
Towards Fine-Grained One-Way Functions
from Strong Average-Case Hardness

Chris Brzuska1, Geoffroy Couteau2

1 Aalto University, Finland
2 IRIF, CNRS, France

Abstract. Constructing one-way function from average-case hardness is a long-standing open
problem. A positive result would exclude Pessiland (Impagliazzo ’95) and establish a highly
desirable win-win situation: either (symmetric) cryptography exists unconditionally, enabling
many of the important primitives which are used to secure our communications, or all NP
problems can be solved efficiently on the average, which would be revolutionary for algorith-
mists and industrials. Motivated by the strong interest of establishing such win-win results
and the lack of progress on this seemingly very hard question, we initiate the investigation of
weaker yet meaningful candidate win-win results. Specifically, we study the following type of
win-win results: either there are fine-grained one-way functions (FGOWF), which relax the
standard notion of a one-way function by requiring only a fixed polynomial gap (as opposed
to superpolynomial) between the running time of the function and the running time of an in-
verter, or nontrivial speedups can be obtained for all NP problems on the average. We obtain
three main results:
– We introduce the Random Language Model (RLM), which captures idealized average-case

hard languages, analogous to how the random oracle model captures idealized one-way
functions. In the RLM, we rule out an idealized version of Pessiland, where ideally hard
languages would exist yet even weak forms of cryptography would fail. Namely, we provide
a construction of a FGOWF (with quadratic hardness gap) and prove its security in the
RLM.

– On the negative side, we prove a strong oracle separation: we show that there is no black-
box proof that either FGOWF exist, or non-trivial speedup can be obtained for all NP
languages on average (i.e., there is no exponentially average-case hard NP languages).

– We provide a second strong negative result for an even weaker candidate win-win result:
there is no black-box proof that either FGOWF exist, or non-trivial speedups can be
obtained for all NP languages on average when amortizing over many instances (i.e., there
is no exponentially average-case hard NP languages whose hardness amplifies optimally
through parallel repetitions). This separation forms the core technical contribution of our
work.

Our results lay the foundations for a program towards building fine-grained one-way functions
from strong forms of average-case hardness, following the template of constructions in the
Random Language Model. We provide a preliminary investigation of this program, showing
black-box barriers toward instantiating our idealized constructions from natural hardness
properties.

Table of Contents

1 Introduction . 3
1.1 Excluding Pessiland: a Program for Putting Algorithms and Cryptography in a

Win-Win Situation . 3
1.2 Fine-Grained Cryptography: the Quest for Minimal Cryptographic Hardness 4
1.3 Our Contribution: Towards a Weak Exclusion of Pessiland . 4
1.4 A Core Technical Lemma: the Hitting Lemma. 7
1.5 Related Work . 8

2 Preliminaries . 9
2.1 Computational Models and Oracles . 9
2.2 Fine-Grained One-Way Functions . 9
2.3 Languages . 10
2.4 Pairwise independent hash-functions . 10

3 Technical Overview: FGOWFs in the Random Language Model . 11
3.1 Block-Finding Hardness of L . 11

4 Technical Overview: no FGOWFs from Average-Case Hardness . 12
4.1 Language Description . 13
4.2 Inexistence of FG-OWF Relative to Chk . 13

5 Technical Overview: no FG-OWF from Non-Amortizable Hardness . 14
5.1 Defining the Oracle Distribution T . 15
5.2 Proving Theorem 14 . 17
5.3 Proving Theorem 15 . 19

6 The Hitting Lemma . 20
6.1 Proof of the Hitting Lemma – Proof Structure . 21
6.2 Proof of Claim 2: BQ’s Strategy is the Best Possible Strategy . 22
6.3 Proof of Claim 3: Bounding B’s Number of Hits . 26
6.4 Application to Hardness in the Random Language Model . 28
6.5 Application to Good Inversion . 29
6.6 Application to Language Hardness . 29

7 A Fine-Grained One-Way Function in the Random Language Model 29
7.1 Average-Case Hardness of DL . 30
7.2 Block-Finding Hardness of DL . 30
7.3 A FG-OWFD from a Block-Finding Hard Language Distribution 32

8 Oracle Separation Between Fine-Grained One-Way Functions and Average-Case Hardness 34
8.1 The Oracle Distribution . 34
8.2 Average-Case Hardness of DL . 35
8.3 Inexistence of FG-OWFD Relative to Chk . 35

9 Black-Box Separation Between FG-OWF and Self-Amplifiable Average-Case Hardness 36
9.1 Self-Amplifying Average-Case Hard Language . 36
9.2 Black-Box Separation Between Self-Amplifiable Average-Case Hard Languages

and FG-OWF . 37
9.3 Oracle Definition . 38
9.4 Theorem Statement . 39

10 Proof of the Self-Amplifiable Average-Case Hardness Theorem . 41
10.1 The Emulation Lemma . 42
10.2 Applying The Hitting Lemma . 45
10.3 Proof of Theorem 32 from the Emulation Lemma and the Hitting Lemma 46

11 Proof of the Inversion Lemma . 48

Cryptomania

PKE

Minicrypt

OWF but no PKE

Pessiland

avgP 6= DistNP but no OWF

Heuristica

P 6= NP but avgP = DistNP

Algorithmica

P = NP

cryptographer’s
wonderland

“the worst of all possible
worlds”
Impagliazzo, 1995

algorithmist’s
wonderland

×
OWF ;
PKE [IR90]

×
avgP 6= DistNP
; OWF [Wee06]

×

P 6= NP ;
avgP 6= DistNP
[FF93,BT03]
[AGGM06,BB15]

Fig. 1: Impagliazzo’s five worlds

1 Introduction

In his celebrated 1995 position paper [Imp95], Impagliazzo describes his personal view of the study
of average-case complexity, an emergent (at the time) and fundamental area of computational com-
plexity initiated in a seminal work of Levin [Lev86], which aims to characterize NP problems which
are not only hard for a worst-case choice of inputs, but also for natural distributions over the in-
puts. In Impagliazzo’s view, our current understanding of the landscape of complexity theory is
best described by considering five possible worlds we might live in, which are now commonly known
as the five worlds of Impagliazzo, corresponding to the five possible outcomes regarding the exis-
tence of worst-case hardness in NP, average-case hardness in NP, one-way function, and public-key
cryptography. The corresponding five worlds, Algorithmica, Heuristica, Pessiland, Minicrypt, and
Cryptomania, and their relations are summarized on Figure 1. Algorithmica and Heuristica cor-
respond to the “algorithmist’s wonderland”, where all NP languages can be decided efficiently on
the average. Cryptomania and Minicrypt correspond to the “cryptographer’s wonderland”,3 where
one-way functions (and therefore, stream ciphers, signatures, pseudorandom functions, etc.) exist.
Eventually, Pessiland is what Impagliazzo describes as “the worst of all possible worlds”: a world in
which many NP problems might be untractable (even on natural instances), yet no one-way function
(and thus no cryptography) exists.

1.1 Excluding Pessiland: a Program for Putting Algorithms and Cryptography in a
Win-Win Situation

The five worlds of Impagliazzo naturally suggest an ambitious and challenging program, whose
aim is to rule out the existence of the middle world Pessiland, by proving that the existence of
3 Though we heard that lately, some cryptographers have been found dreaming of an even higher heaven,
the mysterious land of Obfustopia.

3

hard-on-average problems in NP implies the existence of one-way functions (OWF). Such a result
would demonstrate that one of the following is true: either some cryptographic primitives exist
unconditionally, thus putting the mathematical foundations of data security on firm grounds, or all
algorithmic problems of interest (i.e., those of the class NP) can be solved efficiently (meaning, in
polynomial time) on the average. Hence, excluding Pessiland would show, in an informal sense, that
any answer to the fundamental questions about the existence of hardness in NP would provide a
useful outcome – either efficient, generic algorithms, or secure cryptographic primitives.

While the importance of this program has been well recognized, it has proven especially hard
to pursue, and essentially no progress have been made toward excluding Pessiland in the past
two-and-a-half decades. A partial explanation for this lack of success was given by Wee [Wee06],
who showed that any exclusion of Pessiland must crucially rely on non-black-box techniques. In
fact, as Wee notes, this was already observed in an unpublished work of Impagliazzo and Rudich.
Therefore, there cannot be any black-box construction of OWF from the existence of average-case
hard languages in NP.

1.2 Fine-Grained Cryptography: the Quest for Minimal Cryptographic Hardness

In fact, the non-existence of a black-box construction is not specific to Pessiland: similar separa-
tion results are known between any two of Impagliazzo’s worlds [IR90,FF93,BT03,AGGM06,BB15].
However, the situation is much more satisfying than for Pessiland: at the bottom of the world
hierarchy, for Heuristica, stronger exponential worst-case assumptions are known to imply that
avgP 6= DistNP [Yao82,WB86,Sud97,Lev87,STV01]. At the top of the hierarchy, another weaker yet
nontrivial implication is known: Exponential Minicrypt (the world in which there exist exponentially
hard OWFs, but no public-key cryptography) still implies the existence of a weak but useful form
of public-key cryptography, namely, fined-grained public-key cryptography [Mer78,BGI08].

The traditional definition of a cryptographic primitive requires that some procedure can be run in
polynomial time (e.g. exchanging random keys) while guaranteeing that breaking the primitive (e.g.
finding the exchanged key for a passive observer) requires superpolynomial computational resources.
Fine-grained cryptography relaxes this notion, by requiring only that breaking the primitive should
be polynomially harder than executing the procedure. In fact, the very first work on public-key
cryptography, the 1974 project proposal of Merkle4 (published much later in [Mer78]) achieves
exactly such a weak notion of security: Merkle shows that an ideal OWF (modeled as a random
oracle) can be used to construct a key agreement protocol where the honest parties run in time
n, while the best attack requires time n2. The assumption of an ideal OWF was later relaxed to
the existence of exponentially hard OWFs by Biham, Goren and Ishai [BGI08]. Hence, in essence,
Merkle establishes a weak exclusion of Minicrypt, by showing that strong hardness in Minicrypt
already implies some nontrivial form of public-key cryptography, with a quadratic gap between the
attacker’s runtime and the honest parties’ runtime.

1.3 Our Contribution: Towards a Weak Exclusion of Pessiland

The above result suggests a natural relaxation of Impagliazzo’s program: rather than ruling out
Pessiland entirely, one could hope to show that sufficiently strong (e.g. exponential) average-case
hardness suffices to construct weak (fine-grained) OWFs. Such a result would still have a very
desirable win-win flavor: it would show that either all NP problems admit nontrivial (subexponential)
algorithms on the average, or there must exist some form of cryptography, with a polynomial security
gap. As the computational power increases, such a gap translates to an increasingly larger runtime
gap on concrete instances, hopefully leading to sufficiently large concrete security margin in realistic
situations. In this work, we initiate the study of such weak exclusions of Pessiland, obtaining both
positive and negative results.
4 Ralph Merkle, 1974 project proposal for CS 244 at U.C. Berkeley, http://www.merkle.com/1974/

4

http://www.merkle.com/1974/

The Random Language Model. We start our investigation by considering an idealized model
for average-case hardness, which we call the Random Language Model (RLM). Analogously to the
Random Oracle Model (ROM), where the parties have access to an oracle implementing a truly
random function which models an idealized OWF [BR93], the RLM provides oracle access to a
truly random NP-language L. In the RLM, each bitstring x ∈ {0, 1}n belongs to L with probability
exactly 1/2, and the membership witness for a word x ∈ L∩{0, 1}n is a uniformly random bitstring
from {0, 1}n. To check membership to the language, the parties have access to an oracle Chk which,
on input a pair (x,w) ∈ {0, 1}n × {0, 1}n, returns 1 if x ∈ L and w is the right corresponding
witness, and 0 otherwise. Finding out whether a random bitstring x ∈ {0, 1}n belongs to L requires
2n−1 calls to Chk on the average.5

The RLM captures idealized hard language where it is not only (exponentially) hard to decide
language membership, but it is also hard to sample an element of the language with probability
significantly better than 1/2 (hence, in particular, it is also hard to generate a word together with the
corresponding witness). This captures hard languages where no further structure is assumed beyond
the possibility to efficiently check a candidate witness; note that the ability to sample instances
together with their witness is exactly the additional structure which implies the existence of one-
way functions [Imp95], hence the question of building one-way functions from average-case hardness
asks precisely about whether this can be done without assuming this additional structure to start
with.

The RLM gives rise to a natural two-step program for establishing a weak exclusion of Pessiland:

– finding an (unconditional) construction of a fine-grained OWF given access to an idealized
language, and

– finding natural properties (which, ideally, should plausibly be satisfied by concrete languages of
interest) which a language must satisfy to instantiate the above construction in the plain model.

Our motivation for pursuing this two-step program stems from the success which the same
approach enjoyed in the Random Oracle Model. We already mentioned Merkle’s construction of
fine-grained key agreement in the ROM, which was later shown to be instantiable under expo-
nential OWFs. A similar approach was used to construct non-interactive zero-knowledge proofs
(NIZKs) in the ROM, using the celebrated Fiat-Shamir heuristic [FS87], which was later shown to
be instantiable with correlation-intractable hash function [CGH98]. This approach led to a fruit-
ful line of work [KRR17,CCRR18,HL18,CCH+19] which recently culminated with the construc-
tion of NIZKs under the learning with error assumption [PS19], solving a long standing open
problem. Further results include, e.g., ROM instantiability via Universal Computational Extrac-
tors [BHK13,BM14] as well as deterministic encryption and password hashing, first built in the
Random Oracle Model [BBO07] and later instantiated under the exponential hardness of the deci-
sion Diffie-Hellman problem [Zha16,Zha19].

A Fine-Grained OWF in the RLM. Our first contribution solves the first step of the above
program, by providing an unconditional construction of a fine-grained one-way function in the
Random Language Model (RLM). Our fine-grained OWF exhibits a quadratic hardness gap (if we
denote by n the cost of evaluating the function, measured as a number of calls to the random
language, then inverting the function requires O(n2) oracle calls). Our construction bears some
similarities to Merkle’s construction of key agreement; in fact, both construction can be combined
to achieve a construction of key agreement from a random language with security gap O(n1.5). While
we did not attempt to prove it, we conjecture that the security gap achieved by our construction is
optimal (for Merkle’s key agreement, the optimality of the construction was proven in [BM09]).

5 More precisely, it requires 2n−1 calls to Chk on the average to find a witness of language membership if
x is indeed in the language. In turn, it requires 2n calls to confirm that there is indeed no witness if x is
not in the language.

5

Theorem 1 (Informal). In the Random Language model, there exists a fine-grained one-way func-
tion which can be evaluated with n oracle calls, but cannot be inverted with o(n2) calls to the random
language.

At a (very) high level, the construction proceeds as follows: suppose that there exists hard
puzzles where sampling a random puzzle p is easy (it takes time, say, O(1)), but finding the unique
solution s = s(p) to the puzzle, and verifying that a candidate solution s to the puzzle is correct,
are comparatively harder (they take some much larger respective times N1 and N2 with N1 ≈ N2).
For example, such puzzles can be constructed by sampling |s| words (x1, · · · , x|s|), and asking for
the length-|s| bitstring of the bits indicating for each word xi whether it belongs to a given hard
language L. Then we construct a fine-grained OWF as follows: an input to the function is a list
of n puzzles (p1, · · · , pn) for some bound n, and an integer i ≤ n. The function F (p1, · · · , pn, i)
first solves the puzzle pi, and outputs the solution s(pi) together with (p1, · · · , pn). Evaluating F
takes time O(n) +N1; on the other hand, when L is an ideally hard language, inverting F requires
brute-forcing many of the pi, which takes time O(n · N2). Setting n ≈ N1 ≈ N2 gives a quadratic
hardness gap. We refer to Section 3 for a technical overview and Section 7 for a formal proof of our
positive result in the RLM.

Average-Case Hard Languages and Fine-Grained OWF. We then investigate the possibility
of instantiating the above construction in the standard-model. Our main results here are negative and
rule out relativizing (black-box) constructions: we show that there does not exist any fine-grained
OWF, even with an arbitrarily small polynomial security gap N1+ε (for any absolute constant
ε > 0), that makes black-box use of an (even exponentially) average-case hard language.

Theorem 2 (Informal). There is an oracle relative to which there exists an exponentially secure
average-case hard language, but any candidate fine-grained OWF f can be inverted with probability
O(1) and Õ(N) calls to the oracle, where N denotes the number of oracle calls to compute f in the
forward direction.

Interestingly, our oracle separation crucially relies on a language which is highly amortizable, i.e.,
deciding membership of many words (x1, .., xk) to the language L requires roughly as much time
(i.e., oracle calls) as deciding membership of a single word x to L. This should intuitively not come
as a surprise, as our construction of fine-grained OWF in the RLM crucially relies on the hardness of
solving the language membership problem for a very large number of challenge words. See Section 4
for an overview of the oracle separation between average-case hardness and fine-grained OWFs and
Section 8 for the full proof.

Black-Box Separation Between Non-Amortizable Average-Case Hard Languages and
Fine-Grained OWF. We therefore investigate whether non-amortizability (which states, roughly,
that deciding membership of k random instances to L should take O(k) times longer than deciding
membership of a single instance to L) suffices to construct fine-grained OWFs. Before we elaborate
on our result, we explain some additional motivations for studying the power of non-amortizability.

A Weaker Yet Meaningful Win-Win Result. First, constructing fine-grained one-way functions from
non-amortizable (exponentially) average-case hard languages would still constitute a very interest-
ing win-win result: it would show that either weak forms of cryptography exist unconditionally,
or nontrivial speedups can be achieved for all NP problems when amortizing over many random
instances.

Non-Amortizability Helps Circumvent Black-Box Impossibilities. Second, non-amortizability fea-
tures have proven to be a key approach to overcoming black-box impossibility results for crypto-
graphic primitives. For example, the Biham-Goren-Ishai construction [BGI08] of fine-grained key

6

agreement from exponential OWFs only provides an inverse-polynomial bound on the probability
that an attacker retrieves the shared key when relying on Yao’s XOR Lemma. In turn, when relying
on a (plausible) version of the XOR Lemma stating that success probability decreases exponentially
fast in the number of XORed instances, the adversary’s success probability can be brought down to
negligible. Yet, this “Dream XOR Lemma” cannot be proven under black-box reductions [BGI08].
An even more striking example is given by Simon’s celebrated black-box separation between one-way
functions and collision-resistant hash functions [Sim98]: Holmgren and Lombardi [HL18] recently
showed that a one-way product function (i.e., a OWF that amplifies twice, meaning that inverting
f on two random images (y1, y2) takes twice the time of inverting f on a single random image)
suffices to circumvent Simon’s impossibility result and build a collision-resistant hash function (in
a black-box way).

A Black-Box Separation. Motivated by the above, we investigate the possibility of building fine-
grained OWFs from non-amortizable average-case hard languages (i.e., languages whose average-case
hardness amplifies through parallel repetitions). Unfortunately, our result turns out to be negative:
we prove that there is no black-box construction of an N1+ε-hard OWF (where N is the time
it takes to evaluate the function in the forward direction), for an arbitrary constant ε > 0, even
from an exponentially average-case hard language whose hardness amplifies at an exponential rate
through parallel repetition. Conceptually, our second negative result separates fine-grained one-
way functions from a much stronger primitive and can thus be seen as a much stronger result.
Note, however, that technically, the two negative results are incomparable since the first one rules
out relativizing reductions whereas the latter rules out black-box reductions, see the beginning of
Section 3 for a discussion.

Theorem 3 (Informal). There is no black-box construction of an N1+ε-hard OWF, for an arbi-
trary constant ε > 0, from exponentially average-case hard languages whose hardness amplifies at
an exponential rate through parallel repetition.

1.4 A Core Technical Lemma: the Hitting Lemma

At the heart of both our positive result in the Random Language Model and our black-box separa-
tions is an important and non-trivial technical lemma, which we call the Hitting Lemma. At a high
level, the Hitting Lemma provides a strong Chernoff-style bound on the number of witnesses which
an adversary can possibly find given oracle access to the relation of a hard language. More precisely,
we state the Hitting Lemma in an abstract way, as a game with the following structure:

– First, a list of sets Vi is chosen. Each set Vi has size bounded by some value 2n and can be
thought of as the set of candidate witnesses for a size-n word.

– In each set Vi, a uniformly random witness ri is chosen. The sets Vi are allowed to have different
sizes, to capture the more general setting where the adversary already obtained preliminary
information excluding candidate witnesses.

– Eventually, the adversary interacts with an oracle Guessr1···r` which, on input (i, x), returns 1
if x = ri and ⊥ otherwise.

We call a query (i, x) such that Guessr1···r`(i, x) = 1 a hitting query (or a hit). The goal of the
adversary is to get as many distinct hits as possible within a bounded number of queries. Intuitively,
the most natural strategy to maximize the number of hits is to proceed as follows: first pick the
smallest set Vi, and query arbitrary positions one by one, until a hit is obtained. Then, pick the
second smallest set Vj and keep proceeding the same way, until all of the ri are found or the query
budget is exhausted.

In essence, the Hitting Lemma states that the above natural strategy is essentially the best
possible strategy, in a strong sense. Namely, denoting mQ the average number of hits obtained by
a Q-query adversary following the above strategy, the Hitting Lemma shows that for any possible

7

adversarial strategy, the probability of getting O(mQ) + c distinct hits using Q queries decreases
exponentially with c (for some explicit constant in the O(·)). Furthermore, the Hitting Lemma
extends directly to the non-uniform setting, where the adversary is allowed to receive an arbitrary
k-bit advice about the Guess oracle: our bound shows that this advice cannot provide more than
k additional hits. More precisely, for any possible adversarial strategy where the adversary receives
an arbitrary k-bit advice about the oracle, the probability of getting O(mQ) + k + c hits decreases
exponentially with c.

Analogy with the ROM. In the Random Oracle Model, a long line of work (see for example [Hel80],
[Unr07,DGK17,CDGS18] and references therein) has established the hardness of inverting an ide-
alized random function in a non-uniform setting, given a bounded-length advice about the oracle.
These results have proven to be important and powerful tools to reason about the Random Oracle
Model. At a high level, the hitting lemma provides a comparable tool in the Random Language
Model, and captures the hardness of deciding language membership for an idealized hard language,
even given a non-uniform advice, and even when the adversary tries to amortize over many instances.

Applying the Hitting Lemma. The hitting lemma shows up on three different occasions in our
work. First, we use it to show that random languages satisfy a strong hardness property, block
finding hardness, where the adversary tries to find a sequence of words such that the list of bits
indicating which words belong to the language is equal to some target string. In turn, this strong
hardness property is shown to imply a fine-grained one-way function. Second, in our strongest
oracle separation, we will exhibit an oracle relative to which there exists a non-amortizable average-
case hard language, but no fine-grained one-way function. Here, the hitting lemma will be used to
show that a carefully designed one-way function inverter, which provides some measurable leakage
about the random language, cannot be used to significantly improve the ability of the adversary
to decide language membership. Eventually, still in our strongest oracle separation, we will need to
show that our carefully-crafted one-way function inversion oracle successfully inverts any candidate
fine-grained one-way function with good probability; here, the hitting lemma allows to show that
tweaking a candidate one-way function by limiting its access to the random language leaves its input-
output behavior unchanged (over many input-output relations) with high probability, and therefore
inverting this “tweaked” one-way function candidate suffices to invert the original candidate with
high probability.

1.5 Related Work
We already pointed out that Merkle’s construction [Mer78] provides the first example of fine-grained
cryptography (as well as the first known example of public-key cryptography). It was further studied
in [BGI08,BM09], and generalized to the quantum setting in [BS08,BHK+11]. Fine-grained cryp-
tography has only become an explicit subject of study recently. The work of [BRSV17,BRSV18]
constructs proofs of work from explicit fine-grained average-case hard languages which can be based
on the exponential-time hypothesis (ETH), and explicitly poses the problem of building fine-grained
one-way functions (while showing some barriers for basing them on ETH via natural approaches).
The work of [DVV16] studies a different form of fine-grained cryptography, showing cryptosystems
secure against resource-bounded adversaries, such as adversaries in NC1, under a worst-case hardness
assumption. Eventually, the work of [LLW19] is the most closely related to ours: it shows construc-
tions of fine-grained one-way functions and fine-grained encryption schemes from the average-case
hardness of concrete problems, such as the Zero-k-Clique problem.

While progress on building one-way functions from average-case hardness have remained elu-
sive, several works have investigated other useful forms of hardness which could possibly reside
in Pessiland. In [Wee06], Wee shows that the existence of non-trivial succinct 2-round argument
systems for some languages in NP cannot be excluded from Pessiland in a black-box way. In a re-
cent preprint [PV19], Pass and Venkitasubramaniam show that TFNP (the class of total NP search
problems) is unconditionally hard in Pessiland.

8

Besides new ideas, our oracle separation relies on several established techniques. We use the
two-oracle technique by Simon [Sim98] where one oracle implements the base primitive and the
second oracle breaks constructions built from this primitive. As we argue about the efficiency of
the constructed one-way function, we use similar techniques to Gennaro and Trevisan [GT00] who
describe the emulation of a random oracle based on a bounded-length string, implicitly applying a
compression argument. We use Borel-Cantelli to extract a single oracle from a distribution of random
oracles as the seminal work on black-box separations by Impagliazzo and Rudich [IR89]. In order
to make our oracle deterministic, we use the hashing trick of Valiant-Vazirani [VV85] to obtain
a unique value out of many pre-image for a one-way function. In particular, we hash evaluation
paths similar to Bogdanov and Brzuska [BB15] who separate size-verifiable one-way functions from
NP-hardness.

2 Preliminaries

Notations. For any n ∈ N, [n] denote the set {1, · · · , n}.

2.1 Computational Models and Oracles
Throughout this paper, algorithms will be represented as families of boolean circuits (one for every
possible input length), and the main measure of efficiency will be circuit size (i.e., the number of
its wires). We extend circuits to oracle circuits in a natural way, by allowing circuits to have oracle
gates. The size of an oracle circuit will be measured as for a standard circuit, as the number of its
wires. Typically, if an oracle takes an n-bit entry as input and outputs an m-bit response, this will
be modeled by a fan-in-n fan-out-m oracle gate (hence this gate will contribute n+m to the total
circuit size).

As in the standard model for boolean circuit, the wires typically carry bit values. For simplicity
and readability, we will generally allow the wires to directly carry other special symbols, such as
⊥ and err (converting a circuit in this model to a “purely boolean” circuit only introduces some
constant blowup which has no impact on our asymptotic results). By default, even when we do not
mention it explicitely, we allow all (standard and oracle) gates to receive the symbol err as one of
their inputs; in which case, they output the err symbol as well on all their output wires.

2.2 Fine-Grained One-Way Functions
We start by introducing the notion of a fine-grained one-way function (FG-OWF). At a high level,
an (ε, δ)-FG-OWF is a function f (modeled as a family {fm}m of circuits, one for each input size)
such that all circuits of size o(|f |1+δ) have probability at most ε to find a preimage of f(x) for a
random input x.

Definition 4 (Fine-Grained One-Way Function). Let ε : N 7→ R+ be a positive function and
δ > 0 be a constant. A function f : {0, 1}∗ → {0, 1}∗ is an (ε, δ)-fine-grained one-way function if
for all circuit families C = {Cm}m∈N and all large enough m, if |Cm| < |fm|1+δ, then it holds that

Prz ←$ {0,1}m
[
Cm(f(z), 1m) ∈ f−1(f(z))

]
≤ ε(m).

One can also consider a slightly weaker notion, namely a fine-grained one-way function distribu-
tion (FG-OWFD), were the hardness of inversion should hold with respect to a randomly sampled
function f from a distribution D.

Definition 5 (Fine-Grained One-Way Function Distribution). Let ε : N 7→ R+ be a positive
function and δ > 0 be a constant. A distribution D over functions f : {0, 1}∗ → {0, 1}∗ is an (ε, δ)-
fine-grained one-way function distribution if for all circuit families C = {Cm}m∈N and all large
enough m, if |Cm| < |fm|1+δ for all f in the support of D, then it holds that

Prz ←$ {0,1}m,f ←$D

[
A(f(z), 1m) ∈ f−1(f(z))

]
≤ ε(m).

9

Any distribution over FG-OWFs induces a FG-OWFD, but the converse need not hold in general.

2.3 Languages

The class NP contains all languages L of the form L = {x | ∃w, (|w| = poly(|x|)) ∧ (R(x,w) = 1)},
where R is a relation computable by a polysize uniform circuit. This definition naturally extends to
the case where an oracle O is available; in this case, we say that the oracle language LO is in NPO

if it is of the above form, where R is computable by a uniform oracle circuit with |R| = poly(|x|).
When the oracle O is clear from the context, we will sometimes abuse this notation and simply say
that the oracle language LO is in NP. For a string x, we will denote by L(x) the bit which is 1 if
x ∈ L, and 0 otherwise. We will also extend this definition to vectors of strings ~x in a natural way.

Average-Case Hard Languages. We now define (exponentially) average-case hard languages
(EACHLs). Note that the exponential hardness in the following definition refers to the success prob-
ability of the algorithm.

Definition 6 (Exponential Average-Case Hardness). A language L is exponentially average-
case hard if for any circuit family C = {Cn}n∈N and all large enough n,

Prx←$ {0,1}n [Cn(x) = L(x)] ≤ 1
2 + |Cn|2n .

Note that in the most common definition of EACHLs, one usually not consider an exact bound
|Cn|, and instead define a language to be exponentially hard if a polytime algorithm Cn finds L(x)
with probability at most 1/2 + poly(n)/2n for a random word x ∈ {0, 1}n. However, since we will
work in the fine-grained setting, we settle for a stricter definition, with an explicit relation between
the running time of Cn and the probability of finding L(x). Similarly as for FG-OWFs, we can also
define a weaker notion of exponential average-case hard language distributions (EACHLD):

Definition 7 (Exponential Average-Case Hard Language Distribution). A distribution D
over languages L is exponentially average-case hard if for any circuit family C = {Cn}n∈N and all
large enough n,

Prx←$ {0,1}n,L ←$D [Cn(x) = L(x)] ≤ 1
2 + |Cn|2n .

Note that any distribution over EACHLs induces an EACHLD, but the converse need not hold in
general.

2.4 Pairwise independent hash-functions

Definition 8. For all j, i ∈ N, we call a distribution Hj,i over functions h : {0, 1}j 7→ {0, 1}i+2 a
distribution of pairwise independent hash-functions, if for all p, p′ ∈ {0, 1}j with p 6= p′, it holds
that

Prh←$Hj,i+2

[
h(p) = 0i+2] = 2−i−2

Prh←$Hj,i+2

[
h(p′) = 0i+2] = 2−i−2

Prh←$Hj,i+2

[
h(p) = h(p′) = 0i+2] = 2−2i−4

The following fact is used, e.g., by Valiant and Vazirani in their randomized reduction which solves
SAT given a UniqueSAT oracle [VV85].

Claim 1 For all sets S ⊆ {0, 1}j such that 2i ≤ |S| ≤ 2i+1, it holds that

Prh←$Hj,i+2

[
∃!p ∈ S : h(p) = 0i+2] ≥ 1

8 .

10

3 Technical Overview: FGOWFs in the Random Language Model

We first introduce the Random Language Model (RLM), which captures idealized average-case hard
languages, in the same way that random oracles capture idealized one-way functions.6 We define a
random language L as follows: for each integer n and each word x ∈ {0, 1}n, sample a uniformly
random bit B[x]. Then the elements of L are all x with B[x] = 1. For notational convenience,
we extend this notation to vectors: given a vector ~x of words, B(~x) denotes the vector of the bits
B[xi]. For each x ∈ {0, 1}n, we also sample a uniformly random witness W [x]←$ {0, 1}n. To check
membership to the language, we introduce an oracle Chk defined as follows: on input a pair (x,w),
the oracle checks whether B[x] = 0 or w 6= W [x]. If one of these conditions hold, it outputs ⊥;
otherwise, it outputs 1 (See Figure 2). It is relatively easy to see that to check membership of a
candidate word x to L given access to Chk, the best possible strategy is to query (x,w) for all possible
values w ∈ {0, 1}n, hoping to hit the uniformly random value W [x]. Hence, deciding membership of
a word x to L requires on the average 2n−1 queries to Chk, which shows that L is (exponentially)
average-case hard.

Distribution T

for n ∈ N :
for x ∈ {0, 1}n :

W [x]←$ {0, 1}n

B[x]←$ {0, 1}
return (W, B)

Chk[W,B](x,w)

if W [x] = w ∧B[x] = 1
return 1

else return ⊥

Fig. 2: Distribution T for sampling a random
language LO = {x ∈ {0, 1}∗ | B[x] = 1} with
the associated list of witnesses W . The oracle
O = Chk[W,B] allows to check membership of a
word x ∈ LO given the witness W [x].

We show that, in the RLM, there is an explicit
construction of a FG-OWF f such that every ad-
versary running in timeN(n)2−ν for an arbitrarily
small constant ν has only a negligible probabil-
ity of inverting f (in n) – id est, there exists a
(negl(n), 1 − ν)-FG-OWF, where negl(n) denotes
some negligible function of n. In order to con-
struct this FG-OWF, we will prove a useful inter-
mediate lemma which shows that a random lan-
guage actually satisfies a very strong hardness no-
tion, which we call block-finding hardness, which
states (roughly) that given many blocks of words,
and the language membership bits for one of these
blocks, finding out which block they correspond
to essentially requires to brute-force the language
membership of most words.

3.1 Block-Finding Hardness of L

Informally, we say that a language satisfies block-finding hardness if for any adversary A and any
large enough n, the following holds: The adversary A is given N ≤ 2n/k many length-k vectors ~xi of
distinct words xi,j ∈ {0, 1}n together with the string s = B[~xi] (the vector of language membership
bits for the words in ~xi) for a uniformly random block index i←$ [N]. If A finds the block index i
with probability significantly better than guessing, it must make Õ(N ·2n) queries to Chk. Intuitively,
this means that (up to polylogarithmic factors) the best strategy to find i is to find out the language
membership bits of some of the words in each of the blocks, by brute-forcing every possible witness
for these words, until one finds membership bits that are consistent with s. Slightly more formally,
we show the following:

Lemma 9 (Block-Finding Hardness of L – Informal Version). For any adversary A, n ∈
N, block size k, and number of blocks N (with k · N ≤ 2n), and any tuple of blocks (~xi)i≤N =
(xi,1, · · · , xi,k)i≤N such that all the xi,j are distinct:

Pri←$ [N] [Cn((~xj)j , B[~xi]) = i] ≤ 1
Õ(N)

·
(
|Cn|
2n + 1

)
· 2O(k).

6 More formally, since we consider an oracle sampled from a distribution over oracles, as for the Random
Oracle Model, this captures average-case hard language distributions. I.e., the hardness of a language is
averaged over the choice of the instance and the sampling of the oracle.

11

In the RLM, the language L satisfies block-finding hardness essentially because distinct words
have truly independent witnesses and language membership bits. More formally, the above lemma
will follow from a strong and generic concentration bound, the hitting lemma. We state and formally
prove the hitting lemma in an independent section (Section 6), since it turns out that this lemma
provides a very convenient and versatile tool to bound the success probability of an adversary which
attempts to decide membership of words in an oracle language (the hitting lemma will be needed
on three different occasions in this paper). In the context of proving the block-finding hardness of
L, we will need a variant of the hitting lemma of the following form:

Lemma 10 (Simplified Hitting Lemma with Advice – Informal Version). For every inte-
gers n,N, k ∈ N with kN ≤ 2n, vector ~y of kN words, adversary A getting ~y and B[~yi] for a random
i (where ~yi is a vector of k words), and for every integer c ≥ 1,

Pr(W,B)←T

[
#Hit ≥ O(|A|)

2n + k + c

]
≤ 2−O(c),

where #Hit counts the number of witnesses found by A for words of length n among the entries of
~y.

At the same time, conditioned on making less thanM hits in different blocks, it is straightforward
to show that A can find i with probabilityM/N : intuitively, this is because if i belongs to one of the
N−M blocks where no hits were made, then the indices of all these blocks are perfectly equiprobable
conditioned on the view of A. Applying Bayes rule to combine the above bounds, the probability
that A finds i is upper bounded by the probability that A finds i conditioned on making less than
M hits, plus the probability of making more than M hits. Therefore, for any M , the probability
that A finds i is upper bounded by

M

N
+ 2−O(M−|A|/2n−k).

From there, picking an appropriate choice of M (depending on |A|, N, and n) suffices to conclude
that A finds i with probability at most 1

Õ(N) ·
(
|Cn|
2n + 1

)
· 2O(k), which concludes the proof.

From Block-Finding Hardness to Fine-Grained One-Way Function. A block-finding hard
language immediately leads to a FG-OWF with a quadratic hardness gap: the input to the function
is a list of N = 2n/k blocks ~x of distinct words ~xi together with an index i. Evaluating the function
is done by brute-forcing the languages membership bits of the words in ~xi, which takes at most
k · 2n queries to Chk, and outputting (~x, s = B[~xi]). By the block finding hardness of L, inverting
the function on a random input, on the other hand, requires Õ(N ·2n) = Õ(22n/k) queries to Chk to
succeed with constant probability when the index i is uniquely defined (i.e., there is a unique index
i such that the block ~xi satisfies s = B[~xi]). This can be guaranteed to hold except with negligible
probability, by choosing k = ω(logn). Overall, this leads to a FG-OWF with quadratic hardness gap
(up to polylogarithmic factors), with some small but non-negligible inversion probability ε. Parallel
amplification can then be used to make the inversion probability negligible, leading to the following
theorem:

Theorem 11. For any ε > 0, there exists a (negl(m), 1 − ε)-fine-grained one-way function distri-
bution in the Random Language Model.

4 Technical Overview: no FGOWFs from Average-Case Hardness

Next, we study the possibility of instantiating the above construction using an average-case hard
language, instead of an idealized language. At first sight, it is not clear that average-case hardness

12

suffices, since our construction relies on the block-finding hardness of the language, a seemingly
much stronger property. Indeed, we show that there exists no construction of essentially any non-
trivial FG-OWF making a black-box use of an exponentially average-case hard language. To do so, we
exhibit an oracle distribution relative to which there is an exponentially average-case hard language,
but no FG-OWF, even with arbitrarily small hardness gap. This proof is the only part of our paper
that does not require the hitting lemma.

4.1 Language Description

We start by introducing our language. Our oracle defines a somewhat exotic language: for each
integer k, we let all words x ∈ {0, 1}n such that k = dlogne have the same random witness
w←$ {0, 1}2k , and we put either all these words simultaneously inside or outside the language, by
picking the same random membership bit bk for all of them. Intuitively, this provides an extreme
example of a language which is still hard to decide (since given a word x ∈ {0, 1}n, one must still
enumerate over 22dlogne

> 2n candidate witnesses to find out whether x ∈ L), but whose hardness
does not amplify at all (since finding a witness for a single word x gives the witness for all words
whose bitlength is close to that of x). This aims at capturing the intuition that any candidate
FG-OWF built from an average-case hard language L must somehow leverage some amplification
properties of the hardness of L. Then, the oracle Chk is similar as before: on input (x,w), it returns
⊥ if x /∈ L or w is not the right witness for x, and 1 otherwise. We will show that any oracle
adversary A requires O(2n) queries to decide membership of a word x ∈ {0, 1}n to L. The proof
is relatively straightforward and relies on the fact that the membership of x to L remains random
conditioned on the view of A as long as A did not make any hit, i.e., a query with the right witness
for x.

4.2 Inexistence of FG-OWF Relative to Chk

Next, we show that for any constant δ, there exists an oracle algorithm A such that for any candidate
FG-OWF f , A (given access to Chk) of size bounded by |f |1+δ which inverts f with probability 0.99.
The adversary works as follows: for any integer k, it checks whether the function will make “too
many” queries of the form (x,w) with x of length n such that k = dlogne (we call this a k-query),
where “too many” is defined as (22k)ε for a value ε = (1 + δ/2)−1. Intuitively, making more than
this number of queries ensures that f will have a noticeable probability of making a hitting query.
For all such “heavy queries”, A makes all possible (22k) queries to Chk with respect to some fixed
word x, until he finds the witness. A also does the same for all k-queries with k ≤ B(ε) for some
bound B(ε) to be determined later, even when they do not correspond to heavy query (this is to
avoid some “border effects” of small queries in the probability calculations). Note that this allows
A to find the witness for all words of length n such that k = dlogne, since they all share the same
witness.
A defines the following oracle-less function f ′ that contains all the hardcoded witnesses that A

recovered. Now, on input x, f ′ runs exactly as f and if f makes a k-query x for some k, then f ′

proceeds as follows:

– If k corresponds to a heavy query, then, using (22k) queries, A already computed the witness
for all k-queries and thus f ′ contains the hardcoded witness to correctly answer the query.

– If k does not correspond to a heavy query, f ′ simulates the answer of the oracle as ⊥.

We prove that with high probability (at least 0.999), the function f ′ agrees with f on a random
input x; this is because f ′ disagrees with f only if there is a k-query with k > 10 where f makes
less than (22k)ε queries, yet hits a witness (for all other types of queries, A finds the witness by
brute-force, hence it can always simulate correctly the answer of the oracle). But this happens only
with probability 1−

∑∞
k=B(ε)+1(22k)ε ·2−2k , which is bounded by 0.999 by picking a sufficiently large

13

bound B(ε) such that (1− ε)2B(ε) > B(ε). Then, by a straightforward probability calculation, the
probability of successfully inverting f on a random input x can be lower-bounded by 0.9992 > 0.99,
which concludes the proof.

5 Technical Overview: no FG-OWF from Non-Amortizable Hardness

Note that the techniques from our simpler oracle separation crucially exploit that the hardness of the
average-case hard language implemented by Chk does not amplify well (in fact, this is the reason why
the hitting lemma is not needed in the analysis). We are thus interested in understanding whether
we can still provide a black-box impossibility result even when the underlying average-case hard
language satisfies non-amortizable exponential hardness, or whether non-amortizable average-case
hard languages suffice to construct a fine-grained one-way function.

We call a language L (exponentially) self-amplifiable average-case hard if for any superlogarith-
mic (computable, total) function `(·), for any circuit family C = {Cn : {0, 1}`(n)·n 7→ {0, 1}n}n∈N of
size at most 2O(n) · `(n), and for all large enough n ∈ N,

Prx←$ {0,1}`·n [Cn(~x) = L(~x)] ≤ poly(n) · 2−
(
`(n)− Õ(|Cn|)

2O(n)

)
.

Informally, this means that to find the language membership bits of `(n) challenge words, the
best an adversary Cn can do (up to polylogarithmic factors in |Cn| and constant factors in n) is
to brute-force as many membership bits as it can (roughly, Õ(|Cn|)/2n since brute-forcing a single
membership bit requires O(2n) queries), and guessing the `(n) − Õ(|Cn|)/2n missing membership
bits at random. Note that self-amplifiable average-case hardness is especially interesting when the
circuit Cn is allowed to run in time larger than 2n (for small circuits, of size much smaller than 2n,
the standard average-case hardness notion already bounds their probability of guessing correctly a
single entry of L(~x)). In this range, the poly(n) factor in our definition is absorbed in the Õ(|Cn|)
term in the exponent (note also that adversaries of size larger than 2O(n) · `(n) can solve the full
challenge by brute-force).

Our main result rules out black-box reductions from any exponentially self-amplifiable average-
case hard language to fine-grained one-way functions, with arbitrarily small hardness gap. Slightly
more formally, we prove the following theorem:

Theorem 12 (Informal). There exists an oracle O and an oracle language LO such that for any
fine-grained one-way function f , there exists an (inefficient) adversary A that inverts f with prob-
ability close to 1 such that L remains exponentially self-amplifiable average-case hard against any
candidate reduction C given oracle access to both O and A.

In the nomenclature of Reingold, Vadhan and Trevisan [RTV04], we rule out a ∀∃-weakly-reduction,
a slightly weaker notion than a relativizing reduction. The result would turn into a full oracle
separation when the fine-grained one-way function f were given black-box access to the adversary
A as well. Reingold, Vadhan and Trevisan point out that in some cases, the adversary A can be
embedded into the oracle O, but doing so did not seem straightforward for our case and is left as
an open question. In the CAP nomenclature of Baecher, Brzuska and Fischlin [BBF13], we rule
out NNN reductions, since the construction f can depend on the language L, and the reduction C
can depend on both, the adversary and the primitive, i.e., each of these dependencies can be seen
as non-black-box, thus NNN. We prove Theorem 12 which is phrased in terms of reductions by
establishing Theorem 13 which is phrased in terms of oracle worlds.

Theorem 13 (Language Hardness and Good Inversion, Informal). There exists an oracle O
and an oracle Inv such that for all oracle functions f , there exists an inverter A of size |A| = Õ(|f |)
which, given oracle access to (O, Inv) and input (f, y), outputs a preimage of y with respect to fO

with probability close to 1. Moreover, there exists an oracle language LO which is exponentially
self-amplifiable average case hard against any candidate reduction C given oracle access to (O, Inv).

14

Theorem 13 is slightly different from our main theorem: the inverter A is now required to be
efficient, but gets the help of an additional oracle Inv. Furthermore, the reduction C is now given
oracle access to (O, Inv) instead of (O,A); the implication follows from the fact that the code of A is
linear in its input size, and thus, its code can be hardcoded into the code of C, hence the reduction
CO,A in our main theorem can be emulated by a reduction CO,Inv

A in Theorem 13, where |CA| ≈ |C|.
To prove Theorem 13, we rely on a standard method in oracle separations: we first prove a variant
of Theorem 13 with respect to a distribution over oracles O, Inv (where both the success probability
of the inverter and the probability of breaking the self-amplifiable average-case hardness of L will
be be over the random choice of O, Inv as well). Then, we apply the Borel-Cantelli lemma to show
that with measure 1 over the choice of the oracle, the oracle is “good” and thus, in particular, a
single good oracle exists as required by Theorem 13.

In summary, to prove Theorem 13 we prove two theorems relative to an explicit distribution T
over oracles O, Inv:

Theorem 14 (Language Hardness, Informal). For any ` : N 7→ N, circuit family C = {Cn}n,
and for all large enough n ∈ N,

Pr~x←$ {0,1}`·n,(O,Inv)←$ T
[
CO,Inv
n (~x) = LO(~x)

]
≤ poly(n) · 2−

(
`(n)− Õ(|Cn|)

2O(n)

)
.

Theorem 15 (Efficient Inversion, Informal). Let f : {0, 1}∗ → {0, 1}∗ be an oracle function.
There exists an efficient inverter AO,Inv(f, .) for f . More precisely, A is of size |A| = Õ(|f |) and for
sufficiently large m ∈ N, it holds that

Prz ←$ {0,1}m,(O,Inv)←$ T
[
fO(AO,Inv(f, fO(z))) = fO(z)

]
≈ 1.

5.1 Defining the Oracle Distribution T

The distribution T samples a triple (W,B,H) where:

– B defines a random language L: for every x ∈ {0, 1}∗, B[x] is set to 0 or 1 with probability 1/2;
– W defines a set of random witnesses: for any n ∈ N and x ∈ {0, 1}n, W [x] is set to a uniformly

random bitstring wx of length n.
– H contains a pairwise independent hash-function for every triple (i, C, y), where i ∈ N, C is an

encoding of a circuit and y is a bitstring.

A sample (W,B,H) from T defines a pair of oracles (O, Inv), where O = (Chk,Pspace) is defined as
follows:

– Chk is a membership checking oracle: on input (x,w), it returns ⊥ if W [x] = w, and B[x]
otherwise. Note that this means that relative to Chk, L is a random language in NP ∩ co-NP,
since Chk allows to check both membership and non-membership in L, given the appropriate
witness. A hit is a query to Chk which does not output ⊥. To emphasize the dependency of L
on O, we use the notation LO.

– Pspace is a PSPACE oracle which allows the caller to efficiently perform computations that do
not involve calls to the oracles Chk, Inv.

We now turn our attention to the oracle Inv, which is the most involved component: Inv must be
defined such that there is an efficient oracle algorithm A which can, given access to O, Inv, invert
any candidate one-way function fO, yet no algorithm (reduction) can break the self-amplifiable
average-case hardness of the language LO. given access to O, Inv. Hence, the goal of Inv is, given
an input (f, y), to help compute preimages z of y with respect to the oracle function fO, but with
carefully chosen safeguards to guarantee that Inv cannot be abused to decide the language LO. Our
solution relies on two crucial safeguards, which we describe below.

15

First Safeguard: Removing Heavy Paths. The oracle Inv refuses to invert functions f on
outputs y if the query-path from the preimage z to y in fO is “too lucky” with respect to O. To
understand this, consider the following folklore construction of a worst-case one-way function f :
on input (x,w), it queries Chk(x,w) and outputs (x, 1) if the check succeeds, and (x, 0) otherwise.
Then, querying Inv on input (f, (x, 1)) allows the adversary to find the witness w associated to x
efficiently, since the function f makes only a single query and thus the inversion query Inv(f, (x, 1))
has small cost for A.

But since fO is a normal (average-case) one-way function, we can allow ourselves to not invert
on a too lucky evaluation path, if we can show that we still invert sufficiently often. Concretely,
on input (f, y), the oracle Inv computes the set S of all paths from an input z to y = fO(z), i.e.,
the sequence of input-output pairs. Then, for all k ≤ |f |, Inv discards from this set S all k-heavy
paths, which are the paths along which the number of Chk hits on k-bit inputs is much higher7 than
expected, i.e., N(k)/2k−1, where N(k) is the number of Chk gates with k-bit inputs in f .

If S is not empty, then Inv samples a uniformly random element from S and returns the set of the
queries made on the path to the adversary. Since oracles need to be deterministic, we derandomize
the sampling via the use of the pairwise independent hash-function stored in the third output H
of T at H[log |S| , f, y] by the Valiant-Vazirani [VV85] trick that ensures that with probability 1

8 ,
there is only a unique value in S that hashes to 0log(|S|−1). Note that returning to the adversary the
set of query-answer pairs suffices, as the adversary can then use the Pspace oracle to find an input
z that leads to y with this set of query-answer pairs produced by fO. I.e., the Pspace uses the set
to emulate the answers to queries made by f and discards a candidate z whenever it makes a query
not in the set.

Let us return to the issue of k-lightness. Firstly, note that we need to check for lightness for all
values k, since the oracle Inv accepts functions that make queries to Chk on different k-values, and
the Inv-oracle does not “know” the length of the xi-values for which C tries to decide membership.
Secondly, we now need to clarify that we consider the number of hits as too high above its expected
value if there are more than O(N(k))/2k + log2(|f |) k-hits on the evaluation path. In this case, if
|f | = O(2k), then on input length k, the adversary could essentially get the same number of hits
without Inv queries by using a circuit of slightly bigger size Õ(|f |) that only makes Chk queries.
The point of the additive log2 |f | term is to ensure (via a concentration bound) that on a uniformly
random input z, the probability that the path on z is light is at least 1 − 1

superpoly|f | (while at the
same time, the language hardness is maintained).

In turn, when |f | is smaller than, say, 2 k6 , then the additive log2 |f | term turns out to allow
for too many hits. In this case, the probability of making even a single hit is 2−

5(k−1)
6 and thus

exponentially small in k whereas O(N(k))/2k+log2 |f | might potentially allow for many hits. Thus,
before performing all steps described in the first saveguard, we first replace f by a shaved function
fs, that we describe now.

Second Safeguard: Shaving high levels. We shave all Chk-gates of |f | that are for large input
length k, i.e., for all Chk-gates with input length k such that |f | ≤ 2 k6 . To do so, we replace f by a
shaved function fs where the answers of such Chk queries are hardcoded to be ⊥. The probability
(over O and z) that this changes the behaviour of f is equal to the probability of making a hit on
one of these high levels and thus 2−

5(k−1)
6 for the smallest k such that |f | ≤ 2 k6 , i.e., k ≥ 6 log(|f |).

Thus, 2−
5(k−1)

6 ≤ m−3, where m = |z|. Note that later, in the Borel-Cantelli Lemma, we need to
sum over these bad events, and thus, it is important that the sum of m−3 over all m is a constant.

Putting Everything Together. Finally, with the above two safeguards, our oracle Inv works as
follows: on input (f, y), it first shaves f of its higher-level Chk gates, computing fs ← shave(f).
7 Determining an appropriate bound on much higher is crucial to avoid that deciding LO becomes too easy.
We return to this issue shortly.

16

Then, it constructs the set S of all paths from some input z to y = fO
s (z), where a path is defined to

be the set of all query pairs to O made during the evaluation of fs on z. Afterwards, it removes from
S all paths which are too heavy, where a path is called heavy if there is a k such that it contains a
number N(k) k-Chk queries, out of which more than O(N(k))/2k + log2 |f | are hits. Eventually, it
returns a path from this set S of light paths using the hashing trick to derandomize the sampling.

As we already outlined, the last output H of T is therefore a set which contains, for every
possible triple (i, f, y) where i is an integer, f is an oracle function, and y is a bitstring, a hash
function h = H[i, f, y]. The guarantee offered by h is that for any set S′ of size 2i−1 ≤ |S′| ≤ 2i,
the probability of the random choice of h = H[i, f, y] that S′ contains exactly one entry s such that
h(s) = 0 is at least 1/8. Hence, after it computes the set S of light paths, Inv compute the unique
integer i such that 2i−1 ≤ |S| ≤ 2i, retrieves h← H[i, f, y], and output the unique path p ∈ S such
that h(p) = 0, or ⊥ if there is no unique such path. Note that this oracle Inv can fail to return a
valid path from an input z to the target output y in f for three reasons: because shaving caused fs
to differ from f on input z (we show that this is unliquely for a random z), because the path from
z to y is heavy (again, we show that this is unlikely), and because there is not a unique p ∈ S such
that h(p) = 0 (but with probability at least 1/8, there will be a unique such p). This last source of
failure can be later removed by a straightforward parallel amplification, by querying Inv on many
pairs (fk, y) where the fi are functionally equivalent variants of f (in which case the corresponding
hk = H[i, fk, y] are independently random by construction). Note that we could have also hardcoded
“true” randomness into Inv instead of using the hashing trick. However, as we will see, the hashing
trick enables a compression argument since (a) the hash-functions are sampled independently from
W and B and (b) the sampling can be emulated when only knowing a single element in the set as
well as the size of the set S. Details follow in the next section.

5.2 Proving Theorem 14

Fix a function ` : N 7→ N, a circuit family C, and an integer n ∈ N. We want to bound the probability,
over the choice of ~x←$ {0, 1}`(n)·n and (O, Inv)←$ T , that CO,Inv

n (~x) = LO(~x). We proceed in two
steps:

– First, we prove an emulation lemma which states that there is an explicit algorithm EmuO

which emulates CO,Inv
n without calling the oracle Inv, but using instead some partial information

g(W,B,H) about (W,B,H). By emulating, we mean that EmuO(~x, g(W,B,H)) = CO,Inv
n (~x), and

Emu makes the same number of queries to O as Cn.
– Second, we use the hitting lemma, which we already mentioned in Section 3 (in the technical

overview about the existence of FG-OWFs in the RLM), to bound the number of hits on ~x that
Emu can possibly make (where a hit on ~x is a query of the form (xi,W [xi]) to Chk, from which
Emu learns whether xi ∈ LO).

The Emulation Lemma. Concretely, we give an explicit algorithm Emu such that EmuO(L, ~x, Cn) =
CO,Inv
n (~x) and Emu makes the same queries to O as Cn, where the leakeage string L contains the fol-

lowing information:

– The sets H and (W~̄x, B~̄x) of all witnesses and membership bits except for those corresponding
to the entries of ~x (intuitively, this corresponds to giving to Emu all information about Inv which
is sampled independently of the W [xi], B[xi] and does not help with finding LO(~x)).

– The sets (WHit, BHit) which contains all Chk-hits on ~x in paths obtained by Cn through queries
to Inv.

– The set WHit which contains all other (non-hitting) Chk-query pairs in paths obtained by Cn
through queries to Inv.

– A list I which for each query (f, y) of Cn to Inv indicates whether this query returned ⊥ or not,
and if it did not, the value i which was used to select the hash function h = H[i, f, y].

17

The emulation proceeds in a relatively natural way: Emu simply runs Cn internally on input ~x,
forwarding its queries to O. Each time Cn makes a query (f, y) to Inv, Emu first retrieves from I the
information whether Inv outputs ⊥ or not. If it does not, Emu tries all possible inputs z to fO, but
without actually querying O: for each possible input z, Emu runs fO(z) by retrieving the answers of
O from the sets (W~̄x, B~̄x,W

Hit, BHit,WHit). If fO(z) makes a query whose answer is not contained
in these sets, Emu discards this candidate z. If fO(z) 6= y, Emu also discards z.

After trying all inputs to f , Emu has a set S′ of candidate inputs z, with a corresponding path.
Then, it retrieves the index i from I and selects h← H[i, f, y], and sets the output of Inv on (f, y)
to be the unique path p associated to some z ∈ S′ such that h(p) = 0; by construction, it will be
guaranteed that there is a unique such path. The correctness of the emulation follows by construction
and by definition of the sets (W~̄x, B~̄x,W

Hit, BHit,WHit) which Emu gets as input.
This emulation highlights the rationale behind the design of Inv: the use of a hash function h

to select the output guarantees that, on top of the sets (W~̄x, B~̄x,W
Hit, BHit,WHit), Emu will only

need to receive a relatively small amount of additional “leakage”, corresponding to the list of all
values i for each query to Inv. Now, by definition, i is at most log |S|, where S is a set of paths in
f , hence |S| ≤ 2|f |. Therefore, i ≤ |f |, hence i can be represented using at most log |f | bits. By
construction, a query (f, y) to Inv can leak information about ~x only if |f | ≥ 2n/C , because otherwise
all n-Chk gates gets removed by shave(f). Hence, our emulator gets a total amount of leakage about
~x bounded by |Cn|/2O(n). From there, we want to prove that

Pr~x←$ {0,1}`·n,(O,Inv)←$ T
[
CO,Inv
n (~x) = LO(~x)

]
≤ poly(n) · 2−

(
`(n)− Õ(|Cn|)

2O(n)

)
.

We will do so by proving that

Pr~x←$ {0,1}`·n,(O,Inv)←$ T

[
EmuO(L, ~x, Cn) = LO(~x)

]
≤ poly(n) · 2−

(
`(n)− Õ(|Cn|)

2O(n)

)
. (1)

Bounding Equation 1 is the goal of the hitting lemma.

Applying the Hitting Lemma. The hitting lemma states that for any circuit Cn, any algorithm
A having only access to the inputs and oracles of Cn’s emulator (i.e., B has only access to the oracle
O and L) cannot possibly make too many hit, even though the emulator gets |Cn|/2O(n) bits of
leakage about the oracle. Let HitO

B(L, ~x, Cn) be the random variable that counts the number of hits
on ~x made by A on input (L, ~x, Cn).

Lemma 16 (Hitting Lemma with Advice, Informal). For every `(·), positive integers q, large
enough n, challenge ~x, L with |WHit| = q and list I represented by a string length |I| = |Cn|/2O(n),
adversaries Cn,B, and for every integer c ≥ 1,

Pr(W,B,H)←T |L
Ī

[
HitO
B(L, ~x, Cn) ≥ O(|Cn|) + q

2n + c+ |I|
]
≤ 1

2γ·c ,

where γ > 1, and where the probability is taken over the random sampling of (W,B,H)←$ T ,
conditioned on L.

We first explain how the hitting lemma implies Equation 1. First, if EmuO got a total number
of hits t on ~x, either through queries to O or through the hits contained in WHit, then conditioned
on all observation seen by Emu, `(n)− t bits of LO(~x) are truly undetermined. Hence,

Pr~x←$ {0,1}`·n,(O,Inv)←$ T

[
EmuO(LĪ , ~x, Cn) = LO(~x)

∣∣Emu got at most t hits on ~x in total
]
≤ 2−(`−t).

Now, the number of hits seen by Emu is bounded by HitO
Emu(LĪ , ~x, Cn) + |WHit|, where |WHit| is

at most poly(n) · Õ(|Cn|)
2n : this follows from the fact that the number of hits in WHit is bounded by

18

design by the fact that Inv on input (f, y) only returns light paths, which cannot contain more than
poly(n) · Õ(|f |)

2n hits. The result follows by relying on the fact that

Pr~x←$ {0,1}`·n,(O,Inv)←$ T

[
EmuO(LĪ , ~x, Cn) = LO(~x)

]
=
∑
t

Pr[Emu got at most t hits on ~x] · Pr
[
EmuO(LĪ , ~x, Cn) = LO(~x) |Emu got t hits

]
≤
∑
t

2−(`−t) · Pr[Emu got at most t hits on ~x].

Now, the bound of Equation 1 will be obtained by plugging the bound on

Pr[Emu got at most t hits on ~x] ≤ HitO
Emu(L, ~x, Cn) + |WHit|,

by using the hitting lemma to bound HitO
Emu(L, ~x, Cn). The proof then follows from the hitting lemma,

to which we devote Section 6.

5.3 Proving Theorem 15

Let f : {0, 1}∗ → {0, 1}∗ be an oracle function. We exhibit an efficient inverter AInv(f, .) for f , such
that

Prz ←$ {0,1}m,(O,Inv)←$ T
[
fO(AO,Inv(f, fO(z))) = fO(z)

]
≈ 1.

A works as follows: to invert a function f : {0, 1}m 7→ {0, 1}∗ given an image y, it queries Inv
log3m times on independent inputs (fk, y), where each fk are syntactically different but functionally
equivalent to f (this guarantees that the failure probabilities introduced by the choice of the hash
function h are independent). Then, it takes a path p returned by any successful query to Inv (if any),
and returns a uniformly random preimage z consistent with this path (this requires a single query
to the PSPACE oracle). The proof that A is a successful inverter proceeds by a sequence of lemmas.
First, we define fapprox to be defined as fs = shave(f), except that it outputs ⊥ on any input z such
that the path in fO

s (z) is not light.

First Lemma. The first lemma states that

PrO,z ←$ {0,1}m
[
fO

approx(z) = fO
s (z)

]
≈ 1.

This lemma will follow again from the Hitting lemma, which provides a strong concentration bound
on the probability that the path of fO

s (z) is light: by this concentration bound, it follows that the
path is light with probability at least 1− log |f | · 2−O(log2 |f |) (recall that a path is heavy if, for some
k, it contains N(k) k-Chk queries, and more than O(N(k)) + log2 |f | hits).

Second Lemma. The second lemma states that

PrO,z ←$ {0,1}m
[
fO
s (z) = fO(z)

]
≈ 1.

This lemma follows from the definition of shaving: since only Chk gates with k ≥ 6 log |f | are shaved,
the probability that fO

s (z) 6= fO(z) is bounded
∑
k≥6 log(|f |) 2− 5k

6 ≤ 4/m3. Combining the above
lemmas with an averaging argument, we will show that

Prz ←$ {0,1}m
[
f(f−1

approx(f(z), 1m)) = f(z)
]
≈ 1.

Eventually, the success probability of A when making a single query to Inv is approximately 1/8;
since all queries have independent probability of failing due to an unfortunate choice of h, we will
show that A inverts successfully with probability

Prz ←$ {0,1}m,(O,Inv)←$ T
[
fO(AO,Inv(f, fO(x))) = fO(x)

]
≈ 1−

(
7
8

)log3 m

.

19

Note that A, on input f , sends log3m ≤ log3 |f | queries to Inv, selects one of the path from the
successful queries, and queries it to the PSPACE oracle to select the preimage z it outputs. Therefore,
the size of A is |A| = Õ(|f |).

6 The Hitting Lemma

For any ~r = r1 · · · r`, we define an oracle Guess~r(i, r∗) as taking an input r∗ and an index i and
checking whether ri = r∗. If so, the oracle returns 1. Else, the oracle returns⊥. We define HitGuess~r (A)
as the number of distinct queries A makes which returns something different than ⊥.

Lemma 17 (Abstract Hitting Lemma). For every positive integer q, large enough n, ` = `(n),
sets V1, · · · , V` of size 1 ≤ |Vi| ≤ 2n such that q = ` · 2n −

∑`
i=1 |Vi|, for every adversary A, and for

every integer c ≥ 1,

Pr~r ←$V1×···×V`

[
HitGuess~r (A) ≥ 16 · qryA + q

2n + c

]
≤ α

2γc ,

for some α > 0, and γ > 1.

The hitting lemma gives a strong Chernoff-style bound on the number of distinct hits which an
arbitrary adversary A can make using qryA queries. The strength of this bound allows to derive
almost immediately a useful corrolary, which shows that the bound degrades gracefully even if A
is additionally given an arbitrary advice string of bounded size about the truth table of the Guess
oracle:

Corollary 18 (Abstract Hitting Lemma with Advice). For every positive integers (q, k), large
enough n, ` = `(n), sets V1, · · · , V` of size 1 ≤ |Vi| ≤ 2n such that q = ` · 2n −

∑`
i=1 |Vi|, for every

pair of adversaries (A1,A2), and for every integer c ≥ 1,

Pr~r ←$V1×···×V`

[
a← A1(~r) : |a| ≤ k ∧ HitGuess~r (A2(a)) ≥ 16 · qryA + q

2n + c

]
≤ α · 2k

2γc ,

or equivalently

Pr~r ←$V1×···×V`

[
a← A1(~r) : |a| ≤ k ∧ HitGuess~r (A2(a)) ≥ 16 · qryA + q

2n + k + c

]
≤ α

2γc ,

for some α > 0, and γ > 1.

Proof. The proof follows by reduction to the hitting lemma through a simple guessing argument:
assume toward contradiction that the above bound does not hold; that is, there is an adversary
(A1,A2) such that

Pr~r ←$V1×···×V`

[
a← A1(~r) : |a| ≤ k ∧ HitGuess~r (A2(a)) ≥ 16 · qryA + q

2n + k + c

]
>

α

2γc .

We construct an adversary A[a] by sampling a←$ {0, 1}k and defining A[a], which has a hard-
coded in its description, to compute A2(a). Note that for any ~r ∈ [v1] × · · · × [v`], it holds that
Pra←$ {0,1}k [A2(~r) = a] = 1/2k. Therefore,

Pr~r ←$V1×···×V`, a←$ {0,1}k

[
HitGuess~r (A[a]) ≥ 16 · qryA + q

2n + k + c

]
>

α

2γc ·
1
2k .

20

Let c′ ← c + k. By a standard averaging argument, there must therefore exist a string a ∈ {0, 1}k
such that

Pr~r ←$V1×···×V`

[
HitGuess~r (A[a]) ≥ 16 · qryA + q

2n + c′
]
>

α

2γc ·
1
2k

= α

2γc′ ·
2γk

2k

>
α

2γc′ since γ > 1.

However, the above contradicts the hitting lemma, which concludes the proof. ut

Remark 19. Considering an adversary receiving an arbitrary length-k advice string about the truth
table r1 · · · r` of the oracle Guess is analogous to performing an analysis in the Random Oracle
Model with Auxiliary Input. Starting with the celebrated work of Hellman on time-space trade-
offs for inverting a random permutation [Hel80], this model developed into a long line of research
(see [Unr07,DGK17,CDGS18] and references therein). The model allows the adversary to inspect
the entire truth table of the random oracle in a preprocessing phase and to store a bounded-length
auxiliary input string to help it with inverting the oracle. Our hitting lemma captures, in essence,
the hardness of finding a witness in the Random Language Model (in a strong sense), analogous to
the hardness of inverting the random function in the Random Oracle Model, and the above corollary
extends this hardness result to adversaries with an arbitrary bounded auxiliary input.

6.1 Proof of the Hitting Lemma – Proof Structure

The goal of A is to find as many distinct ri’s as possible, where each ri is sampled randomly from a
set Vi of size |Vi| ≤ 2n, given access to an oracle which indicates whether a guess is correct or not.
Intuitively,A’s best possible strategy is to first choose the smallest set Vi1 , query its elements to Guess
(in arbitrary order) until it finds ri1 , then move on to the second smallest set Vi2 , and so on. The
proof of the abstract hitting lemma closely follows this intuition: we first show that this strategy
is indeed the best possible strategy, then bound it’s success probability using a second moment
concentration bound. Formally, for any Q ≥ 1, let BQ be a Q-query adversary that implements
the following simple strategy: order V1, · · · , V` by increasing size, as Vσ(1), · · · , Vσ(`) for some fixed
permutation σ such that |Vσ(1)| ≤ · · · ≤ |Vσ(`)|. For every i ≤ `, let vi ← |Vσ(i)|, and let fi be an
arbitrary bijection between [vi] and Vσ(i). The algorithm BQ is given on Figure 3.

Algorithm BQ

qry← 0; r∗1 , · · · , r∗` ← ⊥
for i = 1 to ` :

for j ∈ [1, vi] :
qry← qry + 1
if qry = Q then return (r∗1 , · · · , r∗`)
if Guess~r(i, fi(j)) then r∗σ(i) ← fi(j); break

return (r∗1 , · · · , r∗`)

Fig. 3: Q-query adversary BQ

The adversary BQ sequentially queries the values of the sets Vi ordered by increasing size,
following an arbitrary ordering of the values inside each Vi, until it finds ri (after which it moves

21

to the next smallest larger set) or exhausts its budget of Q queries. To simplify notations, for any
vector ~u ∈ [v1] × · · · × [v`], we write π(~u) = f−1

1 (uσ−1(1)), · · · , f−1
` (uσ−1(`)). Observe that for any

t ∈ N,

Pr~r ←$V1×···×V`

[
HitGuess~r (BQ) ≥ t

]
= Pr~u←$ [v1]×···×[v`]

[
HitGuessπ(~u)(BQ) ≥ t

]
= Pr~u←$ [v1]×···×[v`]

[
t∑
i=1

ui ≤ Q

]
,

where the last equality follows from the fact that BQ queries the positions one by one in a fixed
order, and needs exactly ui queries to find rσ(i) = fσ(i)(ui) for i = 1 to t. The proof of the hitting
lemma derives directly from two claims. The first claim states that no Q-query adversary can make
t distinct hits with probably better than that of BQ:

Claim 2 (BQ’s strategy is the best possible strategy) For every integers n,Q, ` = `(n), sets
V1, .., V` of size 1 ≤ |Vi| ≤ 2n, and for any Q-query algorithm A and integer t,

Pr~r ←$V1×···×V`

[
HitGuess~r (A) ≥ t

]
≤ Pr~u←$ [v1]×···×[v`]

[
t∑
i=1

ui ≤ Q

]
.

By construction, the average number of hits E~r[HitGuess~r (BQ)] made by BQ is the largest value
m such that

∑m
i=1

vi+1
2 ≤ Q. Recall that q = ` · 2n −

∑`
i=1 |Vi| = ` · 2n −

∑`
i=1 vi and vi ≤ 2n for

every i, which implies in particular that
∑m
i=1 vi ≥ m · 2n − q. This gives us a simple bound on m

as a function of Q, q, and 2n:
m∑
i=1

vi + 1
2 ≤ Q ⇐⇒ m+

m∑
i=1

vi ≤ 2Q

=⇒ m+m · 2n − q ≤ 2Q

⇐⇒ m ≤ 2Q+ q

2n + 1 .

The second claim states, in essence, that the probability over ~r that BQ does t hits decreases
exponentially with the distance of t to the mean m (up to some multiplicative constant). More
precisely,

Claim 3 (Bounding BQ’s number of hits) There exists constants α > 0 and γ > 1 such that
for every `(·), positive integers q,Q, large enough n, integers v1, · · · , v` with 1 ≤ vi ≤ 2n such that
q = ` · 2n −

∑`
i=1 vi, and for every integer c ≥ 1,

Pr~u←$ [v1]×···×[v`]

[
t∑
i=1

ui ≤ Q

]
≤ α

2γc ,

where
t = 16 ·Q+ q

2n + c.

6.2 Proof of Claim 2: BQ’s Strategy is the Best Possible Strategy

Fix an integer t and an arbitrary family of adversaries A = {AQ}Q∈N for each possible number of
query Q. We say that AQ is non-wasteful if it satisfies the following constraints:

1. AQ is deterministic;

22

2. AQ never makes the exact same query twice;
3. If any query of AQ hits in a set Vi, AQ will never make any more query in Vi.

We call queries prohibited by items 2 and 3 forbidden queries. For item 1, observe that by a standard
averaging argument, for any fixed t and any randomized adversary AQ with random tape R, there
is a deterministic adversary A′ such that Pr

[
HitGuess~r (A′) ≥ t

]
≥ Pr

[
HitGuess~r (AQ(R)) ≥ t

]
. To see

this, set R′ ← maxR Pr
[
HitGuess~r (AQ(R)) ≥ t

]
and define A′ to be AQ with R′ hardcoded in its

circuit. For items 2 and 3, observe that for any adversary AQ that makes f forbidden queries, we can
construct a (Q−f)-query adversary A′ such that Pr

[
HitGuess~r (A′) ≥ t

]
= Pr

[
HitGuess~r (AQ) ≥ t

]
, by

letting A′ run AQ internally and retrieving locally the answers to any forbidden query (such answers
are known by definition) rather than querying them to Guess. Therefore, without loss of generality,
in the following, we can restrict our attention to non-wasteful adversaries when upper-bounding
Pr
[
HitGuess~r (A′) ≥ t

]
.

To simplify notations, for any Q and t, we let pt(AQ) and p′t,Q denote the left and right hand
terms of the claim respectively, that is:

pt(AQ)← Pr~r ←$V1×···×V`

[
HitGuess~r (A) ≥ t

]
, and

p′t,Q ← Pr~u←$ [v1]×···×[v`]

[
t∑
i=1

ui ≤ Q

]
= pt(BQ).

We prove Claim 2 by induction over Q:

Base Case. For Q = 1, there are three cases to distinguish: if t = 0, then p0(A1) = p′0,1 = 1
vacuously; if t > 1, then pt(A1) = p′t,1 = 0 vacuously. It remains to prove the bound for t = 1.
Let (j, x) be A′1s query (which is deterministically fixed given A1). Since A1 made no query before
and rj is uniformly random over Vj , the probability that x = rj is exactly p1(A1) = 1/vσ−1(j).
Furthermore, since the vi’s are monotonically increasing,

p′1,1 = Pr~u←$ [v1]×···×[v`]

[1∑
i=1

ui ≤ 1
]

= Pr [u1 = 1] = 1/v1 ≥ 1/vσ−1(j) = p1(A1).

Induction. Fix an integer Q. For the induction step, we make the following hypothesis: for every
integer n, ` = `(n), sets V1, .., V` of size 1 ≤ |Vi| ≤ 2n, and for any (Q− 1)-query algorithm A′ and
any integer t,

Pr~r ←$V1×···×V`

[
HitGuess~r (A′) ≥ t

]
≤ Pr~u←$ [v1]×···×[v`]

[
t∑
i=1

ui ≤ Q− 1
]
.

We bound the probability that AQ makes more than t distinct hits. Let (j, x) denote the first
query of AQ (which is deterministically fixed given AQ), and let j′ ← σ−1(j). We first bound the
probability conditioned on (j, x) being a hit: there exists a (Q− 1)-query adversary A′ such that

Pr~r ←$V1×···×V`

[
HitGuess~r (AQ) ≥ t |x = rj

]
= Pr~rj̄ ←$V1···Vj−1×Vj+1···V`

[
HitGuess~r

j̄ (A′) ≥ t− 1
]
,

where ~rj̄ denotes the length-(`− 1) vector r1 · · · rj−1rj+1 · · · r`. A′ is given access to Guess~rj̄ and is
constructed as follows: it runs AQ internally, forwarding any query (i, y) to Guess~rj̄ for any i 6= j.
When AQ issues a query of the form (j, y), A′ inputs 1 to AQ on behalf of Guess (that is, it assumes
that (j, y) is a hit). Observe that conditioned on AQ’s first query (j, x) being a hit (i.e., the event

23

x = rj), since AQ is non-wasteful and will therefore never make any further query of the form (j, y),
A′ perfectly emulates a valid run of AQ with access to Guess~r, hence it makes exactly the same
number of hits minus one (the minus one corresponds to the first hit, which A′ does not actually
query). Therefore, we have

Pr~r ←$V1×···×V`

[
HitGuess~r (AQ) ≥ t ∧ x = rj

]
= Pr~r ←$V1×···×V`

[
HitGuess~r (AQ) ≥ t |x = rj

]
· Prrj ←$Vj [x = rj]

= Pr~rj̄ ←$V1···Vj−1×Vj+1···V`

[
HitGuess~r

j̄ (A′) ≥ t− 1
]
· 1
|Vj |

≤Pr~u←$ [v1]×···×[v`]

[∑
i∈S

ui ≤ Q− 1
]
· 1
vj′
,

where the last inequality follows from the induction hypothesis, and S denote the first t − 1 ui’s
with i 6= j′ (i.e., S = [t− 1] if t < j′, and S = [t] \ {j′} otherwise). Observe that

Pr~u←$ [v1]×···×[v`]

[∑
i∈S

ui ≤ Q− 1
]
· 1
vj′

= Pr~u←$ [v1]×···×[v`]

[∑
i∈S

ui ≤ Q− 1
]
· Pruj′ ←$ [vj′] [uj′ = 1]

= Pr~u←$ [v1]×···×[v`]

[∑
i∈S

ui ≤ Q− 1 ∧ uj′ = 1
]

by independency (j′ /∈ S).

We now distinguish two cases: either j′ ≤ t, in which case

Pr~u←$ [v1]×···×[v`]

[∑
i∈S

ui ≤ Q− 1 ∧ uj′ = 1
]

= Pr~u←$ [v1]×···×[v`]

[
t∑
i=1

ui ≤ Q ∧ uj′ = 1
]
, (2)

or j′ > t, in which case S = [t− 1]:

Pr~u←$ [v1]×···×[v`]

[∑
i∈S

ui ≤ Q− 1 ∧ uj′ = 1
]

= Pr~u←$ [v1]×···×[v`]

[
t−1∑
i=1

ui ≤ Q− 1 ∧ uj′ = 1
]
. (3)

We now bound the probability that AQ makes at least t distinct hits conditioned on (j, x) not
being a hit; let V ′j denote the set Vj \ {x}. There exists a (Q− 1)-query adversary A′ such that

Pr~r ←$V1×···×V`

[
HitGuess~r (AQ) ≥ t |x 6= rj

]
= Pr~r′ ←$V1···×V ′j×···V`

[
HitGuess~r′ (A′) ≥ t

]
,

where A′ runs AQ internally, assumes that AQ’s first query (j, x) is not a hit, and forward all
subsequent queries of AQ to Guess~r′ . Since AQ is non-wasteful, it will never query x again, hence
the probability that A′ makes at least t hits when r′j is sampled from V ′j is exactly the conditional
probability that AQ makes at least t hits when rj is sampled from Vj = V ′j ∪ {x}, conditioned on x
not being a hit. Therefore, we have

Pr~r ←$V1×···×V`

[
HitGuess~r (AQ) ≥ t ∧ x 6= rj

]
= Pr~r ←$V1×···×V`

[
HitGuess~r (AQ) ≥ t |x 6= rj

]
· Prrj ←$Vj [x 6= rj]

= Pr~r′ ←$V1···×V ′j×···V`

[
HitGuess~r′ (A′) ≥ t

]
·
(

1− 1
|Vj |

)

24

≤Pr
~u←$ [v1]×···×

[
v′
j′

]
×···×[v`]

[
t∑
i=1

ui ≤ Q− 1
]
·
(

1− 1
vj′

)
,

where v′j′ = |V ′j | = |Vj | − 1 = vj′ − 1. This gives us

Pr~u←$ [v1]×···×[vj′−1]×···×[v`]

[
t∑
i=1

ui ≤ Q− 1
]
·
(

1− 1
vj′

)

= Pr~u←$ [v1]×···×[vj′−1]×···×[v`]

[
t∑
i=1

ui ≤ Q− 1
]
· Pruj′ ←$ [vj′] [uj′ > 1] .

We again distinguish two cases: either j′ ≤ t, in which case

Pr~u←$ [v1]×···×[vj′−1]×···×[v`]

[
t∑
i=1

ui ≤ Q− 1
]
· Pruj′ ←$ [vj′] [uj′ > 1]

= Pr~u←$ [v1]×···×[vj′−1]×···×[v`]

[
uj′ ← uj′ + 1 :

t∑
i=1

ui ≤ Q

]
· Pruj′ ←$ [vj′] [uj′ > 1]

= Pr~u←$ [v1]×···×[v`]

[
t∑
i=1

ui ≤ Q |uj′ > 1
]
· Pruj′ ←$ [vj′] [uj′ > 1]

= Pr~u←$ [v1]×···×[v`]

[
t∑
i=1

ui ≤ Q ∧ uj′ > 1
]
,

since sampling uj′ ←$ [vj′ − 1] and setting uj′ ← uj′ + 1 is the same as sampling uj′ ←$ [vj′] condi-
tioned on uj′ > 1. Recall that from Equation 2, we had that when j′ ≤ t,

Pr~r ←$V1×···×V`

[
HitGuess~r (AQ) ≥ t ∧ x = rj

]
≤ Pr~u←$ [v1]×···×[v`]

[
t∑
i=1

ui ≤ Q ∧ uj′ = 1
]
,

and we just showed that when j′ ≤ t,

Pr~r ←$V1×···×V`

[
HitGuess~r (AQ) ≥ t ∧ x 6= rj

]
≤ Pr~u←$ [v1]×···×[v`]

[
t∑
i=1

ui ≤ Q ∧ uj′ > 1
]
.

Combining the above inequalities gives

Pr~r ←$V1×···×V`

[
HitGuess~r (AQ) ≥ t

]
≤ Pr~u←$ [v1]×···×[v`]

[
t∑
i=1

ui ≤ Q

]
.

It remains to address the case j′ > t:

Pr~u←$ [v1]×···×[vj′−1]×···×[v`]

[
t∑
i=1

ui ≤ Q− 1
]
· Pruj′ ←$ [vj′] [uj′ > 1]

= Pr~u←$ [v1]×···×[v`]

[
t∑
i=1

ui ≤ Q− 1
]
· Pruj′ ←$ [vj′] [uj′ > 1] since j′ > t

= Pr~u←$ [v1]×···×[v`]

[
t∑
i=1

ui ≤ Q− 1 ∧ uj′ > 1
]

25

≤Pr~u←$ [v1]×···×[v`]

[
t−1∑
i=1

ui ≤ Q− 1 ∧ uj′ > 1
]

= Pr~u←$ [v1]×···×[v`]

 ∑
i∈[t−1]∪{j′}

ui ≤ Q ∧ uj′ > 1

 .
Recall that from Equation 3, we had that when j′ > t,

Pr~r ←$V1×···×V`

[
HitGuess~r (AQ) ≥ t ∧ x = rj

]
≤ Pr~u←$ [v1]×···×[v`]

[
t−1∑
i=1

ui ≤ Q− 1 ∧ uj′ = 1
]

= Pr~u←$ [v1]×···×[v`]

 ∑
i∈[t−1]∪{j′}

ui ≤ Q ∧ uj′ = 1

 .
Combining the two inequalities, we get

Pr~r ←$V1×···×V`

[
HitGuess~r (AQ) ≥ t

]
≤ Pr~u←$ [v1]×···×[v`]

[
t−1∑
i=1

ui ≤ Q− 1 ∧ uj′ = 1
]

≤ Pr~u←$ [v1]×···×[v`]

 ∑
i∈[t−1]∪{j′}

ui ≤ Q


≤ Pr~u←$ [v1]×···×[v`]

[
t∑
i=1

ui ≤ Q

]
since vj′ ≥ vt,

which concludes the proof by induction.

6.3 Proof of Claim 3: Bounding B’s Number of Hits

To complete the proof of the hitting lemma, it remains to bound the probability that BQ makes more
than t hits (which is equal to Pr~u←$ [v1]×···×[v`]

[∑t
i=1 ui ≤ Q

]
). The proof relies on the following

second-moment concentration bound:

Lemma 20 (Bernstein). Let X1, · · · , Xm be independent zero-mean random variables, and let M
be a bound such that |Xi| ≤ M almost surely for i = 1 to m. Let X denote the random variable∑m
i=1Xi. It holds that

Pr [X > B] ≤ exp
(
− B2

2
∑m
i=1 E[X2

i] + 2
3MB

)
.

We now introduce a few notations. For i = 1 to m, we let ui denote the random variable
associated to ui←$ [vi], Xi denote the zero-mean random variable E[ui] − ui, and X ←

∑m
i=1Xi.

We let M ← (2n − 1)/2. Note that E[
∑m
i=1 ui] =

∑m
i=1(vi + 1)/2 ≤ (m · 2n − q)/2 +m, and for any

i ∈ [1,m], |Xi| ≤ |ui − E[ui]| ≤ (vi − 1)/2 ≤M . Let

B ← m · 2n − q
2 − (Q+ 1),

which satisfies B <
∑m
i=1Xi ≥ E[

∑m
i=1 ui]−Q.

Therefore, by the bound of Bernstein (Lemma 20),

Pr~u←$ [v1]×···×[v`]

[
m∑
i=1

ui ≤ Q

]
= Pr

[
m∑
i=1

Xi ≥ E

[
m∑
i=1

ui

]
−Q

]

26

≤ Pr
[
m∑
i=1

Xi > B

]

≤ exp
(
− B2

2
∑m
i=1 E[X2

i] + 2
3MB

)
.

Hence, to upper bound Pr~u←$ [v1]×···×[v`]

[∑t
i=1 ui ≤ Q

]
, it suffices to lower bound

B2

2
∑m
i=1 E[X2

i] + 2
3MB

.

First, for i = 1 to m, denoting ti = (vi − 1)/2,

E[X2
i] = 1

vi
·

ti∑
k=−ti

k2 = 2
vi
· ti(ti + 1)(2ti + 1)

6 = ti(ti + 1)
3 = v2

i − 1
12 .

Furthermore, since vi ≤ 2n for i = 1 to m and
∑m
i=1 vi ≤ m · 2n − q,

m∑
i=1

v2
i ≤ (m · 2n − q) · 2n,

which gives
m∑
i=1

E[X2
i] ≤ 1

12 · ((m · 2
n − q) · 2n −m) ≤ (m · 2n − q) · 2n

12 .

Moreover,
MB ≤ 2n − 1

2 · (m · 2n − q)− 2(Q+ 1)
2

hence, denoting by µ > 0 arbitrarily small constant, for every sufficiently large n, it holds that
m∑
i=1

E[X2
i] + MB

3 ≤ (m · 2n − q) · 2n + ((m · 2n − q)− 2(Q+ 1)) · (2n − 1)
12

≤ (m · 2n − q) · (2n+1 − 1)− (Q+ 1) · (2n+1 − 2)
12

≤ (2n+1 − 1) · (m · 2n − q)− (Q+ 1) · (1− µ)
12 ,

where the last inequality uses the fact that

2n+1 − 2
2n+1 − 1 ≥ 1− µ for n ≥ log

(
1 + 1

µ

)
.

We therefore obtain
B2

2
∑m
i=1 E[X2

i] + 2
3MB

≥ 3
(2n+2 − 2) ·

((m · 2n − q)− 2(Q+ 1))2

(m · 2n − q)− (Q+ 1) · (1− µ) .

Now, setting
m← 16 ·Q+ q

2n + c

where c ≥ 1, we have m · 2n − q = 16 ·Q+ 2nc. Therefore,

(m · 2n − q)− 2(Q+ 1)
(m · 2n − q)− (Q+ 1) · (1− µ) = 16 ·Q+ 2nc− 2(Q+ 1)

16 ·Q+ 2nc− (Q+ 1) · (1− µ) .

Now, we will show

27

Claim 4
16 ·Q+ 2nc− 2(Q+ 1)

16 ·Q+ 2nc− (Q+ 1) · (1− µ) ≥
16− 2

16− (1− µ) = 14
15 + µ

= δ.

Observe that for the claim to hold, it suffices to have

16 ·Q+ 2nc− 2(Q+ 1) ≥ δ · (16 ·Q+ 2nc− (Q+ 1) · (1− µ))
⇐⇒ 0 ≤ (1− δ) · (16 ·Q+ 2nc) + (Q+ 1) · (δ(1− µ)− 2)
⇐⇒ 0 ≤ (1− δ) · (16 ·Q) +Q(δ(1− µ)− 2) + (1− δ)2nc+ δ(1− µ)− 2.

Now, since δ = 14/(15 + µ), and 1 > µ > −1, we have 0 < δ < 1. Therefore, for every c ≥ 1 and
every sufficiently large n, it holds that (1− δ)2nc+ δ(1− µ)− 2 ≥ 0, and the above becomes

0 ≤ Q(16(1− δ) + δ(1− µ)− 2)
⇐⇒ 0 ≤ 16(1− δ) + δ(1− µ)− 2
⇐⇒ γ ≥ (16− 2)/(16− (1− µ)) = 14/(15 + µ),

and the claim follows. Therefore,

B2

2
∑m
i=1 E[X2

i] + 2
3MB

≥ 3 · δ
(2n+2 − 2) · (16 ·Q+ 2nc− 2(Q+ 1))

≥ 3 · δ
(2n+2 − 2) · (14 ·Q+ 2nc− 2)

≥ 3 · δ
(2n+2 − 2) · (2

nc− 2) since Q ≥ 0

≥ 3 · δ
4− 21−n c−

6δ
2n+2 − 2

≥ 3 · δ
4 c− 3δ

2 = 3 · δ
4 (c− 2)

Eventually,

exp
(
− B2

2
∑m
i=1 E[X2

i] + 2
3MB

)
≤ exp

(
log e · 3 · δ

4 (c− 2)
)
.

Now, denoting
γ ← log e · 3 · δ

4 .

Furthermore, choosing µ < 1/13 (µ > 0 is an arbitrarily small constant), we get 13µ + 15 < 16.
Working out this inequality further, we get δ = 14/(15+µ) > (3/4) log e, hence γ > 1. Furthermore,

exp
(
−3 · δ

2

)
= α > 0.

which concludes the proof of Claim 3 and of the hitting lemma.

6.4 Application to Hardness in the Random Language Model

Recall that the proof of language hardness in the Random Language Model relies on a hitting lemma
to show block-finding hardness (informally stated as Lemma 10, it omits the constants included the
formal Lemma 22). It can be derived from the Abstract Hitting Lemma with Advice by making the
following mapping of concepts:

28

– We can see Vi as the relevant set of witnesses for xi, each of size 2n. In this case, q =
∑`
i=1 2n−

|Vi| = 0.
– The number of queries qryA is upper bounded by |A|.
– The k-bit string B[~yi] is treated as some arbitrary k-bit advice about the oracle which the

adversary is given as input.

The other two applications concern our main separation result (Sections 9, 10, and 11) where we
rely on the Hitting Lemma twice, once to analyze the success probability of our inversion algorithm
and once to argue about language hardness.

6.5 Application to Good Inversion

The proof of good inversion relies on a hitting lemma to show that “shaving off” the heavy queries
and omitting “heavy paths” is a modification of the function which, with high probability over the
choice of the oracle and the input to the function, does not change the output of the function. We
later show that if the function values changes with probability ν, then inverting this ν-close function
yields a correct pre-image with probability 1− 2ν. In order to use the Hitting Lemma to bound ν,
we need to calculate the probability over the choice of the oracle and a random input z that there
are “too many” hits on the evaluation path of z. Formally stated in Lemma 39, this claim again
views Vi as the relevant set of witnesses for xi, each of size 2n. As before, q =

∑`
i=1 2n − |Vi| = 0.

As before, we might obtain a constant multiple D of the expected number h of hits. However, for
any additional c hits we make, the probability of making this many hits decays exponentially in c,
i.e. the probability of making Dh+ c hits or more is upper bounded by 2 α

2γc .
We now turn to the main application of the hitting lemma which relies on it in its most general

form.

6.6 Application to Language Hardness

In the analysis of Language Hardness in the oracle setting, we will apply several transformation to
our adversary before applying the hitting lemma. These transformations will allow our adversary to
have a set of non-hitting queries and a set of hitting queries. For such an adversary, we will count
as a hit only those queries which are “new”, i.e., the already known hitting queries will not count
towards the adversary’s number of hits. I.e., as a first step, for the analysis of (additional) hits, we
remove those xi from the challenge, for which the adversary knows a hit already. For each of the
other xi, we consider Vi the set of all possible witnesses minus the set of witnesses already contained
in the set of non-hitting queries for this xi. Thus, in this case, q =

∑`
i=1 2n − |Vi| = 0 is equal to

the number of non-hitting queries on the challenge values xi. For our analysis, we need to sample
the oracle conditioned on the knowledge which the adversary has, but this conditional sampling
merely corresponds to sampling from smaller Vi, since each of the witnesses are sampled uniformly
at random. In summary:

– Only count hits on xi where the adversary does not know a hitting query a priori.
– Consider Vi as the set of potential witnesses for xi minus the set of witness candidates ruled out

by the set of non-hitting query. Thereby, q becomes equal to the set of non-hitting queries.
– Conditional sampling based on the knowledge which the adversary has merely means to sample

a uniform witness for each xi from the remaining (smaller) witness set (which is isomorphic to
Vi).

7 A Fine-Grained One-Way Function in the Random Language Model

In this section, we introduce the Random Language Model (RLM), which captures the notion of
an idealized average-case hard language, analogous to how the Random Oracle Model captures the

29

notion of an idealized OWF. In this model, a random language L is initially sampled by putting
each string x ∈ {0, 1}∗ inside or outside of L with independent probability 1/2. Then, to each word
x ∈ L is associated a uniformly random witness wx←$ {0, 1}|x|. Eventually, an oracle Chk allows to
check membership to L: on input (x,w), it returns 1 if x ∈ L and w = W [x], and ⊥ otherwise. The
sampling procedure and the oracle O = Chk are represented on Figure 2. Observe that the sampling
procedure T induces a language distribution:

DL = {LO = {x ∈ {0, 1}∗ | B[x] = 1} | (B,W)←$ T }.

7.1 Average-Case Hardness of DL

We prove that the language distributionDL induced by the sampling procedure T is an exponentially
average-case hard language distribution. Actually, we prove a stronger statement (which we call
strong average-case hardness of DL): the language distribution DL satisfies exponential average-
case hardness with respect to arbitrary words, and not simply random words. That is, for any
circuit family C = {Cn}n∈N and all large enough n,

PrL ←$DL [Cn(x) = L(x)] ≤ 1
2 + |Cn|2n .

Proof. Let n ∈ N be an integer. Consider sampling an oracle O = Chk[W,B]; let C = {Cn}n be
a circuit family which, on input a string x ∈ {0, 1}n, makes up to |Cn| queries to Chk[W,B], and
outputs a guess b for the value of B(x). Let (Wx, Bx) be (W,B) where the values of W [x] and B[x]
are undetermined (and the oracle always returns ⊥ when queried on this x). Let Hit(Chk[Wx̄, Bx̄], x)
be the event that on input x, and with access to oracle Chk[Wx, Bx], Cn queries the pair (x,W [x])
to its oracle. We have that for all x ∈ {0, 1}∗, for all Chk[Wx, Bx]:

Prw ←$ {0,1}n [Hit(Chk[Wx, Bx], x)] ≤ |Cn|/2n.

Now, if no such hitting query occured, the conditional probability of x being in the language is 1/2:

Prw ←$ {0,1}n [L(x) = 1 | ¬Hit(Chk[Wx, Bx], x)] = 1
2

Putting the two equations together, we obtain that

Prx←$ {0,1}n,L ←$DL [Cn(x) = L(x)]
≤Prx←$ {0,1}n,L ←$DL [Cn(x) = L(x) | ¬Hit(Chk[Wx, Bx], x)] · 1

+ 1 · Prx←$ {0,1}n,L ←$DL [Hit(Chk[Wx, Bx], x)]

≤1
2 + |Cn|2n ,

which concludes the proof.

7.2 Block-Finding Hardness of DL

We now establish a much stronger result about the hardness of DL: suppose we are given many
length-k blocks of inputs (~xi)i≤N = (xi,1, · · · , xi,k)i≤N , together with the language membership bits
B[xi,1, · · · , xi,k] of the i-th block, where i is a random block index. We prove, informally, that finding
the index i (with probability significantly better than the random guess) requires of the order of
N · 2n queries – id est, brute-forcing language membership of words from each of the N blocks – up
to logarithmic factors. This is summarized in the following lemma:

30

Lemma 21 (Block-Finding Hardness of DL). For any circuit family C, we have that for all
n ∈ N, any block size k, and number of blocks N (with k · N ≤ 2n), and any tuple of blocks
(~xi)i≤N = (xi,1, · · · , xi,k)i≤N such that all the xi,j are distinct:

PrL ←$DL,i←$ [N] [Cn((~xj)j ,L(~xi)) = i] ≤ 1
Õ(N)

·
(
|Cn|
2n + 1

)
· 2γk,

for some explicit constant γ > 1.

Proof. Let n,N, k ∈ N be integers with kN ≤ 2n. Let C = {Cn}n be a family of circuits where
Cn, on input (~xj)j≤N ,L(~xi), makes some number T ≤ |Cn| of queries to Chk[W,B], and outputs a
guess i′ for the value of i. Each time Cn makes a query of the form (xi,j , w) such that w = wxi,j
(i.e., the adversary found the right witness for x), we say that the adversary made a hit. We first
provide a concentration bound on the number of hits the adversary can make; HitChk

Cn (~x) denote
the random variable corresponding to the number of hits made by CChk

n (~x) through queries to Chk.
Our concentration bound relies on the Advice-String version of the Hitting Lemma 18. We state its
specialized version here:

Lemma 22 (Hitting Lemma – Specialized Version). For every integers n,N, k ∈ N with
kN ≤ 2n, vector ~y = (y1, · · · , yk·N), circuit family C = {Cn}n, and for every integer c ≥ 1,

Pr(W,B)←T ,i←$ [N]

[
HitChk
Cn (~y,B[~yi]) ≥

D · |Cn|
2n + k + c

]
≤ α

2γc ,

with constants D = 16, α > 0, and γ > 1.

To see that Hitting Lemma with Advice 18 implies Lemma 22, we see Vi (as defined in Lemma 18)
as the relevant set of witnesses for yi, each of size 2n, so that q = 0. The number of queries of Cn
are upper bounded by the size |Cn| of Cn. Finally, the advice string B[~yi] is of length k.

In addition to the concentration bound in Lemma 22 in hand, observe that for any M ≤ N , the
probability that Cn finds i conditioned on making at most M hits out of T ≤ |Cn| queries is upper
bounded by

PrL ←$DL,i←$ [N]

[
Cn((~xj)j ,L(~xi)) = i

∣∣∣HitChk
Cn ((~xj)j ,L(~xi)) < M

]
≤ N −M + 1

N
· 1
N −M + 1 + M − 1

N
= M

N
,

whereM/N is the probability that i is the index of a block on which no hit is obtained, in which case
all blocks were no hits have been made are equiprobable conditioned on the view of Cn. Therefore,
we have for any M ≤ N ,

PrL ←$DL,i←$ [N] [Cn((~xj)j , B[~xi]) = i]

≤PrL ←$DL,i←$ [N]

[
Cn((~xj)j , B[~xi]) = i

∣∣∣HitChk
Cn ((~xj)j , B[~xi]) < M

]
· 1

+ 1 · PrL ←$DL,i←$ [N]

[
HitChk
Cn ((~xj)j , B[~xi]) ≥M

]
≤M
N

+ α · 2−γ(M−D·|Cn|/2n−k).

In particular, when Dγ|Cn| > 2n, using M = (logN + 1) ·D · |Cn|/2n,

PrL ←$DL,i←$ [N] [Cn((~xj)j , B[~xi]) = i]

≤ (logN + 1) ·D · |Cn|
N · 2n + α · 2−γ(logN ·D·|Cn|/2n−k)

31

= 1
Õ(N)

· |Cn|2n + α ·
(

1
N

)Dγ· |Cn|2n

· 2γk

≤ 1
Õ(N)

·
(
|Cn|
2n + 1

)
· 2γk.

When Dγ|Cn| ≤ 2n, using M = logN ,

PrL ←$DL [Cn((~xj)j , B[~xi]) = i]

≤ logN
N

+ α · 2−γ logN+γD·|Cn|/2n−k

≤ 1
Õ(N)

+ α ·
(

1
N

)γ
· 2γD·|Cn|/2

n

· 2γk

≤ 1
Õ(N)

+ α ·
(

1
N

)γ
·
(
γD · |Cn|2n + 1

)
· 2γk since 2x ≤ x+ 1 when x ∈ [0, 1]

≤ 1
Õ(N)

·
(
|Cn|
2n + 1

)
· 2γk since γ > 1.

This concludes the proof.

7.3 A FG-OWFD from a Block-Finding Hard Language Distribution

Function FL(X, i)

parse X as (~xj)j≤N ∈ I

for ` ∈ [k] :
s` ← 0
for w ∈ {0, 1}n :

if Chk[W, B](xi,`, w) = 1
s` ← 1

~s← (s1, · · · , s)
return (~x,~s)

Fig. 4: Fine-grained one-way func-
tion distribution FL in the RLM

We now show that the existence of a block-finding hard lan-
guage distribution gives rise to a fine-grained one-way func-
tion. The construction is relatively straightforward: fix an ar-
bitrary constant 1 > ε > 0, a security parameter λ = 2n ∈
N, a block size k(n) = ε · n/(2γ), and a number of blocks
N(n) = 2n/k. Let I ⊂ {0, 1}n·k·N denote the space of all N -
tuples of length-k vectors (xj,1, · · · , xj,k) over {0, 1}n, such that
for any (j, j′) ≤ N and (`, `′) ≤ k with (j, `) 6= (j′, `′), it holds
that xj,` 6= xj′,`′ (i.e., no two vector components are equal,
across all vectors in the N -tuple). The function FL takes in-
puts from I × [N]. On input ((~xj)j≤N , i) ∈ I × [N], it com-
putes the value of L(~xi) by trying all possible witnesses; this
takes at most k · 2n oracle calls. Then, it outputs (~xj)j≤N to-
gether with ~s = L(~xi). The function FL is represented on Fig-
ure 4.

Security of F . We prove that FL is a FG-OWFD with near-quadratic hardness gap in the Random
Language Model.

Theorem 23. The function distribution FL is a (polylog(λ) · λ−ε/2, 1 − ε)-fine-grained one-way
function distribution.

Proof. To invert F , the adversary A must find some i∗ such that L(~xi∗) = ~s. Since all words in the
input are distinct and belong to L with independent uniform probability 1/2, the probability (over
the randomness of DL) that there exists i∗ 6= i with L(~xi) = L(~xi∗) is upper bounded by (1/2)k.
Therefore, for any X = (~xj)j≤N and any adversary |A| of size |A| ≤ |FL|2−ε:

PrL ←$DL,i←$ [N]
[
A(FL(X, i), 1λ) ∈ F−1

L (FL(X, i))
]

32

≤ PrL ←$DL,i←$ [N]
[
A(FL(X, i), 1λ) = i

]
+ 1

2k

≤ 1
Õ(N)

·
(

1 + (k · 2n)2−ε

2n−1

)
· 2γk + 1

2k

≤ 1
Õ(2n)

·
(

1 + n · (εn · 2n−1/γ)2−ε

2n−1

)
· 2εn/2 + 1

2εn/2γ

= polylog(λ) · λ−ε/2,

which concludes the proof.

Security Amplification. The previous construction achieves a near-quadratic hardness gap,
but only guarantee an inverse polynomial inversion probability. However, it is straighforward to
strengthen the construction to achieve negligible inversion probability in the RLM. The idea, given
the security parameter λ = 2n, is to emulate n = log λ independent random languages over {0, 1}n, as
follows: define the language Lu, for u ∈ {1, · · · , n}, to be the language Lu = {x ∈ {0, 1}n | u||x ∈ L}.
One can easily check that, in the Random Language Model, the Lu are independent random lan-
guages over {0, 1}n. Then, a new FG-OWFD F ′ is obtained by using n = log λ parallel instances
of the previous construction F instantiated with k = n2 and N = 2n/n2, where each of the n
instances uses a different language Lu. A straightforward calculation shows that for any ε > 0, any
adversary running in time bounded by (timeF ′L(X1, i1, · · · , Xn, in))2−ε inverts F ′ with probability
at most polylog(λ) · λ−ε logλ, which is negligible.

Theorem 24. For any ε > 0, there exists a (negl(λ), 1− ε)-fine-grained one-way function distribu-
tion in the Random Language Model.

33

8 Oracle Separation Between Fine-Grained One-Way Functions and
Average-Case Hardness

The result of the previous section shows that given an idealized average-case hard language, one
can construct a fine-grained one-way function with near-quadratic hardness gap. This provide the
first positive result toward excluding Pessiland: it shows that in an idealized version of Pessiland,
there exists a weak version of Minicrypt. However, to concretely instantiate the result of Section 7,
one needs an average-case hard language satisfying a very strong and exotic security requirement,
namely, block-finding hardness. This is unsatisfying, as it does not seem that this results establishes
an interesting win-win situation: the inexistence of weak Minicrypt implies the inexistence of lan-
guages with block-finding hardness, but it is not clear whether the latter implies any useful generic
algorithmic improvements. A much more desirable result would be to show that the inexistence
of weak Minicrypt rules out the existence of average-case hard languages generically. However, in
this section, we establish a strong barrier toward obtaining such a result: we show that there is no
black-box construction of FG-OWFs (represented as families of oracle circuits), even with arbitrarily
small polynomial gap, from (even exponentially) average-case hard language. We prove this result
by building an oracle relative to which there exists an exponentially hard average-case hard language
in NP ∩ co-NP, yet all functions which can be evaluated in time n can be inverted in time Õ(n).

Theorem 25. There exists an oracle distribution O relative to which there exists a exponentially
hard average-case language distribution in NP, but every family {Cn}n of oracle circuits is not an
(ε, δ)-fine-grained one-way function.

8.1 The Oracle Distribution

The sampling procedure and the oracle Chk are represented on Figure 5. We define the time of a
query to Chk to be time(Chk(x,w)) = 1 for any (x,w). Observe that the sampling procedure T
induces a language distribution:

DL = {LO = {x ∈ {0, 1}∗ | B[x] = 1} | (B,W)←$ T }.

Distribution T

for k ∈ N :

wk ←$ {0, 1}2
k

bk ←$ {0, 1}
for n ∈ N :

for x ∈ {0, 1}n :
W [x]← wdlog|x|e

B[x]← bk

return (W, B)

Chk[W, B](x, w)

if W [x] = w

return B[x]
else return ⊥

Fig. 5: Distribution T for sampling a random language LO = {x ∈ {0, 1}∗ | B[x] = 1} with the
associated list of witnesses W . The oracle Chk[W,B] allows to check membership of a word x ∈ LO

given the witness W [x].

34

8.2 Average-Case Hardness of DL

Claim 5 The language distribution DL is exponentially average-case hard.

Proof. Let C be an oracle circuit family. For k ∈ N, we denote by Chkk a Chk oracle, where all
witnesses are determined except for wk. On x values such that k = dlog |x|e, Chkk returns ⊥
throughout; we denote by DLk̄ the corresponding language distribution. Let n ∈ N be an integer.
Let Hit(Chkk, wk, x) be the event that on input x, and with access to oracle Chkk, Cn queries a
pair (x∗, wk) to its oracle. We have that for all k ∈ N, for all Chkk, for all x ∈ {0, 1}∗ such that
k = dlog |x|e,

Prwk
[
Hit(Chkk, wk, x)

]
≤ |Cn|/2|wk| ≤ |Cn|/2|x|.

Now, if such a hitting query does not occur, then the conditional probability of x being in the
language is 1

2 :
Prwk

[
L(x) = 1

∣∣¬Hit(Chkk, wk, x)
]

= 1
2

Putting the two equations together, we obtain that for any x ∈ {0, 1}n and k such that k = dlogne

PrL ←$DL [Cn(x) = L(x)]
≤PrL ←$DL [Cn(x) = L(x) | ¬Hit(Chk, x, r)] · 1 + 1 · PrL ←$DLk̄,wk ←$ {0,1}2k

[
Hit(Chkk, wk, x)

]
≤1

2 + |Cn|2n

as desired.

8.3 Inexistence of FG-OWFD Relative to Chk

We now prove the following:

Claim 6 For any constant δ > 0, there exists a family C = {Cn}n of oracle circuits with the
following properties: for any candidate one-way function f : {0, 1}∗ → {0, 1}∗ represented as a
family or oracle circuits {fn}n, for all large enough n, Cn makes o(|fn|1+δ) queries and successfully
inverts fn on a random image with probability at least 0.99.

Proof. Let f : {0, 1}∗ → {0, 1}∗ be a function computed by a family {fn}n or oracle circuits. Let
δ > 0 be a constant. We set

ε := 1
1 + δ

2
.

We first introduce some notations. We say that a query x to Chk is a k-query if dlog |x|e = k.
For k ∈ N, we let qk = qk(n) ≤ N denote the number of k queries made by f on an input of length
n (i.e., the number of Chk gates with k-bit intputs in fn); note that |fn| ≥

∑
k k · qk(n). We now

construct an inverter A for f . Before receiving the challenge y to invert, A does the following: define
t = t(ε) to be the smallest integer above 10 such that (1 − ε) · 2t > t (which exists since ε < 1).
For every k ∈ [1, · · · , t], as well as for every k > t such that qk ≥ (22k)ε, A enumerates over all
strings sk,i (1 ≤ i ≤ 22k) of length 2k. For each string sk,i, and queries Chk(02k , sk,i). Observe that
by definition of Chk, there exists a single i∗ such that Chk(02k , sk,i∗) does not return ⊥. A identifies
i∗ and stores bk ← Chk(02k , sk,i∗) and wk ← sk,i∗ .

We define f ′ to be the following (oracle-less) function: on input x, f ′ runs f|x|(x). Each time f
makes a k-query Chk(u, v), f ′ simulates the answer of Chk as follows:

– if k ≤ t(ε), or if qk ≥ (22k)ε, f ′ checks whether wdlog|u|e = v and outputs bdlog|u|e if the check
succeeds, and ⊥ otherwise;

– else, f ′ sets the (simulated) answer of Chk to be 0.

On input a value y, which is the output of f on an n-bit input, A picks a uniformly random
n-bit string x′ in the set {(f ′)−1(y)} (if there is none, A sets x′ ← ⊥) and outputs x′.

35

Efficiency. For any k > t, observe that A makes exactly 22k queries if and only if qk ≥ (22k)ε; else,
it makes no queries. Hence, it always holds that A makes at most q1/ε

k queries for any given k > t.
Therefore, the circuit size of A can be upper-bounded (up to a constant factor) by

∑
k>t

k · q1/ε
k +

t(ε)∑
k=1

22k ≤

(∑
k>t

k · qk

)1/ε

+
t(ε)∑
k=1

22k = O(|fn|1+δ/2) = o(|fn|1+δ).

Success Probability. We now analyze the probability that our inverter succeeds, i.e., that fChk(x′) =
y, over the random choice of y and the oracle Chk. Let us denote

α(n) := PrChk,x←$ {0,1}n
[
fChk(x) = f ′(x)

]
.

We now bound α(n). First observe that f ′ perfectly simulates the answers of Chk for any k-query
with k ≤ t. Fix any k > t, and any k-query (u, v). Observe that if qk ≥ (22k)ε, f ′ perfectly simulates
the answer of Chk (since it uses the right witness wk). Else, if qk < (22k)ε, then since the probability
over a random choice of Chk that Chk(u, v) 6= ⊥ is equal to Pr

wk ←$ {0,1}2k [v = wk], which can be
upper bounded by 2−2k , we have the following: by a union bound, on any given input x, f ′(x)
correctly simulates all the calls of fChk(x) to Chk with probability at least

β(n) = 1−
∞∑
k=11

(22k)ε · 2−2k .

Observe now that when this happens, it necessarily holds that fChk(x) = f ′(x). Therefore, we have
α(n) ≥ β(n).

We now bound β(n) (recall that (1− ε) · 2t > t and t > 10 by definition of t):
∞∑

k=t+1
2(ε−1)·2k <

∞∑
k=11

2−k < 10−3

which gives α(n) > 0.999. Now, we conclude by observing that

PrChk,x←$ {0,1}n,x′ ←$ {(f ′)−1(fChk(x))}
[
fChk(x′) = fChk(x)

]
≥α(n) · PrChk,x←$ {0,1}n,x′ ←$ {(f ′)−1(f ′(x))}

[
fChk(x′) = f ′(x)

]
≥α(n)2 · Prx←$ {0,1}n,x′ ←$ {(f ′)−1(f ′(x))} [f ′(x′) = f ′(x)]
=α(n)2 > 0.99

where the second inequality follows by observing that

{x′ : x←$ {0, 1}n, x′←$ {(f ′)−1(f ′(x))}}

is just the uniform distribution.

9 Black-Box Separation Between FG-OWF and Self-Amplifiable
Average-Case Hardness

9.1 Self-Amplifying Average-Case Hard Language

Definition 26. A language L is (exponentially) self-amplifiable average-case hard if there is a con-
stant c and a quasilinear function q(·) such that for any superlogarithmic function `(·), for any
uniform circuit family C = {Cn : {0, 1}`(n)·n 7→ {0, 1}n}n∈N such that q(|Cn|) < 2c·n · `(n)/2, and for
all large enough n ∈ N,

Prx←$ {0,1}`·n [Cn(~x) = L(~x)] ≤ poly(n) · 2−
(
`(n)− q(|Cn|)2c·n

)
.

36

To explain the meaning of Definition 26, consider a circuit Cn that implements the following
trivial strategy: it only contains check gates and queries the challenge words at random (harcoded)
positions, one by one, until it finds the corresponding witness and language membership bit, after
which it moves to the next word. Then, for any challenge word xi for which it found the corresponding
witness and language membership bit bi, it outputs bi; for all other words, it outputs a random
guess. On average, this circuit should find ≈ |Cn|/(n2n) = Õ(|Cn|)/2n language membership bits.
By guessing uniformly at random the `(n)−Õ(|Cn|)/2n remaining membership bits of the challenge,
it succeeds with probability

2−
(
`(n)− Õ(|Cn|)

2n
)
.

Therefore, Definition 26 states, in essence, that no adversary can do much better (note that if
|Cn| = O(2n), then the poly(n) is already subsumed by the polylogarithmic leverage in |Cn|). The
restriction on the size of circuits to q(|Cn|) < 2c·n · `(n)/2 captures the fact that circuits of size
Õ(`(n)) · 2O(n) are already large enough to solve the full challenge ~x via brute-force queries, hence
requiring hardness against such circuits is meaningless. The above definition can be also adapted to
an oracle language LO.
Definition 27. Let O be an oracle and let LO be an oracle language. LO is (exponentially) self-
amplifiable average-case hard relative to O if there is a constant c and a quasilinear function q(·) such
that for any superlogarithmic function `(·), for any uniform circuit family C = {Cn : {0, 1}`(n)·n 7→
{0, 1}n}n∈N such that q(|Cn|) < 2c·n · `(n)/2, and for all large enough n ∈ N,

Pr~x←$ {0,1}`·n
[
CO
n (~x) = LO(~x)

]
≤ poly(n) · 2−

(
`(n)− q(|Cn|)2cn

)
.

9.2 Black-Box Separation Between Self-Amplifiable Average-Case Hard Languages
and FG-OWF

We prove the following theorem which establishes a black-box separation between exponentially
self-amplifying average-case hardness and fine-grained one-way functions.
Theorem 28. There exists an oracle O and an induced language LO such that for all uniform
candidate constructions f = (fm)m∈N of a fine-grained one-way function there exists an (inefficient)
adversary A that inverts f with probability 1− 1

superpoly(m) on inputs z of length m, and such that there
is a constant c and a quasilinear function q(·) such that for all superlogarithmic function ` : N→ N
and uniform circuits C = {Cn}n∈N with q(|Cn|) < 2c·n · `(n)/2, and for all large enough n ∈ N,

Prx←$ {0,1}`·n
[
CO,A
n (~x) = LO(~x)

]
≤ poly(n) · 2−

(
`(n)− Õ(|Cn|)

2O(n)

)
. (4)

The remainder of this paper will be devoted to the proof of Theorem 28. To help the reader with
getting a bird eye view of the proof, we represent the general structure of the proof on Figure 6,
with pointers to all relevant theorems, lemmas, claims and sections. Note that C is typically called
a reduction. The above statements constitutes a black-box separation since there exists a successful
adversary A which does not help the reduction C to decide LO when C is given oracle access to A.
We now simplify the statement of Theorem 28 as follows.
Theorem 29 (Language Hardness and Good Inversion). There exists an oracle O and an
oracle Inv such that for all uniform oracle functions f = (fm)m∈N, there exists an inverter AO,Inv

which satisfies, on input fm and y ∈ Im(fm) and for sufficiently large m ∈ N,

Prz ←$ {0,1}m
[
fO
m(AO,Inv(fm, fO

m(z))) = fO
m(z)

]
≥ 1− 1

poly(m) . (5)

Furthermore, A can be represented as a uniform family of circuits A = {Am}m∈N such that for any
m ∈ N, |Am| = Õ(|fm|). Moreover, there exists an oracle language LO such that for any ` : N→ N,
any uniform circuit family C = {Cn : {0, 1}`(n)·n 7→ {0, 1}n}n∈N, and for all large enough n ∈ N,

Pr~x←$ {0,1}`·n
[
CO,Inv
n (~x) = LO(~x)

]
≤ poly(n) · 2−

(
`(n)− Õ(|Cn|)

2O(n)

)
. (6)

37

Section 10 Section 11

Section 9

Section 6

Main Theorem
(Theorem 28)

Language Hardness and
Good Inversion
(Theorem 29)

Borel-Cantelli Lemma

Language Hardness
(Theorem 32)

Lemma 35

Claim 10

(Section 10.3)

Emulation Lemma
(Lemma 34)

Proven in Section 10.1

Claim 9

Lemma 36 Lemma 39

Hitting Lemma (Lemma 17)

Hitting Lemma with Advice
(Corollary 18)

Good Inversion
(Theorem 33)

Lemma 41 Lemma 44

Lemma 38 Lemma 40

Lemma 42 Lemma 43

Fig. 6: Structure of the proof of Theorem 28

Claim 7 Theorem 29 implies Theorem 28.

Proof. The oracle O and the language LO is the same in both theorems. Now, to prove Theorem 28,
consider a candidate construction f . Then, by Theorem 29, AO,Inv is a good inverter for f . We can
think of AO,Inv as (AInv)O to emphasize that AInv is a uniform oracle algorithm with oracle O.

Now, we need to show that no black-box reduction C exists for f and (AInv)O. Consider a black-
box reduction CO,(AInv)O . We build a reduction CO,Inv

A by “pushing the code of A into C”: each time
C queries A on some input (fm, y), CA runs the size-Õ(|fm|) circuit AInv

m using the oracle Inv. Since
this increases the size of CA by at most Õ(|fm|) each time C makes a query (fm, y) to A (and the
circuit size of |C| is at least the sum of the length of all its queries to A), it holds that |CA| = Õ(|C|).
Hence, we can apply Inequality 6 to it which then yields Inequality 4.

9.3 Oracle Definition

In Figure 7, we describe our oracle. For an intuitive explanation of the various components of this
oracle, we refer the reader to the technical overview in Section 5.

38

Paths and Light Paths. The definition of the oracle Inv on Figure 7 involves the notion of a light
path PO′

Cs
(z) from an input z in an oracle circuit Cs relative to an oracle O′; we define this notion

below.

Definition 30 (Path). Given an oracle function fO′ with O′ = (Chk′,Pspace), the evaluation path
of f on an input z to its output with respect to O′, denoted PO′

f (z), is the set of all pairs (q, a) such
that q was queried to Chk′ during the execution of fO′(z) and a = Chk′(q).

Looking ahead, the oracle Chk′ in the above definition will correspond either to the actual oracle
Chk defined on Figure 7, or to alternative variants which will be introduced and used in our analysis.
For any k ∈ N, we denote by k-PO′

f (z) the set of k-Chk′ queries in PO′
f (x) (id est, the set of pairs

(q, a) ∈ PO′
f (z) such that q ∈ {0, 1}k×{0, 1}k), and by k-HO′

f (z) the subset of k-PO′
f (z) of query pairs

which are hits (id est of the form (q, a) with a 6= ⊥). Note that since f is specified via a circuit, the
size of k-PO′

f (x) is independent from O′.

Definition 31 (Light Path). Given an oracle O′ = (Chk′,Pspace), an oracle function fO′ , and
an input z, we say that the path PO′

f (z) from z to fO′(z) in f is k-light if

|k-HO′
f (z)| ≤ D ·

|k-PO′
f (z)|

2k−1 + log2 |f |,

where D = 16 is a constant. We say that a path is light if it is k-light for all k ∈ N.

9.4 Theorem Statement

Given (W,B,H) in the support of T , we denote by LO = {x ∈ {0, 1}∗ | B[x] = 1} denote the
associated hard language, where O = (Chk[B,W],Pspace). We now first state our theorems regarding
language hardness and good inversion probability of A for distributions of oracles and then show
via Borel-Cantelli that a single such oracle exists and, even stronger, that the measure of such good
oracles is 1.

Theorem 32 (Language Hardness). For any ` : N 7→ N, uniform circuit family C = {Cn}n, and
for all large enough n ∈ N,

Pr~x←$ {0,1}`·n,(W,B,H)←$ T
[
CO,Inv
n (~x) = LO(~x)

]
≤ poly(n) · 2−

(
`(n)− Õ(|Cn|)

2O(n)

)
, (7)

where O = (Chk[B,W],Pspace).

The proof of Theorem 32 is given in Section 10.

Theorem 33 (Good Inversion). Let f : {0, 1}∗ → {0, 1}∗ be an oracle function. We show that
AInv[W,B,H](f, .) is an efficient inverter for f , i.e., for sufficiently large m ∈ N, it holds that

Prz ←$ {0,1}m,(B,W,H)←$ T

[
fO
m(AO,Inv[W,B,H](fm, fO

m(z))) = fO
m(z)

]
≥ 1− µ(m), (8)

where O = (Chk[B,W],Pspace) and A is given in Figure 8 and µ(m) = 1/m2.5.

Intuitively, the adversary A works as follows: to invert a function fm : {0, 1}m 7→ {0, 1}∗ given an
image y, it queries Inv log3m times on independent inputs (fkm, y), where the fkm are syntactically
different but functionally equivalent to f , to ensure that the failure probability introduced by the
hashing is independent across the instances. Then, it takes a path p returned by any successful query
to Inv (if any), and returns a uniformly random preimage z consistent with this path (this requires
a single query to the PSPACE oracle). The proof of Theorem 33 is given in Section 11.

39

Distribution T

for n ∈ N :
for x ∈ {0, 1}n :

W [x]←$ {0, 1}n

B[x]←$ {0, 1}
for (i, C, y) ∈

N× {0, 1}∗ × {0, 1}∗ :
H[i, C, y]←$H|C|,i

return (W, B, H)

shave(C)

N ← max
k∈N

2
k
6 ≤ |C|

for k ∈ {N, .., |C|} :
C ← botk(C)

return C

Inv[W, B, H](C, y)

m← input-size(C)
Cs ← shave(C)
O′ ← (Chk[W, B], Pspace)

S := {p : ∃z ∈ {0, 1}m : p = PO′
Cs(z)∧

CO′
s (z) = y ∧ PO′

Cs(z) is light}

i← max
i∈N

2i−1 ≤ |S| ≤ 2i

h← H[i, C, y]
if ∃!p ∈ S s. t.

bs← bitstr|C|(p)

h(bs) = 0i then

return PO′
Cs(z)

else return ⊥

Chk[W, B](x, w)

if W [x] = w

return B[x]
return ⊥

Fig. 7: Distribution T for sampling a random language LO = {x ∈ {0, 1}∗ | B[x] = 1} with the
associated list of witnesses W . The oracle Chk[W,B] allows to check membership of a word x ∈ LO

given the witness W [x], and Inv allows to invert an arbitrary function. Here, Qryk(C) denotes the
number of queries Chk[W,B](x,w) for some x with |x| = k. The function botk(C) returns a circuit
C, where each queries of length k have been replaced by a hardcoded ⊥ answer symbol. The function
bitstr|C| maps each set to a bitstring of length |C|.

Claim 8 Theorem 32 and Theorem 33 imply Theorem 29.

Proof. We recall that the Borel-Cantelli Lemma states that for each sequence of events En with∑
n∈N Pr(B,W,H)←$ T [En] = O(1), it holds that the measure of lim supn→∞En is 0, where

lim sup
n→∞

En :=
⋃
N∈N

⋂
n≥N

En.

Using a standard averaging argument (see e.g. the splitting lemma from [PS96]), from Inequality 8,
we obtain that

Pr(B,W,H)←$ T

[
Prz ←$ {0,1}m

[
fO
m(AO,Inv[W,B,H](fm, fO

m(z))) 6= fO
m(z)

]
≥ µ(m)/2

]
≤ µ(m)/2, (9)

and from Inequality 7, we obtain that there is a constant c and a quasilinear function q(·) such
that for any superlogarithmic function `(·), for any uniform circuit family C = {Cn : {0, 1}`(n)·n 7→
{0, 1}n}n∈N such that q(|Cn|) < 2c·n · `(n)/2, and for all large enough n ∈ N,

Pr~x←$ {0,1}`·n,(W,B,H)←$ T
[
CChk,Inv,Pspace
n (~x) = LO(~x)

]
≤ poly(n) · 2−

(
`(n)− q(|Cn|)2cn

)
(10)

≤ 1
superpoly(n) . (11)

40

AInv[W,B,H],Sample(y)

for i from 1 to log3(m)
fm,i ← encode(fm, i)
p← Inv(fm,i, y)
if p 6= ⊥

r←$ {0, 1}101m

z ← Sample(f, y, p, r)
return z

return ⊥

Chk[p](x, w)

if (x, w, b) ∈ p :
return b

return ⊥

Sample[p](f, y, p, r)

Z := {z ∈ {0, 1}m : fChk[p]
approx (z) = y

∧ pathChk[p]
fapprox

(z) = p}

z ← unif(Z, r)
return z

Fig. 8: Inverter A. unif(Z, r) samples (approximately) uniformly from set Z using randomness r.
encode(fm, i) returns an encoding fm,i Sample can be implemented via a PSPACE oracle by asking
for z bitwise with multiplicative overhead |z|.

Let C and f be as in Theorem 32 and Theorem 33. We define event EC,fn over the sampling of
(W,B,H)←$ T as true when for O = (Chk[B,W],Pspace) and Inv[B,W,H], it holds that

Prz ←$ {0,1}m
[
fO(AO,Inv

m (fm, fO
m(z))) = fO

m(z)
]
≤ 1
m2.5 .

and
Pr~x←$ {0,1}`·m

[
CO,Inv
m (~x) = LO(~x)

]
≤ 1

superpoly(m) .

By Inequality 9 and Inequality 10, we then obtain that

Pr(B,W,H)←$ T
[
EC,fm

]
≤ 1
m2

and thus,

Pr(B,W,H)←$ T

[
lim sup
n→∞

EC,fn

]
= 0.

Hence, with probability 1 over the choice of (B,W,H), event En holds for all but finitely many
n. As we regard uniform circuits C and functions f , there is a countable number of them, and the
measure of the union of countably many measure zero events is zero and thus, with measure 1
over T , Inequality 7 and Inequality 8 holds for the induced oracles O = (Chk[B,W],Pspace) and
Inv[B,W,H], respectively. Thus, in particular, oracles O and Inv with the desired properties exist.

10 Proof of the Self-Amplifiable Average-Case Hardness Theorem

The core of the proof consists of two lemmas:
– The emulation lemma states that for any adversary A which, given access to O, makes a given

number of hits, there exists another adversary B which emulates A, in the sense that B makes
exactly the same queries to Chk as A (and, in particular, makes the same number of hits), but
is not given access to Inv. Instead, B receives an advice string, computed from the truth table T
of O, which provably contains only a bounded amount of information about the witnesses and
language membership bits of the challenge string.

– The hitting lemma gives a Chernoff-style bound on the number of hits that any adversary B,
which is only given access to Chk and receives in addition an advice string about T of which only
a bounded part contains possible information about the challenge string, can make after doing
at most Q queries to Chk. A generic formulation of the hitting lemma is given (and proven) in
Section 6.

41

10.1 The Emulation Lemma

For any u ∈ {0, 1}n, we define the table W~̄x[u] as equal to W [u] if u /∈ ~x and as ⊥ if u /∈ ~x.
Analogously, for any u ∈ {0, 1}n, we define the table B~̄x[u] as equal to B[u] if u /∈ ~x and as ⊥ if
u /∈ ~x. Given a list I, we denote I.append(x) the function which appends a value x at the end of
the list I, and I.getlast() the function which returns the item at the end of the list I (and removes
it from I).

Lemma 34 (Emulation Lemma). There exists an emulator Emu such that for every function
` : N 7→ N, every oracle circuit family {Cn : {0, 1}n·`(n) 7→ {0, 1}`(n)}n∈N with access to O =
(Chk, Inv,Pspace), every n ∈ N, every ~x ∈ {0, 1}n·`(n), and every (W,B,H) in the support of T , the
following conditions hold:

1. EmuChk,Pspace(LeakPspace(W,B,H, ~x, Cn),W~̄x, B~̄x, ~x, Cn) = CO
n (~x), and

2. Emu and Cn make exactly the same queries to Chk (hence in particular, the same number of
queries to Chk),

where the function Leak is given on Figure 9.

Proof. The emulator Emu is represented on Figure 9. We now argue why properties 1 and 2 of
Lemma 34 hold. Observe that Emu internally runs AO′(~x), but using a new oracle O′ whose behavior
it simulates. This oracle O′ is identical to O, except that Emu replaces the standard inversion oracle
Inv by a locally emulated version of Inv (denoted Invemu[L]) which relies on the information about O
which are given to Emu in the form of a list L. Hence, it is clear that property 2 will hold if Invemu[L]
correctly emulates Inv during the computation of A: if, for any call made by A on input ~x to the
inversion oracle, the answer of Invemu[L] is the same as the answer of Inv, then AO′(~x) will clearly
return the same ~b as AO(~x), and will make exactly the same calls to Chk in the process (which is
provided as part of both O and O′). It remains to argue the following:

Claim 9 For any call made by A on input ~x to the inversion oracle, the answer of Invemu[L] is the
same as the answer of Inv.

There are three differences between Invemu[L] and Inv, which are highlighted in blue on Figure 9.
In both cases, the set S of candidate preimages is computed by looking at all bitstrings z ∈ {0, 1}n
such that the path obtained by running Cs(z) (i.e., the list of all queries to Chk made by Cs on
input z) is light (see Definition 31) and ends at y. The three differences are:

– for Inv, the path is computed by running Cs with oracle access to (Chk,Pspace), while for
Invemu[L], the path is computed by running Cs with oracle access to (Chkemu[L],Pspace).

– The values z whose corresponding path contains an err symbol are discarded from S in Invemu[L].
– The value i is computed as maxi∈N 2i−1 ≤ |S| ≤ 2i in Inv, while in Invemu[L], it is taken from

the end of the list I (and subsequently removed from the list).

Let us first show that the value i obtained is the same for Invemu[L] and Inv. This follows from the
way I is constructed: I is obtained as the first output of Leak(W,B,H, ~x,A). This leakage function
fully simulates a run of A on input ~x internally (which it can do since it contains the full truth
table W,B,H of the oracle O, hence it can perfectly emulate its behavior), and stores some partial
information during this simulated run. This is formalized by running internally A on input ~x with
access to the modified oracle O′ = (Chkleak[W,B, ~x], Invleak[W,B, ~x],Pspace), where Chkleak[W,B, ~x]
and Invleak[W,B, ~x] behave exactly as Chk, Inv from the viewpoint of A, but store information in
the sets WHit,WHit, BHit and in the list I along the way. I is constructed through each call to
Invleak[W,B, ~x] by appending the values i computed as maxi∈N 2i−1 ≤ |S| ≤ 2i (exactly as in Inv).
Hence, as long as A (emulated by Emu) will, on input ~x, make exactly the same calls to Invemu[L]
as it does to Inv in the real execution, Invemu[L] will use exactly the same values i (taken from i) as
those computed by Inv.

42

Leak(W, B, H, ~x,A)ii

I ← ∅; W Hit ← ∅

W Hit ← ∅; BHit ← ∅
O′ ← (Chkleak[W, B, ~x], Invleak[W, B, ~x], Pspace)
~b← AO′

return (I, W Hit, W Hit, BHit, H)

Chkleak[W, B, ~x](u, w)ii

if u ∈ ~x

if W [u] 6= w :

W Hit[u]←W Hit[u] ∪ {w}
if W [u] = w :

BHit[u]← B[u]

W Hit[u]←W [u]
if W [u] = w :

return B[u]ii

return ⊥

Invleak[W, B, ~x, H](C, y)

m← input-size(C)
Cs ← shave(C)
O′ ← (Chk[W, B], Pspace)

S := {p : ∃z ∈ {0, 1}m : CO′
s (z) = y ∧

p = PO′
Cs(z) is light}

i← max
i∈N
{2i−1 ≤ |S| ≤ 2i}

h← H[i, C, y]
if ∃!p ∈ S s. t.

h(p) = 0i then

bs← bitstr|C|(PO′
Cs(z))

h(bs) = 0i then
O′ ← (Chkleak[W, B, ~x], Pspace)

CO′
s (z)

I ← I.append(i)

return PO′
Cs(z)

I ← I.append(⊥)
else return ⊥

EmuChk,Pspace(I, W Hit, W Hit, BHit, H, W~̄x, B~̄x, ~x,A)

L← (I, W Hit, W Hit, BHit, H, W~̄x, B~̄x)
O′ ← (Chk, Invemu[L], Pspace)
~b← AO′(~x)

return ~b

Chkemu[L](u, w)ii

if u ∈ ~x

if u ∈W Hit[u] :
return ⊥

if u ∈W Hit[u] :

return BHit[u]
return err

if W~̄x[u] = w :

return B~̄x[u]
return ⊥

Invemu[L](C, y)

a← I.getlast()
if a = ⊥ : return ⊥
m← input-size(C)
Cs ← shave(C)
O′ ← (Chkemu[L], Pspace)

S := {p : ∃z ∈ {0, 1}m : CO′
s (z) = y ∧

p = PO′
Cs(z) is light∧ err /∈ PO′

Cs(z)}

i← a

h← H[i, C, y]
if ∃!p ∈ S s. t.
bs← bitstr|C|(p)

h(bs) = 0i then

return PO′
Cs(z)

else return err

Fig. 9: The left column contains an algorithmic description of Leak, and the right column contains
an algorithmic description of Emu.

43

It remains to show that each call to Invemu[L] made by A on input ~x will return the same answer
as what Inv would have returned on the same query. We prove it by induction and consider a given
call to Invemu[L], assuming that all previous calls to Invemu[L] returned the same answer as Inv. Let
us denote S the set associated to Inv and Semu the set associated to Invemu[L]. First, we show that
Semu ⊂ S: any path included in Semu is, by definition, a path such that CO′

s (z) = y for some z,
where O′ is the oracle (Chkemu,Pspace). This emulated Chk oracle only answer queries whose answer
is contained in either WHit or WHit (for all other queries, it answers err and the corresponding path
is not added to Semu). By construction, any query pair in either WHit or WHit has been added there
when emulating a run of A on input ~x with access to Chkleak, which answers queries exactly as the
true oracle Chk by definition (Chkleak knows the full truth table of Chk; its only job is to store a
subset of the queries inWHit andWHit, namely, those that query one of the words from the challenge
vector ~x). Hence, any valid path from z to y with respect to O′ is a valid path from z to y with
respect to O = (Chk,Pspace), therefore Semu ⊂ S.

Next, we consider the path p from S that satisfies h(bs) = 0i with bs ← bitstr|C|(p); there is
a unique such path unless Inv returns err. By definition of Invleak, each time there is a unique such
path from z to y in S, then the circuit Cs is ran on input z with the oracle (Chkemu[L],Pspace) (see
the lines in blue in the description of Invleak on Figure 9). This implies that all queries made along
the path from z to y which are not already in W~̄x will be added to the sets WHit and WHit. As a
consequence, thr oracle Chkemu will never return err on any query made along this path, but will
instead return exactly the same answers as Chk. This implies that p also belongs to the set Semu.

Summarizing, when there is a unique path p ∈ S such that h(bs) = 0i with bs ← bitstr|C|(p),
then the same path p belongs to Semu as well, and since Semu ⊂ S, it is also the unique path in Semu
such that h(bs) = 0i (where, as we already argued, the value i is the same as with Inv). On the
other hand, when there is no such unique path p, then Inv returns ⊥. This implies that when the
function LeakPspace runs internally AO′ with the oracle O′ = (Chkleak[W,B, ~x], Invleak[W,B, ~x],Pspace)
to generate the emulation material (I,WHit,WHit, BHit, H), the oracle Invleak will add ⊥ to the list I
(see the lines in blue in the description of Invleak on Figure 9), hence Invemu will retrieve ⊥ from I (see
the lines in blue in the description of Invemu on Figure 9) by our induction hypothesis. Therefore, it
will output ⊥ as well, which completes the induction. ut

Bounding the Length of the Emulation String. Fix `(·), n, a challenge vector ~x ∈ ({0, 1}n)`,
and a circuit family C = {Cn : {0, 1}n·`(n) 7→ {0, 1}n}n∈N. For (W,B,H) in the support of T , denoting
(I,WHit,WHit, BHit, H) ← LeakPspace(W,B,H, ~x, Cn), we say that I is represented by a string rep
if there is a deterministic algorithm ReconstructPspace which, given (H,W~̄x, B~̄x, ~x, Cn), outputs I.
Observe that without loss of generality, if rep represents I, we can assume that EmuChk,Pspace gets
rep instead of I as input (since it can recompute I locally, without any call to the oracles, from rep
and its other inputs). We now bound the size of rep.

Lemma 35 (Emulation String Length). There exists an algorithm Reconstruct such that for
every function `(·), every circuit family

C = {Cn : {0, 1}n·`(n) 7→ {0, 1}n}n∈N,

and every large enough n ∈ N, for all ~x ⊆ {0, 1}n, every (W,B,H) in the support of T , denoting
(I,WHit,WHit, BHit, H) ← LeakPspace(W,B,H, ~x, Cn), it holds that I = ReconstructPspace(rep, H,W~̄x,
B~̄x, ~x, Cn), for some string rep satisfying

|rep| = Õ(|Cn|)
2n/6

. (12)

Proof. Consider a query (C, y) to Invleak[W,B, ~x,H]. Every such query will result in appending an
integer i to the list I, where i is computed from the set S of path from some input z to y in

44

Cs = shave(C). Assume that |C| < 2n/6. Then, by definition of the shave function, it holds that Cs
does not contain any n-Chk gate. Therefore, no path in Cs from any input z can possibly contain
any query to ~x. This implies that the S can be fully computed solely from Cs, y and W~̄x, B~̄x (i.e.
the full information about the oracle Chk, except for all witnesses and languages membership bits
for the words in ~x).

Now, the circuit Cn can contain at most |Cn|/2n/6 Inv gates which take as input a circuit C of
size at least 2n/6. Furthermore, for every query (C, y) to Invleak[W,B, ~x,H], the integer i appended
to the list I is of size at most log |S| + 1, where S is a set of paths from some input to y in
Cs = shave(C), and the number of such path is trivially bounded by 2|Cs| ≤ 2|C| (by definition of
shave, |shave(C)| ≤ |C|). Therefore, the bitlength of i is at most

log(log |S|+ 1) ≤ log(log(2|C|) + 1)
= log(|C|+ 1) = O(log |Cn|).

We now define the string rep that represents I: rep is a self-delimiting encoding (e.g. a prefix-free
encoding) of the sub-list of I of all integer i appended to I through a query (C, y) to Invleak[W,B, ~x,H]
with |C| ≥ 2n/6. Using any efficient prefix-free encoding (it is well known that a list containing items
of total length t can be prefix-free encoded with a string of length at most t+O(log t)), the length
of rep can therefore be bounded by

|rep| ≤ Õ |Cn|
2n/6

·O(log |Cn|)) = Õ(|Cn|)
2n/6

.

Eventually, the reconstruction algorithm Reconstruct works as follows: on input (rep, H,W~̄x, B~̄x, ~x,

Cn), it reconstructs I by running LeakPspace(W,B,H, ~x, Cn) internally. For each call to Invleak[W,
B, ~x,H] made by LeakPspace, if the query (C, y) satisfies |C| < 2n/6, Reconstruct can locally compute
the value i to append to I solely from Cs, y and W~̄x, B~̄x. Else, Reconstruct retrieves the value i from
the string rep. This concludes the proof. ut

10.2 Applying The Hitting Lemma

We want to apply the hitting lemma (Lemma 17) to prove the following: for any circuit Cn, any
algorithm A having only access to the inputs and oracles of Cn’s emulator (i.e., A has only access
to the oracles Chk,Pspace and W

~x
, B

~x
, LeakPspace(W,B,H, ~x, Cn)) cannot possibly make too many

hits out of Q queries, for any Q. Recall that the hitting lemma is a strong Chernoff-type bound,
which shows that the probability of making c more hits than some number (that depends on Q
and the information in W

~x
, B

~x
, LeakPspace(W,B,H, ~x, Cn)) decreases exponentially with c. In the

following lemma, we treat Leak(W,B,H, ~x, Cn) as a given and abstract properties of Emu into a
class of adversaries that have access to a Chk oracle. Note that

LeakPspace(W,B,H, ~x, Cn) = (I,WHit
I ,WHit

I , BHit
I , H).

We denote by I(W,B, ~x, Cn) the first component of Leak.

Notations. Given an adversary A with access to the oracles Chk,Pspace, we let:

– L← (I,WHit,WHit, BHit, H,W~̄x, B~̄x),
– HitChk,Pspace

B (L, ~x, Cn) denote the random variable corresponding to the number of hits made by
dvChk,Pspace(L, ~x, Cn) through queries to Chk of the form (xi, w), where xi is a component of ~x
such that WHit[xi] = ⊥ (i.e., Hit counts the new hitting queries with respect to components of
~x, which are not already contained in WHit);

– qryA denote the number of Chk gates in the circuit A.

45

With these notations, we can now state the version of the Hitting Lemma which we need in this sec-
tion. Note that the notation (W,B,H)← T |L means that (W,B,H) is sampled from T conditioned
on being consistent with L:

Lemma 36 (Hitting Lemma with Advice – Specialized Version). For every `(·), positive
integers q, large enough n, challenge ~x = (x1, · · · , x`(n)), witness setsW~x

,WHit with bit sets B
~x
, BHit,

non-hitting set WHit of size q, function I, adversaries A, Cn, and for every integer c ≥ 1,

Pr(W,B,H)←T |L

[
HitChk,Pspace
A (L, ~x, Cn) ≥ D · qryB + q

2n + c

]
≤ α · 2|rep|

2γc ,

with L = (I,WHit,WHit, BHit, H,W~̄x, B~̄x), |rep| ≤ Õ(|Cn|)/2n/6, constants D = 16, α > 0, and
γ > 1, where the probability is taken over the random sampling of (W,B,H)←$ T , conditioned on
L.

Lemma 36 follows from the abstract hitting lemma with advice (Corollary 18) by mapping the
respective sets as follows: We first remove the xi values for which hits are registered in WHit from ~x.
Note that HitChk,Pspace

A (L, ~x, Cn) only counts hits not already contained in WHit. Next, for each of the
remaining xi, we denote by Vi the set of witnesses which are not already contained as a non-hit in
WHit. Eventually, recall that the abstract hitting lemma with advice does not make any assumption
about the power of the adversary (beyond the fact that it makes a bounded number of queries) and
allows the adversary to be given a bounded length advice string which can depend arbitrarily on
the truth table of the oracle. Therefore, we apply the abstract hitting lemma with to an adversary
(A′)Chk which emulates APspace,Chk =

(
APspace)Chk, locally emulating the Pspace oracle in exponential

time. A′ has (WHit
I ,WHit

I , BHit
I , H) and the reconstruction string rep hardcoded in its description (by

Lemma 35, the value of I can be reconstructed as ReconstructPspace(rep, H,W~̄x, B~̄x, ~x, Cn), using an
advice string rep of length bounded by Õ(|Cn|)/2n/6), and uses it to reconstruct I before running
A on input (L, ~x, Cn). Given this mapping, bounding HitChk,Pspace

A (L, ~x, Cn) becomes identical to
bounding HitGuess~r (A′) where the oracle Guess is defined with respect to the witness sets Vi given
above, using the fact that sampling ~r from V1×· · ·V` is identical to sampling the witnesses for each
xi from {0, 1}n conditioned on the witnesses not being equal to any non-hit contained in WHit.

10.3 Proof of Theorem 32 from the Emulation Lemma and the Hitting Lemma

We now prove Theorem 32 assuming the Emulation Lemma (Lemma 34) and the Hitting Lemma
with Advice (Lemma 36). Fix a function `(·) and a uniform circuit family C = {Cn : {0, 1}`(n)·n 7→
{0, 1}n}n∈N. Given (W,B,H) in the support of T , we let LO denote the language LO = {x ∈
{0, 1}∗ : B[x] = 1}. Let p denote the quantity

p = Pr(W,B,H)←$ T ,~x←$ {0,1}`·n
[
CChk,Inv,Pspace
n (~x) = LO(~x)

]
.

By the Emulation Lemma (Lemma 34), there exists an algorithm Emu such that

p = Pr(W,B,H)←$ T ,~x←$ {0,1}`·n

[
L← LeakPspace(W,B,H, ~x, Cn) :
EmuChk,Pspace(L,W~̄x, B~̄x, ~x, Cn) = LO(~x)

]
;

furthermore, EmuChk,Pspace, on input (L,W~̄x, B~̄x, ~x, Cn), makes exactly the same number of queries
to Chk as CChk,Inv,Pspace

n (~x) (in particular, Emu makes at most |Cn| queries to Chk). We now bound
p. Let XEmu = XEmu(W,B,H, ~x, Cn) be a random variable which counts the total number of hits
(among the words of ~x) contained in WHit and made by EmuChk,Pspace(L,W~̄x, B~̄x, ~x, Cn). Then for
any t ∈ N,

Pr(W,B,H)←$ T ,~x←$ {0,1}`·n
[
EmuChk,Pspace(L,W~̄x, B~̄x, ~x, Cn) = LO(~x)

∣∣XEmu = t
]
≤ 2t−`(n).

46

Indeed, conditioned on XEmu = t for some integer t, at most t bits of LO(~x) are fully determined,
and all other remaining bits are truly undetermined (since all other information obtained by Emu
through queries to Chk or contained in (WHit,W~̄x, B~̄x, H) are sampled independently of LO(~x) by
the distribution T), hence the bound. Furthermore, a trivial bound on XEmu is `(n) (the number of
entries in ~x). Therefore,

p = Pr(W,B,H)←$ T ,~x←$ {0,1}`·n
[
EmuChk,Pspace(L,W~̄x, B~̄x, ~x, Cn) = LO(~x)

]
=

∑̀
t=1

Pr(W,B,H)←$ T ,~x←$ {0,1}`·n
[
EmuChk,Pspace(L,W~̄x, B~̄x, ~x, Cn) = LO(~x)

∣∣XEmu = t
]
· Pr [XEmu = t]

≤
∑̀
t=1

2t−`(n) · Pr(W,B,H)←$ T ,~x←$ {0,1}`·n [XEmu = t] .

Furthermore, the size of |WHit| satisfies the following bound:

Claim 10 For every function `(·), every circuit family C = {Cn : {0, 1}n·`(n) 7→ {0, 1}n}n∈N, and
every large enough n ∈ N, for all ~x ⊆ {0, 1}n, every (W,B,H) in the support of T , denoting
(I,WHit,WHit, BHit, H)← Leak(W,B,H, ~x, Cn), it holds that

|WHit| = poly(n) · Õ(|Cn|)
2n .

Proof. The setWHit contains all hits made through queries to Inv. More precisely, every hit contained
in WHit belongs to a light path from some input z to y in a circuit Cs = shave(C), where (C, y) is a
query to Inv. By the definition of a light path, the number of hits contained in any given light path
is at most

|n-HO′
Cs(z)| ≤

|n-PO′
Cs

(z)|
2n−1 + log2 |Cs| ≤

|Cs|
2n−1 + log2 |Cs|.

Furthermore, by definition of shave, if |C| < 2n, no hits will be added to WHit, and |Cs| ≤ |C|.
Therefore, any query (C, y) can add at most poly(n) · Õ(|C|)/2n−1 hits to WHit. Since the total size
of all queries (C, y) to Inv made by Cn is at most |Cn|, the bound follows. ut

Therefore,

Pr(W,B,H)←$ T ,~x←$ {0,1}`·n [XEmu = t]

≤ Pr(W,B,H)←$ T ,~x←$ {0,1}`·n

[
HitChk,Pspace

Emu (L, ~x, Cn) ≥ t− poly(n) · Õ(|Cn|)
2n

]
Since HitChk,Pspace

Emu counts the number of hits made by EmuChk,Pspace(L,W~̄x, B~̄x, ~x, Cn), which means
that HitChk,Pspace

Emu = XEmu − |WHit| by definition. By the Hitting Lemma with Advice (Lemma 36),
for every c ∈ N, it holds that

Pr(W,B,H)←T |L

[
HitChk,Pspace

Emu (L, ~x, Cn) ≥ D · qryA + q

2n + c

]
≤ α · 2|rep|

2γc ,

whereD is some constant, q is the number of entries inWHit, α > 0 and γ > 1. Since Amakes exactly
the same number of queries to Chk as Cn, a straightforward bound on qryA is |Cn|. Furthermore,
it also holds that q ≤ |Cn|, since q is the number of non-hitting Chk queries made by Cn through
queries to Inv, and the total number of Chk queries made by Cn (directly or through calls to Inv) is
at most |Cn|. Hence,

Pr(W,B,H)←T |L

[
HitChk,Pspace
A (L, ~x, Cn) ≥ O(|Cn|)

2n + c

]
≤ α · 2|rep|

2γc ,

47

and therefore for any t ∈ N, since |rep| = Õ(|Cn|)
2n/6 = poly(n) · Õ(|Cn|)

2O(n) , setting

c← t− poly(n) · Õ(|Cn|)
2n − O(|Cn|)

2n = t− poly(n) · Õ(|Cn|)
2O(n) ,

we get

Pr(W,B,H)←$ T ,~x←$ {0,1}`·n [XEmu = t] ≤ α · 2poly(n)· Õ(|Cn|)
2O(n)

2γt .

Eventually, this gives

p ≤
∑̀
t=1

2t−`(n) · α · 2
poly(n)· Õ(|Cn|)

2O(n)

2γt = α · 2poly(n)· Õ(|Cn|)
2O(n) −`(n) ·

∑̀
t=1

2(1−γ)t

≤ β · 2poly(n)· Õ(|Cn|)
2O(n) −`(n) for some constant β = α ·

∞∑
t=1

2(1−γ)t, which exists since γ > 1

≤ 2poly(n)· Õ(|Cn|)
2O(n) −`(n) by absorbing the β in the Õ(),

which concludes the proof of Theorem 32.

11 Proof of the Inversion Lemma

We now prove Theorem 33. The proof proceeds as follows. We first show that on a random input
f and its shaved counterpart fs return the same value with high probability over the choice of
the oracle O. We define a function fapprox which returns an error when it is evaluating a heavy
path and we bound the probability over a random choice of the input and the oracle O that fs
and fapprox return a different value. We then show that inverting fapprox uniformly suffices to invert
f with overwhelming probability, essentially losing the error between f and fapprox twice, once in
the forward and once in the backward direction. Additionally, we loose a small factor due to the
universal hashing in the oracle. For convenience, we write f instead of fm.

Definition 37 (approximate f). Let f be an oracle circuit with O = Chk,PSPACE. We define
fs := shave(f) and

fO
approx(z) 7→

{
fO
s if PO

fs
(z) is light.

⊥ else.

Lemma 38 (fapprox ≈ fs).

PrO,z ←$ {0,1}m
[
fO

approx(z) = fO
s (z)

]
≥ 1− 1

superpoly(|f |) ,

where superpoly denotes some explicit superpolynomial function.

Proof.

PrO,z ←$ {0,1}m
[
fO

approx(z) 6= fO
s (z)

]
= PrO,z ←$ {0,1}m

[
PO
fs(z) is not light.

]
= PrO,z ←$ {0,1}m

[
∃k ≥ 1 : PO

fs(z) is not k-light.
]

≤
k′(f)∑
k=1

PrO,z ←$ {0,1}m
[
PO
fs(z) is not k-light.

]
48

=
k′(f)∑
k=1

PrO,z ←$ {0,1}m

[
|k-HO

f (z)| ≤
|k-PO

f (z)|
2k−1 + log2 |f |

]
. (13)

We now prove that for each k, the probability over O and z that |k-HO
f (z)| ≤ |k-PO

f (z)|
2k−1 + log2 |f | is

upper bounded by 2−O(log2|f |). To be able to show this, we use a specialized version of the abstract
Hitting Lemma 17, stated below. We map the parameters as follows: For each k ∈ N, we consider
the hits made on any of the possible x ∈ {0, 1}k, i.e., for each x ∈ {0, 1}k, we consider a set Vi with
2k candidate witnesses, i.e., ` = 2k and |V1| = .. = |V`| = 2k and thus q = ` · k −

∑2k
i=1 |Vi| = 0.

The adversary A in the hitting lemma corresponds to the function f . However, let us make the
sampling of O explicit to fully appreciate the mapping between A and f . Namely, O consists of a
PSPACE oracle which we consider a part of A. Since the Hitting Lemma does not have efficiency
constraints, A can simply emulate PSPACE inefficiently. Additionally, sampling O consists of sam-
pling (W,B,H) ← T . We consider the sampling of H as part of A (since it is independent of the
witnesses of length k). Additionally, denoting by W{0,1}¬k and B{0,1}¬k the set of witnesses and
language membership bits for x ∈ {0, 1}∗ \ {0, 1}k, we can consider the sampling of W{0,1}¬k and
B{0,1}¬k as part of A since it is independent of the witnesses and membership bits sampled for
x ∈ {0, 1}k. Let us denote by HitChk

APspace(f, {0, 1}k, H,W{0,1}¬k , B{0,1}¬k) the number of k-hits which
the so-constructed adversary makes, and observe that this number is equal to |k-HO

f (z)|, since A
merely runs f internally. Hence, we obtain the following customized Hitting Lemma from Lemma 17:

Lemma 39. For any c, k ∈ N,

Pr(W,B,H)←T ,z ←$ {0,1}m

[
HitChk
APspace(f, {0, 1}k, H,W{0,1}¬k , B{0,1}¬k) ≥

16 · k-PO
f (z)

2k + c

]
≤ α

2γc ,

for some α > 0 and γ > 1.

Therefore, for any c, k ∈ N,

PrO,z ←$ {0,1}m

[
|k-HO

f (z)| ≤
|k-PO

f (z)|
2k−1 + c

]

≤PrO,z ←$ {0,1}m

[
|k-HO

f (z)| ≤ 16 ·
|k-PO

f (z)|
2k + c

]
≤ 2−O(c). (14)

From Inequality 13 and Inequality 14, we now obtain

PrO,z ←$ {0,1}m
[
fO

approx(z) 6= fO
s (z)

]
≤
k′(f)∑
k=1

PrO,z ←$ {0,1}m

[
|k-HO

f (z)| ≤ 16 ·
|k-PO

f (z)|
2k + log2 |f |

]

≤
k′(f)∑
k=1

2−O(log2 |f |) ∗≤ |f | · 2−O(log2 |f |)

where inequality (∗) follows from the fact that k′ ≤ |f |. This concludes the proof of Lemma 38. ut

Lemma 40 (fs ≈ f).

PrO,z ←$ {0,1}m
[
fO
s (z) = fO(z)

]
≥ 1− 4

m3

49

Proof.

PrO,z ←$ {0,1}m
[
fO
s (z) 6= fO(z)

]
= PrO,z ←$ {0,1}m

[
∃k ≥ 6 log(|C|) : k-HO

f (z) 6= ∅
]

≤
∑

k≥6 log(|C|)

PrO,z ←$ {0,1}m
[
k-HO

f (z) 6= ∅
]

≤
∑

k≥6 log(|C|)

2− 5k
6 ≤

∑
k≥6 log(|C|)

2− k2 ≤ 22 · 2−3 log(|C|) ≤ 4
m3

Putting Lemma 38 and Lemma 40 together, we obtain

Lemma 41 (fapprox ≈ f).

PrO,z ←$ {0,1}m
[
fO

approx(z) = fO(z)
]
≥ 1− ν(m), (15)

where ν(m) = 1
superpoly(m) + 4

m3 ≤ 1
m2.9 .

An averaging argument yields from Inequality 15 that

Pr(B,W)←$ T
[
Prz ←$ {0,1}m

[
fO(z) = fO

approx(z)
]
≥ 1− 2ν(m)

]
≥ 1− 2ν(m), (16)

where O denotes Chk[B,W], Inv[B,W]. We say that such an oracle O is (1− 2ν(m))-good and refer
to the functions fO and fO

approx as (1 − 2ν(m))-close w.r.t. O. We now show that if two functions
f and fapprox are (1 − 2ν(m))-close, then fapprox can be used to approximately invert f , losing the
approximation error ν(m) twice since we need to apply it to the original x as well as the inverse x′,
see Inequality 19.

Lemma 42 (Approximate Inversion). Let f and fapprox be two (1−2ν(m))-close functions, then

Prz ←$ {0,1}m
[
f(f−1

approx(f(z), 1m)) = f(z)
]
≥ 1− 4ν(m), (17)

where we denote by f−1
approx(f(z), 1m) a uniformly random sample from f−1

approx(f(z), 1m).

Proof (Lemma 42). We first lower bound the probability by considering only the case where f(z) =
fs(z).

Prz ←$ {0,1}m
[
f(f−1

approx(f(z), 1m)) = f(z)
]

≥Prz ←$ {0,1}m
[
f(f−1

approx(f(z), 1m)) = f(z) ∧ f(z) = fapprox(z)
]

= Prz ←$ {0,1}m
[
f(f−1

approx(fapprox(z), 1m)) = f(z) ∧ f(z) = fapprox(z)
]

(18)

Observe that when z is uniformly distributed over {0, 1}m, then z′←$ f−1
approx(fapprox(z), 1m) is uni-

formly distributed. By considering only the case that f(z′) = fapprox(z′), we lower bound (18) by
the following term:

Prz ←$ {0,1}m,z′ ←$ f−1
approx(fapprox(z),1m) [f(z′) = f(z) ∧ f(z) = fapprox(z)]

≥Prz ←$ {0,1}m,z′ ←$ f−1
approx(fapprox(z),1m) [f(z′) = f(z) ∧ f(z) = fapprox(z) ∧ f(z′) = fapprox(z′)]

= Prz ←$ {0,1}m,z′ ←$ f−1
approx(fapprox(z),1m) [f(z) = fapprox(z) ∧ f(z′) = fapprox(z′)]

The last equation follows since, by definition of z′, it holds that fapprox(z′) = fapprox(z) and thus,
f(z) = fapprox(z) and f(z′) = fapprox(z′) imply that also f(z) = f(z′). Using a union bound, we
obtain Lemma 42:

Prz ←$ {0,1}m,z′ ←$ f−1
approx(fapprox(z),1m) [f(z) = fapprox(z) ∧ f(z′) = fapprox(z′)]

≥1− 4ν(m) (19)

50

Figure 8 describes our inverter A that inverts fapprox uniformly provided that it returns an
answer at all. We now show that for all y ∈ Im(f), A returns a uniformly random pre-image of y
with probability at least 1−

(7
8
)log3(m).

Lemma 43 (Approximate Inversion II). Let f be an oracle function with oracles O = Chk,Pspace
and let fapprox be as in Definition 37. For all W0, B0, y ∈ Im(f) and z′ ∈ {0, 1}m, it holds that

PrH ←$H,r ←$ {0,1}101m

[
z′ = AChk[W0,B0],Inv[W0,B0,H0],Pspace(y)

]
≥
(

1− 7
8

log3(m) − 2−100m
)
· Pr

[
z′ = f−1,Chk[W0,B0],Pspace

approx (y)
]

(20)

where, by abuse of notation, we denote by f−1,Chk[W0,B0],Pspace
approx (y) a uniformly random sample from

said set.
Proof. For each y, sampling via z ← unif(Z, r) might make y more or less likely than it should be
by at most 2−100m, and each of the for loops succeeds with probability at least 1

8 by Claim 1 since
H is a pairwise independent hash-function distribution. We can thus prove Inequality 20 in two
game-hops, bounding the difference each time, see Figure 10.

Putting Lemma 42 and Lemma 43 together, we obtain the following Lemma.
Lemma 44 (A inverts quite uniformly).

Pr(W,B,H)←$ T ,z ←$ {0,1}m
[
fO(AO,Inv[W0,B0,H0](fO(z)))=fO(z) :

]
≥ (1− 7

8
log3(m) − 2−100m)(1− 4ν),

where O = (Chk[W,B],Pspace).
Proof (Lemma 44). Throughout the following, O = (Chk[W,B],Pspace), O0 = (Chk[W0, B0],Pspace)
and

δfO0 (z′)=fO0 (z0) =
{

1 if fO0(z′) = fO0(z0)
0 else.

Pr(W,B,H)←$ T ,z ←$ {0,1}m
[
fO(AO,Inv[W,B,H](fO(z))) = fO(z)

]
=

∑
W0,B0,z0

2−m Pr[(W0, B0, ∗) = (W,B,H)←$ T] ·

PrH ←$H,r ←$ {0,1}101m

[
fO0(AO0,Inv[W0,B0,H](fO0(z0))) = fO0(z0)

]
=

∑
W0,B0,z0

2−m Pr[(W0, B0, ∗) = (W,B,H)←$ T] ·

∑
z′

PrH ←$H,r ←$ {0,1}101m

[
z′ = AO0,Inv[W0,B0,H](fO0(z0))

]
· δfO0 (z′)=fO0 (z0)

Lem. 43
≥

∑
W0,B0,z0

2−m Pr[(W0, B0, ∗) = (W,B,H)←$ T] ·

∑
z′

(
1− 7

8
log3(m) − 2−100m

)
Pr
[
z′ = f−1,O

approx(AO,Inv[W0,B0,H](fO(z0)))
]
· δfO0 (z′)=fO0 (z0)

=
(

1− 7
8

log3(m) − 2−100m
) ∑
W0,B0,z0

2−m Pr[(W0, B0, ∗) = (W,B,H)←$ T]

· Pr
[
fO(f−1,O

approx((fO(z0)))) = fO(z0)
]

Lem. 42
≥ (1− 7

8
log3(m) − 2−100m)(1− 4ν)

≥1− 1/m2.5.

51

Exp1(y)

(W, B, H)←$ T
m← input-size(f)
fs ← shave(f)
O′ ← (Chk[W, B], Pspace)
S := {p : ∃z ∈ {0, 1}m : p = PO

fs(z)∧

fO′
s (z) = y ∧ PO

fs(z) is light}
i← max

i∈N
2i−1 ≤ |S| ≤ 2i

for i from 1 to log3(m)
fm,i ← encode(fm, i)
h← H[i, fm,i, y]
if ∃!p ∈ S s. t.
bs← bitstr|f |(p)
h(bs) = 0i then
p← PO

fs(z)
r←$ {0, 1}101m

Z := {z ∈ {0, 1}m : fChk[p]
approx (z) = y

∧ pathChk[p]
fapprox

(z) = p}

z ← unif(Z, r)
return z

return ⊥

Chk[p](x, w)

if (x, w, b) ∈ p :
return b

return ⊥

Exp2(y)

(W, B, H)←$ T
m← input-size(f)
fs ← shave(f)
O′ ← (Chk[W, B], Pspace)
S := {p : ∃z ∈ {0, 1}m : p = PO

fs(z)∧

fO′
s (z) = y ∧ PO

fs(z) is light}
i← max

i∈N
2i−1 ≤ |S| ≤ 2i

for i from 1 to log3(m)
fm,i ← encode(fm, i)
h← H[i, fm,i, y]
if ∃!p ∈ S s. t.
bs← bitstr|f |(p)
h(bs) = 0i then
p← PO

fs(z)

Z := {z ∈ {0, 1}m : fChk[p]
approx (z) = y

∧ pathChk[p]
fapprox

(z) = p}
z←$ Z

return z

return ⊥

Chk[p](x, w)

if (x, w, b) ∈ p :
return b

return ⊥

Exp3(y)

(W, B, H)←$ T
m← input-size(f)
fs ← shave(f)
O′ ← (Chk[W, B], Pspace)
S := {p : ∃z ∈ {0, 1}m : p = PO

fs(z)∧

fO′
s (z) = y ∧ PO

fs(z) is light}
i← max

i∈N
2i−1 ≤ |S| ≤ 2i

p←$ S

if p = ⊥
return ⊥

Z := {z ∈ {0, 1}m : fChk[p]
approx (z) = y

∧ pathChk[p]
fapprox

(z) = p}
z←$ Z

return z

Chk[p](x, w)

if (x, w, b) ∈ p :
return b

return ⊥

unf. sampl. correctness 2−100m univ. hashing loss (7
8)log3 m

Fig. 10: Proof of Lemma 43

52

References

AGGM06. A. Akavia, O. Goldreich, S. Goldwasser, and D. Moshkovitz. On basing one-way functions on
NP-hardness. In 38th ACM STOC, pages 701–710. ACM Press, May 2006.

BB15. A. Bogdanov and C. Brzuska. On basing size-verifiable one-way functions on NP-hardness. In
TCC 2015, Part I, LNCS 9014, pages 1–6. Springer, Heidelberg, March 2015.

BBF13. P. Baecher, C. Brzuska, and M. Fischlin. Notions of black-box reductions, revisited. In ASI-
ACRYPT 2013, Part I, LNCS 8269, pages 296–315. Springer, Heidelberg, December 2013.

BBO07. M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption.
In CRYPTO 2007, LNCS 4622, pages 535–552. Springer, Heidelberg, August 2007.

BGI08. E. Biham, Y. J. Goren, and Y. Ishai. Basing weak public-key cryptography on strong one-way
functions. In TCC 2008, LNCS 4948, pages 55–72. Springer, Heidelberg, March 2008.

BHK+11. G. Brassard, P. Høyer, K. Kalach, M. Kaplan, S. Laplante, and L. Salvail. Merkle puzzles in a
quantum world. In CRYPTO 2011, LNCS 6841, pages 391–410. Springer, Heidelberg, August
2011.

BHK13. M. Bellare, V. T. Hoang, and S. Keelveedhi. Instantiating random oracles via UCEs. In
CRYPTO 2013, Part II, LNCS 8043, pages 398–415. Springer, Heidelberg, August 2013.

BM09. B. Barak and M. Mahmoody-Ghidary. Merkle puzzles are optimal - an O(n2)-query attack
on any key exchange from a random oracle. In CRYPTO 2009, LNCS 5677, pages 374–390.
Springer, Heidelberg, August 2009.

BM14. C. Brzuska and A. Mittelbach. Using indistinguishability obfuscation via UCEs. In ASI-
ACRYPT 2014, Part II, LNCS 8874, pages 122–141. Springer, Heidelberg, December 2014.

BR93. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM CCS 93, pages 62–73. ACM Press, November 1993.

BRSV17. M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan. Average-case fine-grained hardness. In 49th
ACM STOC, pages 483–496. ACM Press, June 2017.

BRSV18. M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan. Proofs of work from worst-case assumptions.
In CRYPTO 2018, Part I, LNCS 10991, pages 789–819. Springer, Heidelberg, August 2018.

BS08. G. Brassard and L. Salvail. Quantum merkle puzzles. In Second International Conference on
Quantum, Nano and Micro Technologies (ICQNM 2008), pages 76–79. IEEE, 2008.

BT03. A. Bogdanov and L. Trevisan. On worst-case to average-case reductions for NP problems. In
44th FOCS, pages 308–317. IEEE Computer Society Press, October 2003.

CCH+19. R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, R. D. Rothblum, and D. Wichs.
Fiat-Shamir: from practice to theory. In 51st ACM STOC, pages 1082–1090. ACM Press, June
2019.

CCRR18. R. Canetti, Y. Chen, L. Reyzin, and R. D. Rothblum. Fiat-Shamir and correlation intractability
from strong KDM-secure encryption. In EUROCRYPT 2018, Part I, LNCS 10820, pages 91–122.
Springer, Heidelberg, April / May 2018.

CDGS18. S. Coretti, Y. Dodis, S. Guo, and J. P. Steinberger. Random oracles and non-uniformity. In
EUROCRYPT 2018, Part I, LNCS 10820, pages 227–258. Springer, Heidelberg, April / May
2018.

CGH98. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. Cryptology
ePrint Archive, Report 1998/011, 1998. http://eprint.iacr.org/1998/011.

DGK17. Y. Dodis, S. Guo, and J. Katz. Fixing cracks in the concrete: Random oracles with auxil-
iary input, revisited. In EUROCRYPT 2017, Part II, LNCS 10211, pages 473–495. Springer,
Heidelberg, April / May 2017.

DVV16. A. Degwekar, V. Vaikuntanathan, and P. N. Vasudevan. Fine-grained cryptography. In
CRYPTO 2016, Part III, LNCS 9816, pages 533–562. Springer, Heidelberg, August 2016.

FF93. J. Feigenbaum and L. Fortnow. Random-self-reducibility of complete sets. SIAM Journal on
Computing, 22(5):994–1005, 1993.

FS87. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO’86, LNCS 263, pages 186–194. Springer, Heidelberg, August 1987.

GT00. R. Gennaro and L. Trevisan. Lower bounds on the efficiency of generic cryptographic construc-
tions. In 41st FOCS, pages 305–313. IEEE Computer Society Press, November 2000.

Hel80. M. Hellman. A cryptanalytic time-memory trade-off. IEEE transactions on Information Theory,
26(4):401–406, 1980.

53

http://eprint.iacr.org/1998/011

HL18. J. Holmgren and A. Lombardi. Cryptographic hashing from strong one-way functions (or: One-
way product functions and their applications). In 59th FOCS, pages 850–858. IEEE Computer
Society Press, October 2018.

Imp95. R. Impagliazzo. A personal view of average-case complexity. In Proceedings of Structure in
Complexity Theory. Tenth Annual IEEE Conference, pages 134–147. IEEE, 1995.

IR89. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutations.
In 21st ACM STOC, pages 44–61. ACM Press, May 1989.

IR90. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutations.
In CRYPTO’88, LNCS 403, pages 8–26. Springer, Heidelberg, August 1990.

KRR17. Y. T. Kalai, G. N. Rothblum, and R. D. Rothblum. From obfuscation to the security of Fiat-
Shamir for proofs. In CRYPTO 2017, Part II, LNCS 10402, pages 224–251. Springer, Heidelberg,
August 2017.

Lev86. L. A. Levin. Average case complete problems. SIAM Journal on Computing, 15(1):285–286,
1986.

Lev87. L. A. Levin. One way functions and pseudorandom generators. Combinatorica, 7(4):357–363,
1987.

LLW19. R. LaVigne, A. Lincoln, and V. V. Williams. Public-key cryptography in the fine-grained setting.
In CRYPTO 2019, Part III, LNCS 11694, pages 605–635. Springer, Heidelberg, August 2019.

Mer78. R. C. Merkle. Secure communications over insecure channels. Communications of the ACM,
21(4):294–299, 1978.

PS96. D. Pointcheval and J. Stern. Security proofs for signature schemes. In EUROCRYPT’96, LNCS
1070, pages 387–398. Springer, Heidelberg, May 1996.

PS19. C. Peikert and S. Shiehian. Noninteractive zero knowledge for NP from (plain) learning with
errors. In CRYPTO 2019, Part I, LNCS 11692, pages 89–114. Springer, Heidelberg, August
2019.

PV19. R. Pass and M. Venkitasubramaniam. A round-collapse theorem for computationally-sound
protocols; or, tfnp is hard (on average) in pessiland. arXiv preprint arXiv:1906.10837, 2019.

RTV04. O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of reducibility between cryptographic
primitives. In TCC 2004, LNCS 2951, pages 1–20. Springer, Heidelberg, February 2004.

Sim98. D. R. Simon. Finding collisions on a one-way street: Can secure hash functions be based on
general assumptions? In EUROCRYPT’98, LNCS 1403, pages 334–345. Springer, Heidelberg,
May / June 1998.

STV01. M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the xor lemma.
Journal of Computer and System Sciences, 62(2):236–266, 2001.

Sud97. M. Sudan. Decoding of reed solomon codes beyond the error-correction bound. Journal of
complexity, 13(1):180–193, 1997.

Unr07. D. Unruh. Random oracles and auxiliary input. In CRYPTO 2007, LNCS 4622, pages 205–223.
Springer, Heidelberg, August 2007.

VV85. L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions. In 17th ACM
STOC, pages 458–463. ACM Press, May 1985.

WB86. L. R. Welch and E. R. Berlekamp. Error correction for algebraic block codes, 1986. US Patent
4,633,470.

Wee06. H. Wee. Finding pessiland. In TCC 2006, LNCS 3876, pages 429–442. Springer, Heidelberg,
March 2006.

Yao82. A. C.-C. Yao. Theory and applications of trapdoor functions (extended abstract). In 23rd FOCS,
pages 80–91. IEEE Computer Society Press, November 1982.

Zha16. M. Zhandry. The magic of ELFs. In CRYPTO 2016, Part I, LNCS 9814, pages 479–508. Springer,
Heidelberg, August 2016.

Zha19. M. Zhandry. On ELFs, deterministic encryption, and correlated-input security. In EURO-
CRYPT 2019, Part III, LNCS 11478, pages 3–32. Springer, Heidelberg, May 2019.

54

	Introduction
	Excluding Pessiland: a Program for Putting Algorithms and Cryptography in a Win-Win Situation
	Fine-Grained Cryptography: the Quest for Minimal Cryptographic Hardness
	Our Contribution: Towards a Weak Exclusion of Pessiland
	A Core Technical Lemma: the Hitting Lemma
	Related Work

	Preliminaries
	Computational Models and Oracles
	Fine-Grained One-Way Functions
	Languages
	Pairwise independent hash-functions

	Technical Overview: FGOWFs in the Random Language Model
	Block-Finding Hardness of L

	Technical Overview: no FGOWFs from Average-Case Hardness
	Language Description
	Inexistence of FG-OWF Relative to Chk

	Technical Overview: no FG-OWF from Non-Amortizable Hardness
	Defining the Oracle Distribution T
	Proving Theorem 14
	Proving Theorem 15

	The Hitting Lemma
	Proof of the Hitting Lemma – Proof Structure
	Proof of Claim 2: BQ's Strategy is the Best Possible Strategy
	Proof of Claim 3: Bounding B's Number of Hits
	Application to Hardness in the Random Language Model
	Application to Good Inversion
	Application to Language Hardness

	A Fine-Grained One-Way Function in the Random Language Model
	Average-Case Hardness of DL
	Block-Finding Hardness of DL
	A FG-OWFD from a Block-Finding Hard Language Distribution

	Oracle Separation Between Fine-Grained One-Way Functions and Average-Case Hardness
	The Oracle Distribution
	Average-Case Hardness of DL
	Inexistence of FG-OWFD Relative to Chk

	Black-Box Separation Between FG-OWF and Self-Amplifiable Average-Case Hardness
	Self-Amplifying Average-Case Hard Language
	Black-Box Separation Between Self-Amplifiable Average-Case Hard Languages and FG-OWF
	Oracle Definition
	Theorem Statement

	Proof of the Self-Amplifiable Average-Case Hardness Theorem
	The Emulation Lemma
	Applying The Hitting Lemma
	Proof of Theorem 32 from the Emulation Lemma and the Hitting Lemma

	Proof of the Inversion Lemma

