
WARP : Revisiting GFN for
Lightweight 128-bit Block Cipher

Subhadeep Banik1, Zhenzhen Bao2, Takanori Isobe3,4, Hiroyasu Kubo6,
Fukang Liu3,7, Kazuhiko Minematsu5, Kosei Sakamoto3, Nao Shibata6, and

Maki Shigeri6

1 EPFL, Switzerland
subhadeep.banik@epfl.ch

2 Nanyang Technological University, Singapore
zzbao@ntu.edu.sg

3 University of Hyogo, Japan
takanori.isobe@ai.u-hyogo.ac.jp, liufukangs@163.com,

k.sakamoto0728@gmail.com
4 NICT, Japan

5 NEC Corporation, Japan
k-minematsu@ah.jp.nec.com

6 NEC Solution Innovator, Japan
7 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University,

China

Abstract. In this article, we present WARP, a lightweight 128-bit block
cipher with a 128-bit key. It aims at small-footprint circuit in the field
of 128-bit block ciphers, possibly for a unified encryption and decryp-
tion functionality. The overall structure of WARP is a variant of 32-nibble
Type-2 Generalized Feistel Network (GFN), with a permutation over
nibbles designed to optimize the security and efficiency. We conduct
a thorough security analysis and report comprehensive hardware and
software implementation results. Our hardware results show that WARP

is the smallest 128-bit block cipher for most of typical hardware imple-
mentation strategies. A serialized circuit of WARP achieves around 800
Gate Equivalents (GEs), which is much smaller than previous state-of-
the-art implementations of lightweight 128-bit ciphers (they need more
than 1, 000 GEs). While our primary metric is hardware size, WARP also
enjoys several other features, most notably low energy consumption. This
is somewhat surprising, since GFN generally needs more rounds than
substitution permutation network (SPN), and thus GFN has been con-
sidered to be less advantageous in this regard. We show a multi-round
implementation of WARP is quite low-energy. Moreover, WARP also performs
well on software: our SIMD implementation is quite competitive to known
hardware-oriented 128-bit lightweight ciphers for long input, and even
much better for small inputs due to the small number of parallel blocks.
On 8-bit microcontrollers, the results of our assembly implementations
show that WARP is flexible to achieve various performance characteristics.

Keywords: Lightweight Block Cipher, 128-bit Block Cipher, Generalized
Feistel Network, Unified Encryption and Decryption

1 Introduction

Lightweight Block Cipher. Due to the increasing need for encryption and authen-
tication on constrained devices, lightweight cryptography has grown to be one of
the central topics in symmetric-key cryptography. Among various symmetric-key
primitives, the development of lightweight block cipher probably has the longest
history. As demonstrated by PRESENT [27], the first generation of lightweight
block ciphers, such as KATAN [34], PRINTCIPHER [46] or LED [39], mainly focused
on hardware footprint in the standard, round-based constructions. The block
size is typically 64 bits or even smaller to reduce the size. Combined with
hardware-oriented components (such as a 4-bit S-box and a bit permutation),
they achieved a very small hardware footprint compared to the standard AES.
Although small-footprint serial AES implementations are possible [7, 52], there is
still a gap between what can be done with lightweight block ciphers.

The second generation ciphers aimed at various goals, such as low-latency
(Prince [28] and QARMA [2]) or low-energy consumption (MIDORI [3]) or side-
channel/fault attack resistance (LS-designs [38], CRAFT [16]), while mostly trying
to achieve an equivalent hardware footprint of the first generation ciphers.

Importance of 128-bit Cipher. In this paper, we focus on lightweight block ciphers
with 128-bit block size and 128-bit key. The usefulness of such a primitive is
obvious as it can be used as a direct replacement of AES (more precisely AES-128

), without changing the mode of operation. Most of the popular block cipher modes
currently used with AES, such as GCM, have birthday bound security, meaning
that O(264) input blocks are sufficient to break the scheme. This also implies a
certain limitation on 64-bit block ciphers. It is clear that 64-bit block ciphers
have been playing the central role in the development of lightweight cryptography.
Having said that, birthday attacks with O(232) data complexity can be a real
threat8. To thwart them, keys must be renewed very frequently, however this is
not trivial in practice (e.g, Sweet32 [21]).

Tweakable block cipher (TBC) of 64-bit block size, such as SKINNY, is another
promising way to prevent the birthday attacks of O(232) complexity. It still
requires a change of outer modes (though BBB secure modes for TBCs are
typically simpler than those for block ciphers) and hence, it generally does not
realize a direct replacement of AES.

Consequently, we think lightweight 128-bit block ciphers have their own value.
In fact, replacements of AES by lightweight 128-bit ciphers often occur in the
development of lightweight authenticated encryption (AE) schemes. For example,
COFB [31] and SUNDAE [4] are modern block cipher-based AE modes that were
initially specified with AES. Later they were submitted [5,9] to the ongoing NIST
lightweight cryptography project9 with a 128-bit-block version of GIFT, a family

8 Alternatively, we could use beyond-birthday-bound (BBB) secure modes, however
they are generally more complex than the birthday-secure ones, and using complex
modes may nullify the merit of using lightweight primitive.

9 https://csrc.nist.gov/Projects/lightweight-cryptography

2

https://csrc.nist.gov/Projects/lightweight-cryptography

of lightweight block ciphers proposed by Banik et al. [11]. Both submissions [5,9]
are included in the second-round candidates.

As a lightweight replacement of AES, the size of unified encryption and decryp-
tion (ED) circuit is important, since some standard/popular block cipher modes,
e.g. CBC, OCB [49] and XTS [42], need a block cipher decryption (inverse) circuit
as well as an encryption circuit. Besides, when a block cipher is implemented
as a co-processor of general-purpose CPUs, we naturally expect the support of
both encryption and decryption, as the co-processor is agnostic to the operat-
ing modes. Needless to say, an encryption-only circuit is generally smaller and
enough for implementing “inverse-free” modes such as CTR or GCM. From these
observations, we set our primary goal to build a lightweight 128-bit block cipher
that is significantly smaller than prior arts for both encryption-only and unified
ED circuits.

Our Design. When we look at the current list of lightweight block ciphers, the
majorities are Substitution-Permutation Network (SPN) ciphers, such as [14,
27, 28, 39]. However, an SPN is inherently not perfect to our goal, because the
decryption circuit generally needs to invert the confusion and diffusion layers.
Despite the great research effort on concrete SPN designs using involutory S-
boxes and MDS matrices, such as NOEKEON [33], MIDORI, and QARMA, designing an
ultimately lightweight SPN cipher with fully involutory components still seems
challenging, when unified ED circuit is a primary target. In particular, if we
adopt a serialized datapath, we need recursively defined MDS matrices to be
efficient with respect to area [39]. However, it is well known that in fields of
characteristic 2, such an MDS matrix can never be involutory [40].

A potential alternative is Generalized Feistel Network (GFN) [55,68], because
it is involutory in nature. The classical Type-2 GFN [68] has been adapted by
many ciphers, such as HIGHT [41], Clefia [60], and Piccolo [59]. However it has
a slow diffusion, which is problematic when the number of sub-blocks (branches)
is large. Suzaki and Minematsu [62] (hereafter SM10) proposed a way to greatly
improve the diffusion of GFN by just changing the permutation of branches
from the rotation originally used by Type-2 GFN. They also showed r-branch
permutations achieving the fastest diffusion up to r = 16. Indeed, TWINE [63]
and LBlock [66] are 64-bit block, 16-branch GFN ciphers that can be seen as
concrete instantiations of SM10. It is interesting to note that, GFN ciphers
of larger-than-16 branches have been actively studied from the viewpoint of
permutation design (see below), however no concrete, purely GFN-based block
ciphers have been proposed, to the best of our knowledge10. In this paper, we
revisit GFN to investigate if it fulfills our needs. Specifically, we extend the idea
of SM10 to build a 128-bit, 32-branch (nibble) GFN cipher with 128-bit key,
named WARP11. As observed by SM10, one can achieve the diffusion round (the
number of rounds needed for diffusing any input difference to the whole output)

10 Liliput [19] is a 128-bit TBC built on a variant of GFN (EGFN [20]). It has a different
linear layer structure from GFN and has 16 branches.

11 The name comes from the resemblance of the cipher structure to strings in a loom.

3

as low as 2 log2 r, which implies that a good 128-bit, 32-nibble GFN cipher may
only need two more rounds from the case of 64-bit, 16-nibble GFN ciphers. The
big challenge is to determine a 32-branch permutation. The diffusion property
of r-branch permutations for r > 16 has been recently studied, and made a
significant progress since SM10 [30, 36]. However, these studies do not give a
direct answer to us, as we need a permutation having not only a fast full diffusion
but also a high immunity against known attacks (differential/linear/impossible
differential/integral/division etc). Because an exhaustive search over all 32-branch
permutations is computationally infeasible, we define a subset of permutations
that are suitable to serial circuits and search over it with an Mixed Integer Linear
Programming (MILP) solver, based on the development of MILP-aided security
evaluation initiated by Mouha et al. [53]. Notably, we found that the 32-branch
permutations with 9-round full diffusion (which is 1 round smaller than what
SM10 showed) by Derbez et al. [36] are not suitable because the number of active
S-box grows very slowly. Our permutation has 10-round full diffusion, however
performs much better in terms of the number of active S-boxes (see Appendix C).

We adopt an S-box of MIDORI for its small delay and area. It is also very
efficient for threshold implementations which is very important when side-channel
attacks are possible.

The key schedule of WARP is ultimately simple: the 128-bit key is divided
into two 64-bit halves and they are alternately used, i.e. the parity of the round
number determines which half is used. This removes a need of additional register.
Such permutation-based key scheduling schemes have been employed by a number
of recent block ciphers, e.g, LED [39], Piccolo [59] and CRAFT [16] as well as
stream ciphers [10,51]. In addition, every sub-key is XORed after S-box is applied
to avoid the complement property of Feistel-Type Structures [26], following the
idea of Piccolo [59].

Implementation Results. Combining these components, we achieved 763 GE
for the bit-serial encryption-only circuit, which is, to our knowledge, the lowest
number of 128-bit block cipher hardware implementation to date. Moreover, due
to the low-energy and low-delay S-box, the 2-round unrolled implementation of
WARP achieved significantly better energy consumption as compared to MIDORI,
which is the current state-of-the-art design as a 128-bit low-energy cipher. For the
unrolled (Enc-only) implementations, WARP is smaller than QARMA, while keeping
relatively small delay, around 1.6 of QARMA-12811. We also conducted threshold
implementations of WARP for protection against first-order side-channel attacks.
The results are quite impressive (Table 10 at Appendix D). All in all, WARP has
pretty good performance for multiple hardware metrics not only in size.

For software metrics on microcontrollers, the design of WARP makes it flexible
to make different trade-offs. We report performance characteristics of our assembly
implementations on 8-bit AVR following various methods. The results show that,
for WARP, it is possible to achieve competitively small code size and extremely
low RAM consumption, with acceptable execution time.

Finally, thanks to the software-friendly structure of GFN, we report a very ef-
ficient software implementation of WARP on modern high-end CPUs equipped with

4

F F F F F F F F F F F F F F F F

0 1 2 3 4 5 6 7 8 9 10 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 31

RCr
0 RCr

1

F

K
(r−1)mod2
i

X2i,2i+1

Fig. 1: Round Function of WARP.

SIMD instructions. Unlike known bitslice implementation of recent lightweight
ciphers, which need many block to be processed in parallel, we use a vector
permutation (vperm) instruction, in a similar manner to TWINE [18]. This allows
us to work with small (or no) parallelism. Surprisingly, the results on modern
Intel processors are very competitive to the bitslice implementations of several
state-of-the-art lightweight ciphers (GIFT, SKINNY and SIMON [12]). This gives
another advantage to WARP when the operating mode is serial, say CBC-MAC or
lightweight, serial authenticated encryption mode such as CLOC [44], SAEB [54],
or COFB [31].

Organization. This paper is organized as follows. We first present the specification
of our cipher at Section 2. We provide our design rationale, such as 32-branch
permutation and S-box, at Section 3. Section 4 describes the details of security
evaluations against major cryptanalysis methods. Section 5 and Section 6 provide
our hardware and software implementations. Finally, we conclude at Section 7.

2 Specification

WARP is a 128-bit block cipher with a 128-bit key. The general structure of
WARP is a variant of the 32-branch Type-2 GFN. A 128-bit plaintext M and
a ciphertext C are loaded into a 128-bit internal state in encryption and de-
cryption processes, respectively. The internal state is expressed as 32 nibbles,
X = X0 ‖X1 ‖ . . . ‖X31, where Xi ∈ {0, 1}4. A 128-bit secret key K is denoted
as two 64-bit keys K0 and K1, i.e. K = K0||K1, where Ki ∈ {0, 1}64. K0 and K1

are also expressed as 16 nibbles, K0 = K0
0 ‖K0

1 ‖ . . . ‖K0
15, where K0

i ∈ {0, 1}4,
and K1 = K1

0 ‖K1
1 ‖ . . . ‖K1

15, where K1
i ∈ {0, 1}4, respectively.

Round Function. The round function of WARP consists of a 4-bit S-box S :
{0, 1}4 → {0, 1}4, a nibble XOR : {0, 1}4 × {0, 1}4 → {0, 1}4, and a shuffle
operation π : {0, . . . , 31} → {0, . . . , 31} applied to 32 nibbles. The round function
applies a non-linear unit transformation involving a single S evaluation and
round-key addition for each of two consecutive nibbles, adds a round constant,
and applies π to all 32 nibbles. See Fig. 1. The S-box S is described in Table 1.
The shuffle π and its inverse π−1 are described in Table 2.

Encryption and Decryption. The number of rounds of WARP is 41, where the
nibble shuffle operation π in the last round is omitted. For i = 1, . . . , 41, the i-th

5

Table 1: 4-bit S-box S.
x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

Table 2: Shuffle π on 32 nibbles.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π(x) 31 6 29 14 1 12 21 8 27 2 3 0 25 4 23 10

π−1(x) 11 4 9 10 13 22 1 30 7 28 15 24 5 18 3 16

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

π(x) 15 22 13 30 17 28 5 24 11 18 19 16 9 20 7 26

π−1(x) 27 20 25 26 29 6 17 14 23 12 31 8 21 2 19 0

round uses a 64-bit (16 nibbles) round key RKi. Then, an i-th round key RKi

is given as RKi = K(i−1) mod 2.

The encryption algorithm of WARP is given in Fig. 2. The decryption algorithm
is omitted here. It is obtained by just changing π to its inverse π−1.

WARP uses LFSR-based round constants. A state of 6-bit LFSR is written as
(`5, `4, `3, `2, `1, `0) and is initialized to 000001. It is updated in each round as

(`5, `4, `3, `2, `1, `0)← (`4, `3, `2, `1, `0, `0 ⊕ `5).

Using this LFSR, we define two nibbles RC0 = (`5, `4, `3, `2) and RC1 =
(`1, `0, 0, 0). RC0 and RC1 are xored to the first and third nibbles of the state
(note that the numbering of the nibbles is from 0 to 31) after the X2i+1 ←
S(X2i)⊕K(r−1) mod 2

i ⊕X2i+1 operation. Let RCr0 and RCr1 be the r-th round
constants. For completeness, we list (RCr0 , RC

r
1) for all r = 1, . . . , 41 in Table 3.

Claimed Security. WARP claims single-key security, and does not claim any security
in related-key and known/chosen-key settings.

Table 3: Round constants (listed in hexadecimal).

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RCr0 0 0 1 3 7 f f f e d a 5 a 5 b 6 c 9 3 6

RCr1 4 c c c c c 8 4 8 4 8 4 c 8 0 4 c 8 4 c

r 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

RCr0 d b 7 e d b 6 d a 4 9 2 4 9 3 7 e c 8 1 2

RCr1 c 8 4 c 8 4 8 0 4 8 0 4 c c 8 0 0 4 8 4 c

6

Algorithm Encryption(K,M)

1. (K0
0 ‖K0

1 ‖ . . . ‖K0
15,K

1
0 ‖K1

1 ‖ . . . ‖K1
15)← K

2. X0 ‖X1 ‖ . . . ‖X31 ←M
3. for r = 1 to 40 do
4. for i = 0 to 15 do
5. X2i+1 ← S(X2i)⊕K(r−1) mod 2

i ⊕X2i+1

6. end for
7. X1 ← X1 ⊕RCr0 , X3 ← X3 ⊕RCr1
8. X ′0 ‖X ′1 ‖ . . . ‖X ′31 ← X0 ‖X1 ‖ . . . ‖X31

9. for i = 0 to 31 do
10. Xπ[j] ← X ′j
11. end for
12. end for
13. for i = 0 to 15 do
14. X2i+1 ← S(X2i)⊕K0

i ⊕X2i+1

15. end for
16. X1 ← X1 ⊕RC41

0 , X3 ← X3 ⊕RC41
1

17. C ← X0 ‖X1 ‖ . . . ‖X31

18. return C

Fig. 2: Encryption algorithm of WARP.

3 Design Rationale

As described, the goal of WARP is a 128-bit block cipher enabling small hardware
implementation, both for encryption-only and unified ED circuits, and both for
round-based and serial architectures. We detail the rational of our design choice
for each component of GFN below.

3.1 Branch Size and Permutation

We choose to use 32-nibble GFN with a 4-bit S-box, instead of 16-byte GFN with
an 8-bit S-box. Although the latter option allows to reuse most of the known
design/cryptanalytic results on 16-branch GFN (SM10, TWINE or LBlock and
their cryptanalysis such as [25]), 8-bit S-box is much inferior to 4-bit S-box in
terms of size/delay/energy.

We need a r = 32-branch permutation that is good in terms of diffusion
round and resistance to the major attacks, such as differential and linear attacks.
Despite the recent research on many-branch GFN [20, 30, 62], this remains a
hard problem, simply because the number of permutation quickly grows (r!).
When r = 2s, SM10 shows an r-branch permutation of diffusion round being 2s
based on de Bruijin graph, however, according to our random search, there is a
huge number of 32-branch permutations having diffusion round of 2 log2 32 = 10.
Besides, the differential/linear Active S-box (AS-box) counts are very different
among them, which suggests that we need another criteria before searching.

7

After some experiments, we limit ourselves to permutations allowing efficient
serial hardware implementations, which is our main focus (See Section 5 for
hardware implementation). In more detail, we searched all permutations of
LBlock-like structure that consists of one 16-branch permutation composed of
two identical 8-branch permutations, and one rotation on 16 branches with an
amount of rotation from 0 to 15 nibbles as shown in Fig. 3. The resulting search
space has size 8!× 16 ≈ 219.3. The search over this space found 152 candidates
of diffusion round 10. We conducted MILP-based differential AS-box counting
for them. This evaluation requires about 2 days on computer equipped with 44
cores and 64 GB RAM.s Among them, 21 candidates achieved AS-box of ≥ 64
(which is needed for security) at 19 rounds (and no candidates achieved it at 18
rounds), and 8 out of 21 achieved AS-box of 66, which was the largest among
them. These 8 permutations are not isomorphic, however as far as we investigated,
the attack characteristics for other attacks (linear AS-box, impossible differential
characteristics etc) are identical for all of them.

Our investigation implies that they are equivalently secure in practice. More-
over, there is no difference from the implementation aspects too. Thus, we
arbitrarily chose one among them. A LBlock-like equivalent round function of
WARP is shown in Figure 4.

Recently, Derbez et. al [36] showed four equivalent classes of 32-branch
permutations achieving full diffusion after 9 rounds, while WARP requires 10
rounds. However, our MILP-based evaluation revealed that the number of active
S-boxes of these grows much slower than ours. Indeed, these require at least 32
rounds for achieving AS-box of ≥ 64. Since WARP achieves it with only 19 rounds,
the permutation of WARP is better than them as a 32-branch permutation.

X2i X2i+1

P

P

R

R : 16-branch Left-shift Rotation

P : 8-branch Permutation

Fig. 3: General LBlock-like round
function.

X2i X2i+1

Fig. 4: Equivalent round function
of WARP in LBlock-like structure.

8

3.2 S-box

According to [3], the small path delay and the small gate area lead to low-energy
implementation. We searched a small-delay and lightweight 4-bit S-box which
fulfills the following requirements: (1) the maximal probability of a differential
is 2−2, (2) the maximal absolute bias of a linear approximation is 2−2 and (3)
preferably belonging one of the 30 cubic classes (as given in [24]) that allows
decomposition into two quadratic s-boxes, so that it can be used to implement
a 1st order threshold implementation with 3 shares. This helps us have a very
lightweight threshold circuit as well. As a result, we decide to use S-box of MIDORI
(Sb0). Note that other S-boxes used in low-latency ciphers such as Prince and
QARMA do not satisfy the requirement (3).

3.3 Key Schedule

The key schedule uses alternately the upper and lower half of the 128-bit key in
alternate rounds. This requires only a multiplexer to filter appropriate portions
of the round key in each round. As already outlined in [3, 17], an elaborate key
schedule function requires a register element to store and update the key, which is
costly in terms of area and energy consumption. Moreover, a simple key schedule
is particularly beneficial to unified ED circuits, because additional hardware is
not required to construct an inverse key schedule function. A key alternating
cipher like WARP with odd number of rounds, uses the same upper half of the key
in the first and the last encryption round (and indeed in all odd rounds) which
implies that the decryption routine would also use the upper half of the key in
the first, last and all odd rounds. Thus, the order of upper/lower half of keys used
in successive rounds is exactly the same for encryption and decryption, thus no
additional overhead is imposed to implement decryption alongside the encryption
in hardware. In addition, the key XOR operation is applied after the S-box to
avoid the complement property of Feistel-Type Structures [26], following the idea
of Piccolo [59].

3.4 Round Constants

We use LFSR-based round constants as it is simple and efficient to implement in
hardware. We use 6-bit LFSR with a primitive connection polynomial, which has
a period of 63, and hence sufficient to cover 41 rounds used in WARP.

4 Security Evaluation

We evaluate the security of WARP against differential, linear, integral, impossible
differential, invariant and meet-in-the-middle attacks. Among them, the 21-round
impossible differential attack is considered to be the most efficient for WARP. In
our evaluation, we do not expect an effective key-recovery attack on up to 32
rounds of WARP by using this 21-round impossible differential distinguisher or
even using other ones. Consequently, we conclude that the full-round of WARP is
expected to be resistant to those attacks. The details are given in Appendix B.

9

5 Hardware Performance

One of the principal objectives for our design was efficiency in constrained
platforms with respect to multiple metrics of lightweight cryptography. Hence we
looked at area, energy and latency which are widely acknowledged to be factors
that determine the quality of a design. We first convert the round function to
an LBlock-type architecture that helps us construct an efficient serial hardware
architecture for WARP. Consider a 2-branch Feistel network, with a 128-bit block
composed of Xa||Xb (each of 64 bits). Further let Xa[i], Xb[i],K[i], ∀ i ∈ [0, 15]
denote the individual nibbles of the branches, and the roundkey respectively.
Then the LBlock-type function defined below in Fig 5, can also be used to define
the specifications of WARP.

Round Function(Xa, Xb,K)

for i = 0 to 15 do
T [π[i]]← S(Xa[i])⊕K[π[i]], -- Sbox, shuffle left branch,addkey

U [i]← Xb[6 + i mod 16], -- Rotate 6 nibbles (right branch)

end for
for i = 0 to 15 do
U [i]← U [i]⊕T [i], -- Add left, right branches

end for
U [0]← U [0]⊕RC0, U [1]← U [1]⊕RC1 -- Round const add

for i = 0 to 15 do
Xb[i]← Xa[i], Xa[i]← U [i] -- Swap left, right branches

end for

Fig. 5: Alternative definition of Round Function

In this definition, π is a permutation which maps i to the i-th element of
the following set: {3, 7, 6, 4, 1, 0, 2, 5, 11, 15, 14, 12, 9, 8, 10, 13}. It is elementary to
show that the encryption routine defined by 41 iterations of the round function
in Fig 5 (with the left-right swap omitted in the last round) is equivalent to the
definition of the encryption algorithm of WARP up to a shuffle of nibbles.

5.1 Nibble Serial Architecture

Figure 6 shows the architecture for WARP. Each storage element colored yel-
low/white in the figure is a 4-bit scan/normal flip-flop respectively. Apart from
4-bit xor gates required for round key addition, left-right branch addition, and
round-constant addition, we have used a few multiplexers to manoeuvre data
through the circuit. The circuit uses only one S-box, and in addition we have a
key-multiplexer that filters roundkey nibbles from the 128-bit master key (which
is not shown in the figure for space constraints). The circuit computes one round

10

00 01 02 03 04 05 06 07

1716151413121110

2726252423222120

3736353433323130

b b b b b b b

b b b b b b b

b

Permutation Permutation−1 Rotate

⊕

⊕

Sbox

b

b

b b

⊕

RCon

Round Key

b

b

Plaintext

4

b

Ciphertext

AddC

Fig. 6: Nibble serial architecture for WARP. The filter that feeds the permuted
roundkey is omitted in the diagram.

function of WARP in 48 cycles. Following is the cycle-by-cycle description of the
circuit operations.

Cycle 0-31: In the first 32 cycles, the plaintext nibbles are loaded on to the
state register. After this, the round counter resets to 0, and the following
operations are repeated 41 times.

Cycle 0-15: Before this set of cycles start, the left branch of the state, resides in
the storage elements marked 37 to 20, and the right branch in those marked
17 to 00, as shown in Figure 6. In 17 to 00, we need to rotate the right branch
by 6 nibbles. This is done as follows: a circular shift is performed for 16
cycles, which is somehow arrested for 10 cycles, to achieve the equivalent
functionality of 6 nibble rotation. The 16 nibble flip-flops are divided into 3
groups of 10, 1, 5 (00 to 11, 12 and 13 to 17). An internal circular rotation
of nibbles takes place for 10 cycles within each group. Since 10, 1 and 5 are
divisors of 10, this rotation effectively executes the identity transformation
on the right branch. Thereafter, a normal circular rotation over the entire
set of 16 nibbles (00 to 17) occurs for the next 6 cycles, thus achieving the
required functionality.
In the upper half, the shuffling denoted by the permutation π is performed on
the left branch (note that the order of shuffle and addkey/sbox is interchange-
able). We further take advantage of the fact that π can be defined in terms of
the 8-element permutation function π′ = {3, 7, 6, 4, 1, 0, 2, 5} over [0, 7] and
[8, 15] (i.e. π[i] = π′[i] if i < 8 and 8 + π′[i− 8] otherwise). This being so, only
the nibbles marked 20− 27 need to be scan flip-flops. We perform a circular
motion over the left branch nibbles (20 to 37) for these 16 cycles (AddC is
set to 0 for this purpose), with the select signal controlling the scan flip-flops

11

being SET at cycles 7 and 15. At cycle 7, the most significant nibbles of the
left branch reside at the flip-flops marked 26 to 20 and 37. When the scan
flip-flops are SET during this cycle, the wiring ensures that at cycle 8, these
nibbles are shuffled by π′ and stored in 27 to 20. A similar logic applies to
the shuffle in cycle 15. At this cycle, the least significant nibbles of the left
branch reside at the flip-flops marked 26 to 20 and 37. The SET signal of the
scan flip-flops in this cycle ensures shuffling by π′ in the next cycle.

Cycle 16-31: The left branch nibbles are driven out of 37 input to the S-box
and then xored with the corresponding key nibble. The output is added with
the right branch nibbles which are driven out of 17. The nibbles driven out
from 37 are driven back into 20 (thereby causing a circular shift of 16 nibbles
which is essentially the identity function). The output of the final xor is
driven into 00. Thus after cycle 31, the lower flip-flops (17 to 00) thus contain
the output of the round function. The upper flip-flops (37 to 20) continue to
hold the left branch of the current round (however the nibbles are shuffled
with the permutation π executed in cycles 0 to 15).

Cycle 32-47: We need to undo the shuffling of the left branch and then swap the
2 branches. This is done serially over 16 cycles, by a circular rotation over the
32 flip-flop nibbles (37 to 00). The nibbles driven out of 17 are driven into 20,
and thus after this set of 16 cycles, the flip-flops in the upper half (37 to 20)
will contain the round function output. The nibbles out of 37 are driven into
00 and it is here that the π−1 is performed to undo the shuffle. Note that
in the bottommost row, the scan flip-flops are wired to perform π−1. The
select signals are SET in cycles 40 and 47 to perform π′−1 over the lower and
upper set of 8 nibbles exactly as in cycles 16-31. This not only moves the left
branch nibbles to the lower flip-flops but also undoes the shuffle performed
in cycles 0-15, and so we are ready to perform the next round computations.
Note that the round constants are added to the register 17 in cycles 32 and
33. This completes the round function. Note that since the left-right swap is
omitted in the last round, the ciphertext is output from the flip-flop marked
17 rather than 37.

More circuit details of bit-serial and unified architecture for encryption and
decryption are presented in Appendix D.

5.2 Performance Results

In Table 4, we compare the hardware performances of the serial implementations
of WARP with other lightweight ciphers, with 128-bit block size and providing
128-bit security. Unless otherwise specified, for all the designs in the table, the
following design flow was adhered to. The ciphers were first implemented in VHDL
and a functional simulation was done using the Mentorgraphics Modelsim software.
Thereafter the design was synthesized using the Standard cell library of the STM
90nm CMOS logic process (CORE90GPHVT v 2.1.a) with the Synopsys Design
Compiler, with the compiler flag set to compile ultra. A timing simulation was
done on the synthesized netlist with 1000 test vectors. The switching activity of

12

each gate of the circuit was collected while running post-synthesis simulation.
The average power was obtained using Synopsys Power Compiler, using the back
annotated switching activity.

Serial implementations are deployed when area is one of the primary metrics
to be optimized. As can be seen from Table 4, WARP performs well as far as area
is concerned, when compared with other ciphers with similar security level. As
in [3,17], we used multiplexers to filter round keys, instead of a register, which
saves us 100 to 150 GE of silicon area. The encrypt-only (E) bit-serial version
of WARP occupies only 763 GE which is the lowest reported at this security level.
Note that for a fair comparison, all the designs in Tables 4, 5 were implemented
from scratch except the ones marked by an asterisk.

Table 4: Comparison of performance metrics for serial implementations synthe-
sized with STM 90nm Standard cell library. Figures separated by / indicate
corresponding metrics for encryption/decryption. *Synthesized with the IBM
130 nm process/Power at 100 KHz

Degree of Area Delay Cycles TPMAX Power (µW) Energy
Serialization (GE) (ns) (MBit/s) (@10MHz) (nJ)

GIFT-128-128 4/32 1455 2.25 714 76.0 61.7 4.40
GIFT-128-128 1 1213 2.46 6528 7.6 40.3 26.30
SKINNY-128-128 8 1638 1.95 840 74.5 79.1 6.64
SKINNY-128-128 1 1110 0.81 6976 21.6 53.8 37.53
SIMON 128/128 1 1077 1.17 4480 23.3 60.5 27.10
MIDORI 128 (E) 8 1308 4.94 415 62.4 54.4 2.26
MIDORI 128 (ED) 8 1401 6.08 415/463 50.7/45.5 54.6 2.27/2.53
AES 128 (ED) 8 2060 5.79 246/326 85.7/64.7 129.7 3.19/4.23
AES 128 (E) [45] * 1 1560 - 1776 - 0.823 14.61
AES 128 (ED) [45]* 1 1738 - 1776/2512 - 0.852 14.61/15.13
WARP (E) 4 871 2.97 2032 20.2 33.2 6.76
WARP (E) 1 763 2.01 8128 7.5 28.4 23.04
WARP (ED) 4 925 2.58 2032 23.3 34.6 7.03
WARP (ED) 1 806 2.13 8128 7.1 29.0 23.59

5.3 Round Based and Round Unrolled Designs

While serial implementations are useful to construct low area architectures,
round based and round unrolled architectures offer a lot of benefits such as good
energy performances, in addition with reasonably good area and throughput
performances. In [6], the authors studied a number of block ciphers and came to
the conclusion that round based or 2-round unrolled implementations tend to be
the most energy efficient configurations for block ciphers.

For WARP, the round based configuration would need to filter the upper or
the lower key half in successive rounds. Thus a multiplexer is necessary for this
filtering. In contrast a 2-round unrolled configuration performs 2 round function
computations in a single clock cycle. Such a configuration would have circuits for
2 round functions placed serially one after the other. This obviates the use of a
multiplexer to filter any round keys, as it is clear that the first round function
block can simply use the upper key half and the second block can similarly use
the lower half. Thus a 2-round unrolled circuit would consume proportionately

13

lesser resources than a round based circuit both in terms of area and energy.
Similar arguments can be made about odd and even round unrolled circuits for
WARP. We experimented with 3 configurations for WARP: the round based, the 2
round and the 4 round unrolled circuits. The simulation results along with a
comparison with other lightweight block ciphers is presented in Table 5. Indeed,
in terms of energy, the 2-round unrolled configuration is the best and is around
30% better with respect to the one round configuration of MIDORI 128, a block
cipher, which is the most energy efficient block cipher reported in literature.
Note that WARP has odd number of rounds: this means that any even round
unrolled implementation will do some redundant computation in the final cycle.
For example, a 2-round unrolled implementation will need to operate 21 cycles,
to execute 41 round functions: the final cycle performs one additional round
function. This amounts to wastage of energy in the final cycle: however this is a
small fraction of the total energy consumed (for WARP it is less than 1% of the
total energy consumed). Figure 7 further shows a breakdown of area occupied by
the corresponding components of the circuit. Appendix D also describes a 1st
order threshold implementation of the WARP circuit.

Table 5: Comparison of performance metrics for round based implementations
synthesized with STM 90nm Standard cell library (1R, 2R, 4R refer to 1, 2, and
4 round unrolled circuits).

Area Delay Cycles TPMAX TPMAX/Area Power (µW) Energy
(GE) (ns) (GBit/s) MBit/(s·GE) (@10MHz) (pJ)

GIFT-128-128 1997 1.85 41 1.611 0.826 116.6 478.1
SKINNY-128-128 2104 1.85 41 1.611 0.784 132.5 543.3
SIMON 128/128 2064 1.87 69 0.937 0.465 105.6 728.6
MIDORI 128(E) 2522 2.25 21 2.649 1.076 89.2 187.3
MIDORI 128(ED) 3661 2.44 21 2.443 0.683 108.7 228.3
AES 128 7215 3.83 11 3.113 0.442 730.3 803.3
WARP (1R) (E) 1187 2.05 42 1.418 1.223 55.5 233.2
WARP (1R) (ED) 1390 1.74 42 1.671 1.231 59.5 250.0
WARP (2R) (E) 1456 1.95 22 2.911 2.047 58.4 128.5
WARP (2R) (ED) 1824 2.67 22 2.126 1.193 69.9 153.7
WARP (4R) (E) 2223 3.25 12 3.334 1.536 117.5 141.0
WARP (4R) (ED) 3075 3.93 12 2.758 0.918 177.4 212.9

6 Software Performance

6.1 On 8-bit AVR Microcontrollers

The design of WARP makes it flexible to make trade-offs to achieve various
performance characteristics on 8-bit AVR. Applying different implementation
choices results in different trade-offs between ROM, RAM, and execution time.
Appendix E.1 presents the details of our implementations. Table 11 summarizes
the results and comparison with available results of existing designs with same
parameters. It can be seen, on one end of the spectrum, WARP consumes minimized
RAM and competitively low ROM; On the other end, it achieves relatively good
performance regarding CPU cycles without consuming too much ROM.

14

Round Based (1187 GE) Nibble Serial (871 GE) Bit Serial (763 GE)

State Register - 670 GE

S-box - 156 GE

Control System/other gates - 20 GE

64-bit 3-Xor gate -200 GE

64-bit Multiplexer - 140 GE

Key Filter - 277 GE

State Register - 543 GE

S-box - 10 GE

Control System/other gates - 40 GE

Key Filter - 277 GE

State Register - 451 GE

S-box - 10 GE

Control System/other gates - 25 GE

56.4%

13.2%
1.7%

16.9%

11.8%

31.8%

62.4%

1.2%4.6%

36.3%

59.1%

1.3%3.3%

Fig. 7: Breakdown of component-wise area figures for 3 versions of WARP. Nibble
and Bit-serial circuits require lesser scan flip-flops which require more area

6.2 On High-end Processors

The nibble-orientate character of WARP enables implementations of it fit neatly
with a Single Instruction Multiple Data (SIMD) instruction commonly seen on
modern CPUs. This SIMD instruction performs a vector permutation providing
a look up table representation of the permutation offsets, which are called Vector
Permutation Instruction (VPI) [63]. For Intel and AMD x86-64 CPUs, the concrete
VPI is named (v)pshufb (which were used in our implementations). Both the
parallel 4-bit S-box and the nibble shuffle operation can be implemented using
(v)pshufb. Thus, the round function of WARP can be fully implemented using
a few (v)pxor and (v)pshufb. In Appendix E.2, we present the details of our
implementations of WARP using SIMD instructions on x64 CPUs. Our benchmark
results of WARP, together with that of two ciphers that are also designed targeted
at hardware, i.e., SIMON and SKINNY, are reported in Figure 10.

The software performance of WARP on high-end processors has the following
advantages. First, apart from mode of operations that can be parallelized, for
those that cannot, WARP also provides competitive performance, because the single-
block implementation of WARP can be very fast. Besides, for those modes that
can be parallelized, the latency of WARP can be very small, because the required
number of message blocks to achieve the optimal performance is relatively small.
Second, in the scenario where a server communicates with many sensors using
different keys, WARP can be very fast, because there is no heavy key schedule.

The source codes for our software implementations can be found via https:

//github.com/WARP-Block-Cipher/Software.

7 Conclusion

We have presented a 128-bit lightweight block cipher WARP. The design of WARP
is based on a variant of Type-2 GFN, combined with an improved shuffle over 32

15

https://github.com/WARP-Block-Cipher/Software
https://github.com/WARP-Block-Cipher/Software

nibbles to boost the diffusion. The primary goal is to achieve a small-footprint
128-bit block cipher, both for encryption-only and unified ED circuits. This has
been achieved by carefully choosing the components of GFN. We provided a
comprehensive hardware implementation results. They show that WARP is the
smallest 128-bit block cipher in the most of typical implementation strategies.
Moreover, WARP is very competitive in energy-efficient implementation. Besides,
the software of WARP on 8-bit microcontrollers can achieve competitively small
code size and extremely low RAM consumption, with acceptable execution time.
Finally, WARP is very efficient on software implementation using SIMD on high-end
processors. Indeed, our experimental results suggest that, for relatively short
inputs, WARP is faster than other hardware-oriented lightweight ciphers, which is
a desirable feature when the block cipher is operated in a serial mode.

Acknowledgement. Subhadeep Banik is supported by the Swiss National Sci-
ence Foundation (SNSF) through the Ambizione Grant PZ00P2 179921. Zhenzhen
Bao is partially supported by Nanyang Technological University in Singapore
under Grant 04INS000397C230, and Singapore’s Ministry of Education under
Grants RG18/19 and MOE2019-T2-1-060. Takanori Isobe is supported by Grant-
in-Aid for Scientific Research (B)(KAKENHI 19H02141) for Japan Society for
the Promotion of Science, Support Center for Advanced Telecommunications
Technology Research (SCAT), and SECOM science and technology foundation.
Kosei Sakamoto is supported by Grant-in-Aid for JSPS Fellows (KAKENHI
20J23526) for Japan Society for the Promotion of Science.

References

[1] Elena Andreeva, Andrey Bogdanov, Nilanjan Datta, Atul Luykx, Bart Mennink,
Mridul Nandi, Elmar Tischhauser, and Kan Yasuda. Colm v1. a CAESAR portfolio,
2016.

[2] Roberto Avanzi. The QARMA block cipher family. IACR Trans. Symm. Cryptol.,
2017(1):4–44, 2017.

[3] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga
Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A block cipher for low
energy. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part II,
volume 9453 of LNCS, pages 411–436. Springer, Heidelberg, November / December
2015.

[4] Subhadeep Banik, Andrey Bogdanov, Atul Luykx, and Elmar Tischhauser. SUN-
DAE: Small universal deterministic authenticated encryption for the internet of
things. IACR Trans. Symm. Cryptol., 2018(3):1–35, 2018.

[5] Subhadeep Banik, Andrey Bogdanov, Thomas Peyrin, Yu Sasaki, Siang Meng
Sim, Elmar Tischhauser, and Yosuke Todo. Sundae-gift. A Submission to NIST
Lightweight Cryptography Project, 2019.

[6] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Exploring energy
efficiency of lightweight block ciphers. In Selected Areas in Cryptography - SAC
2015 - 22nd International Conference, Sackville, NB, Canada, August 12-14, 2015,
Revised Selected Papers, pages 178–194, 2015.

16

[7] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Atomic-AES: A
compact implementation of the AES encryption/decryption core. In Orr Dunkel-
man and Somitra Kumar Sanadhya, editors, INDOCRYPT 2016, volume 10095 of
LNCS, pages 173–190. Springer, Heidelberg, December 2016.

[8] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Atomic-aes: A
compact implementation of the AES encryption/decryption core. In Progress in
Cryptology - INDOCRYPT 2016 - 17th International Conference on Cryptology in
India, Kolkata, India, December 11-14, 2016, Proceedings, pages 173–190, 2016.

[9] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, Mridul
Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo. Gift-cofb.
A Submission to NIST Lightweight Cryptography Project, 2019.

[10] Subhadeep Banik, Vasily Mikhalev, Frederik Armknecht, Takanori Isobe, Willi
Meier, Andrey Bogdanov, Yuhei Watanabe, and Francesco Regazzoni. Towards
low energy stream ciphers. IACR Trans. Symm. Cryptol., 2018(2):1–19, 2018.

[11] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng
Sim, and Yosuke Todo. GIFT: A small present - towards reaching the limit
of lightweight encryption. In Wieland Fischer and Naofumi Homma, editors,
CHES 2017, volume 10529 of LNCS, pages 321–345. Springer, Heidelberg, Septem-
ber 2017.

[12] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The SIMON and SPECK families of lightweight block ciphers.
Cryptology ePrint Archive, Report 2013/404, 2013. http://eprint.iacr.org/

2013/404.
[13] Christof Beierle, Anne Canteaut, Gregor Leander, and Yann Rotella. Proving

resistance against invariant attacks: How to choose the round constants. In
Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II,
pages 647–678, 2017.

[14] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas
Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY family
of block ciphers and its low-latency variant MANTIS. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages
123–153. Springer, Heidelberg, August 2016.

[15] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas
Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY family of
block ciphers and its low-latency variant MANTIS. Cryptology ePrint Archive,
Report 2016/660, 2016. http://eprint.iacr.org/2016/660.

[16] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh.
CRAFT: Lightweight tweakable block cipher with efficient protection against
DFA attacks. IACR Trans. Symm. Cryptol., 2019(1):5–45, 2019.

[17] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh.
CRAFT: lightweight tweakable block cipher with efficient protection against DFA
attacks. IACR Trans. Symmetric Cryptol., 2019(1):5–45, 2019.

[18] Ryad Benadjila, Jian Guo, Victor Lomné, and Thomas Peyrin. Implementing
lightweight block ciphers on x86 architectures. In Tanja Lange, Kristin Lauter, and
Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS, pages 324–351. Springer,
Heidelberg, August 2014.

[19] Thierry P. Berger, Julien Francq, Marine Minier, and Gaël Thomas. Extended gen-
eralized feistel networks using matrix representation to propose a new lightweight
block cipher: Lilliput. IEEE Trans. Computers, 65(7):2074–2089, 2016.

17

http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2016/660

[20] Thierry P. Berger, Marine Minier, and Gaël Thomas. Extended generalized Feistel
networks using matrix representation. In Tanja Lange, Kristin Lauter, and Petr
Lisonek, editors, SAC 2013, volume 8282 of LNCS, pages 289–305. Springer,
Heidelberg, August 2014.

[21] Karthikeyan Bhargavan and Gaëtan Leurent. On the practical (in-)security of
64-bit block ciphers: Collision attacks on HTTP over TLS and OpenVPN. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM CCS 2016, pages 456–467. ACM Press, October
2016.

[22] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack reduced to
31 rounds using impossible differentials. In Jacques Stern, editor, EUROCRYPT’99,
volume 1592 of LNCS, pages 12–23. Springer, Heidelberg, May 1999.

[23] Eli Biham and Adi Shamir. Differential cryptanalysis of the full 16-round DES.
In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 487–496.
Springer, Heidelberg, August 1993.

[24] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg Stütz.
Threshold implementations of all 3 x 3 and 4 x 4 s-boxes. In Cryptographic
Hardware and Embedded Systems - CHES 2012 - 14th International Workshop,
Leuven, Belgium, September 9-12, 2012. Proceedings, pages 76–91, 2012.

[25] Alex Biryukov, Patrick Derbez, and Léo Perrin. Differential analysis and meet-
in-the-middle attack against round-reduced TWINE. In Gregor Leander, editor,
FSE 2015, volume 9054 of LNCS, pages 3–27. Springer, Heidelberg, March 2015.

[26] Alex Biryukov and Ivica Nikolic. Complementing Feistel ciphers. In Shiho Moriai,
editor, FSE 2013, volume 8424 of LNCS, pages 3–18. Springer, Heidelberg, March
2014.

[27] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT:
An ultra-lightweight block cipher. In Pascal Paillier and Ingrid Verbauwhede,
editors, CHES 2007, volume 4727 of LNCS, pages 450–466. Springer, Heidelberg,
September 2007.

[28] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knežević,
Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - A
low-latency block cipher for pervasive computing applications - extended abstract.
In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of
LNCS, pages 208–225. Springer, Heidelberg, December 2012.

[29] Christina Boura, Maŕıa Naya-Plasencia, and Valentin Suder. Scrutinizing and
improving impossible differential attacks: Applications to CLEFIA, Camellia,
LBlock and Simon. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part I, volume 8873 of LNCS, pages 179–199. Springer, Heidelberg, December
2014.

[30] Victor Cauchois, Clément Gomez, and Gaël Thomas. General diffusion analysis:
How to find optimal permutations for generalized type-II Feistel schemes. IACR
Trans. Symm. Cryptol., 2019(1):264–301, 2019.

[31] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based authenticated encryption: How small can we go? In Wieland
Fischer and Naofumi Homma, editors, CHES 2017, volume 10529 of LNCS, pages
277–298. Springer, Heidelberg, September 2017.

[32] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher Square.
In Eli Biham, editor, FSE’97, volume 1267 of LNCS, pages 149–165. Springer,
Heidelberg, January 1997.

18

[33] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. Nessie
proposal: Noekeon. http://gro.noekeon.org/Noekeon-spec.pdf, 2000.

[34] Christophe De Cannière, Orr Dunkelman, and Miroslav Knežević. KATAN and
KTANTAN - a family of small and efficient hardware-oriented block ciphers. In
Christophe Clavier and Kris Gaj, editors, CHES 2009, volume 5747 of LNCS,
pages 272–288. Springer, Heidelberg, September 2009.

[35] Patrick Derbez. Note on impossible differential attacks. In Thomas Peyrin, editor,
FSE 2016, volume 9783 of LNCS, pages 416–427. Springer, Heidelberg, March
2016.

[36] Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin, and Victor Mollimard. Effi-
cient search for optimal diffusion layers of generalized feistel networks. 2019(1):218–
240, 2019.

[37] Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann Großschädl,
and Alex Biryukov. Triathlon of lightweight block ciphers for the internet of things.
Journal of Cryptographic Engineering, 9(3):283–302, September 2019.

[38] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici.
LS-designs: Bitslice encryption for efficient masked software implementations. In
Carlos Cid and Christian Rechberger, editors, FSE 2014, volume 8540 of LNCS,
pages 18–37. Springer, Heidelberg, March 2015.

[39] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED block cipher. In Bart Preneel and Tsuyoshi Takagi, editors, CHES 2011,
volume 6917 of LNCS, pages 326–341. Springer, Heidelberg, September / October
2011.

[40] Kishan Chand Gupta, Sumit Kumar Pandey, and Ayineedi Venkateswarlu. Almost
involutory recursive MDS diffusion layers. Des. Codes Cryptography, 87(2-3):609–
626, 2019.

[41] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bon-Seok
Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong, Hyun Kim,
Jongsung Kim, and Seongtaek Chee. HIGHT: A new block cipher suitable for
low-resource device. In Louis Goubin and Mitsuru Matsui, editors, CHES 2006,
volume 4249 of LNCS, pages 46–59. Springer, Heidelberg, October 2006.

[42] Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices.
[43] Gurobi Optimization Inc. Gurobi optimizer 6.5. Official webpage,

http://www.gurobi.com/, 2015.
[44] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, and Sumio Morioka. CLOC: Au-

thenticated encryption for short input. In Carlos Cid and Christian Rechberger,
editors, FSE 2014, volume 8540 of LNCS, pages 149–167. Springer, Heidelberg,
March 2015.

[45] Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich. Bit-sliding: A
generic technique for bit-serial implementations of spn-based primitives - applica-
tions to aes, PRESENT and SKINNY. In Cryptographic Hardware and Embedded
Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan, September
25-28, 2017, Proceedings, pages 687–707, 2017.

[46] Lars R. Knudsen, Gregor Leander, Axel Poschmann, and Matthew J. B. Robshaw.
PRINTcipher: A block cipher for IC-printing. In Stefan Mangard and François-
Xavier Standaert, editors, CHES 2010, volume 6225 of LNCS, pages 16–32. Springer,
Heidelberg, August 2010.

[47] Lars R. Knudsen and David Wagner. Integral cryptanalysis. In Joan Daemen
and Vincent Rijmen, editors, FSE 2002, volume 2365 of LNCS, pages 112–127.
Springer, Heidelberg, February 2002.

19

[48] Stefan Kölbl. Avx implementation of the skinny block cipher.
https://github.com/kste/skinny avx, 2019.

[49] Ted Krovetz and Phillip Rogaway. The software performance of authenticated-
encryption modes. In Antoine Joux, editor, FSE 2011, volume 6733 of LNCS,
pages 306–327. Springer, Heidelberg, February 2011.

[50] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth, ed-
itor, EUROCRYPT’93, volume 765 of LNCS, pages 386–397. Springer, Heidelberg,
May 1994.

[51] Vasily Mikhalev, Frederik Armknecht, and Christian Müller. On ciphers that
continuously access the non-volatile key. IACR Trans. Symm. Cryptol., 2016(2):52–
79, 2016. http://tosc.iacr.org/index.php/ToSC/article/view/565.

[52] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the limits: A very compact and a threshold implementation of AES. In
Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages
69–88. Springer, Heidelberg, May 2011.

[53] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In Chuankun Wu,
Moti Yung, and Dongdai Lin, editors, Information Security and Cryptology - 7th
International Conference, Inscrypt 2011, Beijing, China, November 30 - December
3, 2011. Revised Selected Papers, volume 7537 of Lecture Notes in Computer
Science, pages 57–76. Springer, 2011.

[54] Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara, and Daisuke Suzuki. SAEB:
A lightweight blockcipher-based AEAD mode of operation. IACR TCHES,
2018(2):192–217, 2018. https://tches.iacr.org/index.php/TCHES/article/

view/885.
[55] Kaisa Nyberg. Generalized Feistel networks. In Kwangjo Kim and Tsutomu Mat-

sumoto, editors, ASIACRYPT’96, volume 1163 of LNCS, pages 91–104. Springer,
Heidelberg, November 1996.

[56] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong
Wang, and San Ling. Side-channel resistant crypto for less than 2, 300 GE. J.
Cryptology, 24(2):322–345, 2011.

[57] Yu Sasaki and Kazumaro Aoki. Finding preimages in full MD5 faster than
exhaustive search. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of
LNCS, pages 134–152. Springer, Heidelberg, April 2009.

[58] Yu Sasaki and Yosuke Todo. New impossible differential search tool from design
and cryptanalysis aspects - revealing structural properties of several ciphers. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part III, volume 10212 of LNCS, pages 185–215. Springer, Heidelberg, April / May
2017.

[59] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru
Akishita, and Taizo Shirai. Piccolo: An ultra-lightweight blockcipher. In Bart
Preneel and Tsuyoshi Takagi, editors, CHES 2011, volume 6917 of LNCS, pages
342–357. Springer, Heidelberg, September / October 2011.

[60] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata.
The 128-bit blockcipher CLEFIA (extended abstract). In Alex Biryukov, editor,
FSE 2007, volume 4593 of LNCS, pages 181–195. Springer, Heidelberg, March
2007.

[61] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic security evaluation and (related-key) differential characteristic search:
Application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block

20

http://tosc.iacr.org/index.php/ToSC/article/view/565
https://tches.iacr.org/index.php/TCHES/article/view/885
https://tches.iacr.org/index.php/TCHES/article/view/885

ciphers. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I,
volume 8873 of LNCS, pages 158–178. Springer, Heidelberg, December 2014.

[62] Tomoyasu Suzaki and Kazuhiko Minematsu. Improving the generalized Feistel. In
Seokhie Hong and Tetsu Iwata, editors, FSE 2010, volume 6147 of LNCS, pages
19–39. Springer, Heidelberg, February 2010.

[63] Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
TWINE : A lightweight block cipher for multiple platforms. In Lars R. Knudsen
and Huapeng Wu, editors, SAC 2012, volume 7707 of LNCS, pages 339–354.
Springer, Heidelberg, August 2013.

[64] Yosuke Todo. Structural evaluation by generalized integral property. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of
LNCS, pages 287–314. Springer, Heidelberg, April 2015.

[65] Louis Wingers. Supercop:supercop-20190110/crypto stream/simon128128ctr/avx2.
https://bench.cr.yp.to/supercop/supercop-20190110.tar.xz, 2019.

[66] Wenling Wu and Lei Zhang. LBlock: A lightweight block cipher. In Javier
Lopez and Gene Tsudik, editors, ACNS 11, volume 6715 of LNCS, pages 327–344.
Springer, Heidelberg, June 2011.

[67] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP
method to searching integral distinguishers based on division property for 6
lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 648–678. Springer,
Heidelberg, December 2016.

[68] Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. On the construction of
block ciphers provably secure and not relying on any unproved hypotheses. In Gilles
Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 461–480. Springer,
Heidelberg, August 1990.

21

A Test Vector

Table 6 shows the test vectors of WARP.

Table 6: Test vectors.

B 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

K 0 1 2 3 4 5 6 7 8 9 A B C D E F F E D C B A 9 8 7 6 5 4 3 2 1 0
M 0 1 2 3 4 5 6 7 8 9 A B C D E F F E D C B A 9 8 7 6 5 4 3 2 1 0
C 2 4 C E 0 A 8 E F D 9 F 3 2 D E 5 2 9 D 5 F D F 4 5 7 0 3 A 8 D

K 0 1 2 3 4 5 6 7 8 9 A B C D E F F E D C B A 9 8 7 6 5 4 3 2 1 0
M 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 A A B B C C D D E E F F
C 9 2 3 C 6 4 F 9 2 8 2 7 E E 6 2 B 9 6 6 7 D D 2 5 4 8 F B 1 2 C

K 0 A C D 0 2 2 F 6 8 0 A 5 4 7 F E E 0 3 C 0 8 6 7 B 0 9 E 3 D 7
M A F 6 C D D 9 0 F C 5 A 6 E A A 8 9 7 B C D 1 2 0 8 D 3 9 1 E 1
C 6 1 2 3 9 9 5 F 1 9 2 4 D 3 1 4 2 5 6 4 1 A C D D 0 5 8 D D 4 6

B: Branch Index K: Master key M: Plaintext C: Ciphertext

B Security Evaluation

In this section, we provide the security evaluations of WARP against differential,
linear, integral, impossible differential, invariant and meet-in-the-middle attacks.

B.1 Differential/Linear Attack

Differential cryptanalsis [23] and linear cryptanalsis [50] are among the most
powerful techniques available for block ciphers. To evaluate the security against
differential and linear attacks, we compute the lower bound for the number of
differentially and linearly active S-boxes with a MILP-aided automatic search
method, which was proposed by Mouha et al. [53]. We use Gurobi [43] as the solver
and search for all nibble-wise truncated differential and linear characteristics.

Table 7 shows the minimum number of differentially and linearly active S-
boxes for up to 19 rounds in the single-key setting, where ASD and ASL denote
the number of differentially and linearly active S-boxes, respectively. It can be
observed from Table 7 that WARP has more than 64 active S-boxes after 19 rounds.
Since the maximum differential probability and absolute linear bias of the S-box
of WARP are both 2−2 and the nibble-wise full diffusion requires 10 rounds, even
with a 19-round differential distinguisher, we expect that an effective key-recovery
attack cannot reach up to 19 + 12 = 31 rounds. In a word, the full-round WARP is
secure against differential and linear attacks.

B.2 Impossible Differential Attack

Generally, an impossible differential attack [22] is one of the most powerful attacks
against Feistel-type ciphers. The impossible differential attack exploits a pair of

22

Table 7: The lower bound for the number of differentially and linearly active
S-boxes in the single-key setting.

#Rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ASD/ASL 0 1 2 3 4 6 8 11 14 17 22 28 34 40 47 52 57 61 66

input-output difference denoted by ∆in and ∆out such that ∆in will never reach
∆out after several rounds.

As mentioned in Section 3, WARP achieves the full diffusion after 10 rounds
at both the encryption and decryption sides in nibble-wise. Based on a more
detailed investigation, we found that the full diffusion requires 12 rounds at
both the encryption and decryption sides in bit-wise. Hence, there should be no
probability-1 bit-wise impossible differential over 24 rounds.

In order to obtain the longest impossible differential distinguisher, we utilize
an impossible differential search tool based on MILP designed by Sasaki and
Todo [58]. Specifically, we evaluate the search space such that the plaintext
difference and ciphertext difference activate only one bit, respectively. To model
the propagation of differences through the 4-bit S-box, we take into account
the differential distribution table for the 4-bit S-box. Based on the method as
proposed in [61], it can be modeled with the linear inequalities.

As a result, we find the following 21-round impossible differential distinguisher.

(0000000000001000

00)
21 rounds−−−−−−→ (0010000000000000000000

00)

According to Boura et al’s work [29] in ASIACRYPT 2014 and the correspond-
ing interpretation [35] by Derbez in FSE 2016, when extending the 21-round
impossible differential distinguisher for 10 rounds, the required time complexity of
the key-recovery attack is almost close to a pure exhaustive key search. Therefore,
we do not expect an effective key-recovery attack on up to 32 rounds of WARP
by using this 21-round impossible differential distinguisher. In a word, we expect
that the full-round WARP is secure against the impossible differential attack.

B.3 Integral Attack

The integral attack was first proposed by Daemen et al. [32] and it was later
formalized to the integral property by Knudsen and Wagner [47]. We define the
four states for a set of 2n n-bit cell: A: if ∀i, j i 6= j ⇔ xi 6= xj , C: if ∀i, j
i 6= j ⇔ xi = xj , B:

⊕2n−1
i xi, and U: Other. The integral attack was further

generalized to the division property by Todo [64], which can exploit the hidden
feature between A and B states.

23

To evaluate the nibble-based division property, we use a MILP-aided automatic
search method proposed by Xiang et al. [67], which enables us to efficiently explore
the propagation of the division property. Specifically, we evaluate all the cases
where 1, 2, 3 nibbles out of 32 nibbles are C and the others are all A in plaintexts.
Thus, we need to evaluate 223.2

(
=
(

32
1

)
+
(

32
2

)
+
(

32
3

))
nibble-wise patterns.

In this way, we find the following 20-round integral distinguisher.

(AAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAA)
20 rounds−−−−−−→ (UUUBUBUUUUUUUUUBUUUUUUUUUUUUUBUU)

However, due to the high data complexity of this integral distinguisher, one
can extend only 1 round to achieve a key-recovery attack and its time complexity
is almost close to an exhaustive key search. One may find an integral distinguisher
by using a lower data complexity, but the number of rounds will be reduced.
Considering that the nibble-wise full diffusion requires 10 rounds and that a
common integral distinguisher covering larger rounds always requires a higher
data complexity, we expect that the full-round WARP is secure against integral
attacks.

B.4 Meet-in-the Middle Attack

We evaluate the security against the meet-in-the-middle attack following the
method appeared in the self-evaluation of MIDORI [3] and CRAFT [16]. The 10-
round full diffusion property guarantees that any inserted key-bit non-linearly
affects all branches after the 10 rounds in the forward and the backward directions,
respectively. Thus, the possible number of rounds used for the partial matching
(PM) [57] is estimated as 19 (= (10− 1) + (10− 1) + 1). The condition for the
initial structure (IS) [57] is that key differential trails in the forward direction
and those in the backward direction do not share active non-linear components.
For WARP, since any key differential affects all 16 S-boxes after at least 10 rounds
in the forward and the backward directions, there is no such differential which
shares active S-box in more than 10 rounds. Thus, the number of rounds used for
IS is upper bounded by 9. Assuming that the splice-and-cut technique allows an
attacker to add more 3 rounds in the worst case, at most 32-round (19 + 10 + 3)
MitM attack may be feasible. However, because of the iterated key insertions
of K0 and K1 for every two round, we consider that it is difficult to mount a
32-round attack on WARP.

B.5 Invariant Subspace Attack

We use LFSR-based round constants in each round. Following the notions pre-
sented in [13], we first tried to find the smallest L-invariant subspace that contains
all roundkey differences. Here, L denotes the transformation that describes the
linear layer in WARP. Since WARP adds two key halves in an alternating fashion,

24

the master keys repeat every other round, the set of roundkey differences in the
even/odd rounds are given by

Deven = {RCr⊕RCr+2 : i ∈ {0, 2, . . .}}, Dodd = {RCr⊕RCr+2 : i ∈ {1, 3, . . .}},

where RCr is the 128-bit vector defined as (04 ‖RCr0 ‖ 04 ‖RCr1 ‖ 0112). Denoting
D = Deven ∪Dodd, we try to find WL(D), which denotes the smallest L-invariant
subspace containing D. We found that WL(D) is a subspace of dimension 124,
which does not automatically guarantee resistance to subspace attacks. As the
invariant attack applies only if there is a non-trivial invariant g for the S-box layer
such that WL(D) ⊂ LS(g), where LS(g) is the subspace of all linear structures
of the function g. We ran Algorithm 1 of [13] on Z = WL(D) first to see if S(Z)
hits all the cosets of Z. Experimentally we found that it does indeed, leading us
to conclude that g is the constant function which guarantees security against
subspace attacks.

C 32-branch Permutations with 9-round Full
Diffusion [36]

Table 8 shows four equivalent classes of 32-branch permutations of π′0(x), π′1(x),
π′2(x), and π′3(x) achieving 9-round full diffusion found by Derbez et. al [36].

Table 9 is a comparison of lower bounds on the number of active S-boxes for
WARP and four permutations by our MILP-based Active S-boxes counting. As
shown in Table 9, the number of active S-boxes of π′0(x), π′1(x), π′2(x), and π′3(x)
grows much slower than WARP. Specifically, π′0(x), π′1(x) and π′2(x), π′3(x) require
at least 32 and 48 rounds for achieving AS-box of ≥ 64, respectively.

Table 8: Four equivalent classes of 32-branch permutations with 9-round full
diffusion [36].

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π′
0(x) 3 4 5 12 7 24 9 20 11 2 1 26 15 8 17 30
π′
1(x) 3 10 5 12 7 26 9 20 11 8 1 24 15 18 17 30
π′
2(x) 3 4 5 2 7 24 9 16 11 14 1 28 15 10 17 8
π′
3(x) 3 14 5 12 7 28 9 18 11 22 1 30 15 2 17 24

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
π′
0(x) 19 14 21 18 23 28 13 10 27 16 29 6 25 22 31 0
π′
1(x) 19 4 21 2 23 28 13 14 27 22 29 6 25 16 31 0
π′
2(x) 19 26 21 22 23 20 13 30 27 18 25 6 31 12 29 0
π′
3(x) 13 4 21 26 23 10 19 8 27 20 25 16 29 6 31 0

25

Table 9: Lower bounds on the number of Active S-boxes for WARP and four
permutations of π′0(x), π′1(x), π′2(x), and π′3(x)

of rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
WARP 0 1 2 3 4 6 8 11 14 17 22 28 34 40 47 52 57 61 66

π′
0(x) [36] 0 1 2 3 4 6 8 11 14 19 22 24 26 28 30 32 34 36 38
π′
1(x) [36] 0 1 2 3 4 6 8 11 14 19 22 24 26 28 30 32 34 36 38
π′
2(x) [36] 0 1 2 3 4 6 8 10 12 12 14 16 16 18 20 20 22 24 24
π′
3(x) [36] 0 1 2 3 4 6 8 10 12 12 14 16 16 18 20 20 22 24 24

D More Details about Hardware Implementations

D.1 Bit Serial Architecture

The nibble serial architecture can be converted to a bit serial architecture, with
some simple circuit-level transformations. The first is explained in Figure 8. Any

a0

b0

a1

b1

a2

b2

a3

b3

ai
bi

∀i ∈ [0, 3]

C0

C1

C2

C3

C0 C1 C2 C3

Fig. 8: Nibble to bit serial transformations

nibblewise scan flip-flop can be serialized as shown in Figure 8, so that only one
scan flip-flop per nibble is utilized. Whereas in the nibble serial architecture, the
circuit can transfer one of the 2 nibble signals in one clock cycle, the same can
be done over 4 cycles in the bit-serial architecture. Thus the bit-serial circuit can
perform the same set of round operations in 48× 4 = 192 cycles, in 3 sets of 64
cycle operations as in the nibble serial circuit. We save 18× 3 = 54 scan flip-flops
in the bit-serial architecture, and also 4-bit xor gates and multiplexers can be
replaced with corresponding single bit gates.

D.2 Unified Circuit for Encryption and Decryption

Implementing the functionalities of encryption and decryption (ED) on the same
circuit can be beneficial in some instances. Various modes of operations like CBC,
XTS, OCB and COLM [1], that use block ciphers as the underlying primitive, require
access to both its encryption and decryption functionalities. Thus it is useful to
have an implementation that achieves both functionalities of a block cipher with
minimal overhead. There are several features in the Feistel network structure,
that make it easier to construct the ED architecture. Some of them are as follows:

1. SPN structures generally require involutive S-boxes to ensure efficient ED
implementation [3,17]. If not, they require the circuits for the forward and
inverse S-box to be implemented together, which increases area [8]. However

26

the inverse round function in Feistel networks can be described with the
forward S-box only. This gives us more freedom to search for S-boxes with
lightweight characteristics.

2. Some SPN block ciphers, e.g., [17] require the decryption key to be equal
to L · K, where L denotes the matrix that forms the linear layer of the
cipher. Thus additional circuit for matrix multiplication is required. Also a
multiplexer is required to filter these keys for encryption/decryption. In the
architecture for WARP, this is not necessary.

3. Let FK denote the function that performs S-box function and the roundkey
addition on the left branch. Then by slight abuse of notation we can write
the round function as

Ya = P (FK(Xa))⊕ (Xb ≪ 6), Yb = Xa (1)

where P is the function that performs the nibblewise shuffle of the left branch
by moving the i − th nibble to π[i]. Then it is easy to see that the inverse
round function is Xa = Yb, Xb = (P (FK(Yb))⊕ (Ya)) ≫ 6. However we do
omit the left-right swap in the last round, and as a result, decryption can be
computed by iterating the following round function 40 times, followed by a
“swapless” final round:

Xa = (P (FK(Ya))⊕ (Yb)) ≫ 6, Xb = Ya. (2)

Equations (1) and (2) are similar except that in encryption, the right branch
is left rotated by 6 nibbles before addition, whereas in decryption, rotation
done is after xoring left and right branches, this time by 6 nibbles towards
the right. Since WARP uses each half of the master key in alternate rounds
for key addition, it has been designed to have odd number of rounds. This
means the first and last round encryption keys are the same, which implies
that the encryption and decryption uses the left and right halves of the key
in the same order.

Thus the only real overhead in the ED circuit for WARP is to accommodate
left and right rotation by six nibbles in different times of the decryption cycle,
and arrange for round constants to be generated in the reverse direction, which
only requires some strategically placed multiplexers to accommodate the timing
of these operations in the decryption cycle.

In essence, one approach would be to not rotate the right branch during cycles
0 to 15, and do rotation only during cycles 31 to 47 when the xoring of right and
left branches has been completed. However, this approach is slightly problematic
to adopt, as cycles 31 to 47 are used to not only swap left and right branches
but also to apply π−1 to the left branch as it is being moved to bottom rows of
flip-flops. In such a situation the bottom rows cannot accommodate two different
types of permutation operations at the same time.

As a result, we need to exercise some fine-grained control over the ED circuit.
For decryption, we rotate the right branch by 10 nibbles left in cycles 0-15 (same
as 6 nibbles right rotation), although this rotation is not required as per Equation

27

(2). Thus to maintain functionality, in cycles 16-31, we drive nibbles out through
register 11 to do xor between left and right branches (this was done through
flip-flop 17 during encryption). After xor, the incoming nibbles are driven in
through flip-flop 12 (this was done through 00 during encryption). This method
has the added advantage that after round 31, the flip-flops 17−00 already contain
(P (FK(Ya)) ⊕ (Yb)) ≫ 6. This allows us to have the decryption operations in
cycles 32-47 exactly the same in encryption.

For completeness, we discuss two more issues. First, for decryption we choose,
cycles 0 and 1 for round constant addition, as this operation has to precede the
non-linear operations. To rotate left by 10 nibbles, we need to freeze rotation
for 6 cycles. Like in encryption, we divide the bottom row into groups of 6, 6, 2,
2 flip-flops and do internal rotation in these for 6 cycles. To accommodate this
operation we need to replace 3 normal flip-flop nibbles with scan flip-flop nibbles.

D.3 Threshold Implementations

The s-box belongs to the cubic class C266 as per the classification in [24] and as
such it can be decomposed into 2 quadratic s-boxes F ◦ G, where

G = [0, f, 6, 1, 3, 8, d, e, 4, b, 2, 5, 7, c, 9, a],

F = [c, 3, 1, e, 8, 5, d, 0, b, 4, 6, 9, 2, f, 7, a]

Since a minimum of d+1 shares are required to implement the 1st order threshold
implementation (TI) of a degree d s-box, we can thus implement a 3 share 1st-
order TI in the manner shown in [56]. The idea is to implement the TI of G
and F separated by a register bank in between, which suppresses the glitches
produced by the TI of G.

Since the s-box has degree 3, a straightforward 4-share TI can also be imple-
mented using a direct sharing approach. With regards to circuit architecture, the
4 share versions would only consist of 4 copies of the unshared circuit combined
through a shared s-box. The 3-share circuit is slightly complicated owing to the
fact that the shared G, F functions have to be executed one after the other.
We implemented it in the manner shown in Figure 9. In the unprotected circuit
described earlier, the S-box layer is computed in cycles 16 to 31. And so in the
shared circuit, we implement the shared function G in cycles 15 to 30 and the
shared function F in cycles 16 to 31. However this creates another problem, as
the entire left branch is overwritten by the output of the shared G layer before
being fed back into register 20. Since the current left branch is required to serve
the role of the right branch in the subsequent round, we need to invert the G
layer before we proceed to the next round. This is done by implementing a shared
implementation of the quadratic s-box G−1 between registers 20 and 21, which
is operated from cycles 17 to 32.

Table 10 shows the performance results for the 3-share and 4-share implemen-
tations of WARP. The smallest 3-share implementation stands at 1964 GE which
is smaller than known implementations of SKINNY and PRESENT (although these
are computed at different level of serialization).

28

00 01 02 03 04 05 06 07

1716151413121110

2726252423222120

3736353433323130

b b b b b b b

b b b b b b b

Permutation Permutation−1 Rotate

⊕

⊕

F

b

b b

⊕

RCon

Round Key

b

b

Plaintext

b

Ciphertext

AddC

G

G−1

b

b

Fig. 9: Sketch of the 3 share nibble serial architecture for WARP

E More Details of Software Implementations

E.1 Details of Software Implementations on 8-bit AVR

In this section, we report various performance of our software implementations
of WARP on Atmel 8-bit AVR. The implementations were written in assembly and
compiled using AVR macro assembler 2.2.7 in Atmel Studio 7.0. The considered
performance metrics include the code sizes (ROM), RAM usage, and execution
time (CPU cycles), which were also measured using Atmel Studio 7.0. All imple-
mentations followed the equivalent LBlock-type structure (see Figure 4 and 11b).
For detailed implementation, we considered the following choices:

1. One-round or two-round unrolling: combining two rounds can save the shuffle
operation between left and right branches, trading ROM for CPU cycles. Note
that the nibble-shuffle π on the left branch requires no additional procedure
when hard-coding the correspondence between the XORed nibbles.

2. One-S-box or two-S-box combining: combining two 4-bit S-boxes to an 8-bit
can reduce times of memory accesses, trading ROM or RAM for CPU cycles.

3. Storing the look up table (LUT) of the S-box in RAM or ROM: storing the
LUT in ROM can minimize the consumption of RAM; the downside is on
the one extra CPU cycle per memory access.

Applying different choices results in different trade-offs between ROM, RAM,
and execution time. Table 11a summarizes the evaluation results of our various
implementations; Table 11b presents two representative results together with the
available results of other block-ciphers (with 128-bit block and key) for comparison.
It can be seen that, on one end of the spectrum, the implementation of WARP can

29

Table 10: Comparison of performance metrics for serial implementations synthe-
sized with STM 90nm Standard cell library. (RB denotes round based circuit,
3s, 4s denotes circuits with 3, 4 shares respectively) *Synthesized with the
UMC 180nm process/Power at 100 KHz. **Synthesized with the IBM 130nm
process/Power at 100 KHz

Degree of Area Delay Cycles TPMAX Power (µW) Energy
Serialization (GE) (ns) (MBit/s) (@10MHz) (nJ)

PRESENT-80 (3s)∗ [56] 4 2282 - 547 - 5.1 28.16
SKINNY-128-128∗∗ (3s) [15] 8 3780 1.63 872 90.0 - -
WARP (3s) 4 2288 3.11 2032 19.3 99.9 20.29
WARP (3s) 1 1964 2.54 8128 5.9 87.0 70.72
WARP (3s) RB 6033 2.73 83 545.3 232.5 1.93
WARP (4s) 4 3363 3.12 2032 19.3 145.7 29.61
WARP (4s) 1 3060 3.26 8128 4.6 136.6 111.03
WARP (4s) RB 15761 3.38 42 880.9 703.3 2.95

consume minimized RAM (excluding the scenario-specific RAM data, such as
data to be encrypted, master keys, and initialization vectors.) and competitively
low ROM. On the other end of the spectrum, the implementation can achieve
relatively good performance regarding CPU cycles without consuming too much
ROM. Compared with other ciphers, there are two characters on the architecture
of WARP, which are the almost self-reciprocal structure and the extreme simplicity
of the key schedule. These two characters make the code size competitively small
when all encryption, decryption, and key-schedule are required to be implemented.
The lower level choices on the nibble-oriented operations make it flexible to make
trade-offs.

E.2 Details of Software Implementations on x64 CPUs

We implemented the serial processing of message block using 128-bit registers,
the parallel processing of double or more blocks using 256-bit registers. Because
of the byte-orientate character of the (v)pshufb instruction, in each byte of the
128- or 256-bit registers, only the lower 4 bits are used. Half of the 32 branches
of one (resp. two) block are stored within one 128-bit (resp. 256-bit) register.

The detailed implementation choices we considered are as follows.

1. Using equivalent form: similar to TWINE [63], it is possible to transform WARP

into an equivalent form (see Figure 12), in which only half branches go
through a nibble shuffle in each round12. We denote a shuffle of 16 nibbles
by “half shuffle”. Four different half shuffles are required for round functions
because the shuffle parameters form a loop every four encryption rounds.
Additionally, eight different shuffles are required to get equivalent round keys

12 Although a swap is also required between half branches and another half at the end
of each round, it can be skipped by variable renaming and unrolling even rounds.

30

Table 11: Software performance of WARP on 8-bit AVR.

(a) Different performance characteristics of WARP on 8-bit AVR

Unroll Features Function ROM [B] RAM [B] Time [cyc.] Speed [cpB]

One-
Round

One-Sbox
ROM

ENC (908 - 46) 862 (160 - 160) 0 56408 440.69
DEC (914 - 46) 868 (160 - 160) 0 56762 443.45
ENC+DEC (996 - 46) 950 (160 - 160) 0 113170 884.14

One-Sbox
RAM

ENC (956 - 46) 910 (176 - 160) 16 50554 394.95
DEC (962 - 46) 916 (176 - 160) 16 50908 397.72
ENC+DEC (1044 - 46) 998 (176 - 160) 16 101462 792.67

Two-Sbox
ROM

ENC (1084 - 46) 1038 (160 - 160) 0 40664 317.69
DEC (1090 - 46) 1044 (160 - 160) 0 41018 320.45
ENC+DEC (1172 - 46) 1126 (160 - 160) 0 81682 638.14

Two-
Round

Two-Sbox
ROM

ENC (1404 - 46) 1358 (160 - 160) 0 36504 285.19
DEC (1406 - 46) 1360 (160 - 160) 0 36506 285.20
ENC+DEC (1516 - 46) 1470 (160 - 160) 0 73010 570.39

Two-Sbox
RAM

ENC (1264 - 46) 1218 (416 - 160) 256 34348 268.34
DEC (1266 - 46) 1220 (416 - 160) 256 34350 268.36
ENC+DEC (1376 - 46) 1330 (416 - 160) 256 68698 536.70

(b) Performance of block ciphers (128-bit block and 128-bit key) on 8-bit AVR

Cipher Block [b] Key [b] ROM [B] RAM [B] Time [cyc.]

AES 128 128 3000 (406 - 160) 246 58973
LEA 128 128 1650 (629 - 160) 469 61755
SKINNY 128 128 1124 (545 - 160) 385 77451
SPARX 128 128 1726 (751 - 160) 591 84390
WARP [1R] 128 128 1126 (160 - 160) 0 81682
WARP [2R] 128 128 1330 (416 - 160) 256 68698

The target device is ATmega128; The scenario is encryption/decryption of 128 bytes of data in
CBC mode [37]. For ROM, that consumed by the main function for initializing data and calling
the enc/dec functions are subtracted. For RAM, that required for storing the data to be
processed, the master key, and the initialization vector are subtracted. WARP [1R] is for the
one-round-based implementation storing the LUT of two-S-box in ROM. WARP [2R] is for the
two-round-unrolled implementation storing the LUT of two-S-box in RAM. Results of other
ciphers are from https://www.cryptolux.org/index.php/FELICS_Block_Ciphers_Brief_Results.

because the shuffle parameters for round keys form a loop every eight rounds.
Details of the shuffle parameters can be seen in Figure 12.

2. Using three-operand instructions in AVX2: The two-operand instruction,
pshufb in SSSE3, performs in-place shuffles and thus, original data in the first
operand will be destroyed. Whereas, the three-operand instruction vpshufb,
keeps the source data, and stores the result in a third register. To implement
parallel S-boxes using pshufb/vpshufb, the table representation of the S-box
must be in the first source operand. Using pshufb, this table representation
will be replaced by the result, thus inevitably requires reloading; Whereas,
using vpshufb, it will not be destroyed and thus avoid the frequent reloading.

3. Taking advantage of the pipelined execution unit on modern CPUs: in our
implementation, we provide additional options on parallelism (besides the
double-block parallelism) – compute an atomic instruction (e.g., vpxor for
round key addition) on quadruple/octuple data blocks, and only then continue
to computing the subsequent atomic instruction on for quadruple/octuple
data blocks. This is because, on modern CPUs, the hardware that support the

31

https://www.cryptolux.org/index.php/FELICS_Block_Ciphers_Brief_Results

SIMD instructions is pipelined, which allows independent SIMD instructions
to be dispatched before the completion of one instruction. By experiment,
processing quadruple/octuple blocks using two/four AVX2 instructions on
256-bit registers achieves more performance benefit.

Different processors and different methods for the measurement may cause non-
negligible influence on the results, which eventually makes it difficult to do a
fair comparison. Considering this, we chose two ciphers, i.e., SKINNY and SIMON,
to do benchmarks on the same processor using the same method. Note that
these two ciphers are also designed targeted at hardware and at the same time,
have competitive software performance; besides, their optimized source codes
are publicly available. Our benchmark results are reported in Figure 10. For
WARP, we also provide more detailed performance evolution with the length of
the messages in Table 12.

16 32 64 128 256 512 1024 2048 4096

|M | (Bytes)

5

10

15

20

25

30

35

cy
cl

es
/
b
y
te

12.65

6.42

3.17 2.92 2.77
2.73 2.69 2.69

2.69

33.73

22.37

11.17

7.04
5.09 4.58

3.16 2.69
2.43

7.97
5.63

4.48

ECB with single KS

16 32 64 128 256 512 1024 2048 4096

|M | (Bytes)

5

10

15

20
cy

cl
es

/
b
y
te

9.14

4.6

2.81 2.72
2.69 2.67

2.67 2.67 2.66

20.36

15.32

7.66

5.27
4.16 4.12

2.21 2.2 2.17

3.27 3.28 3.27

ECB without KS

Ciphers (128-bit block and 128-bit key):

WARP

SIMON

SKINNY

Source code for SKINNY and SIMON (versions with 128-bit block and 128-bit key) were adapted from [48,
65]. Because that of SKINNY only support 64-block parallel processing, results for short message are
not available. We used GNU g++ 5.5.0 with -O3 -mavx2 options to compile. The processor is Intel(R)
Core(TM) i7-6700 (Skylake). We turned off hyper-threading and disabled Turbo Boost. The timing
method used was that in http://github.com/BrianGladman/AES. The instruction is rdtsc. We used
time enc16() evaluating the average time using 10000 samples of messages of a particular length.

Fig. 10: Software performance of WARP, SIMON and SKINNY on the same processor.

E.3 The Equivalent Forms Used in Software Implementations

Figure 11b shows an equivalent form of WARP in LBlock-like structure used in
our implementations for 8-bit AVR. Figure 12 shows the equivalent form of WARP
used in our SIMD implementations.

32

http://github.com/BrianGladman/AES

Plaintext

F

Pl Pr

F

Pl Pr

F

Pl Pr

F

Pl Pr

F

Ciphertext

10
iteration

s

Pl 3 7 6 4 1 0 2 5 11 15 14 12 9 8 10 13

Pr 15 14 0 10 13 1 12 11 7 6 8 2 5 9 4 3

(a) An equivalent form by separating even
and odd nibbles to left and right half
branches

Plaintext

PIl PIr

F
π

R

F
π

R

F
π

R

F
π

R

F
π

R

POl

Ciphertext

10
iteration

s

π 3 7 6 4 1 0 2 5 11 15 14 12 9 8 10 13

R 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9

PIl 5 4 6 0 3 7 2 1 13 12 14 8 11 15 10 9

PIr 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5

POl 3 7 6 4 1 0 2 5 11 15 14 12 9 8 10 13

(b) An equivalent form in LBlock-like

structure

Fig. 11: Equivalent forms of WARP

33

Plaintext

F0

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

P1

F1

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

P2

F2

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

P3

F3

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

P4

F4

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

P1

F5

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

P2

F6

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

P3

F7

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

P4

F0

Ciphertext

5
iteration

s

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

K1

PK1

P1 15 8 9 14 5 2 11 12 7 0 1 6 13 10 3 4

P2 14 15 0 5 3 10 4 9 6 7 8 13 11 2 12 1

P3 5 6 1 10 11 0 7 4 13 14 9 2 3 8 15 12

P4 6 0 12 13 10 9 15 11 14 8 4 5 2 1 7 3

PK1 2 5 11 15 14 12 9 8 10 13 3 7 6 4 1 0

PK2 11 12 7 0 1 6 13 10 3 4 15 8 9 14 5 2

PK3 7 6 8 2 5 9 4 3 15 14 0 10 13 1 12 11

PK4 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

PK5 10 13 3 7 6 4 1 0 2 5 11 15 14 12 9 8

PK6 3 4 15 8 9 14 5 2 11 12 7 0 1 6 13 10

PK7 15 14 0 10 13 1 12 11 7 6 8 2 5 9 4 3

PK0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 12: Another equivalent form using four permutations for round functions
and eight permutations for round keys (omitted addition round constants)34

Table 12: Software performance profile of WARP with various message length
(including the time took by packing/unpacking messages)

|M |
(bytes)

Haswell
(Parallelization)

Skylake
(Parallelization)

1 2 4 8 1 2 4 8

16 11.20 11.18 11.24 11.21 8.41 8.87 9.00 9.14
32 8.71 5.68 5.65 5.67 8.15 4.60 4.52 4.60
64 8.61 4.48 3.01 2.93 8.15 4.25 2.78 2.81

128 8.55 4.40 2.81 2.81 8.18 4.16 2.71 2.72
256 8.51 4.38 2.79 2.72 8.20 4.17 2.72 2.69
512 8.50 4.36 2.77 2.70 8.18 4.12 2.70 2.67

1024 8.50 4.36 2.76 2.67 8.18 4.09 2.71 2.67
2048 8.50 4.36 2.77 2.67 8.17 4.08 2.71 2.67
4096 8.56 4.43 2.76 2.67 8.17 4.08 2.71 2.66

35

	WARP : Revisiting GFN for Lightweight 128-bit Block Cipher
	Introduction
	Specification
	Design Rationale
	Branch Size and Permutation
	S-box
	Key Schedule
	Round Constants

	Security Evaluation
	Hardware Performance
	Nibble Serial Architecture
	Performance Results
	Round Based and Round Unrolled Designs

	Software Performance
	On 8-bit AVR Microcontrollers
	On High-end Processors

	Conclusion
	Acknowledgement.

	Test Vector
	Security Evaluation
	Differential/Linear Attack
	Impossible Differential Attack
	Integral Attack
	Meet-in-the Middle Attack
	Invariant Subspace Attack

	32-branch Permutations with 9-round Full Diffusion ToSC:DFLM19
	More Details about Hardware Implementations
	Bit Serial Architecture
	Unified Circuit for Encryption and Decryption
	Threshold Implementations

	More Details of Software Implementations
	Details of Software Implementations on 8-bit AVR
	Details of Software Implementations on x64 CPUs
	The Equivalent Forms Used in Software Implementations

