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Abstract. As lattice-based key encapsulation, digital signature, and
fully homomorphic encryption schemes near standardisation, ever more
focus is being directed to the precise estimation of the security of these
schemes. The primal attack reduces key recovery against such schemes
to instances of the unique Shortest Vector Problem (uSVP). Dachman-
Soled et al. (Crypto 2020) recently proposed a new approach for fine-
grained estimation of the cost of the primal attack when using Progres-
sive BKZ for the lattice reduction step. In this paper we review and
extend their technique to BKZ 2.0 and provide extensive experimental
evidence of its accuracy. Using this technique we also explain results from
previous primal attack experiments by Albrecht et al. (Asiacrypt 2017)
where attacks succeeded with smaller than expected block sizes. Finally,
we use our simulators to reestimate the cost of attacking the three lattice
finalists of the NIST Post Quantum Standardisation Process.
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1 Introduction

In recent years, the popularity of lattice-based cryptography has greatly in-
creased. Lattices have been used to design traditional cryptographic primitives
such as one way functions, public key encryption, key exchange, digital signa-
tures, as well as more advanced constructions such as identity and attribute
based encryption, and fully homomorphic encryption.

One reason for this popularity is that lattice problems, e.g. the Shortest Vec-
tor Problem (SVP) and Bounded Distance Decoding (BDD), are believed to be
hard for both classical and quantum computers. Hence, schemes based on such
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problems are good candidates for providing quantum-safe public key cryptog-
raphy. Indeed, 23 of the original 69 complete and proper schemes submitted to
the National Institute of Standards and Technology (NIST) as part of the Post
Quantum Standardisation Process [NIS16] are based on various lattice problems
with varying amounts of structure. Given the long shelf life of cryptographic
standards and the high stakes of standardising primitives, the security of these
schemes, and thus the concrete hardness of lattice problems, should be under-
stood in detail.

Two popular problems chosen to design lattice-based schemes are the Learn-
ing With Errors (LWE) problem (with its ring and module variants) and the
NTRU problem. A variety of attack strategies against these problems exist.
Asymptotically, the best option is the approach of Arora–Ge [AG11], while,
again asymptotically, in the case of binary secrets, BKW variants [KF15,GJS15]
perform well. In practice however, the best attacks seem to be the primal,
dual and hybrid attacks. All three rely on lattice reduction algorithms, such
as BKZ [SE91,SE94], BKZ 2.0 [CN11], Progressive BKZ [AWHT16], Self-Dual
BKZ [MW16], G6K [ADH+19] and Slide Reduction [GN08a], to find either a
unique (up to sign) embedded shortest vector, or more generally a good lat-
tice basis. In particular, the primal attack is often estimated as the cheapest
option [ACD+18].

The primal attack against LWE and NTRU consists of using lattice reduc-
tion to solve an instance of the unique Shortest Vector Problem (uSVP). The
most popular lattice reduction algorithm is BKZ. Current complexity estimates
for solving uSVP directly depend on estimating the smallest block size β such
that BKZ-β successfully recovers the unique shortest vector. This β is commonly
found by following the methodology introduced in [ADPS16, §6.3], and experi-
mentally investigated in [AGVW17].

In their experiments, Albrecht et al. [AGVW17], and later Bai et al. [BMW19],
report that smaller than expected block sizes can result in a non-negligible proba-
bility of solving uSVP instances arising from the primal attack, when using BKZ.
Some concerns were raised [BCLv19] that this could indicate an overestimate of
the complexity of the primal attack for cryptographically sized instances. Fur-
thermore, the experiments carried out in 2017 [AGVW17] only focused on recov-
ering a unique shortest vector sampled coefficientwise from a discrete Gaussian
distribution. While [AGVW17] claims that the [ADPS16] methodology would
also hold for binary and ternary distributions, the authors do not provide exper-
imental evidence. Recent work [CCLS20] revisited the binary and ternary case
in the small block size regime β ≤ 45 and observed higher success probabilities
than predicted.

Dachman-Soled et al. [DSDGR20] recently proposed an approach for esti-
mating the complexity of the primal attack that makes use of probability dis-
tributions for the norms of particular projections of the unique shortest vector,
rather than only expected values. This results in a new approach that allows
one to better predict the behaviour of the attack when considering block sizes
smaller than those expected to be successful by the [ADPS16] methodology. The



authors of [DSDGR20] use this approach to develop a simulator that predicts
the expected block size by which Progressive BKZ will solve an isotropic uSVP
instance. In this work, we call such a simulator a uSVP simulator. They use this
in the setting of solving LWE instances with extra hints about the secret, and
verify the accuracy of their predictions as the number of hints varies.

Our contributions. Our first contribution is the implementation of a variant
of the uSVP simulator for Progressive BKZ, and the development of a new uSVP
simulator for BKZ 2.0. Rather than only returning the expected successful block
size, we extract full probability mass functions for successful block sizes, which
allow for a more direct comparision to experimental results. Our simulators are
also faster than that in [DSDGR20], allowing for potentially easier inclusion in
parameter selection scripts, such as the LWE estimator [APS15].

Our second contribution is extensive experiments on the success probability
of different block sizes for BKZ 2.0 and Progressive BKZ, on uSVP lattices gen-
erated from LWE instances with discrete Gaussian, binary or ternary secret and
error distributions. Our experiments show that the uSVP simulators accurately
predict the block sizes needed to solve uSVP instances via lattice reduction, for
all distributions tested.

As a final contribution, we reestimate the security of the three lattice based
NIST PQC finalists using our uSVP simulators. We compare the expected block
sizes they suggest to those predicted by the original methodology of [ADPS16].
We note that our uSVP simulators estimate that a slightly larger average block
size than predicted is required, meaning that [ADPS16] likely resulted in an
underestimate of their security.1 We also observe that this phenomenon can,
in large part, be attributed to the original [ADPS16] methodology using the
Geometric Series Assumption. Replacing this assumption with the output of
the [CN11] BKZ simulator reduces the predictive gap between the [ADPS16]
methodology and our uSVP simulators.

All our code and data can be found at github.com/fvirdia/usvp-simulation.

Related work. The Geometric Series Assumption (GSA), used to predict the
output quality of lattice reduction, was introduced in [Sch03]. A simulator, specif-
ically for the output quality of BKZ, was introduced in [CN11]. This simulator
more accurately predicts the final, or tail, region of the basis profile of a BKZ re-
duced lattice, improving over the GSA. A refined BKZ simulator was presented
in [BSW18], which improves over the [CN11] simulator in the first region, or head,
of the basis profile. Alkim et al. [ADPS16] introduced a BKZ specific method for
estimating the block size required to solve uSVP instances arising from the pri-
mal attack, the experimental accuracy of which was investigated in [AGVW17].
This method, combined with basis profile simulation after BKZ reduction and
arguments about distributions describing the lengths of projections of the unique
1 A similar phenomenon had also been observed in [DSDGR20] for NTRU-HPS.
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short vector, is extended in [DSDGR20] to predict the expected block size by
which Progressive BKZ will solve isotropic uSVP instances.

Paper structure. In Section 2 we introduce the necessary preliminaries and
notation regarding linear algebra, lattice computational problems, and lattice
reduction. In Section 3 we review the original [ADPS16] methodology for pre-
dicting the expected required block sizes for solving uSVP instances. In Section 4
we review the approach of [DSDGR20] and use it to propose uSVP simulators
for BKZ 2.0 and Progressive BKZ. In Section 5 we describe our experiments
and results. In Section 6 we use our uSVP simulators to provide preliminary es-
timates of the block sizes required to successfully perform key recovery attacks
on the three NIST PQC lattice finalists, and compare this to predictions using
the [ADPS16] methodology.

2 Preliminaries

Linear algebra. The set {1, . . . , n} is denoted by [n]. We denote vectors by
bold lowercase letters such as v, and matrices by bold uppercase letters such
as M . We denote the n × n identity matrix as In. Throughout, we use row or
column vectors as more convenient, and count indices from 1. We represent a
basis {b1, . . . , bd} of Rd as the matrix B having the basis vectors as rows. Given
a basis B, we can derive an orthogonal basis B∗ via the Gram–Schmidt process.
The rows of B∗ are

b∗i = bi −
∑
j<i

µi,jb
∗
j for i ∈ [d], where µi,j = 〈bi, b∗j 〉/‖b

∗
j‖2 for i > j.

We denote by spanR ({vi}i) = {
∑

i λivi : λi ∈ R} the real span of a set of
real vectors {vi}i. Given a basis B of Rd we denote by πB,k : Rd → Rd the linear
operator projecting vectors orthogonally to the subspace spanR ({b1, . . . , bk−1}).
Note πB,1 is the identity on Rd. We write πi when the basis is clear from context.
Given a vector space V = spanR(B), its projective subspace πk(V ) of dimension
d− k + 1 has a basis {πk(bk), . . . , πk(bd)}, where

πk(bi) = bi −
∑
j<k

µi,jb
∗
j = b∗i +

∑
k≤j<i

µi,jb
∗
j for i ≥ k.

By definition, this implies that πk(bk) = b∗k, and that πj(πk(v)) = πk(v) for
any j ≤ k. Given an orthogonal basis B∗ and a vector t = t∗1b

∗
1 + · · ·+ t∗db

∗
d, its

projections are given by πk(t) = t∗kb
∗
k + · · ·+ t∗db

∗
d. We abuse notation and write

πi(B[j : k]) to mean the matrix with rows πi(bj), . . . , πi(bk).

Probability. Given a probability distribution D with support S ⊂ R, we de-
note sampling an element s ∈ S according to D as s ← D. For a finite support
S, we denote the uniform distribution over S as U(S). We denote the mean and



variance of D as E(s) or E(D), and V(s) or V(D), respectively. Sometimes we use√
V to denote the standard deviation. Given a discrete (resp. continuous) proba-

bility distribution D, we denote its probability mass function (resp. probability
density function) as fD and its cumulative mass function (resp. cumulative den-
sity function) as FD. Given s ← D, by definition P [s ≤ x] = FD(x). We recall
the conditional probability chain rule. If E1, …, En are events, then

P [E1 ∩ · · · ∩ En] = P [E1|E2 ∩ · · · ∩ En]P [E2 ∩ · · · ∩ En].

We denote by Γ the gamma function

Γ (x) =

∫ ∞

0

tx−1e−tdt for x > 0.

The Gaussian distribution. We recall some properties of the continuous
Gaussian distribution. We denote by N(µ, σ2) the probability distribution over
R of mean µ and standard deviation σ (i.e. variance σ2) with probability density
function

fN(µ,σ2)(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )

2

.

Given a random variable X ∼ N(µX , σ2
X) and a scalar λ > 0, the random

variable Y = λ · X follows a distribution N(λµX , λ2σ2
X). Given n independent

and identically distributed random variables Xi ∼ N(0, 1), the random variable
X2

1 + · · · + X2
n follows a chi-squared distribution χ2

n over R≥0 of mean n and
variance 2n, with probability density function

fχ2
n
(x) =

1

2n/2Γ (n/2)
xn/2−1e−x/2.

Given n independent and identically distributed random variables Yi ∼ N(0, σ2),
the random variable Y 2

1 + · · ·+Y 2
n follows a distribution σ2 ·χ2

n of mean nσ2 and
variance 2nσ4, that is, a chi-squared distribution where every sample is scaled
by a factor σ2. We call this a scaled chi-squared distribution.

Discrete Gaussians. We denote by Dµ,σ the discrete Gaussian distribution
over Z with mean µ ∈ R and standard deviation σ ∈ R+. It has probability mass
function fDµ,σ

: Z → [0, 1], x 7→ fN(µ,σ2)(x)/fN(µ,σ2)(Z), where fN(µ,σ2)(Z) =∑
x∈Z fN(µ,σ2)(x). Discrete Gaussian distributions with µ = 0, or the distribu-

tions these imply over Zq for some modulus q, are widely used in lattice cryptog-
raphy to sample entries of error and secret vectors from. In our analyses below,
we work with vectors t sampled coefficientwise from a discrete Gaussian, and
with their projections πi(t). We model the the squared norms ‖πi(t)‖2 as ran-
dom variables following a scaled chi-squared distribution with the appropriate
degrees of freedom. For example, for some vector v = (v1, . . . , vd) with each
vi ← D0,σ sampled independently, we model ‖πB,i(v)‖2 ∼ σ2 · χ2

d−i+1, where
B is a lattice basis obtained during lattice reduction run as part of the primal
attack.



Bounded uniform distributions. Given a finite subset S ⊂ Z, we call the
uniform distribution U(S) a bounded uniform distribution. Of particular inter-
est in this work are the binary and ternary distributions, where S = {0, 1}
and S = {−1, 0, 1}. Similarly to the case of the discrete Gaussian, works using
the [ADPS16] methodology for estimating the complexity of lattice reduction,
such as the “LWE estimator” [APS15], implicitly model ‖πB,i(v)‖2 ∼ σ2 ·χ2

d−i+1

for vectors v sampled coefficientwise from a bounded uniform distribution having
E(U(S)) = 0 and V(U(S)) = σ2, and B a lattice basis being reduced.

Lattices. A real lattice of rank n and dimension d is the integer span of n
linearly independent vectors b1, . . . , bn ∈ Rd, which we collect into a basis B.
The lattice generated by B is

Λ = Λ(B) = {x1b1 + · · ·+ xnbn : xi ∈ Z} ,

and is a discrete subgroup of (Rd,+). For n ≥ 2 and Λ = Λ(B), we have also
Λ = Λ(UB) for any U ∈ GLn(Z), meaning that Λ has multiple bases related by
multiplication of unimodular matrices. An invariant of a lattice is its volume.

Definition 1 (Lattice volume). Given any basis B for a lattice Λ,

vol(Λ) =

√
det(BtB) =

n∏
i=1

‖b∗i ‖.

This quantity is exactly the volume of a fundamental parallelepiped of Λ, given
by the set {xB : x ∈ [0, 1)

n}. Other properties of interest in lattices are their
minima.

Definition 2 (Lattice minima). Let Bd(r) be the closed ball of radius r in Rd

and i ∈ [n]. Define λi(Λ), the ith minima of Λ,

λi(Λ) = min
{
r ∈ R+ : Λ ∩Bd(r) contains i linearly independent vectors

}
.

A lattice can be tessellated by centring a copy of the fundamental domain on
each lattice point. This fact can be used to approximate the number of lattice
points in some ‘nice enough’ measurable set. The Gaussian heuristic says that the
number of lattice points in a measurable set S is approximately vol(S)/vol(Λ).
The Gaussian heuristic can be used to approximate the first minimum λ1(Λ).

Definition 3 (Gaussian heuristic for the shortest vector). Given a rank
n lattice Λ, the Gaussian heuristic approximates the smallest radius containing
a lattice point as

gh(Λ) =

√
n

2πe
vol(Λ)

1/n
.

Various computational problems can be defined using lattices. We focus on
the following.



Definition 4 (Shortest Vector Problem (SVP)). Given a lattice Λ find a
vector v ∈ Λ of length λ1(Λ).

Definition 5 (γ-unique Shortest Vector Problem (uSVPγ)). Given a lat-
tice Λ such that λ2(Λ) > γλ1(Λ), find the unique (up to sign) v ∈ Λ of length
λ1(Λ). Unless specified, γ = 1.

Definition 6 (Learning With Errors (LWE) [Reg09]). Let n, q be positive
integers, χ be a probability distribution on Zq and s be a secret vector in Zn

q .
We denote by Ls,χ the probability distribution on Zn

q × Zq obtained by sampling
a← U(Zn

q ), e← χ, and returning (a, c) = (a, 〈a, s〉+ e) ∈ Zn
q × Zq.

Decision LWE is the problem of deciding whether pairs (a, c) ∈ Zn
q × Zq are

sampled according to Ls,χ or U(Zn
q × Zq).

Search LWE is the problem of recovering s from pairs sampled according to Ls,χ.
For a given distribution Ls,χ and power-of-prime modulus q, Decision LWE and
Search LWE are polynomial time equivalent [Reg09].

We note that the distribution χ from which the error is drawn tends to encode
some notion of smallness, which is usually required for functionality. Throughout
this work, we assume m LWE samples {(ai, ci)← Ls,χ}mi=1 are available. These
can be written in matrix form as (A, c) = (A,As + e) ∈ Zm×n

q × Zm
q . In the

original formulation, the LWE secret vector is sampled uniformly from Zn
q . A

standard transformation [MR09,ACPS09] maps m samples from an LWE distri-
bution Ls,χ with s← U(Zn

q ) to m− n samples from an LWE distribution Ls′,χ

where the secret vector s′ is sampled coefficientwise from χ. Such a distribution
is said to be in normal form. In general, more efficient key exchange can be built
from LWE distributions where the secret is sampled from a narrow distribution
such as χ (small secret LWE) or from a distribution imposing or implying few
non zero entries in s (sparse secret LWE). In this work χs (resp. χe) represents
the distribution from which coefficients of s (resp. e) are sampled. Note that with
high probability any n samples (A, c) from an LWE distribution with s ← χn

s

and e ← χn
e can be turned into n LWE samples (A−1,A−1c) where the roles

of χe and χs are swapped. This can be useful when creating embedding lattices
(see below) while choosing to use m ≤ n samples.

Embedding lattices. The primal attack transforms the Search LWE prob-
lem into a uSVP instance. This can always be achieved using Kannan’s embed-
ding [Kan87]. In the case of small secret LWE, the Bai–Galbraith embedding
variant [BG14] exists, which can also exploit differences in χs and χe, whenever
the former is small or sparse. In particular, given LWE samples (A, c) in such
an instance, the primal attack starts by constructing the following embedding
lattice basis

B =

 0 qIm 0
νIn −A⊤ 0
0 c c

 (1)

and performs lattice reduction to recover the unique shortest vector t = (∗ | s |
1) ·B = (ν s | e | c) for suitable values of ∗ and c, and a scalar ν that balances



the contributions of s and e to the norm of t. An alternative approach is to first
reduce the (n + m) × (n + m) top left minor of B as a form of preprocessing
(e.g. if A is a common reference string for multiple LWE distributions), and
later append the last row to finish the search for a specific target vector [LN13].
While lattice reduction software that takes B as input will require that ν ∈ Z, in
Appendix A we discuss a standard way to construct variants of this embedding
that allow us to use in practice any ν ∈ R, as well as allowing us to centre
the χs and χe distributions. For example, applying these techniques to an LWE
instance with a binary secret distribution results in an embedding where the first
n coordinates of t are distributed uniformly in {−1, 1}.

Lattice reduction. In general, lattice reduction is any algorithmic technique
that takes as input a basis of a lattice and finds a basis of better quality. Many
different notions of reduced basis exist, most of which can be intuitively captured
by a basis being formed of short and close to orthogonal vectors. The celebrated
LLL algorithm [LLL82] achieves the following.

Definition 7 (LLL reduced). For δ ∈ (1/4, 1) a basis B is δ-LLL reduced
if |µi,j | ≤ 1/2 for all 1 ≤ j < i ≤ d and (δ − µ2

i,i−1)
∥∥b∗i−1

∥∥2 ≤ ‖b∗i ‖2 for
i ∈ {2, . . . , d}.

In this work we consider the performance of the BKZ algorithm [SE91,SE94],
which achieves the following.

Definition 8 (BKZ-β reduced). A basis B is BKZ-β reduced if it is LLL
reduced and for all i ∈ [d− 1], ‖b∗i ‖ = λ1 (πi(B[i : min(i+ β − 1, d)])).

In order to do this, an oracle OSVP is used, that, given a lattice, finds its short-
est vector. BKZ repeatedly calls OSVP on the projected sublattices, or blocks,
πi(B[i : min(i+ β − 1, d)]). If the output vector v is shorter than the current
first vector in the block, it is inserted into the basis at the beginning of the
block. LLL is then run on the basis to remove linear dependencies introduced
by this insertion. Throughout, we make use of the BKZ implementation in the
FPLLL [dt16a] library, which sets δ = 0.99 in its underlying calls to LLL.

In Algorithm 1, we present a description of the BKZ algorithm. In its original
description, BKZ terminates after a full tour is executed without inserting. We
follow algorithmic improvements and do not necessarily run tours until this point.
In particular, the notion of early abort (called auto-abort in some implementa-
tions [dt16a]) was introduced as part of the BKZ 2.0 algorithm [CN11]. The
idea is that the majority of improvement occurs in a few early tours, whereas
many tours are required before convergence. Following experimental analysis of
BKZ [Che13, Figure 4.6] [Alb17, §2.5], Albrecht [Alb17] identifies τ = 16 as
the number of tours after which little improvement is made to the basis quality.
Furthermore, BKZ 2.0 integrates local block rerandomisation and preprocessing
into the originally proposed OSVP oracle, enumeration. We note that while recent
advances in lattice sieving mean that enumeration OSVP oracles are no longer
the fastest in practice [ADH+19] for large SVP instances, our heuristic analysis



Data: LLL reduced lattice basis B
Data: block size β

1 repeat /* tour */
2 for i← 1 to d do
3 ℓ← ∥b∗i ∥
4 j ← min(i+ β − 1, d)
5 v ← OSVP(πi(B[i : j]))
6 if ∥v∥ ≤ ℓ then
7 v′ ← xibi + · · ·+ xjbj where v = xiπi(bi) + · · ·+ xjπi(bj)
8 extend B by inserting v′ into B at index i
9 LLL on B to remove linear dependencies

10 drop row with all zero entries
11 if if no insertion was made then yield ⊤ else yield ⊥
12 if ⊤ for all i then return
Algorithm 1: Simplified view of the BKZ Algorithm. The instructions inside
the repeat context are called a BKZ tour.

is independent of the underlying OSVP oracle, and for the block sizes we consider
the enumeration of FPLLL is slightly faster than the sieves of [ADH+19].

In [AWHT16], Aono et al. introduce another variant of BKZ that they name
Progressive BKZ. Here, the basis is reduced using increasingly larger block sizes
β, running tours of BKZ-β each time. For the purposes of this paper, we define
Progressive BKZ as in Algorithm 2, allowing an arbitrary number τ of tours to
be run for each block size.

Data: LLL reduced lattice basis B of rank d
Data: τ ∈ Z+

1 β ← 3
2 while β ≤ d do
3 run τ tours of BKZ-β on basis B
4 β ← β + 1

Algorithm 2: Progressive BKZ Algorithm, as used in this work.

One consequence of lattice reduction is that it controls how quickly the
lengths of the Gram–Schmidt vectors b∗i (for an output basis B) decay. In partic-
ular, the larger β is chosen in BKZ, the slower these lengths decay and the closer
to orthogonal the basis vectors are. We call the lengths of the Gram–Schmidt
vectors, the basis profile.

Definition 9 (Basis profile). Given a basis B of a lattice of rank n, we define
the profile of B as the set of squared norms of the orthogonal vectors {‖b∗i ‖

2}
n

i=1.

Remark 1. In our algorithms, we refer to exact or estimated values ‖b∗i ‖
2 for a

basis as profile[i].



Theoretical results exist about the output quality of BKZ-β [HPS11,ALNSD20],
as well as heuristic assumptions, which better model average case performance
when reducing random q-ary lattices.
Definition 10 (Geometric Series Assumption (GSA) [Sch03]). Given a
basis B, the norms of the Gram-Schmidt vectors b∗i after lattice reduction satisfy

‖b∗i ‖ = αi−1 · ‖b1‖, for some 0 < α < 1.

In the case of BKZ-β, α can be derived as a function of β, by combining an
estimate for ‖b1‖ returned by BKZ [Che13] and the (constancy of the) lattice
volume. The GSA can be seen as a global view of a lattice basis, using only the
constant volume of the full lattice Λ and an estimate for the length of the first
basis vector to calculate α. However, the volume of local blocks is not constant
as LLL or BKZ is run on a basis. Chen and Nguyen propose a BKZ simula-
tor [CN11] that takes this intuition into account to improve on the GSA in the
case of BKZ. It takes as input a profile {‖b∗i ‖

2}i and simulates a tour of BKZ-β
by calculating, block by block, the Gaussian heuristic of the current β dimen-
sional block, “inserting” a vector of that length at the beginning of said block,
and redistributing the necessary length to the subsequent Gram–Schmidt vectors
to keep vol(Λ) constant. Since projected sublattices of small rank, e.g. n ≤ 45, do
not behave as random,2 to simulate the profile for the final indices of the basis
the BKZ simulator stops using the Gaussian heuristic and instead uses exper-
imental averages over unit volume lattices (scaled appropriately). This design
also allows for one to simulate a fixed number of tours, rather than assuming
convergence, as in the GSA. The process can be made probabilistic by “insert-
ing” a vector with length drawn from a probability distribution centred on the
length suggested by the Gaussian heuristic [BSW18]. The latter approach better
captures a phenomenon of lattice reduction called the head concavity.

Throughout our work we make use of the Chen–Nguyen simulator as im-
plemented in FPyLLL [dt16b]. In Algorithm 3 we define a BKZSim subroutine
that returns a [CN11] simulation for an input basis profile. Here LWEn,q,χ,m is
a basis produced as in (1) with c = 1, assuming normal form so that ν = 1 and
χ = χs = χe. To produce the profile of an LLL reduced LWE basis, we consid-
ered three options. In the case of the instances used in our experiments, which
are described in Section 5, such a profile can be easily obtained by performing
LLL on any particular embedding basis. However, this is not the case for crypto-
graphically sized embeddings, where FPLLL’s implementation of LLL can only
run with high enough floating point precision by using MPFR [FHL+07], which
becomes impractically slow. An alternative is to use a GSA slope correspond-
ing to LLL reduction. This correctly predicts the slope of the main section of
the profile, but does not account for the role played by the q-vectors in the em-
bedding basis, which are short enough to not be affected by LLL [How07]. The
third option is to use a specific basis profile simulator for LLL that captures the
effect of the q-vectors. We opt for the third option; a description of the Z-shape
phenomenon and its simulation can be found in Appendix C.
2 See e.g. [Che13, §2.3.2] for a formal introduction.



Input: (n, q, χ,m) or profile {∥b∗i ∥2}i
Input: β, τ

1 if {∥b∗i ∥2}i not provided as input then
2 {∥b∗i ∥2}i ← simulated profile of LLL reduced LWEn,q,χ,m instance
3 {∥b∗i ∥2}i ← [CN11] simulation of τ tours of BKZ-β on {∥b∗i ∥2}i
4 return {∥b∗i ∥2}i

Algorithm 3: BKZSim subroutine.

3 Choosing BKZ block sizes and the “2016 estimate”

In this section we motivate and explain the approach introduced in [ADPS16]
to predict the block size required to solve uSVP using lattice reduction.

The runtime of BKZ-β is dominated by that of the OSVP subroutine. The
latter is often implemented using lattice point enumeration with preprocessing,
which has time complexity βΘ(β) or lattice sieving, which has time and memory
complexity 2Θ(β). Therefore, to estimate the complexity of solving uSVP using
lattice reduction, it is crucial to estimate the smallest block size sufficient to
recover the unique shortest vector t ∈ Λ.

The most successful approach for making such estimates was introduced
in [ADPS16, §6.3] and is sometimes referred to in the literature as the “2016
estimate”. The idea is to estimate a block size β such that at some point dur-
ing lattice reduction, OSVP will return a projection of the uSVP solution as the
shortest vector in a local projected sublattice. If the rank of this projected sub-
lattice is large enough, subsequent cheap lattice reduction operations (usually, a
single call to LLL [AGVW17]) will recover the full uSVP solution. Concretely,
this approach consists of finding the smallest β such that in the final full sized
block starting at index d− β + 1,

‖πd−β+1(t)‖ ≤
∥∥b∗d−β+1

∥∥ , (2)

resulting in OSVP recovering the projection of t at index d− β + 1.
In [ADPS16], the authors consider normal form LWE, and assume the secret

distribution χ to be centred around 0. The uSVP solution will be an embedded
vector for which each entry is drawn i.i.d. from a distribution of standard devia-
tion σ and mean µ = 0, with the addition of one final, constant, entry c.3 Using
the Bai–Galbraith embedding, our target vector is t = (s | e | c), of dimension
d = n +m + 1. The squared norm ‖t‖2 may be modelled as a random variable
following a scaled chi-squared distribution σ2 ·χ2

d−1 with d−1 degrees of freedom,
plus a fixed contribution from c, resulting in E(‖t‖2) = (d− 1)σ2 + c2.

In [ADPS16], the authors approximate the left hand side of (2) as ‖πd−β+1(t)‖ ≈
E(‖t‖)

√
β/d ≈ σ

√
β, where they approximate E(‖t‖) ≈ σ

√
d. The approxima-

tion E(‖t‖) ≈ σ
√
d replaces (d− 1)σ2 + c2 with dσ2, which for large d or for

3 This constant c is often chosen as 1, which gives better attacks in prac-
tice [AFG14,BG14,AGVW17], though formally it should be chosen as σ [LM09].



c ≈ σ introduces little error, and assumes that E(‖t‖) = E(‖t‖2)
1/2. The error

in this assumption tends to 0 as d → ∞, so we ignore it. An exact derivation
can be found in Appendix B. This assumption can also be avoided altogether by
working with squared lengths, as we do in our analysis.

To approximate the right hand side of (2), in [ADPS16, §6.3] the authors
make use of the GSA. Assuming that BKZ-β returns a first basis vector of
length ℓ1(β) when called with the basis of a random q-ary lattice as input, this
results in the following win condition that β must satisfy for solving uSVP using
BKZ-β, √

βσ ≈ ‖πd−β+1(t)‖ ≤
∥∥b∗d−β+1

∥∥ ≈ α(β)
d−β · ℓ1(β). (3)

At first glance the careful reader may notice an apparent contradiction in the
methodology. Indeed, the GSA describes the basis profile produced by BKZ for
a random lattice, and in [ADPS16] ℓ1 is determined assuming this is the case.
However, we are reducing a uSVP embedding lattice. While the embedding basis
looks like that of a random q-ary lattice, the shortest vector will be shorter than
ℓ1(β). Yet, this shortest vector is hard to find. What (3) aims to capture is
exactly the moment where BKZ is able to find this shortest vector, and hence
distinguish our uSVP embedding lattice from a random q-ary lattice. The GSA
and ℓ1 are used to describe the status of the basis up until this moment, while
it still looks like the basis of a random q-ary lattice.

In this model, (3) provides a clear cut answer to what is the smallest viable
block size to solve uSVP. In practice, BKZ 2.0 is a randomised algorithm, work-
ing on a random uSVP instance. In [AGVW17], the authors verify the validity
of this win condition, resulting in a success probability of approximately 90%
when using β chosen by following (3). However, they also measure that some-
what smaller block sizes also present some relatively high success probabilities
of solving uSVP.

4 Simulating solving uSVP

In this section, we review and extend recent work on capturing the probabilistic
nature of a uSVP win condition.

In [DSDGR20], Dachman-Soled et al. revisit the [ADPS16] heuristic method-
ology described in Section 3. The authors are concerned with accurately pre-
dicting the effects that introducing side channel information to their lattice em-
bedding has on the success probability of solving uSVP using Progressive BKZ,
while also maintaining accuracy in the small block size regime, β ≤ 45. The
authors describe a uSVP simulator (not to be confused with the BKZ simula-
tor of [CN11]), designed to predict the success probability of Progressive BKZ
solving an isotropic uSVP instance by a specific block size.4 Using their uSVP
simulator, they predict the expected successful block size for a series of experi-
ments they run, and verify the accuracy of their predictions.
4 Any uSVP instance used in the primal attack can be made isotropic, where σ = 1.



In this section, we start by simplifying the [DSDGR20] uSVP simulator for
Progressive BKZ, and develop a similar uSVP simulator for BKZ 2.0. We describe
the rationale of these new uSVP simulators, and in Section 5 we verify their
accuracy with various sets of experiments.

4.1 Progressive BKZ

The approach proposed in [DSDGR20] to estimate the required block size to solve
a uSVP instance is to simulate the status of a lattice basis as it is being reduced,
and with it the probability for each step of the lattice reduction algorithm that
the target vector is recovered.

Input: d
1 ptot ← 0, β̄ ← 0
2 profile← GSA profile of an LLL reduced, rank d, isotropic uSVP instance

basis
3 for β ← 3 to d do /* round */
4 profile← BKZSim(profile, β, 1)
5 plift ← P [t recovered in ⌊d/β⌋ rounds | πd−β+1(t) recovered this round]
6 prec ← P [x← χ2

β : x ≤ profile[d− β + 1]]
7 pnew ← (1− ptot) · prec · plift
8 β̄ ← β̄ + β · pnew
9 ptot ← ptot + pnew

10 if ptot ≥ 0.999 then break
11 return β̄

Algorithm 4: Isotropic uSVP simulator for Progressive BKZ with τ = 1, as
proposed in [DSDGR20]. We omit the details of computing plift for simplicity
and note that prec represents P [πd−β+1(t) recovered this round]. Returns the
expected block size β̄ required to solve uSVP.

Let W be the event of solving uSVP during the run of Progressive SVP, Wβ

the probability of being able to solve uSVP during the round with block size
β, and Fβ = ¬Wβ . Following the notation in Algorithm 2, we assume τ = 1,
meaning that for each block size β exactly one tour of BKZ-β is run. They
implicitly partition W as follows

P [W ] = P [W3] + P [W4 ∧ F3] + P [W5 ∧ F4 ∧ F3] + · · · =
d∑

β=3

P

Wβ ∧
β−1∧
j=3

Fj

 .

Their computation of the expected winning block size β̄ amounts to implicitly
defining a probability mass function for the random variable B representing the
first viable block size to solve the uSVP instance, and computing its expected
value. In the case of Progressive BKZ, a block size β being the first viable means
that it is the round of BKZ run with block size β (i.e. the tour of Line 3 of



Algorithm 2 with block size β) and not any earlier round using a smaller block
size, that will solve the uSVP instance. The resulting probability mass function
for the distribution of B can be modelled as

P [B = β] = P

Wβ ∧
β−1∧
j=3

Fj

 .

The probability P [Wβ ] is itself modelled as the product of the probability of
successfully recovering πd−β+1(t) by calling OSVP on the last full size block of
the basis,

P [πd−β+1(t) recovered using block size β] ≈ P [x← χ2
β : x ≤ profile[d−β+1]],

and the probability of successfully lifting the projection over subsequent rounds,
plift. In their implementation of Algorithm 4, Dachman-Soled et al. use a chain
of conditional probabilities to compute plift. This and all other events, such as
that of recovering πd−β+1(t), as well as Wi and Fj for i 6= j, are considered to
be independent.

We introduce two simplifications to the above uSVP simulator. Firstly, we
noticed experimentally that running BKZ with block sizes smaller than 40 will
not solve instances for which the [ADPS16] approach predicts a winning block
size of β ≳ 60. The expected winning block size for our chosen experimental
instances is approximately 60. Furthermore, values of plift approach 1 quickly
as β increases, such that one can simply assign plift = 1 for β ≥ 40; a similar
phenomenon is noted in [AGVW17]. Therefore, we skip probability computations
for any block sizes smaller than 40. Finally, by allowing multiple tours per block
size, we define a uSVP simulator, Algorithm 5, for Progressive BKZ as described
in Algorithm 2 where τ may be greater than 1. A comparison between the output
of Algorithms 4 and 5 can be found in Figure 1 for four isotropic LWE instances,
where τ = 1. To produce the plots, we tweaked the original [DSDGR20] code in
order to extract the implicit probability mass function P [B = β]. We can see that
the output probabilities P [B ≤ β] and the expected successful block sizes differ
only slightly, while our tweaks significantly speed up the simulation by avoiding
the expensive computation of plift. It should be noted that the slight difference in
output for the cryptographically sized instances is due to the [DSDGR20] uSVP
simulator using the GSA to simulate their input LLL bases, instead of an LLL
specific simulator, such as the one we use. When tweaking our code to use the
GSA, the outputs coincide for the two Kyber instances in Figure 1.

4.2 BKZ

Using the same approach as for Algorithm 4 and Algorithm 5, we implemented a
uSVP simulator for BKZ, described in Algorithm 6. In this case, the basis profile
after a number of tours of BKZ-β is simulated in one shot using the [CN11] sim-
ulator. Given that the block size is fixed, the probabilities are only accumulated
over tours. It should be noted that the event of β being the first viable block size



45 50 55 60 65 70
β0

0.2

0.4

0.6

0.8

1
P[B β]

this work
[D-SDGR20]

(a) n = 72, ∆E(β) = 0.59.

45 50 55 60 65 70
β0

0.2

0.4

0.6

0.8

1
P[B β]

this work
[D-SDGR20]

(b) n = 93, ∆E(β) = 0.27

370 375 380 385 390 395 400
β0

0.2

0.4

0.6

0.8

1
P[B β]

this work
[D-SDGR20]

(c) Kyber 512, ∆E(β) = 0.68

875 880 885 890 895 900 905
β0

0.2

0.4

0.6

0.8

1
P[B β]

this work
[D-SDGR20]

(d) Kyber 1024, ∆E(β) = 0.86

Fig. 1: Comparison between the output of Algorithm 4 [DSDGR20] and Algo-
rithm 5 (this work) for isotropic parameters (σ = 1) from Table 1, and on Kyber
512 and 1024 [SAB+19]. The difference in predicted mean first viable block size
between the two simulators is reported as ∆E(β).

changes in the case of BKZ. In this case, no unsuccessful tours with a smaller
block size are run by the algorithm. Instead, we consider β being first viable if
running BKZ-(β − 1) would not result in a solution to the uSVP instance but
running BKZ-β would.

Algorithm 6 returns the probability that τ tours of BKZ-β will solve uSVP,
but does not exclude the possibility of winning with a smaller block size. We
assume in our model that if τ tours of BKZ-β solve a given uSVP instance, then
τ tours of BKZ-β′, for β′ > β, also will. The values output by Algorithm 6 for
a given instance can therefore be interpreted as a cumulative mass function for
the first viable block size, i.e. P [B ≤ β]. By running the simulator for increasing
block sizes until it outputs probability 1, one may recover the probability mass



Input: (n, q, χ,m), τ
1 ptot ← 0, P ← {}, β ← 3
2 d← n+m+ 1, σ2 ← V(χ)
3 profile← simulated profile of LLL reduced LWEn,q,χ,m instance
4 while β < 40 do
5 profile← BKZSim(profile, β, τ)
6 β ← β + 1

7 while β ≤ d do /* rounds */
8 for tour← 1 to τ do /* tours */
9 profile← BKZSim(profile, β, 1)

10 pnew ← P [x← σ2χ2
β : x ≤ profile[d− β + 1]]

11 P [β]← (1− ptot) · pnew
12 ptot ← ptot + P [β]
13 if ptot ≥ 0.999 then break
14 β ← β + 1

15 return P

Algorithm 5: Unique-SVP success probability simulator running Progressive
BKZ, running τ tours for each block size, then increasing the block size by
1. Returns the probability mass function P [B = β] of solving uSVP in the
round using block size β.

function P [B = β] as

P [B = β] = P [B ≤ β]− P [B ≤ β − 1].

Input: (n, q, χ,m), β, τ
1 ptot ← 0, σ2 ← V(χ)
2 d← n+m+ 1
3 for tour← 1 to τ do
4 profile← BKZSim((n, q, χ,m), β, tour)
5 pnew ← P [x← σ2χ2

β : x ≤ profile[d− β + 1]]
6 ptot ← ptot + (1− ptot) · pnew

7 return ptot
Algorithm 6: Unique-SVP success probability estimator when running τ
tours of BKZ-β. Returns the probability of solving the uSVP instance.

5 Experiments

In this section, we describe the experiments we run to check the accuracy of
Algorithms 5 and 6, and discuss the results. We start by describing our original
batch of experiments in Section 5.1. In Section 5.2 we make some observations



about our experimental results, and describe further tweaked experiments that
we run to verify our understanding of the results.

5.1 Initial experiments

Our aim in this section is threefold: first, we want to provide experimental evi-
dence for the accuracy of our BKZ and Progressive BKZ uSVP simulators when
predicting the success probability of the primal attack against LWE with dis-
crete Gaussian secret and error for different block sizes; second, we want to
compare previous experiments [AGVW17] to our uSVP simulations; and finally,
we want to explore the effect that binary or ternary distributions have on the
primal attack. Throughout our experiments, we use BKZ 2.0 as implemented in
FPyLLL [dt16b] version 0.5.1dev, writing our own Progressive BKZ script by
using FPyLLL’s BKZ 2.0 as a subroutine.

For our first goal, we choose three different parameterisations of the LWE
problem, for which the [ADPS16] approach predicts an expected successful block
size of either 60 or 61. We give the parameters in Table 1. All parameter sets
in these batches use discrete Gaussian secret and error with V(χs) = V(χe) =
σ2. The number of LWE samples used, m, is determined by what the LWE
estimator [APS15] predicts to be optimal, using (3). For each parameter set we
generate 100 instances, and reduce them using either BKZ or Progressive BKZ.
We then check whether lattice reduction positioned the embedded shortest target
vector in the first index of the reduced basis.

In the case of BKZ, for each basis we run a number of tours of BKZ with block
size β = 45, . . . , 65. The number of tours, τ , takes the values 5, 10, 15, 20, 30. This
results in a total of 100 bases, reduced independently 21 × 5 times each, once
for every combination of β and τ . For every set of 100 reductions, we record the
success rate by counting the number of solved instances. We run a similar set of
experiments using Progressive BKZ, allowing τ ≥ 1 tours per block size, in order
to see at what point running extra tours per block size becomes redundant. For
this reason, we reduce each basis 5 times, once per value of τ in 1, 5, 10, 15, 20.
After every call to the BKZ subroutine, we check whether the instance is solved.
If not, we increase the block size by 1 and run a further tour of BKZ.

The resulting success rates for BKZ and Progressive BKZ (with τ = 1) are
plotted in Figure 2, together with the output of our uSVP simulators, interpo-
lated as a curve. Figure 3 contains similar plots for Progressive BKZ with τ ≥ 1.
In Figure 5 we plot the measured difference between the average mean and stan-
dard deviation for the simulated and experimental probability distributions, for
both Progressive BKZ and BKZ.

For our second goal, we take the success probabilities reported in [AGVW17]
for their experiments. In Figure 4 we report their measured success rates at
optimal and smaller than optimal block sizes, and we superimpose our BKZ
success probability simulations.

Finally, for our third goal, we run Progressive BKZ experiments for τ in
{1, 5, 10, 15, 20} on a set of three parameter sets with bounded uniform secrets.
In particular, we pick the n = 72 and n = 93 parameters from Table 1 but sample



n q σ m2016 β2016

72 97 1 87 61
93 257 1 105 61

100 257
√

2/3 104 60

Table 1: List of LWE parameters used for testing our uSVP simulators. The in-
stances are in normal form. We use the Bai–Galbraith embedding and the num-
ber of samples used, m2016, is given by the LWE estimator (commit 428d6ea).

secret s and error e coefficients uniformly from the set {−1, 1}, and the n = 100
parameters with secret and error coefficients sampled uniformly from {−1, 0, 1}.
This preserves the same standard deviations as in Table 1, while adding more
structure to the target vector. In the first case, the s and e are equivalent to
those of a scaled and centred LWE instance with binary secret and error (see
Appendix A), while in the second case, the problem is LWE with ternary s and
e. The resulting success probability plots can be found in Figure 6.

5.2 Observations

Experimental success rates for both BKZ and Progressive BKZ are in line with
the output of the simulators described in Section 4. Below, we look in detail at
the results.

Progressive BKZ. In the case of Progressive BKZ, simulations seem to predict
accurately the success probabilities up to τ ≤ 10 for all secret and error distri-
butions used. Throughout our experiments reported in Figure 3, we observe two
ways in which experiments slightly deviate from predictions.

Firstly, the success probability appears to stop significantly increasing as
τ > 10, even when the simulation does predict some improvement. We believe
this to be a consequence of the large amount of lattice reduction being performed.
Indeed, whenever the BKZ-β subroutine is called, the basis has already been
reduced with τ tours of BKZ-(β− j) for j = 1, . . . , β−3. This suggests that only
little progress on the basis profile can be made with each new tour of BKZ-β.
In our experiments, we use FPyLLL’s BKZ 2.0 implementation with auto-abort.
If it is the case that little progress can be made, then auto-abort will trigger
and fewer than τ tours will be run. To verify this, we rerun experiments while
measuring the number of tours run by the BKZ subroutine. The data for the
n = 100 experiments can be found in Figure 7, and seems to confirm that auto-
abort for β > 20 is much more frequently triggered for τ > 10. This problem
does not affect Progressive BKZ with τ = 1 since even with auto-abort, one
tour is always run, and only slightly affects τ = 5 and τ = 10. Predictions match
experiments well in those cases. We note that, even if we were to force all τ tours
to be performed, such little improvement or alteration would likely be made to
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Fig. 2: Comparison of simulated success
probabilities with experimental results
for BKZ and Progressive BKZ (with τ =
1). Dashed lines are simulations, crosses
are experiments. In the case of Progres-
sive BKZ, 100 total instances are re-
duced. In the case of BKZ, each exper-
imental result is averaged over 100 in-
stances, with experiments using up to
block size 65.

the basis that the forced extra tours would not rerandomise it enough for the
events of winning after two consecutive tours to be independent, as our model
assumes.

The other phenomenon is the presence of a slight plateau in the probability
plots as P [B ≤ β] ≥ 0.8. In the case of n = 72 we also see that smaller than
predicted block sizes accumulate a significant success probability. Interestingly,
this effect does not appear to be present in the case of binary secret and error
LWE, see Figures 6a and 6b. We believe this phenomenon to be caused by the
slight variation in sample variance throughout our experiments. Indeed, if we
think of our target vector t = (t1, . . . , td) as sampled coefficientwise from some
distribution χ with variance σ2, in practice the resulting sample variance for
each particular LWE instance s2 := 1

d

∑d
i=1 (ti − t̄)

2, with t̄ := 1
d

∑
ti the sam-

ple mean, will likely slightly deviate from σ2. This will cause the ‖πi(t)‖ norms to
differ slightly from their expected value. However, in the case of χ = U({−1, 1}),
i.e. the distribution resulting from scaled and centred binary LWE embeddings,
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Fig. 3: Comparison of simulated success
probabilities with experimental results
for Progressive BKZ with τ ≥ 1. Dashed
lines are simulations, crosses are experi-
ments.

this distribution has a very small expected variance of s2 (i.e. E(V(s2))),5 mean-
ing that most sampled target vectors will have sample variance almost exactly
V(χ) = 1. To verify this hypothesis, we run a set of n = 72 and n = 100 dis-
crete Gaussian experiments from Table 1, where we resample each LWE instance
until the target vector’s sample variance is within a 2% error of σ2, and then
run Progressive BKZ with τ in 1, 5, 10. The resulting experimental probability
distributions, shown in Figure 8, do not present plateaus (and in the case of
n = 72, they also do not present the high success probability for small block
sizes), supporting our hypothesis. In practice, this effect should not significantly
affect cryptographic parameters, as E(V(s2)) ∈ O( 1d ), keeping the effect of fluc-
tuations in ‖πd−β+1(t)‖2 small as the embedding dimension d increases.

The fact that simulations seem similarly consistent in the case of scaled and
centred binary, and ternary secret and errors, as seen in Figure 6, seems to be
in line with the folklore notion that the hardness of solving uSVP via lattice
reduction depends on the standard deviation of the target vector’s coefficients

5 Following [KK51,SR02], we compute E(V(s2)) as approximately 0.00995, 0.00112,
and 0.00005 for a discrete Gaussian with σ2 = 1, U({−1, 0, 1}) and U({−1, 1})
respectively, for sets of 200 samples.
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Fig. 4: Comparison of simulated BKZ success probabilities with experimental
results reported in Table 1 of [AGVW17].
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Fig. 5: The measured difference ∆E[β] (resp. ∆
√
V[β]) between the simulated

and experimental successful block size mean (resp. standard deviation), as τ
grows.
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Fig. 6: Comparison of simulated success
probabilities with experimental results
for Progressive BKZ on LWE instances
with scaled and centred binary secret
and error (Figures 6a and 6b), and
ternary secret and error (Figure 6c).
Dashed lines are simulations, crosses are
experiments. Each experimental result is
averaged over 100 instances. No changes
were made to the uSVP simulators.

rather than their exact distribution. We do not observe the higher than expected
success probability reported in [CCLS20]. Possible reasons for this could be their
experiments targeting the small block size regime, where some of the heuristics
behind BKZ simulation are known not to hold [GN08b,CN11], and their analysis
potentially not accounting for the contribution of the secret distribution width
to the norms of πi(t).

BKZ. In the case of BKZ, simulations seem to stay similarly accurate across
all secret dimensions n, as reported in Figure 2. It should be noted that, even
though a larger gap than for Progressive BKZ can be seen between predictions
and experiments in the case of τ = 5, this predictive gap in expected block size
of less than 3 corresponds to about 1 bit in a core-sieve cost model [ADPS16].
Furthermore, this gap narrows as τ increases. We also see that the phenomenon
of success probabilities not increasing when τ ≥ 10, as in the Progressive BKZ
case, does not occur here. This is compatible with our understanding of this phe-
nomenon in the case of Progressive BKZ. Indeed, BKZ-β will not auto-abort as
often due to the input basis not having already been reduced, for example, with
BKZ-(β−1). Following experimental results from [Che13, Figure 4.6] and [Alb17],
designers often [ACD+18] consider it sufficient to reduce a basis using τ = 16
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tours of BKZ when specifiying BKZ cost models, due to the basis quality not
improving significantly after 16 tours. Our simulators seem accurate for values
of τ in such a regime.

However, a different interesting phenomenon can be observed. Sometimes, as
the block size is increased, the experimental success probability of BKZ lowers.
Originally we believed this to be caused by the preprocessing strategies used in
FPyLLL. Indeed, at the time of writing, preprocessing strategies for block size β
(resp. β+1), could include running BKZ-β′ (resp. BKZ-β′′), with β′ > β′′, result-
ing in inferior quality preprocessing for BKZ-(β+1) than for BKZ-β. We replaced
the default preprocessing strategies with a custom one such that preprocessing
block sizes are non decreasing as a function of β, however this did not remove
the effect. A possible cause for this phenomenon could be that basis profiles out-
put by the [CN11] simulator do not capture the possibility that Gram–Schmidt
vector norms can be non decreasing as a function of their index. This means
that one could have a BKZ-β reduced basis such that

∥∥b∗d−β

∥∥ <
∥∥b∗d−β+1

∥∥. This
event happening across instances or block sizes could be a potential cause for the
phenomenon. The probabilistic BKZ simulator developed in [BSW18] seems to
better capture this phenomenon, when run with a fixed PRNG seed. An example
of the output of our uSVP simulator for BKZ, when replacing the [CN11] simu-
lator with the [BSW18] simulator, can be found in Figure 9. However, our exper-
imental measurements are averaged over 100 runs. Running our uSVP simulator
with the [BSW18] simulator, and averaging its output, results in a simulation
with strictly increasing probabilities, unlike our measurements. In any case, the
overall success probability predictions stay reasonably accurate.
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Fig. 8: Progressive BKZ success probability against LWE instances with discrete
Gaussian secret and error and (n, σ2) ∈ {(72, 1), (100, 2/3)}, such that their
sample variance is within 2% of σ2.

Finally, looking at Figure 4, it seems that our simulations are consistent
with the measurements originally reported in [AGVW17, Table 1]. The simula-
tors therefore seem to explain the reported success probabilities of lower than
expected block sizes in that paper. It should be noted that while most other
experiments described in this section could be similarly predicted by passing
as input to our simulators the LLL basis profile predicted by the GSA rather
than the LLL simulator (cf. Appendix C), in this particular case they cannot.
Inputting a GSA basis profile results in a noticeable error. This may be an in-
direct consequence of [AGVW17] using a larger than optimal number of LWE
samples. Using the LLL basis profile simulator solves this problem.

6 Simulations of cryptographically sized LWE instances

In previous sections we developed simulators for the sucess probability of solving
uSVP instances, and tested them against uSVP embedding lattices generated
from small LWE instances that could be solved in practice. An immediate ap-
plication would be to use such simulators to estimate the behaviour of lattice
reduction when used against cryptographically sized instances.

Here we use the simulator to compute the expected first viable block sizes
required to solve LWE and NTRU instances proposed for the NIST PQC stan-
dardisation process. In particular we look at the second round versions of the
three lattice finalists; Kyber [SAB+19], NTRU [ZCH+19], and Saber [DKRV19].
An interesting option would be to use the simulators to predict what block size is
required to solve an instance with a target low success probability. However, as
we have dicussed in Section 5.2, the simulations are not necessarily fully accurate
for smaller or larger block sizes, due to the fluctuations in sample variance that
an instance can have. While the effect should be minor for cryptographically
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Fig. 9: Both figures show BKZ experiments and uSVP simulations for n = 100
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simulator made in Algorithm 6 are replaced. The left plot shows simulations
where the [BSW18] simulator is used, with a fixed PRNG seed. The right plot
shows the same experimental data with with simulations obtained by averaging
the output of the [BSW18] simulator over 10 different seeds.

sized instances, low probability attacks may also include other combinatorial
techniques not captured by our simulators. Therefore, extracting block sizes for
low probability attacks from the simulated probabilities may not capture all the
necessary subtleties. Furthermore, we will see that the window of block sizes
predicted to be first viable is relatively narrow, so that lower success probability
attacks without combinatorial tricks should not be significantly cheaper than
higher success probability attacks.

In Table 2, we look at parameter sets from the three lattice-based finalists in
the third round of the NIST PQC standardisation process [NIS16], as specified
during the second round. We provide expected first viable block sizes E(succ. β)
(and their standard deviation

√
V(succ. β)) when using 15 tours of BKZ, Pro-

gressive BKZ, and Progressive BKZ using 5 tours of BKZ as subroutine (see
Algorithm 2). We choose τ = 15 for BKZ due to our experiments confirming
the accuracy of our estimator for this value and its closeness to 16, which is
commonly found in BKZ cost models. We choose τ = 1 and τ = 5 in the case
of Progressive BKZ since our experiments suggest both cases are accurately pre-
dicted by the uSVP simulator; this allows us to see if running more tours in
the BKZ subroutine has any effect on the complexity of cryptographically sized
parameters.

Two clear disclamers should be made. First, in Table 2 we list the expected
block size required to solve uSVP instances for the primal attack. While in an
aggressive cost model for these algorithms, such as core-SVP [ADPS16], one
could be tempted to make direct cost comparisons between algorithms based
only on β, in the case of BKZ we assume that τ tours of BKZ-β are run, while in



the case of Progressive BKZ about τβ tours of varying block size are run. Second,
for both algorithms we fixed the same number of samples m, chosen with the
aid of the LWE estimator, as the optimal number of samples when using the
“2016 estimate” (except in the case of NTRU, where we assume m = n samples).
This is not necessarily the optimal number of samples for each specific block size
when computed using a uSVP simulator. We therefore avoid making claims and
comparisons regarding the exact cost of soving uSVP using the two algorithms,
and propose our results as an intermediate step between using the current LWE
estimator, and finding a theoretically cheapest attack using our simulators.

6.1 Observations

In almost all cases the mean required block size E(succ. β) is predicted to be
larger than the LWE estimator currently suggests. Our results for using Progres-
sive BKZ with τ = 1 against NTRU-HPS are in line with what Dachman-Soled et
al. [DSDGR20, Table 5] predict (NTRU-HPS being the only examined scheme
in common). The increase in E(succ. β) may seem counterintuitive. Indeed, the
Alkim et al. [ADPS16] methodology already aims to recover E(succ. β), with the
simulators described in Section 4 capturing the success probability of smaller
block sizes, possibly reducing the value of E(succ. β). Indeed, the increase seems
to be mainly due to the use of the [CN11] simulator rather than the GSA for
predicting the profile of a BKZ reduced basis (i.e. the right hand side of (3)).
An illustrative example of this happening in the case of Kyber 512 can be see
in Figure 10. Indeed, patching the LWE estimator to partially6 use the [CN11]
simulator, we obtain E(succ. β) of Kyber 512 (resp. Kyber 768, Kyber 1024) of
390 (resp. 636, 890), narrowing the gap with the predictions obtained in Table 2
by using our uSVP simulators. The small standard deviations reported in Ta-
ble 2 suggest that the success probability of block sizes below E(succ. β) decrease
quickly.

7 Conclusion

Overall, we believe that the experiments of Section 5 show that the techniques of
Section 4 help to more accurately predict lattice reduction success probabilities
for solving uSVP. We also believe the experiments show that in the case of short
vectors sampled coefficientwise from bounded uniform distributions, it is the
variance of the distribution, and not the exact probability mass function, that
determines the hardness of the LWE instance. The uSVP simulators also seem
to explain the success probability for smaller than expected block sizes reported
in [AGVW17].
6 For simplicity, our patch uses the GSA to predict the required block size to perform

lattice reduction and the optimal number of samples, as before. It uses the [CN11]
simulator for the basis profile output by BKZ, and to predict the block size required
to win by running OSVP on the last basis block.
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Fig. 10: Example plot showing the effect on the [ADPS16] methodology of using
the [CN11] simulator rather than the GSA, in the case of Kyber 512. Due to the
resulting higher basis profile, the GSA leads to picking a smaller block size. The
required winning block size in the [ADPS16] methodology is the distance from
the vertical line indicating the intersection to the final basis index d. Note that
this plot is zoomed in (d > 800).

As part of our experiments, we also tested whether using Progressive BKZ
with τ > 1 could be beneficial for an attacker. This seems to be useful to some
small degree from the point of view the of success probabilities, although BKZ
seems to perform comparatively well. However, Progressive BKZ could be of
interest to an attacker that wants to start performing lattice reduction as part
of a long term attack, but initially has access to fewer resources7 than necessary
to run BKZ with the expected first viable block size. Progressive BKZ would
then allow them to increase their resources as the attack progresses, with τ > 1
allowing them to stop at an overall slightly smaller final block size.

We also notice that our preliminary estimates for the success probabilities
of lattice reduction on cryptographically sized instances result in higher block
sizes than output by the LWE estimator [APS15]. This seems to be mostly due
to the use of a BKZ simulator rather than the GSA. A patch substituting the
GSA with a BKZ simulator in the LWE estimator could mitigate this effect.
7 Say, memory if using lattice sieving.
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A Scaling lattices in practice

As mentioned in Section 2, given LWE samples (A, c = As + e mod q), it is
possible to construct a lattice basis that embeds a shortest vector containing
scaled and/or balanced components of s or e. In the case of simply scaling the
secret by a factor ν, one approach is to use the [BG14] embedding (1),

B =

 0 qIm 0
νIn −A⊤ 0
0 c c

 ,

which contains in its integer span the vector t = (∗ | s | 1)·B = (ν s | e | c) for
suitable values of ∗. In theory, the optimal value of ν could be any real not smaller
than 1. In practice however, lattice reduction libraries such as FpLLL [dt16a]
require input bases to have integer coefficients. In order to run experiments, this
issue can be avoided by using the standard approach of clearing denominators.
The idea is to use a rational approximation ν ≈ x/y, with x, y ∈ Z and y 6= 0.
Then, one can define a basis B1 obtained by clearing the denominator

B1 =

 0 yqIm 0
xIn −yA⊤ 0
0 yc yc

 ≈ y ·B.

This has the effect of scaling every vector in the real span of B. Assuming for
simplicity the win condition from the [ADPS16] methodology, it is an immediate
computation that the success condition for the scaled problem is equivalent to
that of the original problem using a rational approximation of ν,

‖πd−β+1(y · t)‖ ≤
∥∥(y · b)∗d−β+1

∥∥ ⇐⇒ ‖πd−β+1(t)‖ ≤
∥∥b∗d−β+1

∥∥ .
In the case of secret distributions with non-zero mean µ, two simple ap-

proaches can be used to generate an embedding with a target vector containing
a balanced version of s. This can be useful since it allows for a more aggressive
choice of ν. For example, this is what we assume would be done by an attacker
when we investigate the cost of solving uSVP with binary secrets in Section 5.
The first approach is to map any LWE samples (A, c) into samples (A, c−Aµ),
where µ = (µ, . . . , µ). This works since

(∗ | s− µ | 1) ·

 0 qIm 0
νIn −A⊤ 0
0 c−Aµ c

 = (ν (s− µ) | e | c).

Recovering the target vector on the right hand side results in solving LWE. Yet,
the first n coefficients in the target vector are now distributed symmetrically
around 0, rather than around µ. For example, if the secret distribution were
to be binary, U({0, 1}), using ν = 2 the first n coefficients of the target vector
would be distributed uniformly in the set {−1, 1}.



An alternative basis for centring the secret distribution is

(∗ | s | 1) ·

 0 qIm 0
νIn −A⊤ 0
−νµ c c

 = (ν (s− µ) | e | c).

In the case that the error distribution were to have mean µ 6= 0, mapping
samples (A, c) 7→ (A, c−µ) would have the same effect. In all cases, an integer
basis can be obtained by appropriately clearing the denominators of any rational
approximations of ν and µ.

B Exact square root expectation of the χ2
d distribution

We note that although E(σ2χ2
d) = σ2d, it is not the case that E

(√
σ2χ2

d

)
= σ
√
d.

By direct computation, if x← χ2
d, then

E
(√

σ2 · x
)
= σE(

√
x) =

σ

2d/2Γ
(
d
2

) ∞∫
0

x1/2xd/2−1e−x/2 dx

=

√
2σΓ (d+1

2 )

Γ
(
d
2

) d→∞−−−→ σ
√
d.

C LLL “Z-shape” simulation

As part of our uSVP simulations, we use an LLL simulator. This allows one
to predict the characteristic Z-shape phenomenon [How07] that occurs when
reducing bases of q-ary lattices.

The Z-shape nickname refers to the basis profile output by LLL when reduc-
ing a q-ary lattice basis in Hermite normal form (HNF) with the q-vectors set as
the first basis vectors, e.g. as in (1). In such cases, most of the q-vectors will not
be altered by LLL, since they are orthogonal and short. This results in the basis
profile having a flat head corresponding to the first Gram–Schmidt vectors being
q-vectors. Depending on the lattice volume and rank, the final Gram–Schmidt
vectors will be unit vectors, obtained from the identity matrix minor in the HNF
basis, resulting in a flat tail in the profile. The middle indices of the log-plot of
the basis profile will be located along a straight line with the slope predicted
by the GSA for LLL, logα = −2 log δ, where δ is the root Hermite factor for
LLL, δ ≈ 1.02. An example of a Z-shape basis profile and the output of the LLL
simulator for a basis of the same rank and volume can be found in Figure 11.

The LLL simulator essentially predicts the Z-shape by first computing the
GSA slope section of the profile. This is achieved by noticing that the longest
vector in this section will have log-norm log q. We model each subsequent vector
as having log-norm shorter by logα, until the next log-norm would be negative.
The number of head q-vectors is computed so that the total volume of the basis



is equal to that of the lattice, with any adjustments to volume (due to requiring
an integer number of head vectors) distributed through the GSA slope. The tail
of unit length vectors is then added, until the basis has the correct lattice rank.
An implementation of this simulator can be found in our codebase.

50 100 150 200
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2
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7
8

log2‖b ∗
i ‖

LLL output
LLL simulator

Fig. 11: Comparison between the output profile of LLL on a n = 100 instance
parametrised as in Table 1, averaged over 25 instances, and the output of the
LLL simulator used for our estimates.


	On the Success Probability of SolvingUnique SVP via BKZ
	Introduction
	Preliminaries
	Choosing BKZ block sizes and the ``2016 estimate''
	Simulating solving uSVP
	Progressive BKZ
	BKZ

	Experiments
	Initial experiments
	Observations

	Simulations of cryptographically sized LWE instances
	Observations

	Conclusion
	Scaling lattices in practice
	Exact square root expectation of the 2d distribution
	LLL ``Z-shape'' simulation


