea is to create a table that contains every possible output at every possible
index which represents the input [KJJ99]. As with every operation, these tables
could potentially cause leakage, hence the need to randomize them in RAM.

For example, consider the AES SubBytes operation, which consists of an
inversion in F28 followed by an affine operation in F8

2. Both the indices and
values need to be masked to prevent side-channel leakage. One can achieve this
by applying a random mask to the indices and the table contents, as shown in
Algorithm 1.

Algorithm 1: Masked SubBytes Table

Input: S the 256 entry look-up table used for the SubBytes operation,
Min,Mout ∈ F28

Output: S′ the randomized look-up table

1 for i = 0 to 255 do
2 S′i⊕Min

← Si ⊕Mout ;
3 end

4 return S′

14

It has been noted that if line 2 of Algorithm 1 is implemented as

S′i ← Si⊕Min ⊕Mout ,

one could use the i to conduct a side-channel attack on the result of Si⊕Min
to

derive Min on one trace [TWO14].

The use of a masked table requires the input mask of the value being looked
up to be Min in order to produce the correct output. Näıvely, one would imple-
ment this by first XORing Min to one share of the masked input value before
XORing the second share to it to avoid having an unmasked value in the system.
Even in the unlikely situation when these operations would not be optimized
away, the mere existence and multitude of usage of Min in the implementa-
tion could lead to the involuntary unmasking of the requested lookup through
transition leakages.

One way to avoid the existence of Min in the implementation would be to
XOR the value to the roundkey which is XORed to the state before the Sub-
Bytes operation. Typically, if the memory size permits, roundkeys are calculated
beforehand and stored in memory. During the AES operation, usage of Min is
thus avoided. This principle we refer to as implicit share usage.

Another golden rule is to avoid the use of values when not necessary. If one
were to use the partitioning of functions as explained in § 4.1, it is recommended
to pass the address of the values on, rather than the actual values. This avoids
exposing the value to potential leakage points until it is really necessary.

Time separation of sensitive share combinations Implicit share usage
does not solve the fact that multiple inputs and outputs of the T-table itself will
be masked with the same input/output mask Min/Mout. Even when a linear
operation is applied to a two-share variable, even when the function is placed
into a separate object, the existence of the two shares in the microprocessor can
still result in side-channel leakage (cf. transitional leakages of §3). This risk can
be reduced through separating the use of the shares in time as much as possible
and increasing the chances that previous micro-architectural values have been
cleared. Below, we describe several techniques to achieve time-separation.

One is to use pointers as function inputs instead of values, since the pushing
and popping of variables on the stack, as well as the extra instructions needed,
cause the CPU to use the shares consecutively numerous times. Passing pointers
reduces the likelihood of the two shares getting combined. Another way to sep-
arate variables, particularly those used in loops, is to ensure that loop unrolling
and optimization of instructions across several calls to the loop is avoided. As a
simple example, consider a loop index going from 0 to 3. If the code were to be
written in such a way that the code itself is not aware of how many loops are to
be done, nor what the actual indices are on which variables within the loop are
depending, then the code is most likely going to be executed the way it is writ-
ten. This can be achieved by passing the indices as an array and specifying the
length of the indices array as an input to the overall function in which the loop

15

is used. Function separation can again be used to avoid optimization between
functions.

Non-linear masking schemes or representations of shares The Boolean
masking scheme has a huge drawback, since using an XOR as a masking op-
eration combines the bits of the shares in a linear manner to unmask a value.
This is a very similar mechanism to what happens to the power consumption
in a CMOS implementation when one value overwrites another, whether on a
bus, in a register, or when bits of a share are involuntarily combined (e.g. the
entrance of a MUX). One way to reduce leakage and force an attacker to collect
more measurements, or heavily profile the leakage, is to create a non-linear re-
lationship between the shares and the secret. By doing so, accidental overwrites
will leak less, although the leakage from overwrite effects is unlikely to disappear
completely. For example, masked AES designs that use multiplicative masking
have been proposed by Genelle et al. [GPQ11]. Also the inner product masking
scheme [BFG+17] fits in this category and has been shown to be effective in
practice.

Another example of this technique is elaborated upon in the AES case study
and comprises of the encoding of one share of a 2-share Boolean masking scheme
by pushing it through the AES SubBytes operation. The relationship between
the input and output of this operation is well studied in the field of differential
cryptanalysis [BS90] and those properties are highly effective.

Shuffling This concept does not need a lot of explanation. Time randomization
or shuffling (e.g. randomizing loop counters) is a hiding countermeasure and
a convenient way to reduce the leakage if implemented without exposing SPA
leakage. As a rule of thumb, spreading a sensitive operation over k locations
will roughly require k times more traces for an attacker to extract the key. The
SubBytes operation in AES is e.g. a good candidate where this technique can
be applied.

Cache The most common micro-architectural feature that could cause unfore-
seen leakage is a cache. Most attacks in the literature exploit the overall timing
of an operation [AS08] or observe individual cache accesses causing hits and
misses in, for example, a power consumption trace [AK06]. Leakage can also be
observed where a cache eviction occurs at an inconvenient time.

The most straightforward way of preventing leakage via a sequence of cache
accesses is to guarantee that the accessed tables are in the cache. One can read
every n-th table entry, where n is the cache line size. It is also important to
read the first and last table entry, since nothing obliges a compiler to align
tables with cache lines. Some compilers allow one to align tables with cache
lines, but typically require syntax particular to that compiler. We assume here
that an attacker cannot run arbitrary code on the processor and work under the
assumption that cache evictions cannot be instrumented in a controlled fashion.

16

If this were to be the case, more advanced cache protection techniques have to
be implemented.

Other micro-architectural features There are various other micro-architectural
features which can cause side-channel leakage. Among them are speculative ex-
ecution [AKS06] and dedicated hardware gadgets like, for example, multipliers
with early-termination [GOPT10]. Unfortunately, there are a wide variety of
these micro-architectural features and we currently cannot give explicit guide-
lines on how to avoid leakage caused by speculative executions other than trying
different ways of implementing the above propositions.

5 Case Studies

In the following we describe some implementations of block ciphers written in C
that are side-channel resistant on a variety of microprocessors for all commonly
used optimization levels. In each case, we choose elements described in § 4.1 to
achieve a side-channel resistant implementation.

TVLA results. Both case studies below were tested on the NXP LPC2124, Xilinx
Zynq zc702 and the Intel Atom N455, where the implementations on the latter
two microprocessors also included code for pre-loading look-up tables into cache,
as described in § 2.4. We acquired 5 × 105 traces for each optimization level
(specifically -Os, -O0, -O1, -O2, -O3) to conduct a leakage detection test as
described in § 2.3. The traces acquired were set to include the entire operation
to ensure that no leakage occurred in a way not envisaged in the design. In all
cases, no statistic with an absolute value larger than 4.5σ was observed. Analysis
examples can be found in Figure 6.

Fig. 6. On the left: TVLA results of the described AES implementation for optimiza-
tion level -O2 on the NXP LPC2124 for 5 × 105 traces. The leakage at the end is
the unmasking of the output data. There is no input leakage because the input is go-
ing in masked. On the right: TVLA results of the described DES implementation for
optimization level -O2 on the NXP LPC2124 for 5 × 105 traces. The leakage in the
beginning and the end is respectively input and output leakage.

17

Instruction overhead. While it is hard to describe overhead because it is highly
dependent on the choices made for the specific algorithms, we give some rough
estimates by comparing the implementation overhead to a masked assembly
implementation which was tailored for the NXP LPC2124 and will most likely
not run leak-free on any of the other platforms mentioned in this paper. For
the DES, the table setup phase takes about 3x as many instructions while the
actual encryption takes 4x as many. For the AES, table setup is about 1.5x as
many instructions while the encryption takes 3x as many. This is the price we
pay for a significant reduction in design time and portability across devices. For
comparison, the 2nd order AES implementation tested in § 4 has another 10x
more instructions on that same platform than the C implementation for AES
described here.

5.1 Implementing Side-Channel Resistant DES in C

Triple-DES is widely used in the banking industry, hence side-channel resistant
implementations of DES form an interesting case study. Moreover, the DES
cipher uses many bitwise permutations, which constitutes a challenge when it
comes to implementing them in a way that is not made insecure by a compiler.
The most obvious way to implement a bitwise permutation in C would be to
repeatedly read a byte, do a logical-AND to extract one bit and write the result
to a target byte. However, there is nothing to stop a compiler from replacing this
with tests on individual bits and conditionally writing an output bit, especially
as commands that do precisely this are available in many instruction sets. This
could result in a trivial attack where individual bits being permuted can be read
by inspecting a power/EM consumption trace

The DES consists of 16 rounds of a Feistel structure, where each round
has two 32-bit words as input {Li, Ri}, for i ∈ {1, . . . , 16} and as output
{Li+1, Ri+1}. In each round, the function E (referred to as the expansion func-
tion) transforms a 32-bit word in a 48-bit word, which is then XOR-ed with a
subkey. Each subkey is a 48-bit subset of the 56-bit secret key. The function
S produces eight 4-bit words from eight 6-bit words, using eight different 6× 4
look-ups. Finally, the so-called P -permutation is a bitwise permutation providing
diffusion in the block cipher. We define the functions:

E : F2
32 −→ F2

48 : x 7−→ y with yi = xei
, ∀ i ∈ {1, . . . , 48}

S : F2
48 −→ F2

32 : x = {x1|| . . . ||x8} 7−→ [S1(x1)|| . . . ||S8(x8)]

with Si : F2
6 −→ F2

4 : x 7−→ y, ∀ i ∈ {1, . . . , 8}
with yj = si(x)j , ∀ j ∈ {1, . . . , 4}

P : F2
32 −→ F2

32 : x 7−→ y with yi = xpi , ∀ i ∈ {1, . . . , 32}

Where bold symbols represent vectors and regular symbols represent bits. Fur-
thermore, e and p are vectors that list the bitwise map for the expansion and
P -permutation, respectively, and si, for i ∈ {1, . . . , 8}, are the eight substitu-
tion tables. There is also a bitwise permutation at the beginning and the end of

18

the block cipher. These two permutations do not contribute to the security of
the block cipher and can be implemented in C without any risk of causing key
related leakage, and will not be discussed further in this paper.

Secret-Invariant instructions DES contains a lot of bitwise operations. As de-
scribed in § 4.1 this can lead to a data dependent instruction flow.

To minimize the number of bitwise permutations conducted on intermediate
states, that could potentially be attacked, we can modify the DES structure.
We change the input of each round to be two 48-bit words {Li, Ri}, for i ∈
{1, . . . , 16}, and the output to be two 48-bit words {Li+1, Ri+1}. This can be
achieved by combining the initial permutation IP with the expansion function
E to produce L1 and R1. A round function is then defined as the sequence of
S, followed by the P/E function, which is the combined permutation-expansion
function. The final permutation can be adjusted with an inverted E to produce
the correct result.

The permutation P and the expansion function E are combined, further
referred to as P/E and implemented by a single table lookup. That is, we create
a table P/Ei for each 4-bit output of each si, where one entry is 48 bits (i.e.
implemented as eight 6-bit words) with up to six bits set to one.

The output is produced by XORing all the outputs of P/Ek, for k ∈ {1, . . . , 8},
i.e.

⊕8
k=1 P/Ek. Each function P/Ek can be implemented as a table with 16

entries. Hence, we can compute P/E using eight tables of 27 bytes, requiring
a total of 210 bytes. These tables would need to be randomized, as described
in § 4.1, where the index would be masked by a 4-bit random value and the
contents masked by a 48-bit random value.

Implicit share usage. The above describes an implementation where we can as-
sure that no information leaks through SPA, since a compiler cannot optimize
the table operations as it would for a näıve implementation. The next counter-
measure we apply is implicit share usage, i.e. except for the initial masking of
the state with two 48-bit Boolean masks {ML,MR} and the round key masks,
we do not handle any other mask value by itself. The key schedule can pro-
cess the masked key and its mask independently to produce {Ki,MK,i} for
i ∈ {1, . . . , 16}. The masked key and mask can then be included in the round
function as two XOR operations, as shown in Figure 7. We will explain how we
avoid the combination of those below. The key schedule implementation itself is
described in Appendix B.

The construction of tables for function S is masked such that the input mask
aligns with MR, the output mask of S is defined as a 32-bit Boolean mask MS .
Likewise, the construction of tables for the functions P/Ek, for k ∈ {1, . . . , 8},
will require that the indices are masked such that they align with the relevant
four bits of MS , and the contents of each is masked with a 48-bit mask for each
k, i.e. Mpe,k, for k ∈ {1, . . . , 8}. The mask after the P/E functions will be the

XOR sum of these masks, i.e. Mpe =
⊕8

k=1Mpe,k.

19

We can then to produce {Li+1, Ri+1} masked with {ML,MR}. Let ψ be the
output of the masked P/E function, then

Ri+1 = (ψ ⊕ Li)⊕

(
ML ⊕MR ⊕

8⊕
k=1

Mpe,k

)

and

Li+1 = Ri ⊕ (ML ⊕MR) .

The correction terms (ML ⊕MR) and
(
ML ⊕MR ⊕

⊕8
k=1Mpe,k

)
can be pre-

computed at the same time as the tables are constructed for the S and P/E
functions. This way we ensure that we have a round function where the combi-
nation of any two intermediate states will still be masked because all masks are
implicit. The exception being the input and output to the round function.

An implementation of the DES as described above could leak if, for some
i ∈ {1, . . . , 16}, Li+1 or Ri+1 overwrites Li or Ri, respectively. The same would
be true for any intermediate state overwriting the same intermediate state from a
previous round. Hence, we enforce that each Ri, for i ∈ {1, . . . , 16}, is overwritten
by the result of Ri ⊕Ki, then Ri ⊕Ki ⊕MK,i and so on for each function.

Li+1 Ri+1

ML ⊕MR ⊕
⊕8

k=1Mpe,kML ⊕MR

P/E

S

MK,i

Li Ri

Ki

MRML

MK,i

MRML

MS⊕8
k=1Mpe,k

Fig. 7. The structure of one round of our masked DES implementation. The curved
arrows are used to indicate the mask applied to the stages of the round function, as
described in the text

20

Partitioning functions. Given that we wish to apply the key schedule to the
masked key and its mask independently, the sharewise functions for the key
schedule and XORing with the key are partitioned into a separate object to the
round function, as described in § 4.1. This prevents a compiler from changing
the key schedule code such that the two shares of the key are combined at run
time. How one could implement the DES key schedule is briefly discussed in
§ B. Ensuring that the state overwrites in memory follow the sequence in the
previous section is also enforced through function separation.

5.2 Implementing Side-Channel Resistant AES in C

The AES is a substitution-permutation block cipher. There are three variants
defined, one with a key length of 128 bits and 10 rounds, one with a key length
of 192 bits and 12 rounds and one with a key length of 256 bits and 14 rounds.
The input and output are both 16 bytes long. Internally the AES operates on
a state of 16 bytes. Depending on the initial key length a certain number of
rounds is executed on this state. The round function consists of four opera-
tions: AddRoundKey, SubBytes, ShiftRows, MixColumns. The SubBytes and
MixColums are often combined in table-based software implementations and is
referred to as a T-table. For more information on this, we refer the interested
reader to [DR02] and [AES01].

Here we highlight which implementation techniques can be used to create a
secure AES implementation in C without having to partition the C-code into
separate objects and enforce time separation in this manner, see § 4.

Note that, in this example implementation, the key remains unmasked and
the initial starting point is a straightforward Boolean masked implementation
using a single T-table.

Let α = {x1, . . . , x16} and β = {y1, . . . , y16} denote the state of the AES
before and after the AddRoundKey function using round key κ = {k1, . . . , k16},
where xi, yi, ki ∈ F28 for all i ∈ {1, . . . , 16}. That is, yi = xi ⊕ ki for 1 ≤ i ≤ 16.
We use a Boolean sharing scheme (Xi,MXi

) such that xi = Xi ⊕MXi
for all

i ∈ {1, . . . , 16}. We have a different mask for each F28 element, and we shift the
mask array cyclically in the next round, i.e. the mask of byte 1 becomes the
mask of byte 2, etc.

In order to reduce potentially harmful compiler optimizations we apply the
following:

Encoding. As described in § 4, a nonlinear masking scheme can substantially
reduce leakage. Any masking scheme where the main operator is not following
the characteristic leakage of CMOS will bring the leakage down.

Here we opt to stick with the Boolean masking scheme because of its efficiency
when implementing the AES subfunctions. However, we encode one of the shares
to break the linear dependency with the secret. If we consider (Xi,MXi

), for
i ∈ {1, . . . , 16}, we change the shares to (Xi, M̃Xi

), where M̃Xi
= S′(MXi

)
for all i ∈ {1, . . . , 16}. This significantly reduces overwrite leakage, but does
not completely eliminate it. This is because the distribution of the XOR of the

21

two shares is not completely uniform, but from differential cryptanalysis the
distribution is well understood. The XOR between the input and output of the
SubBytes operation is not entirely uniform and leakage will eventually occur
(the required number of traces is beyond the scope of this paper). We therefore
change the mask after a certain number of computations, based on the signal-to-
noise ratio of the acquisitions and the desired resistance level, i.e. the number of
measurements before leakage occurs. By only intermittently changing the mask
the increase in execution time and the required number of random values can be
reduced. As an additional benefit, representing the second share this way and
leaving the first share unmodified, we can use it in the AddRoundKey step.

Implicit share usage. Secondly, because of register or memory combination ef-
fects, we want to avoid having two shares in the system at the same time. When-
ever possible, we thus make the second share implicit.

For example, this is possible in the case where a masked T-table lookup is
used with an input mask Min. We remask the second, encoded, share to the
input mask Min through a table lookup

MYi = rmin(M̃Xi) = S′−1(M̃Xi)⊕Min ,

for i ∈ {1, . . . , 16}. This way, we avoid the need for Min or the Boolean repre-
sentation of the second share MXi

in the system. A similar table is prepared to
translate a byte masked with Mout as a result of the SubBytes and MixColumns
operation and will be called rmout.

Figure 8 shows the concept in the simpler case of a lookup table used to
compute the SubBytes operation. In this figure, the notation is consistent with
the above, S′ denotes the value and index masked SubBytes operation imple-
mented as a table lookup, zi is the output of the SubBytes operation on xi and
is represented in a masked format as (Zi, M̃Zi

) where MZi
is a random value.

Since the input to the table lookup for the mask translation is an encoded
share, an overwrite of the output of the lookup with the input will not introduce
extra leaks into the system.

Time separation to avoid overwrites of values with the same mask. To ensure
separate calls to the T-table operation do not cause transitional leakage between
inputs or outputs, we use time separation by writing the loops in such a way
that optimization and unrolling is hard. We provide the call to the AES function
with an array of indices to loop over as described in § 4.

T-table mask. For this implementation we also created a special T-table mask.
Due to space considerations, a single T-table is used, in which, depending on
the row, the output value will get rotated by 0, 8, 16 or 24 bits. In the end,
four rotated lookup values are XORed together to complete the MixColumns
operation. The output mask of the T-table, a 32-bit value represented by con-
catenating four eight-bit masks M1||M2||M3||M4, is chosen in such a way that
M1 ⊕M2 ⊕M3 ⊕M4 = Mout, after which the same encoding technique with

22

the aid of a lookup table is used as for the input mask of the T-table to avoid
existence of the actual Boolean share Mout.

Note that we do use a lot of tables in this implementation and cache attack
countermeasures have to be considered too, hence proper preloading is required,
see § 4.

Zi M̃Zi

rmout()

S′()

rmin()

Ki

Xi M̃Xi

Fig. 8. Calculating the SubBytes operation with one encoded share in place

6 Conclusion

There are many examples of how to prove that a hardware implementation is re-
sistant to side-channel analysis of a given order, where one can take into account
all transitions and glitches produced by a given design. The same cannot be said
for masked software implementations, for which proofs to this day still assume
the ideal circuit model of ISW [ISW03]. Here, we generalize and extend work by
Papagiannopoulos and Veshchikov [PV17] to describe the ways in which a micro-
processor may leak that are not typically considered in current models used in
proofs. Balasch et al. [BGG+15] argue that a straightforward second-order mask-
ing scheme will provide first-order resistance and can ignore micro-architectural
considerations. However, we show that such generalizations are not valid with
a counterexample. Our work highlights an open problem in applied cryptogra-
phy: how to formally prove the security of software implementations given the
numerous ways an implementation may leak. As a first step, we present strate-
gies for implementing cryptographic algorithms such that the micro-architecture
should not introduce leakage. We also provide some empirical results on how to
implement side-channel resistant instances of cryptographic algorithms in the C
programming language. Note that these implementations should just be viewed

23

as instances and are by no means meant to be the best solution, which is still
open for research. The question also remains whether we can build a compre-
hensive model in which the security of masked software implementation can be
proven.

Another open research question raised by this work is how to accurately
compare the performance of software implementations of side-channel resistant
cryptographic algorithms. It is convenient to define the efficiency of a secure al-
gorithm by the number of instructions it requires. However, on a microprocessor
that number will not translate to the same number of opcodes. There is a sig-
nificant increase in the required number of opcodes to avoid the types of leakage
described above. The increase in opcodes will depend on the platforms consid-
ered and the variety of instructions chosen. Given the work presented above, it
would be easy to envisage situations where less efficient algorithms with a simple
structure are the best in practice because they are easier to secure.

One could also try to develop a microprocessor that would behave more
closely to the ISW model [ISW03]. This would allow one to exploit the rich
literature of algorithms that are provably secure in this model. However, it is
not clear what can be done without a complete overhaul of the way in which
microprocessors are designed.

References

[Acı07] Onur Acıiçmez. Yet another microarchitectural attack: exploiting I-cache.
In Peng Ning and Vijay Atluri, editors, CSAW 2007, pages 11–18. ACM,
2007.

[AES01] Specification for the advanced encryption standard (AES). Federal In-
formation Processing Standards Publication 197, 2001.

[AG01] Mehdi-Laurent Akkar and Christophe Giraud. An implementation of
DES and AES, secure against some attacks. In Çetin Kaya Koç, David
Naccache, and Christof Paar, editors, CHES 2001, volume 2162 of LNCS,
pages 309–318. Springer, 2001.

[AK06] Onur Acıiçmez and Çetin Kaya Koç. Trace-driven cache attacks on AES
(short paper). In Peng Ning, Sihan Qing, and Ninghui Li, editors, ICICS
2006, volume 4307 of LNCS, pages 112–121. Springer, 2006.

[AKS06] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting
secret keys via branch prediction. In Masayuki Abe, editor, CT-RSA
2007, volume 4377 of LNCS, pages 225–242. Springer, 2006.

[AS08] Onur Acıiçmez and Werner Schindler. A vulnerability in RSA imple-
mentations due to instruction cache analysis and its demonstration on
OpenSSL. In Tal Malkin, editor, CT-RSA 2008, volume 4964 of LNCS,
pages 256–273. Springer, 2008.

[BBD+16] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong
non-interference and type-directed higher-order masking. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM SIGSAC Conference on Computer and
Communications Security, pages 116–129. ACM, 2016.

24

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power
analysis with a leakage model. In Marc Joye and Jean-Jacques
Quisquater, editors, CHES 2004, volume 3156 of LNCS, pages 16–29.
Springer, 2004.

[BCZ18] Luk Bettale, Jean-Sébastien Coron, and Rina Zeitoun. Improved high-
order conversion from Boolean to arithmetic masking. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2018(2):22–45, 2018.

[BFG+17] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, Clara Paglialonga,
and François-Xavier Standaert. Consolidating inner product masking. In
Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes
in Computer Science, pages 724–754. Springer, 2017.

[BGG+15] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. On the cost of lazy engineering for masked
software implementations. In Marc Joye and Amir Moradi, editors,
CARDIS 2014, volume 8968 of LNCS, pages 64–81. Springer, 2015.

[BS90] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryp-
tosystems. In Alfred Menezes and Scott A. Vanstone, editors, Advances in
Cryptology - CRYPTO ’90, 10th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 11-15, 1990, Proceed-
ings, volume 537 of Lecture Notes in Computer Science, pages 2–21.
Springer, 1990.

[CGP+12] Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Ren-
ner, Matthieu Rivain, and Praveen Kumar Vadnala. Conversion of secu-
rity proofs from one leakage model to another: A new issue. In Werner
Schindler and Sorin A. Huss, editors, COSADE 2012, volume 7275 of
LNCS, pages 69–81. Springer, 2012.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In
Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in
Computer Science, pages 398–412. Springer, 1999.

[DBR19] Lauren De Meyer, Begül Bilgin, and Oscar Reparaz. Consolidating secu-
rity notions in hardware masking. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2019(3):119–147, 2019.

[dGPdlP+17] Wouter de Groot, Kostas Papagiannopoulos, Antonio de la Piedra, Erik
Schneider, and Lejla Batina. Bitsliced masking and ARM: friends or
foes? In Andrey Bogdanov, editor, LightSec 2016, volume 10098 of LNCS,
pages 91–109. Springer, 2017.

[DR02] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the
Advanced Encryption Standard. Springer-Verlag, 2002.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglia-
longa, and François-Xavier Standaert. Composable masking schemes in
the presence of physical defaults & the robust probing model. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):89–120, 2018.

[GBTP08] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual
information analysis. In Elisabeth Oswald and Pankaj Rohatgi, editors,
CHES 2008, volume 5154 of LNCS, pages 426–442. Springer, 2008.

25

[GJJR11] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A test-
ing methodology for side-channel resistance validation, September 2011.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromag-
netic analysis: Concrete results. In Çetin Kaya Koç, David Naccache,
and Christof Paar, editors, CHES 2001, volume 2162 of LNCS, pages
251–261. Springer, 2001.

[GOPT10] Johann Großschädl, Elisabeth Oswald, Dan Page, and Michael Tunstall.
Side-channel analysis of cryptographic software via early-terminating
multiplications. In Dong Hoon Lee and Seokhie Hong, editors, ICISC
2009, volume 5984 of LNCS, pages 176–192. Springer, 2010.

[Gou01] Louis Goubin. A sound method for switching between Boolean and arith-
metic masking. In Çetin Kaya Koç, David Naccache, and Christof Paar,
editors, CHES 2001, volume 2162 of LNCS, pages 3–15. Springer, 2001.

[GPQ11] Laurie Genelle, Emmanuel Prouff, and Michaël Quisquater. Thwarting
higher-order side channel analysis with additive and multiplicative mask-
ings. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2011 - 13th International Work-
shop, Nara, Japan, September 28 - October 1, 2011. Proceedings, volume
6917 of Lecture Notes in Computer Science, pages 240–255. Springer,
2011.

[GPS14] Vincent Grosso, Emmanuel Prouff, and François-Xavier Standaert. Effi-
cient masked S-boxes processing - A step forward -. In David Pointcheval
and Damien Vergnaud, editors, AFRICACRYPT 2014, volume 8469 of
LNCS, pages 251–266. Springer, 2014.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, 2003.

[KHF+19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In 2019 IEEE Symposium on Security and Privacy,
pages 1–19. IEEE, 2019.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analy-
sis. In Michael J. Wiener, editor, CRYPTO ’99, volume 1666 of LNCS,
pages 388–397. Springer, 1999.

[Koc96] Paul Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neil Koblitz, editor, CRYPTO ’96, volume
1109 of LNCS, pages 104–113. Springer, 1996.

[LBS19] Itamar Levi, Davide Bellizia, and François-Xavier Standaert. Reducing
a masked implementation’s effective security order with setup manipula-
tions and an explanation based on externally-amplified couplings. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):293–317, 2019.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In William Enck and Adrienne Porter Felt,
editors, 27th USENIX Security Symposium, pages 973–990. USENIX As-
sociation, 2018.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold
implementations against side-channel attacks and glitches. In Peng Ning,

26

Sihan Qing, and Ninghui Li, editors, ICICS 2006, volume 4307 of LNCS,
pages 529–545. Springer, 2006.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware
implementation of nonlinear functions in the presence of glitches. J.
Cryptology, 24(2):292–321, 2011.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel
attacks: A formal security proof. In Thomas Johansson and Phong Q.
Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013, 32nd An-
nual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, vol-
ume 7881 of Lecture Notes in Computer Science, pages 142–159. Springer,
2013.

[PV17] Kostas Papagiannopoulos and Nikita Veshchikov. Mind the gap: Towards
secure 1st-order masking in software. In Sylvain Guilley, editor, COSADE
2017, volume 10348 of LNCS, pages 282–297. Springer, 2017.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis
(EMA): Measures and counter-measures for smart cards. In Isabelle
Attali and Thomas P. Jensen, editors, E-smart 2001, volume 2140 of
LNCS, pages 200–210. Springer, 2001.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and In-
grid Verbauwhede. Consolidating masking schemes. In Rosario Gennaro
and Matthew Robshaw, editors, CRYPTO 2015, volume 9215 of LNCS,
pages 764–783. Springer, 2015.

[SBM18] Pascal Sasdrich, René Bock, and Amir Moradi. Threshold implementa-
tion in software - case study of PRESENT. In Junfeng Fan and Benedikt
Gierlichs, editors, COSADE 2018, volume 10815 of LNCS, pages 227–244.
Springer, 2018.

[TWO14] Michael Tunstall, Carolyn Whitnall, and Elisabeth Oswald. Masking
tables - an underestimated security risk. In Shiho Moriai, editor, FSE
2013, volume 8424 of LNCS, pages 425–444. Springer, 2014.

27

A Assembly Code

In this section, we include the instruction-level code for the Boolean-to-arithmetic
conversion used in the experiments of section 3.2. The description is based on
the generic algorithm of Bettale et al. [BCZ18, Algorithms 1 & 2]. The shares of
input x are stored in [r0] and [r0,#4]. Random masks are stored in an array
at address r1, i.e. at [r0], [r1,#4], [r1,#8], The output shares D0 and
D1 are stored at address r2.

A.1 No Register Clearing

The following code is the straightforward assembly implementation of Algo-
rithms 1 and 2 of [BCZ18] for first-order security in theory.

The flushing of the ALU is only necessary on one occasion. The probability
distribution of the XOR of the outputs of the ALU operations on lines 14 and
16 depends on the secret x. Hence, we separate the instructions by a flushing
operation involving a completely independent random mask.

The loading of the shares of x is separated by the loading of the random
masks r0 and r1. The storing of the output shares D0 and D1 on the other hand
requires a flushing instruction in between.

The (*) indicates that the flushing of the ALU and store instructions can be
added or removed by simply adding/removing the corresponding instructions.

1 ldr r10, [r1, #8] // load extra random mask (for flushing)

2 ldr r3, [r0] // load x0

3 ldr r4, [r1] // load r0

4 eor r3, r3, r4 // x0 = x0 ^ r0

5 ldr r5, [r1, #4] // load r1

6 eor r3, r3, r5 // x0 = x0 ^ r1

7 ldr r6, [r0, #4] // load x1

8 eor r6, r6, r4 // x1 = x1 ^ r0

9 eor r7, r6, r5 // D0 = x1 ^ r1

10 str r7, [r2] // store D0

11 eor r8, r3, r6 // z0 = x0 x1

12 sub r8, r8, r6 // z0 = z0-x1

13 eor r8, r3, r8 // z0 = x0 z0

14 eor r9, r3, r5 // z1 = x0 ^ r1

15 eor r10, r10, r5 // flush ALU (*)

16 sub r9, r9, r5 // z1 = z1-r1

17 eor r8, r8, r9 // D1 = z0 z1

18 str r10, [r1, #8] // flush store (*)

19 str r8, [r2, #4] // store D1

A.2 With Register Clearing

Now, we keep track of the variables in the register file and remove any that could
form a dangerous combination with the next computed or loaded variable. For

28

example, the register holding x0 is cleared on line 8 because its combination with
the variable D0 at line 12 leaks the secret. Before we clear it, we must store its
value in memory, because it is required at a later stage in the computation. We
also clear every register after its value has been used for the last time.

1 ldr r10, [r1, #8] // load extra random mask (for flushing)

2 ldr r3, [r0] // load x0

3 ldr r4, [r1] // load r0

4 eor r3, r3, r4 // x0 = x0 ^ r0

5 ldr r5, [r1, #4] // load r1

6 eor r3, r3, r5 // x0 = x0 ^ r1

7 str r3, [r0] // store x0

8 mov r3, #0 // clear x0

9 ldr r6, [r0, #4] // load x1

10 eor r6, r6, r4 // x1 = x1 ^ r0

11 mov r4, #0 // clear r0

12 eor r7, r6, r5 // D0 = x1 ^ r1

13 mov r5, #0 // clear r1

14 str r10, [r1, #8] // flush store (*)

15 str r7, [r2] // store D0

16 mov r7, #0 // clear D0

17 ldr r3, [r0] // load x0

18 eor r8, r3, r6 // z0 = x0 ^ x1

19 sub r8, r8, r6 // z0 = z0-x1

20 mov r6, #0 // clear x1

21 eor r8, r3, r8 // z0 = x0 ^ z0

22 ldr r5, [r1, #4] // load r1

23 eor r9, r3, r5 // z1 = x0 ^ r1

24 mov r3, #0 // clear x0

25 eor r10, r10, r5 // flush ALU (*)

26 sub r9, r9, r5 // z1 = z1-r1

27 mov r5, #0 // clear r1

28 eor r8, r8, r9 // D1 = z0 ^ z1

29 mov r9, #0 // clear z1

30 str r10, [r1, #8] // flush store (*)

31 str r8, [r2, #4] // store D1

32 mov r8, #0 // clear D1

B Side-Channel Resistant Key Schedule DES in C

The DES key schedule takes the secret 56-bit and generates sixteen 48-bit sub-
keys using bitwise permutations. as with the permutations in the round function,
a straightforward implementation of the bitwise permutation could leak bits of
the key if an attacker inspects a power consumption/EM trace. There are two
permutations, referred to as PC1 and PC2, and a bitwise rotation used in DES

29

as part of the key schedule.

PC1 : F2
56 −→ F2

56 : x 7−→ y with yi = xgi , ∀ i ∈ {1, . . . , 48}
PC2 : F2

56 −→ F2
48 : x 7−→ y with yi = xhi

, ∀ i ∈ {1, . . . , 48}

where g and h list the bitwise map for the PC1 and PC2 permutations. If a
56-bit mask is applied to the secret key the same key schedule functions can be
applied to the mask and the masked key to give {Ki,MK,i, for i ∈ {1, . . . , 16}.
However, The function PC1 can be put into a table in the same way used for
the E/P function above. The most-significant seven bits of each byte of the
secret key can be split into a 4-bit and a 3-bit values used to look up a 56-bit
result. The XOR sum of which provides the permuted secret key. This requires
8× 24× 7 + 8× 23× 7 ≈ 211 bytes. Likewise, the same method can be applied to
the PC2 permutation requiring a further 14×16×8 ≈ 211 bytes. Given that the
secret key is not a direct target these bytes can be stored in non-volatile memory
and would have little impact on performance. As described in Section 4, if the
implementation is to be run on a microprocessor with a cache then these tables
will need to be moved into RAM and given a mask.

The bitwise rotations can also be implemented using table look-ups. However,
only small tables are required to replace the bit shifts by one. This is summarized
in Algorithm 2 where a key stored on seven bytes is rotated as required.

Algorithm 2: The DES key schedule bitwise rotation

Input: K = {k1, k2, k3, k4, k5, k6, k7}, the input key
Output: S = {s1, s2, s3, s4, s5, s6, s7}, the rotated key

1 ` = (0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30) ;

2
µ = ((0, 0), (0, 32), (0, 64), (0, 96), (0, 128), (0, 160), (0, 192), (0, 224),

(1, 0), (1, 32), (1, 64), (1, 96), (1, 128), (1, 160), (1, 192), (1, 224))
;

3 s7 = µ[k4 ∧ 15][1]⊕ `[k7 ∧ 15]⊕ µ[k7 � 4][2] ;
4 s6 = µ[k7 � 4][1]⊕ `[k6 ∧ 15]⊕ µ[k6 � 4][2] ;
5 s5 = µ[k6 � 4][1]⊕ `[k5 ∧ 15]⊕ µ[k4 � 4][2] ;
6 s4 = (µ[k1 � 4][1]� 4)⊕ µ[k4 ∧ 15][2]⊕ (`[k4 ∧ 15] ∧ 14)⊕ µ[k5 � 4][1] ;
7 s3 = µ[k4 � 4][1]⊕ `[k3 ∧ 15]⊕ µ[k3 � 4][2] ;
8 s2 = µ[k3 � 4][1]⊕ `[k2 ∧ 15]⊕ µ[k2 � 4][2] ;
9 s1 = µ[k2 � 4][1]⊕ `[k1 ∧ 15]⊕ µ[k1 � 4][2] ;

10 return S

30

C Side-Channel Evaluation of DES implemented in C

The full TVLA evaluation results for the DES described in § 5.1.

Fig. 9. TVLA results of the described DES implementation for optimization levels-O0,
-O1, -O2, -O3 and -Os, from top left to bottom right, on the NXP LPC2124 for 5×105

traces. The traces are cropped to remove input and output leakage

Fig. 10. TVLA results of the described DES implementation for optimization levels
-O0, -O1, -O2, -O3 and -Os, from top left to bottom right, on the Xilinx zc702 for
5× 105 traces. The traces are cropped to remove input and output leakage

31

Fig. 11. TVLA results of the described DES implementation for optimization levels
-O0, -O1, -O2, -O3 and -Os, from top left to bottom right, on the Intel Atom N455 for
5× 105 traces. The traces are cropped to remove input and output leakage

32

