
Faster Characteristic Three Polynomial

Multiplication and Its Application to NTRU Prime

Decapsulation

Esra Yeniaras1, 2, Murat Cenk1

1Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey
2MEB, Ankara, Turkey

yeniaras.esra@metu.edu.tr, mcenk@metu.edu.tr

Abstract

Efficient computation of polynomial multiplication for characteristic three fields, F3n for n ≥ 1,

is an important attribute for many cryptographic protocols. In this paper, we propose three

new polynomial multiplication algorithms over F3[x] and show that they are more efficient than

the current state-of-the-art algorithms. We first examine through the well-known multiplication

algorithms in F3[x] including Karatsuba-2-way and 3-way split formulas along with the recent

enhancements. Then, we propose a new 4-way split polynomial multiplication algorithm and an

improved version of it which are both derived by using interpolation in F9. Moreover, we propose

a 5-way split multiplication algorithm, and then compare the efficiencies of these algorithms

altogether. We apply the proposed algorithms to the NTRU Prime protocol, a post-quantum

key encapsulation mechanism (KEM), submitted to the NIST PQC Competition by Bernstein

et al., performing polynomial multiplication in characteristic three fields in its decapsulation

phase. We observe that the new hybrid algorithms provide a 12.9% reduction in the arithmetic

complexity. Furthermore, we implement these new hybrid methods on Intel (R) Core (TM) i7-

9750H architecture using C and obtain a 37.3% reduction in the implementation cycle count.

Keywords Polynomial multiplication, Karatsuba, Characteristic three fields, Key encapsulation,

NTRU Prime, Lattice-based cryptography, Post-quantum cryptography

1 Introduction

Quantum computers [22,27] are believed to be able to solve some of the tough computational problems

such as the Integer Factorization Problem (IFP) [9] and the Discrete Logarithm Problem (DLP) [30,31]

both of which underpin the most widespread cryptographic protocols. With Shor’s quantum factoring

algorithm [32, 33] the most prevalent asymmetric cryptographic systems such as RSA [29], Diffie-

Hellman [18, 23] and Elliptic Curve Diffie-Hellman [1, 2, 17, 25, 28] protocols are vulnerable to attacks

by sufficiently powerful quantum computers. Grover’s Algorithm [20] improves brute force attacks by

significantly reducing the search spaces for private keys. These algorithms are used to protect secure

web pages, encrypted e-mails, and other sensitive data. Thus, breaking these systems would have

substantial consequences for digital security and privacy. In the recent years, research and investment

1



in the quantum computing have risen in all sectors. These advances urge researchers to develop

reliable quantum-resistant cryptographic protocols. NTRU Prime is one of those quantum-resistant

key encapsulation protocols which is submitted to the NIST PQC Standardization Process and has

advanced to the third round as an alternate candidate [3].

Polynomial multiplication in characteristic three fields is used in some Post-Quantum crypto-

graphic protocols such as NTRU Prime Key Encapsulation Mechanism (KEM) [5–7]. The decapsula-

tion stage of the Streamlined NTRU Prime KEM performs a polynomial multiplication in Z3[x]/(xp−
x− 1) where p is prime. In order to perform the polynomial multiplication step in Z3[x]/(xp−x− 1),

the result of the multiplication is reduced modulo xp − x − 1 in Z3[x]. In most sources, array repre-

sentations of the polynomials are used to conduct the multiplication operation. The fact that the cost

of the polynomial multiplication step is subquadratic in the input size, whereas the reduction step is

linear with it, exhibits the importance of reducing the cost of the multiplication step. Thus, we need

faster polynomial multiplication methods in characteristic three fields to improve the efficiency of the

cryptographic protocols.

Inspired by the above concerns, we develop three novel polynomial multiplication algorithms in

Z3[x] by using the known methods such as the interpolation and hybrid use of different algorithms

[8,10,11,16,21]. The new algorithms outperforms the known ones in both arithmetical complexity and

the implemetation performance. The first two of our proposed algorithms N1 and N2 are 4-way split

ones, with seven 1/4 sized multiplications, whereas the latter one, V1, uses a 5-way approach with nine

1/5 sized multiplications in characteristic three fields. All proposed algorithms use interpolation in

F9. To compare the algorithms, we implement them along with their hybrid versions on Intel (R) Core

(TM) i7-9750H architecture using C language and get promising results in implementation efficiency.

We then applied those new methods into the decapsulation phase of the Streamlined NTRU Prime

KEM [3, 7] and tested our novel methods for several input sizes. Different combinations of several

multiplication methods are used to get the best results. Finally, the results indicate a 12.98% reduction

in arithmetical complexity and a 37.39% reduction in cycle count.

Availability of the software All of the software described in this paper will be available online at

https://github.com/esrayeniaras/NTRUPrimePolyMultF3.

Organization of this paper In Section 2, the notation and preliminaries that are used throughout

this paper are introduced. A comprehensive investigation of the well-known polynomial multiplication

algorithms over characteristic three fields is presented in Section 3. Section 4, 5, and 6 are dedicated

to introducing our newly proposed 4-way and 5-way split algorithms, N1, N2, and V1 respectively.

In Section 7, the arithmetical complexity comparison results for the three proposed algorithms and

the others, are presented. Various hybrid applications of the proposed algorithms to the Stream-

lined NTRU Prime Key Encapsulation Mechanism [5–7] and their C implementation test results are

explained in Section 8. Finally, the paper is concluded in Section 9.

2 Preliminaries

In this section, we presented the notations that are used throughout the paper followed by the descrip-

tion of the NTRU Prime Key Encapsulation Mechanism (KEM). In the remainder of this paper, we

assume that the fields used to multiply the polynomials are all of characteristic three unless otherwise

specified.

2

https://github.com/esrayeniaras/NTRUPrimePolyMultF3


2.1 Notation

• SB: Schoolbook polynomial multiplication algorithm.

• KA2: Improved Karatsuba 2-way polynomial multiplication algorithm [8].

• A3: A 3-way split polynomial multiplication algorithm, first described in [16].

• A2: Another polynomial multiplication algorithm over F9[x], first described [16].

• UB: Unbalanced Refined Karatsuba polynomial multiplication algorithm [8] for odd values of n,

where n refers to the input size.

• LT: Schoolbook recursion algorithm [8]. We refer to it as the last term method (LT).

• N1: New 4-way split polynomial multiplication algorithm, described in this paper.

• N2: Improved 4-way split polynomial multiplication algorithm, described in this paper.

• V1: New 5-way split polynomial multiplication algorithm, described in this paper.

• Special Notation: Let X represents one of the algorithms above, then XF3 notation corresponds

to the X algorithm that is used to multiply polynomials over F3[x] and XF9 corresponds to a

polynomial multiplication over F9[x]. (See Section 8)

• M3,⊕(n): Number of F3 additions (or substractions) required for the multiplication of two degree

n− 1 polynomials over F3.

• M3,⊗(n): Number of F3 multiplications required for the multiplication of two degree n − 1

polynomials over F3.

• M3(n): Total number of F3 operations required for the multiplication of two degree n − 1

polynomials over F3, i.e., M3(n) = M3,⊕(n) +M3,⊗(n).

• M9,⊕(n): Number of F9 additions (or substractions) required for the multiplication of two degree

n− 1 polynomials over F9.

• M9,⊗(n): Number of F9 multiplications required for the multiplication of two degree n − 1

polynomials over F9.

• M9(n): Total number of F9 operations required for the multiplication of two degree n − 1

polynomials over F9, i.e., M9(n) = M9,⊕(n) +M9,⊗(n).

Remark 1 gives a quick result of Master Theorem [4, 16] which is used to calculate the arithmetical

complexity of recursive algorithms.

Remark 1 Let M(n) be a recursive algorithm, a, b, µ ∈ Z, n = bµ, a 6= 1, a, b, µ > 0 and M(1) = e

such that

M(n) = aM(n/b) + cn+ d+ fnκ

(i) If a 6= b and f = 0 then the associated complexity is given by

M(n) =

(
e+

bc

a− b
+

d

a− 1

)
nlogba − bc

a− b
n+

d

a− 1

(ii) If a = b, then M(n) is given by

M(n) =
fbκ

bκ − a
nκ +

(
e− fbκ

bκ − a
+

d

a− 1

)
n+ cn logb n−

d

a− 1

3



(iii) If a 6= b, then the associated complexity is given by

M(n) =
fbκ

bκ − a
nκ +

(
e+

bc

a− b
− fbκ

bκ − a
+

d

a− 1

)
nlogba −

(
bc

a− b

)
n− d

a− 1

One can refer to [13,16,19] for the details of the proof.

Since x2 + 1 is an irreducible polynomial over F9, then F9
∼= F3[x]/(x2 + 1), thus we can represent

the elements of F9 as polynomials of degree less than 2. Let’s define ω ∈ F9 such that ω2 + 1 = 0.

Table 1: Cost of Operation Comparison for F9 and F3

Operation F3 Cost F9 Cost

(a+ bω) + (c+ dω) = (a+ c) + (b+ d)ω 2 Adds 1 Add

(a+ bω)(c+ dω) = (ac− bd) + (bc+ ad)ω 2 Adds+4 Mults 1 Mult

ω.a, 1.a, (−1).a 0 0

For a, b, c, d ∈ F3, one can convey from Table 1 that one addition in F9 corresponds to two additions

in F3 whereas one multiplication corresponds to two additions and four multiplications in it. We also

assume that multiplication of an element in F9 by ω, 1, or −1 is cost-free.

2.2 NTRU Prime Key Encapsulation Mechanism

NTRU Prime [6] by Bernstein et al., is a lattice-based, quantum-resistant key encapsulation protocol

submitted and advanced through the Rounds 1-3 of the NIST Post-Quantum Standardization Pro-

cess [3, 5, 7]. There are two components of the NTRU Prime, one is Streamlined NTRU Prime and

the other one is NTRU LPRime. In the decapsulation phase, the Streamlined NTRU Prime Key

Encapsulation Mechanism performs multiplication in Z3[x]/(xp − x − 1) so that we can apply the

proposed multiplication methods to it. Below, we explain the details of the protocol.

Streamlined NTRU Prime Key Encapsulation Mechanism

Parameters. Streamlined NTRU Prime is a family of cryptosystems that uses the parameters (p, q, ω)

with the following constraints: p and q are prime numbers, q ≥ 17, 0 < ω ≤ p, 2p ≥ 3ω, q ≥ 16ω + 1

and xp − x− 1 is an irreducible polynomial in the polynomial ring Zq[x].

The rings Z[x]/(xp − x − 1), Z3[x]/(xp − x − 1) and the field Zq[x]/(xp − x − 1) are abbreviated

as R, R/3, and R/q respectively. If the parameters are p = 761, q = 4591 and ω = 286 then the

cryptosystem is represented as sntrup761.

• Small is described as a type of polynomial with all of its coefficients are in {−1, 0, 1}.

• Short is defined as a small, weight−ω polynomial of R. A weight−ω polynomial is a polyno-

mial with exactly ω of its coefficients are nonzero.

• Rounded is defined as the set of polynomials a0 + a1x + ... + ap−1x
p−1 ∈ R such that, if

q ∈ 1 + 3Z then for each i, ai is in {−(q− 1)/2, ...,−6,−3, 0, 3, 6, ..., (q− 1)/2} and if q ∈ 2 + 3Z
then for each i, ai is in {−(q + 1)/2, ...,−6,−3, 0, 3, 6, ..., (q + 1)/2}.

• Rounded() is a function that takes any polynomial in R/q to a rounded polynomial in R.

• Round() is a function that takes the coefficients of any polynomial in R/q to an integer between

−(q − 1)/2 and (q − 1)/2 (i.e., to a rounded polynomial) then, to the nearest multiple of 3,

producing a polynomial in R.

4



• Lift() is a function that maps any polynomial of R/3 to a small polynomial in R/q by simply

reducing it modulo q.

• Encode()/Decode() Let M = (m0, ...,mn−1) and R = (r0, ..., rn−1) be sequences of integers

and assume that for each i, 0 ≤ ri ≤ mi ≤ 214. Then S = Encode(R,M) is a sequence of bytes

and Decode(Encode(R,M),M) = R. In other words, Encode() converts the ring elements to

strings and Decode() converts the strings to the ring elements vice versa. One can refer to [7]

for the algorithmic details of the encoding and decoding parameters.

• Hashing Hash(z) is defined as the first 32 bits of SHA-512(z). Hashb for b ∈ {0, 1, ..., 255}
is Hash with the input prefixed by one byte value b, i.e., Hash(b, z) = Hashb(z). Another

function HashConfirm(r, h) is defined as Hash2(Hash3(r), Hash4(h)). Moreover the function

HashSession(b, r, C) is defined as Hashb(Hash3(r), C) for b ∈ {0, 1} [7].

Streamlined NTRU Prime key generation, encapsulation, and decapsulation algorithms are pre-

sented in Algorithm 1, 2, and 3 respectively.

Algorithm 1 Streamlined NTRU Prime Key Generation - KeyGen()

Output: (Pk, Sk)

1: do

2: g
$←− small

3: while g−1 6∈ R/3
4: f ←short

5: h← g/(3f) ∈ R/q
6: h← Encode(h)

7: k← Encode((f, 1/g))

8: ρ←short

9: return (Pk, Sk) = (h, (k,h, ρ))

Algorithm 2 Streamlined NTRU Prime Key Encapsulation - Encap(h)

Input: Pk = h

Output: C = (C, HashSession(1, r, C))

1: h← Decode(h)

2: r
$←−short

3: r← Encode(r)

4: c← Round(h.r) ∈ R
5: c← Encode(c)

6: C ← (c, HashConfirm(r,h))

7: return C = (C, HashSession(1, r, C))

5



Algorithm 3 Streamlined NTRU Prime Decapsulation - Decap(C, Sk)

Input: (C, Sk)

Output: HashSession(1, r, C) or HashSession(0, ρ, C))

1: c← Decode(c)

2: c.(3f) ∈ R/q
3: e← (Rounded(c.(3f)) mod 3) ∈ R/3
4: e.(1/g) ∈ R/3
5: r′ ← Lift(e.(1/g)) ∈ R/q
6: h.r′ ∈ R/q
7: c′ ← Round(h.r′)

8: c′ ← Encode(c′)

9: C ′ ← (c′, HashConfirm(r′,h))

10: if C ′ == C then

11: return HashSession(1, r, C)

12: else

13: return HashSession(0, ρ, C))

It is stated in [7] that “NTRU Prime has two layers. The inner layer is Streamlined NTRU Prime

Core, a perfectly correct deterministic PKE. The outer layer is Streamlined NTRU Prime, a perfectly

correct KEM”. In this paper, we focus on the outer layer, i.e., the Streamlined NTRU Prime Key

Encapsulation Mechanism.

3 Recent Multiplication Algorithms and Improvements

In this section, we summarize the well-known polynomial multiplication algorithms and their improved

versions in characteristic three fields. We will examine 2-way split algorithms, 3-way split ones, and

the other types of algorithms in each subsection, respectively. We also assume that the polynomial

size n is a multiple of 2 for 2-way split algorithms and a multiple of 3 for the 3-way split ones, if not,

we simply pad the polynomials with an appropriate number of zeros, i.e., one or at most two zeros.

For the sake of clarity, we assume that n is a power of 2 for 2-way split algorithms and a power of 3

for 3-way split ones.

3.1 Karatsuba 2-Way Algorithm

Assume that,

A(x) = a0 + a1x+ a2x
2 + ...+ an−1x

n−1

B(x) = b0 + b1x+ b2x
2 + ...+ bn−1x

n−1

}
(1)

are two polynomials of degree n − 1 and n = 2k for some k ≥ 0. Also let’s define y = xn/2 and

C(x) = A(x)B(x). 2-way multiplication methods basically depend on dividing the polynomials into

two equivalent parts and perform the multiplication recursively on these equally halve-sized parts as

below:

6



A0 = a0 + a1x+ ...+ an
2−1x

n
2−1

A1 = an
2

+ an
2 +1x+ ...+ an−1x

n
2−1

B0 = b0 + b1x+ ...+ bn
2−1x

n
2−1

B1 = bn
2

+ bn
2 +1x+ ...+ bn−1x

n
2−1

 (2)

then

A(x) = A0 + yA1

B(x) = B0 + yB1

}
(3)

and the multiplication becomes A(x)B(x) = (A0 + yA1)(B0 + yB1) so that it can be done with the

half-sized polynomials, using Karatsuba 2-way algorithm as follows:

Let’s define the products of the half-sized polynomials as P0, P1 and P2 then,

P0 = A0B0

P1 = (A0 +A1)(B0 +B1)

P2 = A1B1

 (4)

and the final result of the multiplication C(x) = A(x)B(x) can be found as,

C(x) = P0 + (P1 − P0 − P2)xn/2 + P2x
n (5)

The recursive representation of the algorithm can be given by:

M3(n) = 3M3(n/2) + 4n− 4,M3(1) = 1

M3,⊗(n) = 3M3,⊗(n/2),M3,⊗(1) = 1

M3,⊕(n) = 3M3,⊕(n/2) + 4n− 4,M3,⊕(1) = 0

 (6)

Using Remark 1, we can explicitly calculate the complexity as follows,

M3(n) = 7nlog2 3 − 8n+ 2

M3,⊗(n) = nlog2 3

M3,⊕(n) = 6nlog2 3 − 8n+ 2

 (7)

3.2 Improved Karatsuba 2-Way Algorithm (KA2)

Bernstein [8] introduced an improved version of the Karatsuba 2-way algorithm by using the same

settings given in (1)-(4) but following a different approach in the rest, more precisely this time C(x)

is defined as,

C(x) = (y − 1)(yP2 − P0) + yP1 (8)

then, recursive representation and the complexities for the improved Karatsuba 2-way algorithm (KA2)

can be found as:

M3(n) = 3M3(n/2) + 7.(n/2)− 3,M3(1) = 1

M3,⊗(n) = 3M3,⊗(n/2),M3,⊗(1) = 1

M3,⊕(n) = 3M3,⊕(n/2) + 7.(n/2)− 3,M3,⊕(1) = 0

 (9)

7



by Remark 1 we get the complexity as follows,

M3(n) = 6.5nlog2 3 − 7n+ 1.5

M3,⊗(n) = nlog2 3

M3,⊕(n) = 5.5nlog2 3 − 7n+ 1.5

 (10)

As we compare the arithmetic complexities in (7) and (10), we can observe that, the improved version

of Karatsuba 2-way algorithm is 7% more efficient than the previous one.

3.3 Unbalanced Refined Karatsuba 2-way Algorithm (UB)

This method [8] can be used when the input size n ≥ 1 is odd. Since the 2-way split can also be done

within two unequal parts, an odd n value would fit in this situation. Assume that A(x) and B(x) are

defined as in (1), in this case, instead of equal ones, we divide A(x) and B(x) into two unequal pieces,

as follows:

A0 = a0 + a1x+ ...+ an−1
2
x

n−1
2

A1 = an+1
2

+ an+3
2
x+ ...+ an−1x

n−3
2

B0 = b0 + b1x+ ...+ bn−1
2
x

n−1
2

B1 = bn+1
2

+ bn+3
2
x+ ...+ bn−1x

n−3
2


(11)

One can observe that the polynomial A0 contains one more element than the polynomial A1. By using

the (4) and (8), we get the following complexities for Unbalanced Refined Karatsuba 2-way Algorithm

UB:

M3(n) = 2M3((n+ 1)/2) +M3((n− 1)/2) + 7.(n− 1)/2

M3,⊗(n) = 2M3,⊗((n+ 1)/2) +M3,⊗((n− 1)/2)

M3,⊕(n) = 2M3,⊕((n+ 1)/2) +M3,⊕((n− 1)/2) + 7.(n− 1)/2

 (12)

Remark 2 Observe from (4) that the highest degree coefficients of both P0 and P1 are the same, thus

one multiplication gets cost-free.

3.4 Schoolbook Recursion or the Last Term Method (LT)

This algorithm [8] is the recursive version of schoolbook algorithm. Assume that A(x) and B(x) are

defined as in (1), we can write A(x) and B(x) as follows:

A(x) = An−2(x) + an−1x
n−1

B(x) = Bn−2(x) + bn−1x
n−1

}
(13)

where

An−2(x) = a0 + a1x+ a2x
2 + ...+ an−2x

n−2

Bn−2(x) = b0 + b1x+ b2x
2 + ...+ bn−2x

n−2

}
(14)

then the algorithm recursively perform the following multiplication

A(x)B(x) = An−2(x)Bn−2(x) + bn−1x
n−1An−2(x) + an−1x

n−1Bn−2(x) + an−1bn−1x
2n−2 (15)

8



Note that, An−2(x) and Bn−2(x) are obtained by deleting the last terms of A(x) and B(x). Therefore,

for the schoolbook recursion, we use the abbreviation LT referring to these last terms.

The complexity of the LT algorithm is,

M3(n) = M3(n− 1) + (4n− 4)

M3,⊗(n) = M3,⊗(n− 1) + (2n− 1)

M3,⊕(n) = M3,⊕(n− 1) + (2n− 3)

 (16)

3.5 Karatsuba Like 3-way Algorithm

Let A(x) and B(x) are two degree n− 1 polynomials, defined as in (1), with n = 3k for k ≥ 0. Also

let y = xn/3 and C(x) = A(x)B(x). We divide both A(x) and B(x) into three parts as follows:

A0 = a0 + a1x+ ...+ an
3−1x

n
3−1

A1 = an
3

+ an
3 +1x+ ...+ a 2n

3 −1
x

n
3−1

A2 = a 2n
3

+ a 2n
3 +1x+ ...+ an−1x

n
3−1

B0 = b0 + b1x+ ...+ bn
3−1x

n
3−1

B1 = bn
3

+ bn
3 +1x+ ...+ b 2n

3 −1
x

n
3−1

B2 = b 2n
3

+ b 2n
3 +1x+ ...+ bn−1x

n
3−1


(17)

then

A(x) = A0 + yA1 + y2A2

B(x) = B0 + yB1 + y2B2

}
(18)

thus the multiplication becomes A(x)B(x) = (A0 + yA1 + y2A2)(B0 + yB1 + y2B2) with three 1/3

sized polynomials in a recursive manner by using the products below [34],

P0 = A0B0

P1 = A1B1

P2 = A2B2

P3 = (A0 +A1)(B0 +B1)

P4 = (A0 +A2)(B0 +B2)

P5 = (A1 +A2)(B1 +B2)


(19)

and with the help of the Chinese Remainder Theorem [35] and [24] the result becomes,

C(x) = P0 + (P3 − P0 − P1)xn/3 + (P4 + P1 − P0 − P2)x2n/3 + (P5 − P1 − P2)x3n/3 + P2x
4n/3 (20)

this algorithm is associated with the following complexity:

M3(n) = 6M3(n/3) + 8n− 11,M3(1) = 1

M3,⊗(n) = 6M3,⊗(n/3),M3,⊗(1) = 1

M3,⊕(n) = 6M3,⊕(n/3) + 8n− 11,M3,⊕(1) = 0

 (21)

9



by Remark 1 we get,

M3(n) = 6.8nlog3 6 − 8n+ 2.2

M3,⊗(n) = nlog3 6

M3,⊕(n) = 5.8nlog3 6 − 8n+ 2.2

 (22)

3.6 Improved Karatsuba Like 3-way Algorithm

By reconstructing the Karatsuba 3-way algorithm in a similar way that is described in [36], we get

the Improved Karatsuba 3-way Algorithm. Let Pi = PiL+xn/3PiH for 0 ≤ i ≤ 5 such that the degree

of each Pi is 2n/3− 2, inserting these values in (19) we get the following:

C = P0L + xn/3(P0H − P0L − P1L + P3L)

+ x2n/3(−P0L − P0H + P1L − P1H − P2L + P3H + P4L)

+ x3n/3(−P0H + P1H − P2L − P2H + P4H + P5L − P1L)

+ x4n/3(−P1H + P2L − P2H + P5H) + x5n/3P2H

(23)

and the associated complexity for the algorithm is given as,

M3(n) = 6M3(n/3) + 22.(n/3)− 9,M3(1) = 1

M3,⊗(n) = 6M3,⊗(n/3),M3,⊗(1) = 1

M3,⊕(n) = 6M3,⊕(n/3) + 22.(n/3)− 9,M3,⊕(1) = 0

 (24)

thus by Remark 1, the complexity is,

M3(n) = 6.53nlog3 6 − 7.33n+ 1.8

M3,⊗(n) = nlog3 6

M3,⊕(n) = 5.53nlog3 6 − 7.33n+ 1.8

 (25)

Note that, the complexity in (25) is approximately 4% less than the one in (22), which shows that the

improved Karatsuba 3-way algorithm is more arithmetically efficient than the original version.

3.7 3-way Algorithm with Five Multiplications (A1)

3-way algorithm with five multiplications is first described in [16]. We call this algorithm A1. It is

derived by the interpolation method and has similar results to that of Toom-Cook’s Formula [12–15,35].

Remember that, F9
∼= F3[x]/(x2 + 1) and since F3 does not have enough points for the interpolation

method with five multiplications, we borrow an element, namely ω such that ω2 = −1, from F9. Then

evaluating C(x) = A(x)B(x) at 0, 1,−1, ω,∞ gives us the following system of linear equations in F9:

For x = 0⇒ P0 = A0B0 = C0

For x = 1⇒ P1 = (A0 +A1 +A2)(B0 +B1 +B2) = C0 + C1 + ...+ C4

For x = −1⇒ P2 = (A0 −A1 +A2)(B0 −B1 +B2) = C0 − C1 + C2 + ...+ C4

For x = ω ⇒ P3 = [(A0 +A1ω −A2)(B0 +B1ω −B2) = C0 + C1ω − ...+ C4

For x =∞⇒ P4 = A2B2 = C4

10



Solving this equation system yields

C0 = P0

C1 = (P1 − P2)− (−P0 + P1 + P2 − P3 − P4)ω

C2 = −(P0 + P1 + P2 + P4)

C3 = (P1 − P2) + (−P0 + P1 + P2 − P3 − P4)ω

C4 = P4


(26)

where C(x) = C0 + C1x
n/3 + C2x

2n/3 + C3x
3n/3 + C4x

4n/3.

Complexity associated with this algorithm in F9 is,

M9(n) = 5M9(n/3) + 20n− 24,M9(1) = 6

M9,⊗(n) = 5M9,⊗(n/3),M9,⊗(1) = 4

M9,⊕(n) = 5M9,⊕(n/3) + 20n− 24,M9,⊕(1) = 2

 (27)

Applying Remark 1 we get,

M9(n) = 30nlog3 5 − 30n+ 6

M9,⊗(n) = 4nlog3 5

M9,⊕(n) = 26nlog3 5 − 30n+ 6

 (28)

Complexity associated with this algorithm in F3 is,

M3(n) = 4M3(n/3) +M9(n/3) + 8n− 10,M3(1) = 1

M3,⊗(n) = 4M3,⊗(n/3) +M9,⊗(n/3),M3,⊗(1) = 1

M3,⊕(n) = 4M3,⊕(n/3) +M9,⊕(n/3) + 8n− 10,M3,⊕(1) = 0

 (29)

by Remark 1,

M3(n) = 30nlog3 5 − 36.33nlog3 4 + 6n+ 1.33

M3,⊗(n) = 4nlog3 5 − 3nlog3 4

M3,⊕(n) = 26nlog3 5 − 33.33nlog3 4 + 6n+ 1.33

 (30)

Algorithm A1 is more efficient than the Karatsuba 3-way improved algorithm after n = 729. The

percentage of cost reduction increases significantly when the polynomial-size increases. For n = 37

the reduction is 4%, for n = 38 the reduction is 14% and for n = 310 the reduction reaches up to 55%.

3.8 Improved 3-way Algorithm with Five Multiplications (A3)

A3 is also a 3-way algorithm [16] with five multiplications and it’s an improved version of the A1

algorithm. If we switch the interpolation points of A1 from {0, 1,−1, ω,∞} to {0, 1, ω,−ω,∞} then

what we get is a more efficient algorithm than A1, namely A3.

For x = 0⇒ P0 = A0B0 = C0

For x = 1⇒ P1 = (A0 +A1 +A2)(B0 +B1 +B2) = C0 + C1 + ...+ C4

For x = ω ⇒ P2 = [(A0 +A1ω −A2)(B0 +B1ω −B2) = C0 + C1ω − ...+ C4

For x = −ω ⇒ P3 = [(A0 −A1ω −A2)(B0 −B1ω −B2) = C0 − C1ω − ...+ C4

For x =∞⇒ P4 = A2B2 = C4

11



Assume that P2 = P2,0 + ωP2,1 and P3 = P3,0 + ωP3,1 then one can observe that P2,0 = P3,0 and

P2,1 = −P3,1. By using these equalities we get the following formula for C(x),

C0 = P0

C1 = −P0 − P1 − P2,0 − P4 − P2,1

C2 = P0 − P2,0 + P4

C3 = −P0 − P1 − P2,0 − P4 + P2,1

C4 = P4


(31)

where, C(x) = C0 + C1x
n/3 + C2x

2n/3 + C3x
3n/3 + C4x

4n/3.

The complexity associated with A3 over F9[x] is exactly the same as the complexity of A1 over F9[x].

On the other hand, the complexity of A3 over F3[x] is given by (32)-(33) and it is less than that of

A1.

M3(n) = 3M3(n/3) +M9(n/3) + 22.(n/3)− 10,M3(1) = 0

M3,⊗(n) = 3M3,⊗(n/3) +M9,⊗(n/3),M3,⊗(1) = 1

M3,⊕(n) = 3M3,⊕(n/3) +M9,⊕(n/3) + 22.(n/3)− 10,M3,⊕(1) = 0

 (32)

again by Remark 1,

M3(n) = 15nlog3 5 − 2.66nlog3 n− 16n+ 2

M3,⊗(n) = 2nlog3 5 − n
M3,⊕(n) = 13nlog3 5 − 2.66nlog3 n− 15n+ 2

 (33)

A3 algorithm outperforms KA2 when n ≥ 400. For n = 709 the percentage of reduction in arithmetic

complexity is 7%.

3.9 Another Multiplication Algorithm (A2)

As mentioned in [16], when the coefficients of the polynomials are in F9, we can use another algorithm

called A2. Let A(x), B(x) ∈ F9[x] then we can re-write both A(x) and B(x) as a sum of their w parts

and w− free parts. Let A0, A1, B0, B1 ∈ F3[x] and let each of them be degree n− 1 polynomials such

that:
A = A0 + ωA1

B = B0 + ωB1

}
(34)

then,

AB = (A0 +A1ω)(B0 +B1ω) = A0B0 −A1B1 + ((A0 +A1)(B0 +B1)−A0B0 −A1B1)ω (35)

the complexity of the A2 algorithm can be found as,

M9(n) = 3M3(n) + 8n− 3 (36)

Through sections 3.1 - 3.9, we have covered nine recent algorithms that can be used for polynomial

multiplication in characteristic three fields. Now we will describe our new 4-way and 5-way split

formulas that are more efficient than all of the algorithms we’ve discussed above.

12



4 New 4-way Split Multiplication Algorithm (N1)

In this section, we propose a new 4-way multiplication algorithm N1, with seven 1/4 sized multipli-

cations, which is derived by using the interpolation method in F9. Assume that,

A(x) = a0 + a1x+ a2x
2 + ...+ an−1x

n−1

B(x) = b0 + b1x+ b2x
2 + ...+ bn−1x

n−1

}
(37)

are two polynomials of degree n−1 where n = 4k for some k ≥ 0. Also let y = xn/4, C(x) = A(x)B(x)

and,

A0 = a0 + a1x+ ...+ an
4−1x

n
4−1

A1 = an
4

+ an
4 +1x+ ...+ a 2n

4 −1
x

n
4−1

A2 = a 2n
4

+ a 2n
4 +1x+ ...+ a 3n

4 −1
x

n
4−1

A3 = a 3n
4

+ a 3n
4 +1x+ ...+ a 4n

4 −1
x

n
4−1

B0 = b0 + b1x+ ...+ bn
4−1x

n
4−1

B1 = bn
4

+ bn
4 +1x+ ...+ b 2n

4 −1
x

n
4−1

B2 = a 2n
4

+ b 2n
4 +1x+ ...+ b 3n

4 −1
x

n
4−1

B3 = a 3n
4

+ b 3n
4 +1x+ ...+ b 4n

4 −1
x

n
4−1



(38)

then,

A(x) = A0 + yA1 + y2A2 + y3A3

B(x) = B0 + yB1 + y2B2 + y3B3

}
(39)

thus, the result of the multiplication becomes,

C(x) = (A0 + yA1 + y2A2 + y3A3)(B0 + yB1 + y2B2 + y3B3)

= C0 + C1y + C2y
2 + C3y

3 + C4y
4 + C5y

5 + C6y
6

(40)

We use {ω,−ω, ω + 1,−ω + 1,−ω − 1, ω − 1,∞} as the points of evaluation for interpolation and we

get,

P0 = [(A0 −A2) + ω(A1 −A3)][(B0 −B2) + ω(B1 −B3)] = C(ω)

P1 = [(A0 −A2)− ω(A1 −A3)][(B0 −B2)− ω(B1 −B3)] = C(−ω)

P2 = [(A0 +A1 +A3) + ω(A1 −A2 −A3)][(B0 +B1 +B3) + ω(B1 −B2 −B3)] = C(ω + 1)

P3 = [(A0 +A1 +A3) + ω(−A1 +A2 +A3)][(B0 +B1 +B3) + ω(−B1 +B2 +B3)] = C(−ω + 1)

P4 = [(A0 −A1 −A3) + ω(−A1 −A2 +A3)][(B0 −B1 −B3) + ω(−B1 −B2 +B3)] = C(−ω − 1)

P5 = [(A0 −A1 −A3) + ω(A1 +A2 −A3)][(B0 −B1 −B3) + ω(B1 +B2 −B3)] = C(ω − 1)

P6 = A3B3 = C6

13



Let,

P0 = P0,0 + ωP0,1

P1 = P1,0 + ωP1,1

P2 = P2,0 + ωP2,1

P3 = P3,0 + ωP3,1

P4 = P4,0 + ωP4,1

P5 = P5,0 + ωP5,1


(41)

then one can observe that,

P0,0 = P1,0

P0,1 = −P1,1

P2,0 = P3,0

P2,1 = −P3,1

P4,0 = P5,0

P4,1 = −P5,1


(42)

With the help of (42), we avoid three unnecessary multiplications. Instead of calculating all of the

six multiplications in (41), it will be sufficient to just calculate P0, P2, and P4, in this way, three

multiplications over F9[x] get cost-free. Using the interpolation we get the following results for the

N1 Algorithm:

C0 = P0 + P1 − P2 − P3 − P4 − P5 + P6 + ω(−P2 + P3 − P4 + P5)

C1 = −P2 − P3 + P4 + P5 + ω(−P0 + P1)

C2 = P6 + ω(P2 − P3 + P4 − P5)

C3 = −P2 − P3 + P4 + P5 + ω(−P2 + P3 + P4 − P5)

C4 = P0 + P1 + P2 + P3 + P4 + P5 + P6 + ω(−P2 + P3 − P4 + P5)

C5 = ω(−P0 + P1 − P2 + P3 + P4 − P5)

C6 = P6


(43)

Inserting the equalities of (42) into (43) we get,

C0 = −P0,0 + P2,0 + P4,0 + P6 − P2,1 − P4,1

C1 = P2,0 − P4,0 − P0,1

C2 = P6 + P2,1 + P4,1

C3 = P2,0 − P4,0 − P2,1 + P4,1

C4 = −P0,0 − P2,0 − P4,0 + P6 − P2,1 − P4,1

C5 = −P0,1 − P2,1 + P4,1

C6 = P6


(44)

Table 2 and Tables 3-4 demonstrate the costs of multi-evaluation and reconstruction for N1 algorithm

over F3[x] and F9[x] respectively. From those tables, we get the associated complexities of N1 algorithm

for F3[x] and F9[x] as follows:

14



M9(n) = 7M9(n/4) + 36n− 52,M9(1) = 6

M9,⊗(n) = 7M9,⊗(n/4),M9,⊗(1) = 4

M9,⊕(n) = 7M9,⊕(n/4) + 36n− 52,M9,⊕(1) = 2

M3(n) = M3(n/4) + 3M9(n/4) + 11n− 18,M3(1) = 1

M3,⊗(n) = M3,⊗(n/4) + 3M9,⊗(n/4),M3,⊗(1) = 1

M3,⊕(n) = M3,⊕(n/4) + 3M9,⊕(n/4) + 11n− 18,M3,⊕(1) = 0


(45)

then we get explicit complexities as,

M9(n) = 45.33nlog4 7 − 48n− 8.66

M9,⊗(n) = 6nlog4 7

M9,⊕(n) = 39.33nlog4 7 − 48n− 8.66

M3(n) = 22.66nlog4 7 − 33.33n− 44 log4 n+ 11.66

M3,⊗(n) = 22.66nlog4 7 − 48n− 26 log4 n+ 26.33

M3,⊕(n) = 14.67n− 18 log4 n− 14.67


(46)

N1 algorithm is less costly than KA2 for n ≥ 280 in F3[x] and for n ≥ 28 in F9[x]. N1 is also more

efficient than A3 for n ≥ 1020 in F3[x] and for n ≥ 84 in F9[x]. Table 7 and Table 8 show that, for

n = 1020, the reduction percentage in complexity is 10.45% compared with KA2 and 2.24% for A3 in

F3[x], the reduction becomes 16.61% and 5.41% for KA2 and A3 respectively in F9[x]. As for the A2

algorithm, which is only defined in F9[x], N1 is better than it beginning from n ≥ 28. It can also be

observed that N1 has a better performance over F9[x] than it has over F3[x].

15



Table 2: Cost of Evaluation and Reconstruction for N1 in F3[x]

Computations Cost for Multiplication in F3[x]

R0 = A0 −A2, R′0 = B0 −B2 2n/4

R1 = A1 −A3, R′1 = B1 −B3 2n/4

R2 = A1 +A3, R
′
2 = B1 +B3 2n/4

R3 = A0 +R2, R
′
3 = B0 +R′2 2n/4

R4 = R1 −A2, R
′
4 = R′1 −B2 2n/4

R5 = A0 −R2, R
′
5 = B0 −R′2 2n/4

R6 = −A2 −R1, R
′
6 = −B2 −R′1 2n/4

R7 = R0 + ωR1, R
′
7 = R′0 + ωR′1 0

R8 = R3 + ωR4, R′8 = R′3 + ωR′4 0

R9 = R5 + ωR6, R′9 = R′5 + ωR′6 0

R10 = R0 − ωR1, R′10 = R′0 − ωR′1 0

R11 = R3 − ωR4, R′11 = R′3 − ωR′4 0

R12 = R5 − ωR6, R
′
12 = R′5 − ωR′6 0

P0 = R7R
′
7 M9(n/4)

P1 = R10R
′
10 0

P2 = R8R
′
8 M9(n/4)

P3 = R11R
′
11 0

P4 = R9R
′
9 M9(n/4)

P5 = R12R
′
12 0

P6 = A3B3 M3(n/4)

U0 = P2,1 + P4,1 (n/2− 1)

U1 = P4,1 − P2,1 (n/2− 1)

U2 = P2,0 + P4,0 (n/2− 1)

U3 = P2,0 − P4,0 (n/2− 1)

U4 = P6 − P0,0 (n/2− 1)

U5 = U4 − U0 (n/2− 1)

C0 = U5 + U2 (n/2− 1)

C1 = U3 − P0,1 (n/2− 1)

C2 = U0 + P6 (n/2− 1)

C3 = U1 + U3 (n/2− 1)

C4 = U5 − U2 (n/2− 1)

C5 = U1 − P0,1 (n/2− 1)

C = C0 + C1x
n/4 + C2x

2n/4 + ...+ C6x
6n/4 6(n/4− 1)

TOTAL: M3(n) = M3(n/4) + 3M9(n/4) + 11n− 18

16



Table 3: Cost of Evaluation and Reconstruction for N1 in F9[x]

Computations Cost for Multiplication in F9[x]-Part 1

R0 = A0 −A2, R′0 = B0 −B2 4n/4

R1 = A1 −A3, R′1 = B1 −B3 4n/4

R2 = A1 +A3, R
′
2 = B1 +B3 4n/4

R3 = A0 +R2, R
′
3 = B0 +R′2 4n/4

R4 = R1 −A2, R
′
4 = R′1 −B2 4n/4

R5 = A0 −R2, R
′
5 = B0 −R′2 4n/4

R6 = −A2 −R1, R
′
6 = −B2 −R′1 4n/4

R7 = R0 + ωR1, R
′
7 = R′0 + ωR′1 4n/4

R8 = R3 + ωR4, R′8 = R′3 + ωR′4 4n/4

R9 = R5 + ωR6, R′9 = R′5 + ωR′6 4n/4

R10 = R0 − ωR1, R′10 = R′0 − ωR′1 4n/4

R11 = R3 − ωR4, R′11 = R′3 − ωR′4 4n/4

R12 = R5 − ωR6, R
′
12 = R′5 − ωR′6 4n/4

P0 = R7R
′
7 M9(n/4)

P1 = R10R
′
10 M9(n/4)

P2 = R8R
′
8 M9(n/4)

P3 = R11R
′
11 M9(n/4)

P4 = R9R
′
9 M9(n/4)

P5 = R12R
′
12 M9(n/4)

P6 = A3B3 M9(n/4)

U1 = P0 + P1 2(n/2− 1)

U2 = −P0 + P1 2(n/2− 1)

U3 = P2 + P3 2(n/2− 1)

U4 = −P2 + P3 2(n/2− 1)

U5 = P4 + P5 2(n/2− 1)

U6 = −P4 + P5 2(n/2− 1)

U7 = U3 + U5 2(n/2− 1)

U8 = −U3 + U5 2(n/2− 1)

U9 = U4 + U6 2(n/2− 1)

U10 = U4 − U6 2(n/2− 1)

U11 = U1 − U7 2(n/2− 1)

U12 = U11 + P6 2(n/2− 1)

U13 = U1 + U7 2(n/2− 1)

U14 = U13 + P6 2(n/2− 1)

17



Table 4: Cost of Evaluation and Reconstruction for N1 in F9[x]

Computations Cost for Multiplication in F9[x]-Part 2

C0 = U12 + ωU9 2(n/2− 1)

C1 = U8 + ωU2 2(n/2− 1)

C2 = P6 − ωU9 2(n/2− 1)

C3 = U8 + ωU10 2(n/2− 1)

C4 = U14 + ωU9 2(n/2− 1)

C5 = ω(U2 + U10) 2(n/2− 1)

C = C0 + C1x
n/4 + C2x

2n/4 + ...+ C6x
6n/4 12(n/4− 1)

TOTAL: M9(n) = 7M9(n/4) + 36n− 52

5 Another 4-way Multiplication Algorithm with Different

Interpolation Points (N2)

The new 4-way algorithm N1 from the previous section can be improved if we choose different inter-

polation points. This time we use {0, 1, ω+1,−ω+1,−ω−1, ω−1,∞} as the interpolation evaluation

points. Consider the same settings through (37)-(40), we get the products of 1/4 sized polynomials

as follows,

P0 = A0B0 = C(0)

P1 = (A0 +A1 +A2 +A3)(B0 +B1 +B2 +B3) = C(1)

P2 = [(A0 +A1 +A3) + ω(A1 −A2 −A3)][(B0 +B1 +B3) + ω(B1 −B2 −B3)] = C(ω + 1)

P3 = [(A0 +A1 +A3) + ω(−A1 +A2 +A3)][(B0 +B1 +B3) + ω(−B1 +B2 +B3)] = C(−ω + 1)

P4 = [(A0 −A1 −A3) + ω(−A1 −A2 +A3)][(B0 −B1 −B3) + ω(−B1 −B2 +B3)] = C(−ω − 1)

P5 = [(A0 −A1 −A3) + ω(A1 +A2 −A3)][(B0 −B1 −B3) + ω(B1 +B2 −B3)] = C(ω − 1)

P6 = A3B3 = C6

Assume that the conditions in (41) are satisfied, then,

P2,0 = P3,0

P2,1 = −P3,1

P4,0 = P5,0

P4,1 = −P5,1

 (47)

From (47) P3 and P5 can be derived out of P2 and P4 thus, it is sufficient to calculate the latter two

multiplications only. In this way, we save two F9[x] multiplications. Interpolation regarding the N2

algorithm gives us the following results,

18



C0 = P0

C1 = −P0 − P1 − P2 − P3 − P4 − P5 − P6 + ω(−P2 + P3)

C2 = P6 + ω(P2 − P3 + P4 − P5)

C3 = −P2 − P3 + P4 + P5 + ω(−P2 + P3 + P4 − P5)

C4 = P0 − P2 − P3 − P4 − P5

C5 = −P0 − P1 + P4 + P5 − P6 + ω(P2 − P3 + P4 − P5)

C6 = P6


(48)

inserting the equalities from (47) into (48) we get,

C0 = P0

C1 = −P0 − P1 + P2,0 + P4,0 − P6 − P2,1

C2 = P6 + P2,1 + P4,1

C3 = P2,0 − P4,0 − P2,1 + P4,1

C4 = P0 + P2,0 + P4,0

C5 = −P0 − P1 − P4,0 − P6 + P2,1 + P4,1

C6 = P6


(49)

By using the cost of multi-evaluation and reconstruction tables for N2 similar to Tables 2-4, we

calculate the complexities associated with N2 as follows,

M9(n) = 7M9(n/4) + 33n− 48,M9(1) = 6

M9,⊗(n) = 7M9,⊗(n/4),M9,⊗(1) = 4

M9,⊕(n) = 7M9,⊕(n/4) + 33n− 48,M9,⊕(1) = 2

M3(n) = 3M3(n/4) + 2M9(n/4) + (25/2)n− 20,M3(1) = 1

M3,⊗(n) = 3M3,⊗(n/4) + 2M9,⊗(n/4),M3,⊗(1) = 1

M3,⊕(n) = 3M3,⊕(n/4) + 2M9,⊕(n/4) + (25/2)n− 20,M3,⊕(1) = 0


(50)

And by Remark 1, we get the following explicit complexities:

M9(n) = 42nlog4 7 − 44n− 8

M9,⊗(n) = 6nlog4 7

M9,⊕(n) = 36nlog4 7 − 44n− 8

M3(n) = 21nlog4 7 − 38n+ 18

M3,⊗(n) = 21nlog4 7 + 60nlog4 3 − 88n+ 8

M3,⊕(n) = 50n− 60nlog4 3 + 10


(51)

N2 becomes faster than KA2 for n ≥ 60 in F3[x] and for n ≥ 20 in F9[x]. N2 is more efficient than

A3 beginning from n ≥ 180 in F3[x] and for n ≥ 72 in F9[x]. Moreover, N2 is more efficient than the

algorithm A2 for n ≥ 20.

19



6 New 5-way Multiplication Algorithm (V1)

This section is devoted to V1 which is a new 5-way multiplication algorithm with nine 1/5 sized

multiplications. This algorithm is also based on the interpolation technique. Assume that,

A(x) = a0 + a1x+ a2x
2 + ...+ an−1x

n−1

B(x) = b0 + b1x+ b2x
2 + ...+ bn−1x

n−1

}
(52)

are two polynomials of degree n− 1 and n = 5k for some k ≥ 0. Let y = xn/5 and C(x) = A(x)B(x).

Given,

A0 = a0 + a1x+ ...+ an
5−1x

n
5−1

A1 = an
5

+ an
5 +1x+ ...+ a 2n

5 −1
x

n
5−1

A2 = a 2n
5

+ a 2n
5 +1x+ ...+ a 3n

5 −1
x

n
5−1

A3 = a 3n
5

+ a 3n
5 +1x+ ...+ a 4n

5 −1
x

n
5−1

A4 = a 4n
5

+ a 4n
5 +1x+ ...+ a 5n

5 −1
x

n
5−1

B0 = b0 + b1x+ ...+ bn
5−1x

n
5−1

B1 = bn
5

+ bn
5 +1x+ ...+ b 2n

5 −1
x

n
5−1

B2 = b 2n
5

+ b 2n
5 +1x+ ...+ b 3n

5 −1
x

n
5−1

B3 = b 3n
5

+ b 3n
5 +1x+ ...+ b 4n

5 −1
x

n
5−1

B4 = b 4n
5

+ b 4n
5 +1x+ ...+ b 5n

5 −1
x

n
5−1



(53)

then,

A(x) = A0 + yA1 + y2A2 + y3A3 + y4A4

B(x) = B0 + yB1 + y2B2 + y3B3 + y4B4

}
(54)

and the result of the multiplication becomes,

C(x) = (A0 + yA1 + y2A2 + y3A3 + y4A4)(B0 + yB1 + y2B2 + y3B3 + y4B4)

= C0 + C1y + C2y
2 + C3y

3 + C4y
4 + C5y

5 + C6y
6 + C7y

7 + C8y
8

(55)

This time we use nine interpolation points {0, 1, ω,−ω, ω + 1,−ω + 1,−ω − 1, ω − 1,∞} and we get,

P0 = A0B0

P1 = (A0 +A1 +A2 +A3 +A4)(B0 +B1 +B2 +B3 +B4)

P2 = [(A0 +A4 −A2) + ω(A1 −A3)][(B0 +B4 −B2) + ω(B1 −B3)]

P3 = [(A0 +A4 −A2)− ω(A1 −A3)][(B0 +B4 −B2)− ω(B1 −B3)]

P4 = [(A0 +A1 +A3 −A4) + ω(A1 −A2 −A3)][(B0 +B1 +B3 −B4) + ω(B1 −B2 −B3)]

P5 = [(A0 +A1 +A3 −A4) + ω(−A1 +A2 +A3)][(B0 +B1 +B3 −B4) + ω(−B1 +B2 +B3)]

P6 = [(A0 −A1 −A3 −A4) + ω(−A1 −A2 +A3)][(B0 −B1 −B3 −B4) + ω(−B1 −B2 +B3)]

P7 = [(A0 −A1 −A3 −A4) + ω(A1 +A2 −A3)][(B0 −B1 −B3 −B4) + ω(B1 +B2 −B3)]

P8 = A4B4

20



Let,

P2 = P2,0 + ωP2,1

P3 = P3,0 + ωP3,1

P4 = P4,0 + ωP4,1

P5 = P5,0 + ωP5,1

P6 = P6,0 + ωP6,1

P7 = P7,0 + ωP7,1


(56)

then one can observe that,

P2,0 = P3,0

P2,1 = −P3,1

P4,0 = P5,0

P4,1 = −P5,1

P6,0 = P7,0

P6,1 = −P7,1


(57)

Note that (57) helps us saving three F9[x] multiplications. Finally, interpolation gives us the following

results,

C0 = P0

C1 = −P0 + P1 − P2 − P3 + P6 + P7 − P8 + ω(P2 − P3 − P4 + P5 + P6 − P7)

C2 = P0 − P2 − P3 + P4 + P5 + P6 + P7 + P8 + ω(−P4 + P5 − P6 + P7)

C3 = −P0 + P1 − P2 − P3 + P6 + P7 − P8 + ω(−P2 + P3 + P4 − P5 − P6 + P7)

C4 = P0 − P4 − P5 − P6 − P7 + P8

C5 = −P0 + P1 − P2 − P3 + P4 + P5 − P8 + ω(P2 − P3 + P4 − P5 − P6 + P7)

C6 = P0 − P2 − P3 + P4 + P5 + P6 + P7 + P8 + ω(P4 − P5 + P6 − P7)

C7 = −P0 + P1 − P2 − P3 + P4 + P5 − P8 + ω(−P2 + P3 − P4 + P5 + P6 − P7)

C8 = P8



(58)

Inserting the equalities from (57) into (58) gives,

C0 = P0

C1 = −P0 + P1 + P2,0 − P6,0 − P8 + P2,1 − P4,1 + P6,1

C2 = P0 + P2,0 − P4,0 − P6,0 + P8 − P4,1 − P6,1

C3 = −P0 + P1 + P2,0 − P6,0 − P8 − P2,1 + P4,1 − P6,1

C4 = P0 + P4,0 + P6,0 + P8

C5 = −P0 + P1 + P2,0 − P4,0 − P8 + P2,1 + P4,1 − P6,1

C6 = P0 + P2,0 − P4,0 − P6,0 + P8 + P4,1 + P6,1

C7 = −P0 + P1 + P2,0 − P4,0 − P8 − P2,1 − P4,1 + P6,1

C8 = P8



(59)

21



Associated complexities of the algorithm V1 over F3[x] and F9[x] are given as follows,

M9(n) = 9M9(n/5) + (196/5)n− 72,M9(1) = 6

M9,⊗(n) = 9M9,⊗(n/5),M9,⊗(1) = 4

M9,⊕(n) = 9M9,⊕(n/5) + (196/5)n− 72,M9,⊕(1) = 2

M3(n) = 3M3(n/5) + 3M9(n/5) + (72/5)n− 29,M3(1) = 1

M3,⊗(n) = 3M3,⊗(n/5) + 3M9,⊗(n/5),M3,⊗(1) = 1

M3,⊕(n) = 3M3,⊕(n/5) + 3M9,⊕(n/5) + (72/5)n− 29,M3,⊕(1) = 0


(60)

by Remark 1 we get,

M9(n) = 47nlog5 9 − 49n− 9

M9,⊗(n) = 6nlog5 9

M9,⊕(n) = 41nlog5 9 − 49n− 9

M3(n) = 23.5nlog5 9 − 13nlog5 3 − 37.5n+ 28

M3,⊗(n) = 23.5nlog5 9 + 37.5nlog5 3 − 73.5n+ 13.5

M3,⊕(n) = −50.5nlog5 3 + 36n+ 14.5


(61)

V1 becomes more efficient than KA2 for n ≥ 100 over F3[x] and for n ≥ 20 over F9[x]. Note that, V1

is better than A3 for n ≥ 60 over F3[x] and for n ≥ 15 over F9[x]. Also, V1 outperforms A2 beginning

from n ≥ 15.

7 Results and Comparison

The arithmetic complexity comparisons for the minimum total number of operations before and after

our newly proposed algorithms N1, N2, and V1 are presented in Table 5 and Table 6 over F9[x]

and F3[x] respectively. As we can convey from Table 5 that the algorithm which gives the minimum

number of operations changes from A3 to V1 at n = 15 with a reduction percentage of 1.85%. The

reduction percentage increases as n gets bigger and reaches up to 40.35% at n = 1024 with a switch

from KA2 to N2. V1 takes the place of LT with a reduction percentage of 40.14% earlier at n = 625.

As for Table 6, the first improvement comes with the V1 algorithm at n = 125 as it takes the place

of UB with a reduction percentage of 1.83%. The reduction rate becomes larger as the input size gets

bigger and it becomes 16.61% with a switch from KA2 to N2 at n = 1024. V1 reduces the minimum

cost for n = 960 around 23.12% as it the takes place of KA2.

One can convey from Table 7 and Table 8 that, in general, V1 is the most efficient among all

algorithms for the input sizes that are multiples of 60. The reduction percentage between V1 and N1

is 12.7% for n = 60 and 4.5% for n = 780. It becomes 5.64% at n = 60 and 1.51% at n = 780 between

V1 and N2. We observe that N2 outperforms N1 with a reduction percentage of 3, 03% in F3[x] and

0.51% in F9[x] for n = 1024. However, for n = 60, the reduction percentage becomes 7, 48% in F3[x]

and 1, 85% in F9[x]. These results indicate that as n gets bigger the reduction percentage becomes

smaller. In general, N2 is always more efficient than N1 for all input sizes.

22



Table 5: Comparison of Minimun Number of Operations in F9

n # Prev. Min. Algorithm # New Min. Algorithm % Saving

1 6 SB 6 SB

2 26 KA2, M9(1) 26 KA2, M9(1) 0

3 60 A2, M3(3) 60 A2, M3(3) 0

4 100 KA2, M9(2) 100 KA2, M9(2) 0

5 160 A2, M3(5) 160 A2, M3(5) 0

6 216 A2, M3(6) 216 A2, M3(6) 0

7 296 A2, M3(7) 296 A2, M3(7) 0

8 350 KA2, M9(4) 350 KA2, M9(4) 0

9 456 A3, M9(3) 456 A3, M9(3) 0

10 542 A2, M3(10) 542 A2, M3(10) 0

11 652 A2, M3(11) 652 A2, M3(11) 0

12 716 A3, M9(4) 716 A3, M9(4) 0

13 875 A2, M3(13) 875 A2, M3(13) 0

14 976 A2, M3(14) 976 A2, M3(14) 0

15 1076 A3, M9(5) 1056 V1, M9(3) 1.85%

16 1156 KA2, M9(8) 1156 KA2, M9(8) 0

17 1368 UB, M9(9),M9(8) 1368 UB, M9(9),M9(8) 0

18 1416 A3, M9(6) 1416 A3, M9(6) 0

19 1660 UB, M9(10),M9(9) 1660 UB, M9(10),M9(9) 0

20 1753 A2, M3(20) 1612 V1, M9(4) 8.04%

25 2594 LT, M9(24) 2348 V1, M9(5) 9.48%

32 3686 KA2, M9(16) 3458 N2, M9(8) 6.18%

48 6716 A3, M9(16) 6548 N2, M9(12) 2.50%

60 9941 A3, M9(20) 8724 V1, M9(12) 12.24%

64 11500 KA2, M9(32) 10156 N2, M9(16) 11.68%

96 20326 A3, M9(32) 18562 N2, M9(24) 8.67%

125 33298 UB, M9(63),M9(62) 25960 V1, M9(25) 22.03%

128 35390 KA2, M9(64) 28382 N2, M9(32) 19.80%

192 61316 A3, M9(64) 52124 N2, M9(48) 14.99%

240 90101 A3, M9(80) 68268 V1, M9(48) 24.23%

256 107956 KA2, M9(128) 79492 N2, M9(64) 26.36%

384 184606 A3, M9(128) 142558 N2, M9(96) 22.77%

512 327446 KA2, M9(256) 215522 N2, M9(128) 34.18%

625 431144 LT, M9(624) 258068 V1, M9(125) 40.14%

960 813041 A3, M9(320) 506676 V1, M9(192) 37.68%

1024 989500 KA2, M9(512) 590188 N2, M9(256) 40.35%

23



Table 6: Comparison of Minimun Number of Operations in F3

n # Prev. Min. Algorithm # New Min. Algorithm % Saving

1 1 SB 1 SB 0

2 5 SB 5 SB 0

3 13 SB 13 SB 0

4 25 SB 25 SB 0

5 41 SB 41 SB 0

6 57 KA2, M3(3) 57 KA2, M3(3) 0

7 81 LT, M3(6) 81 LT, M3(6) 0

8 100 KA2, M3(4) 100 KA2, M3(4) 0

9 132 LT, M3(8) 132 LT, M3(8) 0

10 155 KA2, M3(5) 155 KA2, M3(5) 0

11 189 UB, M3(6),M3(5) 189 UB, M3(6),M3(5) 0

12 210 KA2, M3(6) 210 KA2, M3(6) 0

13 258 LT, M3(12) 258 LT, M3(12) 0

14 289 KA2, M3(7) 289 KA2, M3(7) 0

15 329 UB, M3(8),M3(7) 329 UB, M3(8),M3(7) 0

16 353 KA2, M3(8) 353 KA2, M3(8) 0

17 417 LT, M3(16) 417 LT, M3(16) 0

18 456 KA2, M3(9) 456 KA2, M3(9) 0

19 504 UB, M3(10),M3(9) 504 UB, M3(10),M3(9) 0

20 532 KA2, M3(10) 532 KA2, M3(10) 0

25 807 LT, M3(24) 807 LT, M3(24) 0

32 1168 KA2, M3(16) 1168 KA2, M3(16) 0

48 2298 KA2, M3(24) 2298 KA2, M3(24) 0

60 3474 KA2, M3(30) 3474 KA2, M3(30) 0

64 3725 KA2, M3(32) 3725 KA2, M3(32) 0

96 7227 KA2, M3(48) 7227 KA2, M3(48) 0

125 11446 UB, M3(63),M3(62) 11236 V1, M3(25) 1.83%

128 11620 KA2, M3(64) 11620 KA2, M3(64) 0

192 22350 KA2, M3(96) 22350 KA2, M3(96) 0

240 33354 KA2, M3(120) 29965 V1, M3(48) 10.16%

256 35753 KA2, M3(128) 34667 N2, M3(64) 3.03%

384 68391 KA2, M3(192) 63585 N2, M3(96) 7.02%

512 109048 KA2, M3(256) 98004 N2, M3(128) 10.12%

625 155883 UB, M3(313),M3(312) 120559 V1, M3(125) 22.66%

960 308574 KA2, M3(480) 237217 V1, M3(192) 23.12%

1024 330725 KA2, M3(512) 275765 N2, M3(256) 16.61%

24



Table 7: Comparison of Complexities for Different Algorithms in F3

n KA2 A3 N1 N2 V1

60 3474 3638 4139 3829 3613

120 10839 10715 11535 10843 10450

180 21039 20456 21514 20314 19864

240 32187 31646 32268 30850 29965

300 44673 44075 45529 43867 40885

360 60849 58466 59346 57292 56041

420 79266 76169 76303 73837 72010

480 91572 89291 89170 86302 84250

540 113364 109010 110155 106741 104812

600 124752 119936 120844 117586 113419

660 159504 148889 149545 144919 142636

720 170640 163433 164170 159508 157711

780 207237 192134 193087 187048 184213

1020 312495 286247 279832 272242 271036

Table 8: Comparison of Complexities for Different Algorithms in F9

n A2 KA2 A3 N1 N2 V1

60 10899 9558 9236 9500 9324 8724

120 32307 27006 25606 25604 25248 24486

180 61029 49854 47196 47000 46464 45468

240 91812 75132 72116 69656 68940 68268

300 125052 101814 97756 97352 96456 90204

360 171000 138918 129606 126308 125232 124200

420 219387 181206 168116 161564 160308 159096

480 256587 208158 196186 188630 187194 185802

540 318753 254982 238116 232076 230460 228888

600 345054 274806 259886 254228 252432 243822

660 433185 361158 324496 313928 311952 310020

720 478890 377634 355716 344144 341988 339876

780 558876 469359 416861 404285 401949 399657

1020 821265 699180 616396 583046 579990 576978

8 New Hybrid Algorithms for NTRU Prime Decapsulation

8.1 NTRU Prime Key Encapsulation Mechanism

The decapsulation phase of the Streamlined NTRU Prime Key Encapsulation Mechanism (KEM)

conducts a polynomial multiplication operation for multiplying the elements of Z3[x]/(x761 − x− 1).

25



Thus, we can apply the proposed 4-way and 5-way polynomial multiplication algorithms N1, N2, and

V1 to it (See Algorithm 3, in Section 2). One can refer to [5–7] for the full explanation of the protocol.

8.2 New Hybrid Algorithms

In this section, we construct different combined versions of the new algorithms N1, N2, and V1 along

with KA2, A2, A3, UB, LT, and SB so that they provide efficiency gain in Streamlined NTRU Prime

Decapsulation phase.

8.2.1 Hybrid-1 Multiplication Algorithm: 5 KA2 then SB (n=768)

Bernstein et al. use a combination of five layers of KA2 and then SB [6] for multiplying the input size

n = 768 polynomials in the Streamlined NTRU Prime decapsulation phase. We call this algorithm as

Hybrid-1 and our main purpose is to construct a faster alternative to this one. In the NTRU Prime

NIST submission package, Hybrid-1 is implemented by using Haswell AVX2 instructions, and for

the selected parameters, it gives the best implementation efficiency amongst all other combinations.

However, this result is obtained in the absence of the proposed N1, N2, and V1 algorithms. We believe

that new hybrid algorithms containing N1, N2, and V1 can potentially provide better performances

than that of Hybrid-1.

768KA2 384

KA2

192

KA2

96

KA2

48

KA2

24

SB

/2 /2 /2 /2 /2

Figure 1: Hybrid-1 Algorithm requires a total # of 303600 arithmetic operations

Figure 1 is a visual representation of the Hybrid-1 after each recursive call for the combining

functions of it. It ends up with the non-recursive SB algorithm. By SB, we refer to the SB-Comba

Multiplication algorithm [26]. Hybrid-1 costs a total of 303600 many arithmetic operations including

both multiplications and summations.

8.2.2 Hybrid-2 Multiplication Algorithm: 8 KA2 then SB (n=768)

Hybrid-2 uses eight layers of KA2 and then SB, for n = 768 as represented in Figure 2. In the

absence of N1, N2, and V1, Hybrid-2 is the most arithmetically efficient combination of all other

algorithms. It costs 207858 total number of operations which is better than Hybrid-1 and all other

possible combinations. Therefore we take its cost as the arithmetic reference threshold in Table

9. We aim to construct arithmetically cheaper hybrid algorithms than Hybrid-2 by using new N1, N2,

and V1 algorithms.

768

KA2

384

KA2

192

KA2

96

KA2

48

KA2

24

KA2

12

KA2

6

KA2

3

SB

/2 /2 /2 /2 /2 /2 /2 /2

Figure 2: Hybrid-2 Algorithm requires a total # of 207858 arithmetic operations

26



It’s important to point out that, arithmetic complexity and implementation complexity may not

always be compatible as Hybrid-1 and Hybrid-2 can be an example of this case. Even though Hybrid-2

is more efficient than Hybrid-1 arithmetically, when it comes to computer implementation, the cycle

count, and the runtime, Hybrid-2 is much worse than Hybrid-1. This is the reason why Bernstein et

al. [5–7] selected Hybrid-1 over Hybrid-2 for the multiplication in NTRU Prime.

8.2.3 N1-Hybrid Multiplication Algorithm (n=768)

N1-Hybrid is the first hybrid algorithm that our new method N1 is used in. It takes a total number of

187152 arithmetic operations to multiply the polynomials of input sizes n = 768. According to Table

9 the reduction percentage in the arithmetic cost compared with the reference Hybrid-2 method is

9.96%.

768N1F3

192

N1F9

192

KA2F3

48

N1F9

12

A3F9

4

SBF9

96

KA2F3

48

KA2F3

24

KA2F3

12

KA2F3

6

KA2F3

3

SBF3

/4

/4

/4 /4 /3

/2 /2 /2 /2 /2 /2

Figure 3: N1-Hybrid Algorithm requires a total # of 187152 arithmetic operations

Figure 3 is a visual representation of the N1-Hybrid. Note that the branches represent the multi-

plications that are performed over F3[x] and F9[x], respectively.

Remark 3 To obtain a reduced cycle count in the implementation, we modify the N1-Hybrid algorithm

in a way that it calls SBF9 at n = 12 instead of A3F9 over F9[x] (See the upper branch of the Figure

3). We also make it call SBF3 at n = 48 instead of KA2F3 over F3[x] (See the lower branch of the

Figure 3). We call this new hybrid method N1-Hybrid2.

8.2.4 N2-Hybrid Multiplication Algorithm (n=768)

Recall that the N2 Algorithm is an improved version of N1. Multiplying polynomials in Z3[x] for

n = 768 takes 180878 total number of operations with N2-Hybrid which is visually represented in the

Figure 4. Table 9 indicates that the reduction percentage in arithmetic cost is 12.98% compared with

the reference Hybrid-2 algorithm.

27



768N2F3

192

N1F9

192

KA2F3

48

N1F9

12

A3F9

4

SBF9

96

KA2F3

48

KA2F3

24

KA2F3

12

KA2F3

6

KA2F3

3

SBF3

/4

/4

/4 /4 /3

/2 /2 /2 /2 /2 /2

Figure 4: N2-Hybrid Algorithm requires a total # of 180878 arithmetic operations

8.2.5 V1-Hybrid Multiplication Algorithm (n=765)

This hybrid algorithm contains the new 5-way split multiplication algorithm V1 in it. We can see

from Tables 7-8 that V1 is faster than both of the N1 and N2 algorithms for the n values that are

multiples of 20. Notice that 768 is not divisible by 5 that’s why we pick n = 765 (zero-padded from

the 761-coefficient inputs) as the input sizes of the polynomials.

765V 1F3

153

A3F9

51

LTF9

50

V 1F9

10

A2

10

KA2F3

5

SBF3

153UBF3 77

UBF3

76KA2F3

39UBF3

38

KA2F3

20

KA2F3

19

UBF3

10 KA2F3

10 KA2F3

9

LTF3

8

KA2F3

4

SBF3

38KA2F3

/5

/3 /5

/2

/2

/2

/2

/2

/5

Figure 5: V1-Hybrid Algorithm requires a total # of 182647 arithmetic operations

Figure 5 displays the flowchart representation of V1-Hybrid for n = 765. The total arithmetic

operation cost for this algorithm is 182647. One can convey from Table 9 that the reduction percentage

in the arithmetic cost is 12.12% compared with the reference Hybrid-2 method.

28



8.2.6 A3-Hybrid Multiplication Algorithm (n=768)

As represented in the Figure 6, A3-Hybrid algorithm has a total arithmetic cost of 189115. One can

convey from Table 9 that the reduction percentage in the arithmetic cost is 9.01% compared with the

reference Hybrid-2 algorithm.

768A3F3

256

N1F9

64

N1F9

16

KA2F9

8

KA2F9

4

SBF9

256

N1F3

64 N1F9

64

KA2F3

32

KA2F3

16

KA2F3

8

KA2F3

4

SBF3

/3

/3

/4 /4 /2

/4

/4

/2 /2 /2 /2

/2

Figure 6: A3-Hybrid Algorithm requires a total # of 189115 arithmetic operations

Remark 4 To achieve more efficiency in the implementation rather than the arithmetical operations,

we modify the A3-Hybrid algorithm so that it calls SBF9 at n = 16 instead of KA2F9 over F9[x] (See

the upper branch of the Figure 6). Yet again we make it call SBF3 at n = 32 instead of KA2F3 over

F3[x] (See the lower branch of the Figure 6). We call this new hybrid method A3-Hybrid2.

8.2.7 LT-Hybrid Multiplication Algorithm (n=761)

For the LT algorithm we just pick n = 761 so that no padding would be necessary for the input

polynomials. Observe from Table 9 that LT-Hybrid has an arithmetical complexity of 186914 with a

reduction percentage of 10.07% compared with the reference Hybrid-2 method. Figure 7 shows the

steps of LT-Hybrid for n = 761.

29



761LTF3 760 V 1F3

152

KA2F3

76

KA2F3

38

KA2F3

152

N1F9

38

A2

38

KA2F3

19

UBF3 10 KA2F3

9

LTF3

5

SBF3

8

KA2F3

4

SBF3
/5

/4 /2

/2

/2

/5

/2 /2

Figure 7: LT-Hybrid Algorithm requires a total # of 186914 arithmetic operations

Table 9: Comparison of Arithmetical Complexities for the Hybrid Algorithms

n Algorithm Arithmetic Cost Improvement Source

768 Hybrid-1 303600 - method used in sntrup761 [6]

768 Hybrid-2 207858 Reference min. cost: before this paper

768 A3-Hybrid 189115 9.01% this paper

768 N1-Hybrid 187152 9.96% this paper

761 LT-Hybrid 186914 10.07% this paper

765 V1-Hybrid 182647 12.12% this paper

768 N2-Hybrid 180878 12.98% min. cost: after this paper

8.3 Implementation Results

Benchmark tests for all implementations are performed on an Intel (R) Core (TM) i7-9750H processor

running at 2600 MHz. The operating system is Ubuntu 20.04.1 LTS and Linux Kernel 5.4.0. All

software is compiled with gcc-9.3.0. Note that the reference and the optimized implementations of the

Streamlined NTRU Prime Protocol use SB-Comba [26] algorithm for the polynomial multiplication

over Z3[x]. However, the NTRU Prime submission package contains a separate folder including the

implementation of the Hybrid-1 algorithm in Haswell x86 architecture using AVX2 vector instructions.

We implement our new hybrid methods in C without using AVX/AVX2 instructions. Therefore, for the

comparison purposes, we implement the Hybrid-1 algorithm in C without using Haswell AVX/AVX2

instructions as well. We report the median of 100000 executions of the corresponding algorithm for

cycle counts.

It’s concluded from Table 10 that the N1-Hybrid, A3-Hybrid, N1-Hybrid2, and the A3-Hybrid2

algorithms are all faster than the Hybrid-1 method which is used in the NTRU Prime protocol.

Although it is not the most arithmetically efficient one, the N1-Hybrid2 algorithm is the fastest of

30



all, with a significant reduction percentage of 37.39% in the cycle count. The A3-Hybrid2 algorithm

is again much faster than the Hybrid-1 method with a reduction percentage of 34.04%.

Table 10: Implementation Results for Hybrid Algorithms (without AVX/AVX2)

Algorithm n Cycle Count Time Improvement

Hybrid-1 768 481 688 0.000186 method used in sntrup761 [6]

Hybrid-2 768 2 028 918 0.000783 -

LT-Hybrid 761 1 312 231 0.000506 -

N2-Hybrid 768 758 611 0.000293 -

V1-Hybrid 765 561 386 0.000217 -

A3-Hybrid 768 469 257 0.000181 2.58%

N1-Hybrid 768 456 071 0.000176 5.31%

A3-Hybrid2 768 317 692 0.000123 34.04%

N1-Hybrid2 768 301 571 0.000116 37.39%

9 Conclusion

We show that the new 4-way and 5-way split polynomial multiplication algorithms N1, N2, and

V1 introduced in this paper are more efficient than the current state-of-the-art algorithms over the

characteristic three fields. The proposed algorithms outperform the current ones in both arithmetical

and implementational perspectives. Considering the arithmetical efficiency, N2-Hybrid provides a

12.98% reduction in the current minimum cost, i.e., the cost of the Hybrid-2 algorithm, for the input

size n = 768. With the presence of N1, N2, and V1 the reduction percentage regarding the minimum

total number of arithmetic operations reaches up to 40.35% for n = 1024. Moreover, the new hybrid

methods such as A3-Hybrid, N1-Hybrid, N1-Hybrid2, and A3-Hybrid2 surpass the implementation

performance of the Hybrid-1 algorithm which is the one implemented in the NTRU Prime submission

package. The reduction percentage regarding the implementation performance is 37.39% for the

N1-Hybrid2 algorithm whereas it is 34.04% for A3-Hybrid2. Therefore N1-Hybrid2 or A3-Hybrid2

can be better alternatives for the polynomial multiplication in the Streamlined NTRU Prime Key

Encapsulation Mechanism. It should also be noted that implementing the new hybrid methods using

Haswell x86 architecture with AVX/AVX2 instructions has a potential of improving the performance

of the Streamlined NTRU Prime Key Encapsulation Protocol.

References

[1] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman, N. Heninger,

D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow, S. Zanella-Béguelin, and P. Zim-

mermann. Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice. Association for

Computing Machinery, pages 5–17, 2015.

[2] U. S. National Security Agency. Commercial national security algorithm suite and quantum

computing faq. 2016. https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-

FAQ.pdf.

31

https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FAQ.pdf
https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FAQ.pdf


[3] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey, Y. Liu, C. Miller,

D. Moody, R. Peralta, R. Perlner, A. Robinson, and D. Smith-Tonel. Status report on

the second round of the nist post-quantum cryptography standardization process, july 2020.

https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf.

[4] J. L. Bently, D. Haken, and J. B. Saxe. A general method for solving divide-and-conquer recur-

rences. ACM SIGACT News, 12(3):36–44, 1980.

[5] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. Ntru prime. NIST

Post-Quantum Cryptography Standardization Process-Round-1, 2017. https://ntruprime.cr.yp.

to/nist/ntruprime-20171130.pdf.

[6] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. NTRU Prime: reducing

attack surface at low cost. In International Conference on Selected Areas in Cryptography, 24,

pages 235–260, august 2017.

[7] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. Ntru prime. NIST

Post-Quantum Cryptography Standardization Process-Round-2, 2019. https://ntruprime.cr.yp.

to/nist/ntruprime-20190330.pdf.

[8] D.J. Bernstein. Batch Binary Edwards. In Advances in Cryptology - CRYPTO 2009, volume

5677 of LNCS, pages 317–336, 2009.

[9] F. Boudot, P. Gaudry, A. Guillevic, N. Heninger, E. Thomé, and P. Zimmermann. 2019. https:

//lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2019-December/001139.html.

[10] M. Cenk. Karatsuba-like formulae and their associated techniques. J. Cryptogr. Eng., 8(3):259–

269, 2018.

[11] M. Cenk and M. A. Hasan. Some new results on binary polynomial multiplication. J. Cryptogr.

Eng., 5(4):289–303, 2015.

[12] M. Cenk, Ç.K. Koç, and F. Özbudak. Polynomial multiplication over finite fields using field

extensions and interpolation. IEEE symposium on computer arithmetic, pages 84–91, 2009.

[13] M. Cenk, C. Negre, and M. A. Hasan. Improved three-way split formulas for binary polynomial

multiplication. Selected areas in cryptography, pages 384–398, 2011.

[14] M. Cenk, C. Negre, and M. A. Hasan. Improved 3-way split formulas for binary polynomial

and toeplitz matrix vector products. In IEEE Transactions on Computers, volume 62, pages

1345–1361, 2013.

[15] M. Cenk and F. Ozbudak. Efficient Multiplication in F3lm , m ≥ 1 and 5 ≤ l ≤ 18. In

AFRICACRYPT, pages 406–414, 2008.

[16] M. Cenk, F. H. Zadeh, and M. A. Hasan. New Efficient Algorithms for Multiplication Over Fields

of Characteristic Three. J. Sign. Process Syst., 90(3):285–294, march 2018.

[17] NSA Suite B Cryptography. Suit b implementers’ guide to nist sp 800-56a. 2009. https:

//web.archive.org/web/20160306033416/http://www.nsa.gov/ia/ files/SuiteB Implementer G-

113808.pdf.

32

https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://ntruprime.cr.yp.to/nist/ntruprime-20171130.pdf
https://ntruprime.cr.yp.to/nist/ntruprime-20171130.pdf
https://ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf
https://ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf
https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2019-December/001139.html
https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2019-December/001139.html
https://web.archive.org/web/20160306033416/http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf
https://web.archive.org/web/20160306033416/http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf
https://web.archive.org/web/20160306033416/http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf


[18] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information

Theory, 22(6):644–654, 1976.

[19] H. Fan and M. A. Hasan. A new approach to subquadratic space complexity parallel multipliers

for extended binary fields. In IEEE Transactions on Computers, volume 56, pages 224–233, 2007.

[20] Lov K. Grover. A Fast Quantum Mechanical Algorithm for Database Search. Proceedings of the

Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pages 212–219, 1996.

[21] M. B. Ilter and M.Cenk. Efficient Big Integer Multiplication in Cryptography. International

Journal of Information Security Science, 6(4):70–78, december 2017.

[22] J. Martinis and S. Boixo. Quantum supremacy using a programmable superconducting processor.

October 2019. https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.

html.

[23] R. C. Merkle. Secure Communications over Insecure Channels. Association for Computing

Machinery, 21(4):294–299, 1978.

[24] P. L. Montgomery. Five, six and seven-term karatsuba-like formulae . In IEEE Transactions on

Computers, volume 54, pages 362–369, 2005.

[25] NIST. Recommendation for pair-wise key establishment schemes using discrete logarithm cryptog-

raphy. 2006. https://csrc.nist.gov/publications/detail/sp/800-56a/revised/archive/2007-03-14.

[26] M. Oneill and C. Rafferty. Evaluation of Large Integer Multiplication Methods on Hardware. In

IEEE Transactions on Computers, volume 66, pages 1369–1382, august 2017.

[27] E. Pednault, J. Gunnels, D. Maslov, and J. Gambetta. On Quantum Supremacy. IBM Research

Blog, 2019.

[28] Certicom Research. Standards for efficient cryptography, sec 1: Elliptic curve cryptography,

version 2.0. 2009. https://www.secg.org/sec1-v2.pdf.

[29] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems. Association for Computing Machinery, 21(2):120–126, 1978.

[30] K. H. Rosen. Elementary Number Theory and Its Application 6th ed. Addison-Wesley, 2011.

[31] P. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a

Quantum Computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.

[32] P. W. Shor. Refined analysis and improvements on some factoring algorithms. Journal of Algo-

rithms, 3(2):101–127, 1982.

[33] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. Proceedings

35th Annual Symposium on Foundations of Computer Science, pages 124–134, 1994.

[34] A. Weimerskirch and C. Paar. Generalizations of the Karatsuba Algorithm for Efficient Imple-

mentations. IACR Cryptol. ePrint Arch., page 224, 2006.

[35] S. Winograd. Arithmetic Complexity of Computations. Society For Industrial & Applied Mathe-

matics, U.S., 1980.

33

https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html
https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html
https://csrc.nist.gov/publications/detail/sp/800-56a/revised/archive/2007-03-14
https://www.secg.org/sec1-v2.pdf


[36] Gang Zhou and Harald Michalik. Comments on a new architecture for a parallel finite field

multiplier with low complexity based on composite field. IEEE Trans. Computers, 59(7):1007–

1008, 2010.

34


	Introduction
	Preliminaries
	Notation
	NTRU Prime Key Encapsulation Mechanism

	 Recent Multiplication Algorithms and Improvements 
	 Karatsuba 2-Way Algorithm
	 Improved Karatsuba 2-Way Algorithm (KA2)
	 Unbalanced Refined Karatsuba 2-way Algorithm (UB)
	Schoolbook Recursion or the Last Term Method (LT)
	Karatsuba Like 3-way Algorithm
	Improved Karatsuba Like 3-way Algorithm
	3-way Algorithm with Five Multiplications (A1)
	Improved 3-way Algorithm with Five Multiplications (A3)
	Another Multiplication Algorithm (A2)

	New 4-way Split Multiplication Algorithm (N1) 
	Another 4-way Multiplication Algorithm with Different Interpolation Points (N2) 
	New 5-way Multiplication Algorithm (V1) 
	Results and Comparison
	New Hybrid Algorithms for NTRU Prime Decapsulation
	NTRU Prime Key Encapsulation Mechanism
	 New Hybrid Algorithms
	Hybrid-1 Multiplication Algorithm: 5 KA2 then SB (n=768)
	Hybrid-2 Multiplication Algorithm: 8 KA2 then SB (n=768)
	N1-Hybrid Multiplication Algorithm (n=768)
	N2-Hybrid Multiplication Algorithm (n=768)
	V1-Hybrid Multiplication Algorithm (n=765)
	A3-Hybrid Multiplication Algorithm (n=768)
	LT-Hybrid Multiplication Algorithm (n=761)

	Implementation Results 

	Conclusion

