
Multiparty Cardinality Testing for Threshold

Private Set Intersection

Pedro Branco∗ Nico Döttling† Sihang Pu‡

October 19, 2020

Abstract

Threshold Private Set Intersection (PSI) allows multiple parties to
compute the intersection of their input sets if and only if the intersection
is larger than n− t, where n is the size of the sets and t is some threshold.
The main appeal of this primitive is that, in contrast to standard PSI,
known upper-bounds on the communication complexity only depend on
the threshold t and not on the sizes of the input sets.

In this work, we present a Threshold PSI scheme for N parties with
communication complexity Õ(Nt2). At the heart of our construction is a
new cardinality-test protocol, which allows the parties to determine if the
intersection of their sets is sufficiently large.

1 Introduction

Suppose Alice holds a set SA and Bob a set SB . Private set intersection (PSI) is
a cryptographic primitive that allows each party to learn the intersection SA∩SB
and nothing else. In particular, Alice gets no information about SB \ SA (and
vice-versa). The problem has attracted a lot of attention through the years,
with an extended line of work proposing solutions in a variety of different set-
tings (e.g., [Mea86, FNP04, KS05, DMRY09, DKT10, DCW13, PSZ14, PSSZ15,
KKRT16, RR17a, HV17, RR17b, PSWW18, GN19, GS19, PRTY19]). Also,
numerous applications have been proposed for PSI such as contact discovery,
advertising, etc (see for example [IKN+17] and references therein). More re-
cently, PSI has also been proposed as a solution for private contact tracing
(e.g., [BBV+20]).

Threshold PSI. In this work, we focus on a special setting of PSI called
Threshold PSI. Here, the parties involved in the protocol learn the output if
the intersection between the input sets of the parties is very large, say n − t,
∗IT, University of Lisbon.
†Helmholtz Center for Information Security (CISPA).
‡Helmholtz Center for Information Security (CISPA).

1

where n is the size of the input sets and t is some threshold such that t << n.
Otherwise, they learn nothing about the intersection. This is in contrast with
standard PSI where the parties always get the intersection, no matter its size.

The main reason for considering this problem (apart from its numerous ap-
plications, which we discuss next) is that the amount of communication needed
is much smaller than for standard PSI: In particular, there are threshold PSI
protocols whose communication complexity depends only on the threshold t and
not on the size of the input sets as for standard PSI [GS19].

Despite its theoretical and practical appeal, there are just a few works that
consider this problem [HOS17, GN19, GS19], and just one of them achieves
communication complexity independent of n [GS19], in the two party setting.

1.1 Applications of Threshold PSI

A wide number of applications has been suggested for Threshold PSI in pre-
vious works such as applications to dating apps or biometric authentication
mechanisms [GS19].

One of the most interesting applications for Threshold PSI is its use in
carpooling (or ridesharing) apps. Suppose two (or more) parties are using a
carpooling app, which allows them to share a vehicle if their routes have a large
intersection. However, due to privacy issues, they do not want to make their
itinerary public. Threshold PSI solves this problem in a simple way [HOS17]:
The parties can engage in a Threshold PSI protocol and learn the intersection
of the routes, and if it is large enough share a vehicle. Otherwise, they learn
nothing and their privacy is maintained.

PSI using Threshold PSI. Some of the current protocols for Threshold PSI
(including ours) are split into two parts: i) a Cardinality Test, where parties
decide if the intersection is larger than some threshold n − t; and ii) secure
computation of the intersection of the input sets (which we refer to as the PSI
part). The communication complexity of these two parts should depend only
on the threshold t and not on the input sets size n.

Threshold PSI protocols of this form can be used to efficiently compute the
intersection, even when no threshold on the intersection is known a priori by
the parties, by doing an exponential search for the right threshold. In this case,
parties can proceed as follows:

1. Run a Cardinality Test for some t (say t = 1).

2. If it succeeds, perform the PSI part. Else, run again the Cardinality Test
for t = 2t.

3. Repeat Setp 2 until the Cardinality Test succeeds for some threshold t
and the set intersection is computed.

By following this blueprint, parties are sure that they overshoot the right
threshold by a factor of at most 2. That is, if the intersection is larger than

2

n−t, then the Cardinality Test will succeed for t′ ≤ 2t. Thus, they can compute
the intersection incurring only in a factor of 2 overhead over the best insecure
protocol. In other words, PSI protocols can be computed with communication
complexity depending on the size of the intersection, and not on the size of the
sets.

This approach can be useful in scenarios where parties suspect that the
intersection is large but they do not know exactly how large it is.

1.2 Our Contributions

In the following, N denotes the number of parties in a multi-party protocol and
t is the threshold in a Threshold PSI protocol. Below, we briefly describe our
results.

Multi-party Threshold PSI. The main contribution of this work is the
first construction of a Threshold PSI protocol in the multi-party setting. Our
construction achieves communication complexity of O(Nt2).

Along the way, we develop new protocols to securely compute linear algebra
related functions (such as compute the rank of an encrypted matrix, invert a
encrypted matrix or even solve an encrypted linear system). Our protocols
build on ideas of previous works [NW06, KMWF07], except that our protocols
are specially crafted for the multi-party case. Technically, we rely heavily on
Threshold Public-Key Encryption schemes which are additively homomorphic
(such schemes can be constructed from DDH [Elg85], DCR [Pai99], or from
several pairings assumptions [BBS04, BGN05]) to perform linear operations.

1.2.1 Concurrent Work

Recently, Ghosh and Simkin updated their paper with a generalization to the
multi-party case which is similar to the one presented in this paper in Section 4.
However, they leave as a major open problem the design of a new cardinality-test
that extends nicely to multiple parties, a problem on which we make relevant
advances in this work.

In a concurrent work. Badrinarayanan, Miao and Rindal [BMR20] also pro-
posed new protocos for Threshold PSI in the multi-party setting. Their re-
sults complement ours. In particular, they propose an FHE-based approach to
solve the same problem as we do with a communication complexity of O(Nt).
However, we remark that the goal of our work was to reduce the assumptions
needed for Threshold PSI. They also propose an TPKE-based protocol that
solves a slightly different problem: the parties learn the intersection if and only
if the set difference between the sets is large, that is,

(
∪Ni=0Si

)
\
(
∩Ni=0Si

)
. This

protocol achieves the same communication complexity as ours.

3

1.3 Technical Outline

We now give a high-level overview of the techniques we use to achieve the results
discussed above. For precise statements, we refer the reader to the technical
sections.

1.3.1 Threshold PSI: The Protocol of [GS19]

Consider two parties Alice and Bob, with their respective input sets SA and SB
of size n. Suppose that they want to know the intersection SA∩SB iff |SA∩SB | ≥
n−t for some threshold t� n. To compute the intersection, both parties encode
their sets into polynomials PA(x) =

∏n
i (x− ai) and PB(x) =

∏n
i (x− bi) over a

large finite field F, where ai ∈ SA and bi ∈ SB . The main observation of Ghosh
and Simkin [GS19] is that set reconciliation techniques (developed by Minsky
et al. [MTZ03]) can be applied in this scenario: if |SA ∩ SB | ≥ n− t, then

PA(x)

PB(x)
=
PA∩B(x)

PA∩B(x)

PA\B(x)

PB\A(x)
=
PA\B(x)

PB\A(x)

and, moreover, degPA\B = degPB\A = t. Hence, Alice and Bob just need to
(securely) computeO(t) evaluation points of the rational function PA(x)/PB(x) =
PA\B(x)/PB\A(x) and, after interpolation on these points, Bob can recover the
denominator (which reveals the intersection).

Of course, Bob should not be able to recover the numerator PA\B . So, [GS19]
used an Oblivious Linear Evaluation (OLE) scheme to mask the numerator with
a random polynomial that hides PA\B from Bob.

This protocol is only secure if Alice and Bob are absolutely sure that |SA ∩
SB | ≥ n − t. Otherwise, additional information could be leaked about the
respective inputs. Consequently, Alice and Bob should perform a Cardinality
Test protocol, which reveals if |SA ∩ SN | ≥ n− t and nothing else.

Limitations of the protocol when extending to the multi-party setting.
It turns out that the main limitation when extending Ghosh and Simkin protocol
to the multi-party setting is the Cardinality Test they use. In [GS19], Alice
and Bob encode their sets into polynomials QA(X) =

∑n
i x

ai and QB(X) =∑n
i x

bi , respectively, where ai ∈ SA and bi ∈ SB . Then, they can check if

Q̃(x) = QA(x)−QB(x) is a sparse polynomial. If it is, we conclude that the set
(SA∪SB)\ (SA∩SB) is small. By disposing O(t) evaluations of the polynomial
Q̃(x) in a Hankel matrix [GJR10] and securely computing the its determinant
(via a generic secure linear algebra protocol from [KMWF07]), both parties can
determine if |SA ∩ SB | ≥ n − t. The total communication complexity of this
protocol is O(t2).1

However, if we were to naively extend this approach to the multi-party
setting, we would have N parties computing, say,

Q̃(x) = NQ1(x)−Q2(x)− · · · −QN (x)

1The communication complexity of the Threshold PSI protocol of [GS19] is dominated by
this Cardinality Test protocol.

4

which is a sparse polynomial only if N is small. Moreover, if we were to com-
pute the sparsity of this polynomial using the same approach, we would have a
protocol with communication complexity O((Nt)2).

1.3.2 Our Approach

Given the state of affairs presented in the previous section, it seems we need to
take a different approach from the one of [GS19] if we want to design an efficient
Threshold PSI protocol for multiple parties.

Interlude: Secure Linear Algebra. Recall that in the setting of secure
linear algebra (as in [NW06] and [KMWF07]), there are two parties, one holding
an encryption of a matrix Enc(pk,M) and another one holding the corresponding
secret key sk. Their goal is to compute an encryption of a (linear algebra related)
function of the matrix M, such as the rank, the determinant of M or, most
importantly, find a solution x for the linear system Mx = y where both M and
y are encrypted. We can easily extend this problem to the multi-party case:
Consider N parties, each one holding a share of the secret key of a Treshold
PKE scheme. Additionally, P1 has an encrypted matrix. The goal of all the
parties is to compute an encryption of a (linear algebra related) function of the
encrypted matrix.

We observe that the protocols for secure linear algebra presented in [KMWF07]
can be extended to the multiparty setting by replacing the use of an (addi-
tively homomorphic) PKE and garbled circuits for an (additively homomorphic)
Threshold PKE. Hence, our protocols allow N parties to solve a linear system
of the form Mx = y under the hood of a Threshold PKE scheme.

Cardinality Test via Degree Test of a Rational Function. Consider

again the encodings PSi
(x) =

∏n
j (x−a(i)

j) where a
(i)
j ∈ Sj , for N different sets,

and the rational function2

PS1
+ · · ·+ PSN

PS1

=
PS1\(∩N

j=1Sj) + · · ·+ PSN\(∩N
j=1Sj)

PS1\(∩N
j=1Sj)

.

Note that, if the intersection ∩Si is larger than n − t, then degPS1\(∩N
j=1Sj) =

· · · = degPSN\(∩N
j=1Sj) ≤ t.

Therefore, the cardinality test boils down to the following problem: Given
a rational function f(x) = P̃1(x)/P̃2(x), can we securely decide if deg P̃1 =
deg P̃2 ≤ t having access to O(t) evaluation points of f(x)?

Our crucial observation is that, if we interpolate two different rational func-
tions fV and fW on different two support sets V = {vi, f(vi)} and W =
{wi, f(wi)} each one of size 2t, then we have:

2We actually need to randomize the polynomials in the numerator to guarantee correctness,
that is, we need to multiply each term in the numerator by a uniformly chosen element. This
is in contrast with the two-party setting where correctness holds even without randomizing
the numerator. However, we omit this step for simplicity.

5

1. fV = fW if degP1 = degP2 ≤ t

2. fV 6= fW if degP1 = degP2 > t

except with negligible probability over the uniform choice of vi, wi.
Moreover, interpolating a rational function can be reduced to solving a linear

system of equations. Hence, by using the Secure Linear Algebra tools developed
before, we can perform the degree test revealing nothing else than the output.
In other words, we can decide if the size of the intersection is smaller than n− t
while revealing no additional information about the parties’ input sets.

Multi-party PSI. Having developed a Cardinality Test, we can now focus
on securely computing the intersection. In fact, our protocol for computing the
intersection can be seen as a generalization of Gosh and Simkin protocol [GS19].

Again, by encoding the sets as above (that is, PSi(x) =
∏n
j (x−a(i)

j) where a
(i)
j ∈

Sj and Sj is the set of party j) and knowing that the intersection is larger than
n−t, parties can securely compute the rational function3 (PS1

+ · · ·+PSN
)/PS1

.
By interpolating the rational function on any O(t) points, party 1 can recover
the denominator and compute the intersection.

The main difference between our protocol and the one in [GS19] is that we
replace the OLE calls used in [GS19] by a Threshold additively homomorphic
PKE scheme (which can be seen as the multi-party replacement of OLE).

1.4 Other Related Work

Oblivious Linear Algebra. Cramer and Damg̊ard [CD01] proposed a constant-
round protocol to securely solve a linear system of unknown rank over a finite
field. Since they were mainly focused on round-optimality, the communication
cost of their proposal is Ω(t3) for O(t2) input size. Bouman et al. [BdV18] re-
cently constructed a secure linear algebra protocol for multiple parties, however
they focused on computational complexity.

Other secure linear algebra schemes in the two-party setting were presented
by Nissim and Weinreb in [NW06] and Kiltz et al. in [KMWF07]. In the
following, consider (square) matrices of size t over a field F. These two works
take different approaches: [NW06] obliviously solves linear algebra related prob-
lems directly via Gaussian elimination in O(t2) communication complexity, for
a square matrix of size t. However, their approach has an error probability
that decreases polynomially with t. In other words, the error probability is only
sufficiently small when applied to linear system with large matrices. Whereas
[KMWF07] has error probability decreases polynomially with |F|, which is neg-
ligible when F is of exponentially size.4

3Again, we omit the randomization of the polynomials. Actually, without randomization,
these methods (including [GS19]) are exactly the same as the technique for set reconciliation
problem in [MTZ03].

4This is important to us since, in the Threshols PSI setting, t� n where t is the threshold
and n is the set size. Kiltz et al. solve linear algebra problems via minimal polynomials,
and use adaptors between garbled circuits and additive homomorphic encryption to reduce

6

2 Preliminaries

If S is a finite set, then x←$S denotes an element x sampled from S according to
a uniform distribution and |S| denotes the cardinality of S. If A is an algorithm,
y ← A(x) denotes the output y after running A on input x. For N ∈ N, we
define [N] = {1, . . . , N}.

Given two distributions D1, D2, we say that they are computationally indis-
tinguishable, denoted as D1 ≈ D2, if no probabilistic polynomial-time (PPT)
algorithm is able to distinguish them.

Throughout this work, we denote the security parameter by λ.

2.1 Threshold Public-key Encryption

We present some ideal functionalities regarding threshold public-key encryption
(TPKE) schemes. In the following, N is the number of parties.

Let FGen be the ideal functionality that distributes a secret share of the secret
key and the corresponding public key. That is, on input (sid,Pi), FGen outputs
(pk, ski) to each party party where (pk, sk1, . . . , skN)← TPKE.Gen(1λ, N).

Moreover, we define the functionality FDecZero, which allows N parties, each
of them holding a secret share ski, to learn if a ciphertext is an encryption of 0
and nothing else. That is, FDecZero receives as input a ciphertext c and the secret
shares of each of the parties. It outputs 0, if 0 ← Dec(sk, . . .Dec(skN , c) . . .),
and 1 otherwise. Note that these functionalities can be securely realized using
on varies PKE schemes such as El Gamal PKE or Pailler PKE [HV17].

We also assume that the underlying TPKE (or plain PKE) is always addi-
tively homomorphic, unless stated otherwise (see Supplementary Material A.1).

2.2 UC Framework and Ideal Functionalities

In this work, we use the UC framework by Canetti [Can01] to analyze the
security of our protocols.5 Throughout this work, we only consider semi-honest
adversaries, unless stated otherwise. We denote the underlying environment by
Z. For a protocol π and a real-world adversary A, we denote the real-world
ensemble by EXECπ,A,Z Similarly, for an ideal functionality F and a simulator
Sim, we denote the ideal-world ensemble by IDEALF,Sim,Z .

Definition 1. We say that a protocol π UC-realizes F if for every PPT ad-
versary A there is a PPT simulator Sim such that for all PPT environments
Z,

IDEALF,Sim,Z ≈ EXECπ,A,Z

where F is an ideal functionality.

round complexity. In this work, we extend Kiltz’s protocol to the multiparty case without
using garbled circuits (otherwise the circuit size would depend on number of parties) while
preserving the same communication complexity for each party (O(t2)).

5We refer the reader to [Can01] for a detailed explanation of the framework.

7

In the following, we present some ideal functionalities that will be recurrent
for the rest of the paper.

Two-Party Threshold Private Set Intersection We present the ideal
functionality for Two-Party Threshold Private Set Intersection (2TPSI), a pro-
tocol between two parties (Alice and Bob) such that both of them input a set,
and learn the intersection if and only if the sets have a large intersection, namely
larger than n− t for input sets of size n and t < n.

F2TPSI functionality

Parameters: sid, n, t ∈ N known to both parties such that t < n.

• Upon receiving (sid,A, SA) from Alice, F2TPSI stores SA and
ignores future messages from A with the same sid;

• Upon receiving (sid,B, SB) from Bob, F2TPSI stores SB and ig-
nores future messages from B with the same sid.

• If |(SA \ SB) ∪ (SB \ SA)| ≤ 2t, F2TPSI outputs A ∩ B to both
parties. Else, it returns ⊥.

Multi-Party Threshold Private Set Intersection. This ideal functional-
ity implements the multi-party version of the functionality above. Here, each
of the N parties input a set and they learn the intersection if and only if the
intersection is large enough.

FMTPSI functionality

Parameters: sid, N, t ∈ N known to both parties.

• Upon receiving (sid,Pi, Si) from party Pi, FMTPSI stores Si and
ignores future messages from Pi with the same sid.

• Once FMTPSI has stored all inputs Si, for i ∈ [n], it does the
following: If |S1 \

(
∩Ni=2Si

)
| ≤ t, FMTPSI outputs S∩ = ∩Ni=1Si.

Else, it outputs ⊥.

2.2.1 Weak UC-Security

In the UC-framework, even when we assume semi-honest adversaries, we cannot
guarantee that the inputs are not malicious. That is, since the inputs of the ma-
licious parties are chosen by the environment, we cannot make any assumptions
that these are well-formed and we always have to consider worst-case scenario
over the choice of the inputs. Here, we define a weaker version of the UC-
framework where we assume that, not just the adversaries follow the protocol,
but also they input well-formed inputs.

8

Definition 2. We say that a protocol π weakly UC-realizes F if for every semi-
honest PPT adversary A there is a PPT simulator Sim such that for all PPT
environments Z,

IDEALF,Sim,Z ≈ EXECπ,A,Z

where F is an ideal functionality. Additionally, the adversaries’ inputs are well-
formed.

The goal of this weakened framework is to gives us a way to analyze the
components of our main protocol. Every functionality defined in this framework
share a global setup that distributes the public key and the secret key shares
between all parties.

2.3 Externalized UC Protocol with Global Setup

We introduce a notion of protocol emulation from [CDPW07], called external-
ized UC emulation (EUC), which is a simplified version of UC with global setup
(GUC).

Definition 3 (EUC-Emulation). Let π and φ be PPT multi-party protocols,
where π is Ḡ-subroutine respecting. We say that π EUC-emulates φ with respect
to shared functionality Ḡ (or, in shorthand, that π Ḡ-EUC-emulates φ) if for any
PPT adversary A there exists a PPT adversary S such that for any Ḡ-externally
constrained environment Z, we have:

EXECḠφ,S,Z ≈ EXECḠπ,A,Z

2.3.1 Ḡ-EUC Secure Realization.

We say that a protocol π realizes an ideal functionality F if π Ḡ- EUC-emulates
IDEALF . Notice that the formalism implies that the shared functionality Ḡ
exists both in the model for executing π and also in the model for executing the
ideal protocol for F , IDEALF .

We remark that the notion of Ḡ-EUC-emulation can be naturally extended
to protocols that use several different shared functionalities (instead of only
one).

2.4 Linear Algebra and Polynomials

We recall some concepts of linear algebra, polynomials and polynomial interpola-
tion from previous works. We first introduce minimal polynomials of a sequence
and of a matrix. Then we present how they can be used to solve linear algebra
related problems. Lastly, we present some useful lemmata on polynomials and
interpolation.

9

2.4.1 Minimal Polynomial of a Matrix

Let F be field and V be a vector space over F. An infinite sequence a = (ai)i∈N ∈
V N is linearly recurrent (over F) if there exists n ∈ N and f0, . . . , fn ∈ F
with fn 6= 0 such that

∑n
j=0 fjai+j = 0, for all i ∈ N. We can define the

multiplication of a sequence by a polynomial f ∈ F[x] of degree n by f · a =∑n
j=0 fjai+j .
The minimal polynomial of a sequence a is the least degree polynomial m

such that 〈m〉 = Ann(a) where Ann(a) is the annihilator ideal of a (that is, the
ideal such that every element f of Ann(a) satisfies f · a = 0).

The minimal polynomial of a matrix A ∈ Fn×n is the least degree polynomial
mA over F such that mA(A) = 0.

We denote the minimal polynomial for the sequence a′ = (uTAiv)i∈N by
ma′ , where u,v←$Fn are uniformly chosen vectors.

The following lemma is rephrased from [KMWF07] and shows how we can
compute the minimal polynomial of a matrix A.

Lemma 1 ([KMWF07]). Let A ∈ Fn×n and let mA be the minimal polynomial
of matrix A. For u,v←$Fn, we have mA = ma′ with probability at least 1 −
2 deg(mA)/|F|. Moreover, ma′ can be calculated using a Boolean circuit of size
O(nk log n log k log log k) where k = log |F|

2.4.2 Compute the Rank of a Matrix and Solve a Linear System

We will use the following results from [KDS91]. Recall that a unit upper (resp.,
lower) triangular Toeplitz matrix is an upper (resp., lower) triangular Toeplitz
matrix 1’s in the diagonal.

Lemma 2 ([KDS91]). Let A ∈ Fn×n of (unknown) rank r. Let U and L be
randomly chosen unit upper triangular and lower triangular Toeplitz matrices
in Fn×n, and let B = UAL. Let us denote the i × i leading principal of B by
Bi. The probability that det(Bi) 6= 0 for all 1 ≤ i ≤ r is greater than 1−n2/|F|.

Lemma 3 ([KDS91]). Let B ∈ Fn×n with leading invertible principals up to
Br where r is the (unknown) rank of B. Let X be a randomly chosen diagonal
matrix in Fn×n. Then, r = deg(mXB)−1 with probability greater than 1−n2/|F|.

To solve a linear system Mx = y, we follow the method of Kiltz et al.
[KMWF07] which is based on Kaltofen and Saunders’s algorithm [KDS91]. We
briefly describe the algorithm here: (i) Perturb the linear system Mx = y to
obtain a new system M′x = y′ with the same solution space. The perturbation
has the property that, if M is of rank r, then M′

r , the top-left r× r sub-matrix
of M′, is non-singular, except with negligible probability. (ii) Pick a random
vector u ∈ Fn and set y′r to be the first r coordinates of the vector y′ + M′u.
(iii) Solve the linear system M′

rxr = y′r, and denote the solution by ur. (iv)
Let u∗ ∈ Fn be a vector with the first r coordinates ur and the remaining
coordinates 0n−r. It can be shown that x = u∗ − u is a uniformly random
solution of the system M′x = y′ and thus is a uniformly random solution of the
original system.

10

2.4.3 Polynomials and Interpolation

We present a series of results that will be useful to analyze correctness and
security of the protocols presented in this work.

The following lemma show how we can mask a polynomial of degree less
than t using a uniformly random polynomial.

Lemma 4 ([KS05]). Let Fp be a prime order field, P (x), Q(x) be two poly-
nomials over Fp such that degP = degQ = d ≤ t and gcd(P,Q) = 1. Let
R1, R2←$Fp such that degR1 = degR2 = t. Then U(x) = P (x)R1(x) +
Q(x)R2(x) is a uniformly random polynomial with degU ≤ 2t.

Note that this result also applies for multiple polynomials as long as they
don’t share a common factor (referring to Theom.2 and Theom.3 of [KS05] for
more details).

We say that f is a rational function if f(x) = P (x)
Q(x) for two polynomials P

and Q.
The next two lemmata show that we can recover a rational function via

interpolation and that this function is unique.

Lemma 5 ([MTZ03]). Let f(x) = P (x)/Q(x) be rational function where degP (x) =
m and degQ(x) = n. Then f(x) can be uniquely recovered (up to constants) via
interpolation from m+n+ 1 points. In particular, if P (x) and Q(x) are monic,
f(x) can be uniquely recovered from m+ n points.

Lemma 6 ([MTZ03]). Choose V to be a support set6 of cardinality m1 +m2 +
1. Then, there is a unique rational function f(x) = P (x)/Q(x) that can be
interpolated from V , and P (x) has degree at most m1 and Q(x) has degree at
most m2.

3 Obliviously Degree Test for Rational Func-
tions

Suppose we have a rational function f(x) = P (x)/Q(x) where P (x) andQ(x) are
two polynomials with the same degree. In this section, we present a protocol that
allows several parties to check if degP (x) = degQ(x) ≤ t for some threshold
t ∈ Z. To this end, and inspired by the works of [NW06, KMWF07], we present
a multi-party protocol to obliviously solve a linear system Mx = y over a finite
field F with communication complexity O(t2kλN), where M ∈ Ft×t, log |F| = k
and N is the number of parties involved in the protocol.

3.1 Oblivious matrix multiplication

We begin by presenting a multi-party protocol to jointly compute the product
of two matrices, under a TPKE.

6A support set is a set of pairs (x, y).

11

Ideal functionality. The ideal functionality7for oblivious matrix multiplica-
tion is presented below.

FOMM functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q,
known to the N parties involved in the protocol. pk public-key of a
threshold PKE scheme.

• Upon receiving (sid,P1,Enc(pk,Ml),Enc(pk,Mr)) from party
P1 (where Ml,Mr ∈ Ft×t), FOMM outputs Enc(pk,Ml ·Mr)
to P1 and (Enc(pk,Ml),Enc(pk,Mr),Enc(pk,Ml ·Mr)) to all
other parties Pi, for i = 2, . . . , N .

Protocol. The following Protocol 1 allows several parties to jointly compute
the (encrypted) product of two encrypted matrices. Note that the protocol can
also be used to compute the encryption of the product of two encrypted values
in F.

Analysis. We proceed to the analysis of the protocol described above.

Lemma 7 (Correctness). The protocol secMult is correct.

Proof. The value outputted by every party is

e = d̃−
∑
j

d
(j)
l −

∑
j

d(j)
r −

∑
j

c̃(j)

= Enc

pk,M′
l ·M′

r −
∑
i

R
(i)
l ·Mr −

∑
i

Ml ·R(i)
r −

∑
j

∑
k 6=j

R
(i)
l ·R

(j)
r


= Enc

pk,

Ml +
∑
j

R
(j)
l

Mr +
∑
j

R(j)
r

−∑
i

R
(i)
l ·Mr−

∑
i

Ml ·R(i)
r −

∑
j

∑
k 6=j

R
(i)
l ·R

(j)
r


= Enc(pk,Ml ·Mr).

7Note that if we let parties Pi input their encrypted matrix Enc(M), then the ideal func-
tionality F has to know the secret key (by receiving secret key shares from all parties),
otherwise F cannot compute the corresponding function correctly. However, this will cause
an unexpected problem in security proof as mentioned in [BMR20]: The environment Z will
learn the secret key as well since it can choose inputs for all parties. We fix this by relying on
global UC framework where exists a shared functionality Ḡ in charge of distributing key pairs
and providing Decrypt(·) method for query.

12

Protocol 1 Secure Multiplication secMult

Setup: Each party Pi has a secret share ski of a secret key for a public key pk
of a TPKE scheme TPKE = (Gen,Enc,Dec).

Input: Party P1 inputs Enc(pk,Ml) and Enc(pk,Mr), where Ml,Mr ∈ Ft×t.
Goal: Every one knows the product Enc(Ml ·Mr).

1: for all party Pi do

2: It samples two random matrices R
(i)
l ,R

(i)
r ←$Ft×t.

3: It computes c
(i)
l = Enc(pk,R

(i)
l), c

(i)
l = Enc(pk,R

(i)
r), d

(i)
r = Enc(pk,Ml ·

R
(i)
r), d

(i)
l = Enc(pk,R

(i)
l ·Mr).

4: It broadcasts {c(i)l , c
(i)
r , d

(i)
l , d

(i)
r }.

5: end for
6: Each party Pi computes c̃(i) = Enc(pk,

∑
j 6=i R

(i)
l ·R

(j)
r) (using c

(j)
r and R

(i)
l)

and broadcasts c̃(i).
7: All parties mutually decrypt i) Enc(M′

l) := Enc(pk,Ml)+
∑
j c

(j)
l (to obtain

M′
l ∈ Ft×t), ii) Enc(M′

r) := Enc(pk,Mr) +
∑
j c

(j)
r (to obtain M′

r ∈ Ft×t)
8: for all party Pi do
9: It computes d̃ = Enc(pk,M′

l ·M′
r).

10: It outputs e = d̃−
∑
j d

(j)
l −

∑
j d

(j)
r −

∑
j c̃

(j)

11: end for

So, every party outputs exactly an encryption of the matrix product Ml ·
Mr.

Lemma 8 (Security). The protocol secMult securely realizes FOMM against
semi-honest adversaries corrupting up to N − 1 parties, given that TPKE is
IND-CPA.

Proof (Sketch). Assume that the adversary corrupts N−k parties. The simula-
tor takes the inputs from these parties and send them to the ideal functionality.
Upon receiving the encrypted value Enc(pk,Ml ·Mr), it simulates the protocol
as the honest parties would do.

We now prove that no set of at most N − 1 colluding parties can extract
information about Ml,Mr. First, observe that any set of N − 1 parties cannot
extract any information about encrypted values that are not decrypted during
the protocol (because there is always a missing secret key share) given that
TPKE is IND-CPA. Second, we analyze the matrix M′

l (which is decrypted

during the protocol). We have that M′
l = Ml+

∑
j R

(j)
l . Hence, there is always

at least one matrix R
(`)
l which is unknown to the adversary and that perfectly

hides the matrix Ml (the same happens M′
r.

Complexity. The communication complexity of the protocol is dominated by
the messages carrying the (encrypted) matrix. Hence, assuming a broadcast
channel between the parties, the protocol has communication complexity of

13

O(Nt2) where t is the size of the input matrices and N the number of parties
involved in the protocol.

3.2 Oblivious Linear System

We now show how N parties can securely solve a linear system using the mul-
tiplication protocol above. We follow the ideas from [KMWF07] to reduce the
problem to minimal polynomials, and the only difference is we focus on multi-
party setting.

For completeness, We present the Protocol 7 in Supplementary Material B.4.
In more details, we will evaluate an arithmetic circuit following the ideas from
[CDN01], and for the unary representation, a binary-conversion protocol [ST06]
is required. All of above protocols are based on Paillier crypto system.

Ideal Functionality. We give an ideal functionality of oblivious linear solve
for multiparty as follows.

FOLS functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q ,
known to the N parties involved in the protocol. pk public-key of a
threshold PKE scheme.

• Upon receiving (sid,P1,Enc(pk,M),Enc(pk,y)) from party P1

(assuming there is a solution x for Mx = y), FSLS outputs
Enc(pk,x) such that Mx = y.

3.3 Oblivious Degree Test

We now present the main protocol of this section and the one that will be using
in the construction of Threshold PSI. Given a rational function P (x)/Q(x) (for
two polynomials P (x) and Q(x) with the same degree) and two support sets
V1, V2, the protocol allows us to test if the degree of the polynomials is less
than some threshold t. Of course, we can do this using generic approaches like
garbled circuits. However, we are interested in solutions with communication
complexity depending on t (even when the degree of P (x) or Q(x) is much larger
than t).

Ideal functionality. The ideal functionality for degree test of rational func-
tions is presented below.

14

FSDT functionality

Parameters: sid, N, q, n, t ∈ N, F is a field of order q and t is a pre-
defined threshold, known to the N parties involved in the protocol.
pk public-key of a threshold PKE scheme. α1, . . . , α4t+2←$F known
to the N parties.

• Upon receiving (sid,P1,Enc(pk, f1), . . . ,Enc(pk, f4t+2)) from
party P1 (where fi = P1(αi)/P2(αi), and P1, P2 are two co-
prime polynomials with same degree t′ (additionally, P2 is
monic), FSDT outputs 0 if t′ ≤ t; otherwise it outputs 1.

Protocol. We present the Protocol 2 for secure degree test which we denote by
secDT. The main idea of the protocol is to interpolate the rational function on
two different support sets and check if the result is the same in both experiments.

Comments. Suppose that, for an interpolation point αi, the rational func-
tion f(x) = P (x)/Q(x) is well-defined but Q(αi) = P (αi) = 0 such that we
cannot compute f(αi) by division. In this case10 the parties evaluate P̃ (x) =
P (x)/(x − αi) and Q̃(x) = Q(x)/(x − αi) on αi and set f(αi) = P̃ (αi)/Q̃(αi).
These points are called tagged values and this strategy is used in [MTZ03].
In more details, instead of using Enc(pk, fi) for αi, we will use a tagged pair(
Enc

(
pk, s

(1)
i

)
,Enc

(
pk, s

(2)
i

))
where s

(1)
i = P1(αi)

x−αi
and s

(2)
i = P2(αi)

x−αi
. Corre-

spondingly, replace each row of Enc(pk,Mr) and Enc(pk,yr) with Enc
(
pk,
[
s

(2)
i rti . . . s

(2)
i −s(1)

i rt−1
i . . . −s(1)

i

])
and Enc

(
pk,
[
s

(1)
i rti

])
, respectively.

Also, note that the protocol easily generalizes to rational functions f(x) =
P (x)/Q(x) with degP 6= degQ (which is actually what we use in the follow-
ing sections). We present the version where degP = degQ for simplicity. In
fact, the case where degP 6= degQ can be reduced to the presented case by
multiplying the least degree polynomial by a uniformly chosen R(x) of degree
max{degP (x)− degQ(X),degQ(x)− degP (x)}.

Moreover, if t′ > t, the linear system for rational interpolation might be
unsolvable. In this case, there is no solution which means we cannot interpolate
an appropriate rational function on certain support set. Therefore, the parties
just return 0.

Analysis We analyze correctness, security and communication complexity of
the protocol. We begin the analysis with the following auxiliary lemma.

8Note that this is the linear system that we need to solve in order to perform rational
interpolation [MTZ03].

9The polynomial multiplication can be expressed as matrix multiplication.
10In the case that only Q(αi) = 0, use a different pair (Enc(pk, s

(1)
i),Enc(pk, 0)).

15

Protocol 2 Secure Degree Test secDT

Setup: Each party has a secret key share ski for a public key pk of a TPKE
TPKE = (Gen,Enc,Dec). The parties have access to the ideal functionalities
FORank, FOLS, FOMM and FDecZero. The values {α1, . . . , α4t+2} ←$F4t+2 are
also public.

Input: Party P1 inputs {(α1,Enc(pk, f1)), . . . , (α4t+2,Enc(pk, f4t+2))}, where

fi = P1(αi)
P2(αi)

, where P1(x), P2(x) are two polynomials with degree deg(P1) =

deg(P2) = t′ = poly(log |F|) and such that P2(αi) 6= 0 for all i ∈ [2t].
1: P1 sets {(αj ,Enc(pk, fj))}j∈[2t+1] = {(vj ,Enc(pk, fv,j))}j∈[2t+1], and
{(αj ,Enc(pk, fj))}j∈{2t+2,...,4t+2} = {(wj ,Enc(fw,j))}j∈[2t+1]. It homomor-
phically generates an encrypted linear system consisting of

Enc(pk,Mr) = Enc

pk,

 rt1 . . . 1 −fr,1 · rt−1
1 . . . −fr,1

...
...

...
...

rt2t+1 . . . 1 −fr,2t+1 · rt−1
2t+1 . . . −fr,2t+1




and

Enc(pk,yr) = Enc

pk,

 fr,1 · rt1
...

fr,2t+1 · rt2t+1




for r = {v, w}.8
2: All parties jointly compute Enc(pk, rank(Mr)−rank ([Mr||y]) for r ∈ {v, w}

through two invocations of FORank and mutually decrypt the ciphertext via
FDecZero. If the result is different from 0, they abort the protocol.

3: All parties mutually solve the two linear systems above using FOLS such

that each party gets Enc
(
pk,
(
c

(1)
v ||c(2)

v

))
and Enc

(
pk,
(
c

(1)
w ||c(2)

w

))
, where

Mr

[
c

(1)
r

c
(2)
r

]
= yr, for r ∈ {v, w}.

4: All parties compute the polynomials C
(b)
r (x) = xt +

∑t
j=0 c

(b)
r,j+1x

j , for r ∈
{v, w} and b ∈ {1, 2}, and compute

Enc(pk, z) = Enc(pk, C(1)
v (x) · C(2)

w (x)− C(1)
w (x) · C(2)

v (x))

by invoking FOMM.9

5: All parties jointly use FDecZero to check if z = 0. If it is, output 1. Otherwise,
output 0.

16

Lemma 9. Let F be a field with |F| = ω(2log λ). Let V = {(vi, f(vi))|∀i ∈
[1, 2t + 1]} and W = {(wi, f(wi))|∀i ∈ [1, 2t + 1]} be two support sets each

of them with 2t elements over a field F, with wi←$F, and f(x) := P (x)
Q(x) is

some unknown reduced rational function (i.e., P (x), Q(x) are co-prime), where
deg(P) = deg(Q) = t′ and t < t′ where t, t′ ∈ poly(λ). Additionally, assume
that Q(vi) 6= 0 and Q(wi) 6= 0 for every i ∈ [2t+ 1].

If we recover two rational function fV (x), fW (x) by interpolation on V,W ,
respectively, then

Pr [fV (x) = fW (x)] ≤ negl(λ)

over the choice of vi, wi.

Proof. Let fV (x) = A(x)/B(x) the rational function recovered by rational in-
terpolation over the support set V and let f(x) = P (x)/Q(x) be the ratio-
nal function interpolated over any 2t′ + 1 interpolation points. We have that
fV (vi) = f(vi) for all i ∈ [2t+ 1] and hence

A(vi)

B(vi)
=
P (vi)

Q(vi)
⇔ A(vi)Q(vi) = P (vi)B(vi).

Since gcd(P (x), Q(x)) = 1, then the polynomial P̃ (x) = A(x)Q(x)− P (x)B(x)
is different from the null polynomial. Moreover, vi is a root of P̃ (x), for all
i ∈ [2t + 1], and deg P̃ (x) ≤ t + t′ (which means that P̃ (x) has at most t + t′

roots).
Analogously, let fW = C(x)/D(x) be the rational function resulting from

interpolating over the support set W and let Q̃(x) = C(x)Q(x) − D(x)P (x).
We have that Q̃(wi) = 0 for all i ∈ [2t + 1]. Hence, if fV = fW , then we have
that the points wi are also roots of P̃ (x). But, since the points wi are chosen
uniformly at random from F (which is of exponential size when compared to
t, t′), then there is a negligible probability that all wi’s are roots of P̃ (x).

Concretely,

Pr [fV = fW] ≤ Pr
[
P̃ (wi) = 0∀i[2t]

]
=

2t∏
i

Pr
[
P̃ (wi) = 0

]
=

(
deg P̃

|F|

)2t

which is negligible for |F| ∈ ω(2log λ).

Theorem 1 (Correctness). The protocol secDT is correct.

Proof. The protocol interpolates two polynomials from two different support
sets. Then, it checks if the two interpolated polynomials are the same by com-
puting

C(1)
v (x) · C(2)

w (x)− C(1)
w (x) · C(2)

v (x))

which should be equal to 0 if C
(1)
v (x)/C

(2)
v (x) = C

(1)
w (x)/C

(2)
w (x).

17

If t′ ≤ t, then by Lemma 6, there is a unique rational function can be
recovered thus the final output of the algorithm should be 1.

On the other hand, if t′ > t, the linear system can be either unsolvable or
solvable but yielding two different solutions with overwhelming probability by
Lemma 9. In this case, the protocol outputs 0.

Theorem 2. The protocol secDT securely realizes FSDT in the (FORank,FOMM,
FOLS,FDecZero)-hybrid model against semi-honest adversaries corrupting at most
N − 1 parties, given that TPKE is IND-CPA.

Proof (Sketch). The idea of the proof is similar to the previous ones. The sim-
ulator sends the corrupted parties’ input to the ideal functionality and ob-
tains the output (either 0 or 1). Then, it simulates the ideal functionalities
(FORank,FOMM,FOLS,FDecZero) so that the output in the real-world execution
is the same as in the ideal-world execution. Indistinguishability of executions
holds given that TPKE is IND-CPA.

Communication complexity. When we instantiate FOLS with the protocol
from the previous section, the communication complexity of secDT is O(Nt2).

4 Multi-Party Threshold Private Set Intersec-
tion

We present our protocol for Threshold PSI in the multi-party setting. Our
protocol to privately compute the intersection can be seen as a generalization
of Ghosh and Simkin protocol [GS19] where we replace the OLE by a TPKE
(which fits nicer in a multi-party setting). The main difference between our
protocol and theirs is in the cardinality test protocol used.

We begin by presenting the protocol to securely compute a cardinality testing
between N sets. Then, we plug everything together in a PSI protocol.

4.1 Secure Cardinality Testing

Ideal functionality. The ideal functionality for Secure Cardinality Testing
receives the sets from all the parties and output 1 if and only if the intersec-
tion between these sets is larger than some threshold. Else, no information is
disclosed. The ideal functionality for multi-party cardinality testing is given as
follows.

18

FMPCT functionality

Parameters: sid, N, n, t ∈ N known to both parties.

• Upon receiving (sid,Pi, Si) from party Pi, FMPCT stores Si and
ignores future messages from Pi with the same sid;

• Once FMPCT has stored all inputs Si, for i ∈ [N], it does the
following: If |S∩| ≥ n− t, FMPCT outputs 1 to all parties, where
|S∩| = ∩Ni=1Si. Else, it returns 0.

Protocol. We introduce our multiparty Protocol 3 (based on degree test pro-
tocol) as follows.

Protocol 3 Private Cardinality Test for Multi-party MPCT

Setup: Given public parameters as follows: Values α1, . . . , α4t+2←$F, thresh-
old t ∈ N and N parties. Functionalities FGen and FSDT, and a IND-CPA
TPKE TPKE = (Gen,Enc,Dec).

Input: Each party P i inputs a set Si = {a(1)
i , . . . , a

(n)
i } ∈ Fn.

1: Each party Pi sends request (sid, requesti) to FGen and receives a secret key
share ski and a public key pk, which is known to every party involved in the
protocol.

2: Each party Pi encodes its set as a polynomial Pi(x) =
∏n
j=1(x − a(j)

i) and
evaluates it on 4t + 2 points. That is, it computes Pi(α1), . . . , Pi(α4t+2).

It encrypts the points, that is, c
(j)
i ← Enc(pk, ri · Pi(αj)) for a uniformly

chosen ri←$F. Finally, it broadcasts {c(j)i }j∈[4t+2].

3: Party P1 computes d(j) = (
∑N
i=1 c

(j)
i)/P1(αj) for each j ∈ [4t + 2]. Then,

sends {αi, d(j)}j for every j, and sk1 to the ideal functionality FSDT. Each
party Pi, for i = 2, . . . , N , send ski to FSDT to check if the degree of the
numerator (and the denominator) is at most t.

4: Upon receiving b ∈ {0, 1} from the ideal functionality FSDT, every party
outputs b.

Analysis. We now proceed to the analysis of the protocol described above.

Lemma 10. Given n characteristic polynomials with same degree from F[x], de-
noted as P1(x), . . . , Pn(x), we argue that, for any j, P ′(x) =

∑n
i=1 ri ·Pi(x) and

Pj(x) are relatively prime with probability 1 − negl(log |F|) if P1(x), . . . , Pn(x)
are mutually relatively prime, where ri←$F is a uniformly random element.

Proof. Supposing there is a common divisor of two polynomials P ′(x) and Pj(x),
since Pj(x) is a characteristic polynomial, we denote (x−s) the common divisor.
Therefore, we have P ′(s) = 0 which can be represented as

∑n
i=1 ri · Pi(s) = 0.

However, from the mutually relative primality of P1(x), . . . , Pn(x), we know

19

that Pi(s) cannot be zero simultaneously which means there exists at least one
i∗ to make Pi∗(s) 6= 0. Moreover, ri are all sampled uniformly from F, the
weighted sum of ri will not be zero with all but negligible probability. This is
a contradiction. Therefore, P ′(x) and Pj(x) will share a common divisor only
with negligible probability.

Theorem 3 (Correctness). The protocol MPCT described above is correct.

Proof. Note that the encryption d(j) computed by party P1 are equal to

d(j) = Enc

(
pk,

(
N∑
i=1

ri · Pi(αj)

)
/P1(αj)

)
.

Also, observe that∑N
i=1 ri · Pi(αj)
P1(αj)

=
P∩iSi

(αj) ·
∑N
i ri · PSi\(∩k 6=iSk)(αj)

P∩iSi(αj) · PS1\(∩k 6=1Sk)

=

∑N
i ri · PSi\(∩k 6=iSk)(αj)

PS1\(∩k 6=1Sk)(αj)
,

in this way, we make the numerator and denominator relatively prime except
with negligible probability by Lemma 10.

Observe that deg
∑N
i ri · PSi\(∩k 6=iSk)(x) ≤ t and degPS1\(∩k 6=1Sk)(x) ≤ t if

and only if S∩ ≥ n− t. Hence, by the correctness of FSDT, the protocol outputs
1 if S∩ ≥ n− t, and 0 otherwise.

Theorem 4. The protocol MPCT securely realizes functionality FMPCT in the
(FGen,FSDT)-hybrid model against any semi-honest adversaries corrupting up to
N − 1 parties, given that TPKE is IND-CPA.

Proof. Assume that the adversary is corrupting N − k parties in the protocol,
for k = 1, . . . , N−1. The simulator creates the secret keys and the public key of
a threshold PKE in the setup phase while simulating FGen and distributes the
secret keys between every party. The simulator Sim takes the inputs (which are
sets of size n, say Si1 , . . . , SiN−k

) of the corrupted parties and send them to the
ideal functionality FMPCT. It receives the output b from the ideal functionality. If
b = 0, the simulator chooses k uniformly chosen sets such that | ∩Ni=1 Si| < n− t
and proceed the simulation as the honest parties would do. If b = 1, , the
simulator chooses k uniformly chosen random sets such that | ∩Ni=1 Si| ≥ n − t
and proceed the simulation as the honest parties would do. Note that it can
simulate the ideal functionality FSDT since it knows all the secret keys of the
threshold PKE.

Indistinguishability of executions follows immediately from the IND-CPA
property of the underlying threshold PKE scheme.

Communication Complexity. When we instantiate the FSDT with the pro-
tocol from the previous section, each party broadcasts Õ(t2). Hence, the total
communication complexity is Õ(Nt2), assuming a broadcast channel.

20

4.2 Multy-party Threshold Private Set Intersection Pro-
tocol

In this section, we extend Ghosh and Simkin protocol [GS19] to the multi-party
setting using TPKE. We make use of the cardinality testing designed above to
get the Protocol 4.

Protocol 4 Multi-Party Threshold PSI MTPSI

Setup: Given public parameters as follows: Values α1, . . . , α3t+1←$F, thresh-
old t ∈ N and N parties. Functionalities FGen and FMPCT, and a threshold
additively PKE TPKE = (Gen,Enc,Dec).

Input: Each party Pi inputs a set Si = {a(1)
i , . . . , a

(n)
i } ∈ Fn.

1: Each party Pi sends its set Si to FMPCT. If the functionality FMPCT outputs
0, then every party Pi outputs ⊥ and terminates the protocol.

2: Each party Pi sends request (sid, requesti) to FGen and receives a secret key
share ski and a public key pk, which is known to every party involved in the
protocol.

3: for all Party Pi do

4: It encodes its set as a polynomial Pi(x) =
∏n
j=1(x − a(j)

i) and evaluates
it on 3t+ 1 points. That is, it computes Pi(α1), . . . , Pi(α3t+1).

5: It samples Ri(x)←$F[x] such that degRi(x) = t.

6: It encrypts these points using pk, that is, it computes c
(j)
i =

Enc(pk, Ri(αj) · Pi(αj)) for every j ∈ [3t+ 1].

7: It broadcasts {c(j)i }j∈[3t+1].
8: end for
9: Party P1 adds the ciphertexts to get d(j) =

∑N
i c

(j)
i for each j ∈ [3t+ 1]. It

broadcasts {d(j)}j∈[3t+1].

10: They mutually decrypt {d(j)}j∈[3t+1] to learn V (j) ← Dec(sk, d
(j)
N) for j ∈

[3t+ 1].
11: P1 computes the points Ṽ (j) = V (j)/P1(αj) for j ∈ [3t+ 1].

12: P1 interpolates a rational function using the pairs of points (αj , Ṽ
(j)).

13: P1 recovers the polynomial PS1\(∩iSi)(x) in the denominator.

14: P1 evaluates PS1\∩iSi
(x) on every point of its set {a(1)

1 , . . . , a
(n)
1 } to compute

∩iSi. That is, whenever PS1\∩iSi
(aj1) 6= 0, then aj1 ∈ ∩iSi.

15: It broadcasts the output ∩iSi.

Analysis. We now proceed to the analysis of the protocol described above.
We start by analyzing the correctness of the protocol and then its security.

Theorem 5 (Correctness). The protocol MTPSI is correct.

Proof. Assume that |S1 \
(
∩Ni=2Si

)
| ≤ t (note that this condition is guaranteed

after resorting to the functionality FMPCT in the first step of the protocol). After

21

the execution of the protocol, party P1 obtains the points V (j) =
∑N
i Pi(αj) ·

Ri(αj). Then,

Ṽ (j) =
V (j)

P1(αj)

=

∑N
i Pi(αj) ·Ri(αj)

P1(αj)

=
P∩iSi

(αj) ·
∑N
i PSi\(∩k 6=iSk)(αj) ·Ri(αj)

P∩iSi(αj) · PS1\(∩k 6=1Sk)(αj)

=

∑N
i PSi\(∩k 6=iSk)(αj) ·Ri(αj)

PS1\(∩k 6=1Sk)(αj)
.

Since P1 has 3t + 1 evaluated points of the rational function above, then it
can interpolate a rational function to recover the polynomial PS1\(∩k 6=1Sk). This
is possible because of Lemma 5 and the fact that

deg

(
N∑
i

PSi\(∩k 6=iSk)(αj) ·Ri(αj)

)
≤ 2t and deg

(
PS1\(∩k 6=1Sk)(αj)

)
≤ t.

Having computed the polynomial PS1\(∩k 6=1Sk), party P1 can compute the
intersection because the roots of this polynomial are exactly the elements in
S1 \ (∩k 6=1Sk).

Theorem 6. The protocol MTPSI securely realizes functionality FMTPSI in the
(FGen,FMPCT)-hybrid model against any semi-honest adversarie corrupting up
to N − 1 parties.

Proof. LetA be an adversary corrupting up to k parties involved in the protocol,
for any k ∈ [N − 1]. Let Pi1 , . . . ,Pik be the corrupted parties.

The simulator Sim works as follows:

1. It sends the inputs of the corrupted parties, Si1 , . . . , Sik , to the ideal func-
tionality FMTPSI. Sim either receives ⊥ or ∩iSi from the ideal functionality
FMTPSI.

2. Sim waits for A to send the corrupted parties’ inputs to the ideal func-
tionality FMPCT. If Sim has received ⊥ from FMPCT, then Sim leaks 0 to
A (and Z) and terminates the protocol. Else, Sim leaks 1 and continues.

3. Sim waits for A to send a request (sid, requestij) for each of the corrupted
parties (that is, for j ∈ [k]) to FGen. Upon receiving such requests, Sim
generates (pk, sk1, . . . , skN) ← Gen(1λ, N) and returns (pk, skij) for each
of the requests.

4. For each party P` such that ` 6= ij (where j ∈ [k]), Sim picks a random
polynomial U`(x) of degree n − | ∩i Si| + t and sends Enc(pk, R`(αj) ·

22

P∩iSi(αj) ·U`(αj)), where R`(x) is chosen uniformly at random such that
degR`(x) = t. From now on, Sim simulates the dummy parties as in the
protocol.

We now argue that both the simulation and the real-world scheme are in-
distinguishable from the point-of-view of any environment Z. In the real-world
scheme, party P1 obtains the polynomial

V (x) = P∩iSi(x) ·
N∑
i

PSi\(∩k 6=iSk)(x) ·Ri(x)

evaluated in 3t + 1 points. Assume that P1 is corrupted by A. Even in this
case, there is an index ` for which A does not know the polynomial R`(x). More
precisely, we have that

V (x) = P∩iSi
(x) ·

∑
i 6=`

PSi\(∩k 6=iSk)(x) ·Ri(x)

+ PS`\(∩k 6=`Sk)(x) ·R`(x)

 .

First, note that

deg

∑
i 6=`

PSi\(∩k 6=iSk)(x) ·Ri(x)

 = degPS`\(∩k 6=`Sk)(x)·R`(x) = n−|∩iSi|+t ≤ 2t.

Moreover, we have that, for any i ∈ [N]

degPSi\(∩k 6=iSk) ≤ t,

degRi(x) = t and

gcd
(
PSi\(∩k 6=iSk), PSj\(∩k 6=jSk)

)
= 1

for any j 6= i.
Hence, by Lemma 4, we can build a sequence of hybrids where we replace

V (x) by the polynomial

V ′(x) = P∩iSi
(x) · U(x)

where degU(x) = n−|∩iSi|+t, as in the ideal-world execution. Indistinguisha-
bility of executions follows.

Communication complexity. When we instantiate the ideal functionality
FMPCT with the protocol from the previous section the scheme has communica-
tion complexity Õ(Nt2).

23

Acknowledgment

Pedro Branco: Part of this work was done while the author was at CISPA.
The author is supported by DP-PMI and FCT (Portugal) through the grant
PD/BD/135181/2017. This work is supported by Security and Quantum Infor-
mation Group of Instituto de Telecomunicações, by the Fundação para a Ciência
e a Tecnologia (FCT) through national funds, by FEDER, COMPETE 2020,
and by Regional Operational Program of Lisbon, under UIDB/50008/2020.

References

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group sig-
natures. In Matthew Franklin, editor, Advances in Cryptology –
CRYPTO 2004, volume 3152 of Lecture Notes in Computer Sci-
ence, pages 41–55, Santa Barbara, CA, USA, August 15–19, 2004.
Springer, Heidelberg, Germany.

[BBV+20] Alex Berke, Michiel Bakker, Praneeth Vepakomma, Kent Larson,
and Alex ’Sandy’ Pentland. Assessing disease exposure risk with
location data: A proposal for cryptographic preservation of privacy,
2020.

[BdV18] Niek J. Bouman and Niels de Vreede. New protocols for secure
linear algebra: Pivoting-free elimination and fast block-recursive
matrix decomposition. IACR Cryptology ePrint Archive, 2018:703,
2018.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF
formulas on ciphertexts. In Joe Kilian, editor, TCC 2005: 2nd
Theory of Cryptography Conference, volume 3378 of Lecture Notes
in Computer Science, pages 325–341, Cambridge, MA, USA, Febru-
ary 10–12, 2005. Springer, Heidelberg, Germany.

[BMR20] Saikrishna Badrinarayanan, Peihan Miao, and Peter Rindal. Multi-
party threshold private set intersection with sublinear communica-
tion. Cryptology ePrint Archive, Report 2020/600, 2020. https:

//eprint.iacr.org/2020/600.

[Can01] Ran Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In 42nd Annual Symposium on Foun-
dations of Computer Science, pages 136–145, Las Vegas, NV, USA,
October 14–17, 2001. IEEE Computer Society Press.

[CD01] Ronald Cramer and Ivan Damg̊ard. Secure distributed linear alge-
bra in a constant number of rounds. In Joe Kilian, editor, Advances
in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 119–136, Santa Barbara, CA, USA, Au-
gust 19–23, 2001. Springer, Heidelberg, Germany.

24

https://eprint.iacr.org/2020/600
https://eprint.iacr.org/2020/600

[CDN01] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Mul-
tiparty computation from threshold homomorphic encryption.
In Birgit Pfitzmann, editor, Advances in Cryptology – EURO-
CRYPT 2001, volume 2045 of Lecture Notes in Computer Science,
pages 280–299, Innsbruck, Austria, May 6–10, 2001. Springer, Hei-
delberg, Germany.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Uni-
versally composable security with global setup. In Salil P. Vadhan,
editor, TCC 2007: 4th Theory of Cryptography Conference, volume
4392 of Lecture Notes in Computer Science, pages 61–85, Amster-
dam, The Netherlands, February 21–24, 2007. Springer, Heidelberg,
Germany.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set
intersection meets big data: an efficient and scalable protocol. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 2013: 20th Conference on Computer and Communi-
cations Security, pages 789–800, Berlin, Germany, November 4–8,
2013. ACM Press.

[DKT10] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-
complexity private set intersection protocols secure in malicious
model. In Masayuki Abe, editor, Advances in Cryptology – ASI-
ACRYPT 2010, volume 6477 of Lecture Notes in Computer Science,
pages 213–231, Singapore, December 5–9, 2010. Springer, Heidel-
berg, Germany.

[DMRY09] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti
Yung. Efficient robust private set intersection. In Michel Abdalla,
David Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, ed-
itors, ACNS 09: 7th International Conference on Applied Cryptog-
raphy and Network Security, volume 5536 of Lecture Notes in Com-
puter Science, pages 125–142, Paris-Rocquencourt, France, June 2–
5, 2009. Springer, Heidelberg, Germany.

[Elg85] T. Elgamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on Information
Theory, 31(4):469–472, 1985.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient
private matching and set intersection. In Christian Cachin and Jan
Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004,
volume 3027 of Lecture Notes in Computer Science, pages 1–19,
Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg, Ger-
many.

25

[GJR10] Elena Grigorescu, Kyomin Jung, and Ronitt Rubinfeld. A lo-
cal decision test for sparse polynomials. Inf. Process. Lett.,
110(20):898–901, September 2010.

[GN19] Satrajit Ghosh and Tobias Nilges. An algebraic approach to mali-
ciously secure private set intersection. In Yuval Ishai and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019,
Part III, volume 11478 of Lecture Notes in Computer Science, pages
154–185, Darmstadt, Germany, May 19–23, 2019. Springer, Heidel-
berg, Germany.

[GS19] Satrajit Ghosh and Mark Simkin. The communication com-
plexity of threshold private set intersection. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptology
– CRYPTO 2019, Part II, volume 11693 of Lecture Notes in Com-
puter Science, pages 3–29, Santa Barbara, CA, USA, August 18–22,
2019. Springer, Heidelberg, Germany.

[HOS17] P. Hallgren, C. Orlandi, and A. Sabelfeld. Privatepool: Privacy-
preserving ridesharing. In 2017 IEEE 30th Computer Security
Foundations Symposium (CSF), pages 276–291, 2017.

[HV17] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam.
Scalable multi-party private set-intersection. In Serge Fehr, ed-
itor, PKC 2017: 20th International Conference on Theory and
Practice of Public Key Cryptography, Part I, volume 10174 of Lec-
ture Notes in Computer Science, pages 175–203, Amsterdam, The
Netherlands, March 28–31, 2017. Springer, Heidelberg, Germany.

[IKN+17] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit
Saxena, Karn Seth, David Shanahan, and Moti Yung. Private
intersection-sum protocol with applications to attributing aggre-
gate ad conversions. Cryptology ePrint Archive, Report 2017/738,
2017. http://eprint.iacr.org/2017/738.

[KDS91] Erich Kaltofen and B. David Saunders. On wiedemann’s method
of solving sparse linear systems. In Harold F. Mattson, Teo Mora,
and T. R. N. Rao, editors, Applied Algebra, Algebraic Algorithms
and Error-Correcting Codes, pages 29–38, Berlin, Heidelberg, 1991.
Springer Berlin Heidelberg.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and
Ni Trieu. Efficient batched oblivious PRF with applications to pri-
vate set intersection. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 2016: 23rd Conference on Computer and Communi-
cations Security, pages 818–829, Vienna, Austria, October 24–28,
2016. ACM Press.

26

http://eprint.iacr.org/2017/738

[KMWF07] Eike Kiltz, Payman Mohassel, Enav Weinreb, and Matthew K.
Franklin. Secure linear algebra using linearly recurrent sequences.
In Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryptogra-
phy Conference, volume 4392 of Lecture Notes in Computer Sci-
ence, pages 291–310, Amsterdam, The Netherlands, February 21–
24, 2007. Springer, Heidelberg, Germany.

[KS05] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set
operations. In Victor Shoup, editor, Advances in Cryptology –
CRYPTO 2005, volume 3621 of Lecture Notes in Computer Sci-
ence, pages 241–257, Santa Barbara, CA, USA, August 14–18, 2005.
Springer, Heidelberg, Germany.

[Mea86] C. Meadows. A more efficient cryptographic matchmaking protocol
for use in the absence of a continuously available third party. In
1986 IEEE Symposium on Security and Privacy, pages 134–134,
1986.

[MTZ03] Yaron Minsky, Ari Trachtenberg, and Richard Zippel. Set reconcili-
ation with nearly optimal communication complexity. IEEE Trans.
Information Theory, 49(9):2213–2218, 2003.

[NW06] Kobbi Nissim and Enav Weinreb. Communication efficient secure
linear algebra. In Shai Halevi and Tal Rabin, editors, TCC 2006:
3rd Theory of Cryptography Conference, volume 3876 of Lecture
Notes in Computer Science, pages 522–541, New York, NY, USA,
March 4–7, 2006. Springer, Heidelberg, Germany.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite de-
gree residuosity classes. In Jacques Stern, editor, Advances in Cryp-
tology – EUROCRYPT’99, volume 1592 of Lecture Notes in Com-
puter Science, pages 223–238, Prague, Czech Republic, May 2–6,
1999. Springer, Heidelberg, Germany.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-
light: Lightweight private set intersection from sparse OT exten-
sion. In Alexandra Boldyreva and Daniele Micciancio, editors, Ad-
vances in Cryptology – CRYPTO 2019, Part III, volume 11694 of
Lecture Notes in Computer Science, pages 401–431, Santa Barbara,
CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner.
Phasing: Private set intersection using permutation-based hash-
ing. In Jaeyeon Jung and Thorsten Holz, editors, USENIX Se-
curity 2015: 24th USENIX Security Symposium, pages 515–530,
Washington, DC, USA, August 12–14, 2015. USENIX Association.

27

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi
Wieder. Efficient circuit-based PSI via cuckoo hashing. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptol-
ogy – EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes
in Computer Science, pages 125–157, Tel Aviv, Israel, April 29 –
May 3, 2018. Springer, Heidelberg, Germany.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster pri-
vate set intersection based on OT extension. In Kevin Fu and
Jaeyeon Jung, editors, USENIX Security 2014: 23rd USENIX Secu-
rity Symposium, pages 797–812, San Diego, CA, USA, August 20–
22, 2014. USENIX Association.

[RR17a] Peter Rindal and Mike Rosulek. Improved private set intersec-
tion against malicious adversaries. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, Advances in Cryptology – EURO-
CRYPT 2017, Part I, volume 10210 of Lecture Notes in Computer
Science, pages 235–259, Paris, France, April 30 – May 4, 2017.
Springer, Heidelberg, Germany.

[RR17b] Peter Rindal and Mike Rosulek. Malicious-secure private set inter-
section via dual execution. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017:
24th Conference on Computer and Communications Security, pages
1229–1242, Dallas, TX, USA, October 31 – November 2, 2017. ACM
Press.

[ST06] Berry Schoenmakers and Pim Tuyls. Efficient binary conversion for
Paillier encrypted values. In Serge Vaudenay, editor, Advances in
Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in
Computer Science, pages 522–537, St. Petersburg, Russia, May 28 –
June 1, 2006. Springer, Heidelberg, Germany.

28

Appendix A Preliminaries Cont’d

A.1 Threshold Public-Key Encryption

In this work, we will use Public-Key Encryption schemes and a variant of it:
Threshold Public-key Encryption. We now define Threshold Public-key Encryp-
tion. Such schemes can be instantiated from several hardness assumptions such
as DDH, DCR or pairing-based assumptions [HV17].

Definition 4 (Threshold Public-Key Encryption). A Threshold Public-Key En-
cryption (TPKE) scheme is defined by the following algorithms:

• (pk, sk1, . . . , skN) ← Gen(1λ, N) takes as input a security parameter. It
outputs a public key pk and N secret keys (sk1, . . . , skN).

• c← Enc(pk,m) takes as input a public key pk and a message m ∈ {0, 1}∗.
It outputs a ciphertext c.

• c′ ← Dec(ski, c) takes as input one of the secret keys ski and a ciphertext.
It outputs a share decryption c′ of c.

Correctness. For any N ∈ N and any permutation π : [N] → [N], we have
that

Pr
[
m← Dec(skπ(N),Dec(skπ(N−1), . . .Dec(skπ(1),Enc(pk,m)) . . .))

]
= 1

where (pk, sk1, . . . , skN)← Gen(1λ, N).

IND-CPA security. For any N ∈ N, any permutation π : [N] → [N] and
any adversary A, we require that

Pr

b← A(c, st) :

(pk, sk1, . . . , skN)← Gen(1λ, N)

(m0,m1, st)← A
(
pk, skπ(1), . . . , skπ(k)

)
b←$ {0, 1}

c← Enc(pk,mb)

 ≤ negl(λ)

for any k < N .

Additive Homomorphism. We also assume that the TPKE (or plain PKE)
is homomorphic for additive operation.11 That is, for all pk, sk1, . . . , skN) ←
Gen(1λ, N), we can define two groups (M,⊕), (C,⊗) such that, given two ci-
phertexts c1 ← Enc(pk,m1) and c2 ← Enc(pk,m2), we require that

c1 ⊗ c2 = Enc(pk,m1 ⊕m2).

By abuse of notation, we usually denote the operations of M and C as +.

11From now on, we always assume that PKE and TPKE used in this work fulfill this
property, unless stated otherwise.

29

Ideal Functionalities. We present some ideal functionalities regarding TPKE
schemes. In the following, N is the number of parties.

Let FGen be the ideal functionality that distributes a secret share of the secret
key and the corresponding public key. That is, on input (sid,Pi), FGen outputs
(pk, ski) to each party party where (pk, sk1, . . . , skN)← TPKE.Gen(1λ, N).

Moreover, we define the functionality FDecZero, which allows N parties, each
of them holding a secret share ski, to learn if a ciphertext is an encryption of 0
and nothing else. That is, FDecZero receives as input a ciphertext c and the secret
shares of each of the parties. It outputs 0, if 0 ← Dec(sk, . . .Dec(skN , c) . . .),
and 1 otherwise.

Note that these functionalities can be securely realized using on varies PKE
schemes such as El Gamal PKE or Pailler PKE [HV17].

Appendix B Oblivious Linear Algebra

B.1 Compute the Rank of a Matrix

Protocol. We now present the Protocol 5 to compute the rank of an encrypted
matrix.

Protocol 5 Secure Rank secRank
Setup: Each party has a secret key share ski for a public key pk of a TPKE

TPKE = (Gen,Enc,Dec). The parties have access to the oblivious matrix
multiplication ideal functionality FOMM.

Input: Party P1 inputs Enc(pk,M) where M ∈ Ft×t.
1: Each party Pi broadcasts an encrypted uniformly chosen at random unit

upper and lower triangular Toeplitz matrices Enc(pk,Ui) and Enc(pk,Li)
and a uniformly chosen at random diagonal matrix Enc(pk,Xi), where
Ui,Li ∈ Ft×t and Xi ∈ Ft×t.

2: Each party Pi computes: i) Enc(pk,X) =
∑
i Enc(pk,Xi), ii) Enc(pk,U) =∑

i Enc(pk, (
∑
i Ui) − (N − 1)I), and iii) Enc(pk,L) = Enc(pk, (

∑
i Li) −

(N − 1)I), where I is the identity matrix.
3: All parties mutually compute Enc(pk,N) = Enc(pk,XUML) via three in-

vocations of FOMM.
4: Each party Pi samples ui,vi←$Ft and broadcasts Enc(pk,ui),Enc(pk,vi).
5: Each party Pi computes Enc(pk,u) =

∑
j Enc(pk,uj) and Enc(pk,v) =∑

j Enc(pk,vj). Then, it computes the sequence Enc(a) with 2 log t

invocations of FOMM,12where a = {a0, . . . ,a2t−1} and Enc(pk,aj) =
Enc(pk,uNjv) for 0 ≤ j ≤ 2t− 1.

6: All parties mutually compute Enc(pk, r − 1) where r is the degree of ma,
the minimal polynomial of the (encrypted) sequence Enc(a). This can be
calculated using a Boolean circuit with size O(t2k log t) (which, by Lemma
?? and Protocol ??, can be securely realized using TPKE).

30

Analysis. We analyze the correctness and security of the protocol.

Lemma 11 (Correctness). The protocol secRank is correct.

Proof. The correctness of the protocol is guaranteed by Lemma 2 and Lemma
3.

Lemma 12 (Security). The protocol secRank securely realizes FORank in the
FOMM-hybrid model against semi-honest adversaries corrupting up to N − 1
parties, given that TPKE is IND-CPA.

Proof (Sketch). The simulator takes the corrupted parties input, sends them to
the ideal functionality and simulates the protocol as the honest parties would
do. It is easy to see that, even when the adversary corrupts N − 1 parties, the
information is hidden by the TPKE and thus no information on M is leaked to
the adversary by the IND-CPA of the underlying TPKE.

Complexity. Each party broadcasts O(t2k log t) bits of information, where
k = log |F|. To see this, note that the communication of the protocol is dom-
inated by the computation of the circuit that computes the degree of a and
this can be implemented with communication cost of O(t2k log t) [KMWF07].
Assuming a broadcast channel, the communication complexity is Õ(Nt2)

B.2 Invert a Matrix

In this section, we present and analyze a protocol that allows N parties to invert
an encrypted matrix. In this setting, each of the N parties holds a secret share
of a public key pk of a TPKE. Given an encrypted matrix, they want to compute
an encryption of the inverse of this matrix.

Ideal Functionality. The ideal functionality of oblivious rank computation
is defined below.

FOInv functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q,
known to the N parties involved in the protocol. pk public-key of a
threshold PKE scheme.

• Upon receiving (sid,P1,Enc(pk,M)) from party P1 (where M ∈
Ft×t is a non-singular matrix), FORank outputs Enc(pk,M−1) to
P1 and (Enc(pk,M),Enc(pk,M−1)) to all other parties Pi, for
i = 2, . . . , N .

12We can perform t multiplications in O(log t) calls to FOMM by performing multiplications
in a batched fashion [KMWF07].

31

Protocol. We now describe the Protocol 6 that allows N parties to jointly
compute the encryption of the inverse of a matrix, given that this matrix is
non-singular.

Protocol 6 Secure Matrix Invert secInv
Setup: Each party has a secret key share ski for a public key pk of a TPKE

TPKE = (Gen,Enc,Dec).
Input: Party P1 inputs Enc(pk,M) where M ∈ Ft×t is a non-singular matrix.

1: Each party Pi samples a non-singular matrix Ri←$Ft×t.
2: Set Enc(pk,M′) := Enc(pk,M).
3: for i from 1 to N do
4: Pi calculates Enc(pk,M′) = Enc(pk,RiM

′)
5: Pi broadcasts Enc(pk,M′).
6: end for
7: All parties mutually decrypt the final Enc(pk,M′). Then they compute its

inverse to obtain Enc(pk,N′) = Enc(pk,M′−1
∏
i R
−1
i).

8: for i from N to 1 do
9: Pi computes Enc(pk,N′) = Enc(pk,N′R−1

i).
10: Pi broadcasts Enc(pk,N′)
11: end for
12: Finally, P1 outputs Enc(pk,M−1) = Enc(pk,N′).

Analysis. The proofs of the following lemmas follow the same lines as the
proofs in the analysis of secMult protocol. We state the lemmas but omit the
proofs for briefness.

Lemma 13. The protocol secInv is correct.

Lemma 14. The protocol secInv securely realizes FOInv against semi-honest
adversaries corrupting up to N − 1 parties, given that TPKE is IND-CPA.

Complexity. Each party broadcasts O(t2) bits of information. The commu-
nication complexity of the protocol is O(Nt2), assuming a broadcast channel.

B.3 Secure Unary Representation

Following [KMWF07], we present a protocol that allows to securely compute
the unary representation of a matrix.

Ideal Functionality. The ideal functionality for Secure Unary Representa-
tion is given below.

32

FSUR functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q,
known to the N parties involved in the protocol. pk public-key of a
threshold PKE scheme.

• Upon receiving (sid,P1,Enc(pk, r)) from party P1 (where r ∈
F and r ≤ t), FSUR computes (Enc(pk, δ1), . . . ,Enc(pk, δt))
such that δi = 1 if i ≤ r, and δi = 0 otherwise. The
functionality outputs (Enc(pk, δ1), . . . ,Enc(pk, δt)) to P1 and
(Enc(pk, r), (Enc(pk, δ1), . . . ,Enc(pk, δt))) to all other parties Pi,
for i = 2, . . . , N .

Protocol. A protocol for secure unary representation can be implemented us-
ing Lemma ??. That is, given Enc(pk, r), all parties jointly compute Enc(pk, δi),
where δi = 1, if i ≤ r, and δi = 0, otherwise, via a Boolean circuit (which
can be securely implemented using only TPKE). Correctness and security is
guaranteed by Lemma ??.

Communication complexity. We can calculate the result using a Boolean
circuit of size O(r log t), thus the communication complexity is O(Nr log t).

B.4 Solve a Linear System

Protocol. We now present the Protocol 7 that allows multiple parties to solve
an encrypted linear system. In the following, we assume that the system has at
least one solution (note that this can be guaranteed using the secRank protocol).

Analysis.

Lemma 15 (Correctness). The protocol secLS is correct.

Proof. The proof follows directly from [KDS91, KMWF07].

Lemma 16. The protocol secLS securely realizes FOLS in the (FORank,FOInv,FSUR)-
hybrid model against semi-honest adversaries corrupting up to N − 1 parties,
given that TPKE is IND-CPA.

Communication complexity. Each party broadcasts O(t2k log t) bits of in-
formation where k = |F|. The total communication complexity is Õ(t2).

33

Protocol 7 Secure Linear Solve secLS
Setup: Each party has a secret key share ski for a public key pk of a TPKE

TPKE = (Gen,Enc,Dec). The parties have access to the ideal functionalities
FORank, FOInv and FSUR.

Input: Party P1 inputs Enc(pk,M) where M ∈ Ft×t is a non-singular matrix.
1: All parties jointly compute an encryption of the rank Enc(pk, r) of M via

the ideal functionality FORank.
2: Set Enc(pk,M′) := Enc(pk,M) and Enc(pk,y′) := Enc(pk,y).
3: for i from 1 to N do
4: Pi samples two non-singular matrices Ri,Qi from Ft×t. It calculates

Enc(pk,M′) = Enc(pk,RiM
′Qi) and Enc(pk,y′) = Enc(pk,Riy

′). Pi
broadcasts Enc(pk,M′),Enc(pk,y′).

5: end for
6: All the parties jointly compute Enc(δ1), . . . ,Enc(δt) by invoking FSUR on

input Enc(pk, r). They set Enc(pk,∆) := Enc

pk,

δ1 . . . 0
...

. . .
...

0 . . . δt


. Finally,

they compute Enc(pk,N) := Enc(pk,M′ ·∆ + It−∆), where It ∈ Ft×t is the
identity matrix.

7: All the parties jointly compute Enc(N−1) by invoking FOInv on input
Enc(pk,N).

8: Each party Pi samples ui←$Ft and broadcasts (Enc(pk,M′ui),Enc(pk,ui)).

9: All parties jointly compute Enc(pk,u′) = Enc(pk,N−1y′r) by invoking
FOMM, where Enc(pk,y′r) = Enc(pk, (y′ +

∑
j M′uj)∆). Then they set

Enc(pk,x) = Enc(pk, (
∑
j uj)− u′).

10: for i from N to 1 do
11: Pi calculates Enc(pk,x) = Enc(pk,Q−1

i x). Pi broadcasts Enc(pk,x).
12: end for
13: P1 outputs Enc(pk,x).

34

	Introduction
	Applications of Threshold PSI
	Our Contributions
	Concurrent Work

	Technical Outline
	Threshold PSI: The Protocol of C:GhoSim19
	Our Approach

	Other Related Work

	Preliminaries
	Threshold Public-key Encryption
	UC Framework and Ideal Functionalities
	Weak UC-Security

	Externalized UC Protocol with Global Setup
	-EUC Secure Realization.

	Linear Algebra and Polynomials
	Minimal Polynomial of a Matrix
	Compute the Rank of a Matrix and Solve a Linear System
	Polynomials and Interpolation

	Obliviously Degree Test for Rational Functions
	Oblivious matrix multiplication
	Oblivious Linear System
	Oblivious Degree Test

	Multi-Party Threshold Private Set Intersection
	Secure Cardinality Testing
	Multy-party Threshold Private Set Intersection Protocol

	Preliminaries Cont'd
	Threshold Public-Key Encryption

	Oblivious Linear Algebra
	Compute the Rank of a Matrix
	Invert a Matrix
	Secure Unary Representation
	Solve a Linear System

