
Optimized Architectures for Elliptic Curve
Cryptography over Curve448

Mojtaba Bisheh Niasar1, Reza Azarderakhsh1,2, and Mehran Mozaffari
Kermani3

1 Department of Computer and Electrical Engineering and Computer Science,
Florida Atlantic University, FL, USA

{mbishehniasa2019,razarderakhsh}@fau.edu
2 PQSecure Technologies, LLC, Boca Raton, FL , USA

3 Department of Computer Science and Engineering, University of South Florida,
FL, USA

mehran2@usf.edu

Abstract. In this paper, we present different implementations of point
multiplication over Curve448. Curve448 has recently been recommended
by NIST to provide 224-bit security over elliptic curve cryptography.
Although implementing high-security cryptosystems should be consid-
ered due to recent improvements in cryptanalysis, hardware implemen-
tation of Curve488 has been investigated in a few studies. Hence, in this
study, we propose three variable-base-point FPGA-based Curve448 im-
plementations, i.e., lightweight, area-time efficient, and high-performance
architectures, which aim to be used for different applications. Synthe-
sized on a Xilinx Zynq 7020 FPGA, our proposed high-performance
design increases 12% throughput with executing 1,219 point multipli-
cation per second and increases 40% efficiency in terms of required clock
cycles×utilized area compared to the best previous work. Furthermore,
the proposed lightweight architecture works in 250 MHz and saves 96%
of resources with the same performance. Additionally, our area-time ef-
ficient design considers a trade-off between time and required resources,
which shows a 48% efficiency improvement with 52% fewer resources. Fi-
nally, effective side-channel countermeasures are added to our proposed
designs, which also outperform previous works.
Keywords: Curve448, elliptic curve cryptography, FPGA, hardware se-
curity, implementation, point multiplication, side-channel

1 Introduction

Elliptic curve cryptography (ECC) has gained prominent attention among asym-
metric cryptographic algorithms due to its short key size. ECC is mostly imple-
mented in Internet-of-Thing (IoT) devices considering their limited power re-
sources and processing units. Recently, to address some backdoor issues in ECC
constructions due to advances in the strong cryptanalysis and classical attacks,
new NIST [1] and IETF [2] recommendations make Curve25519 and Curve448
suitable for higher-level security requirements.

Although we are confident with the security of ECC over prime fields, there
is always the possibility that algorithmic improvements reduce the required com-
putation to break ECC. Therefore, moving to a higher level of security will help
to keep a margin against unknown attack improvements. However, higher secu-
rity levels come with the performance penalty and industry often resists them.
Hence, we need to provide a level of security that can be feasible subject to the
performance requirement of the target application such as high-end servers of
constrained devices.

According to Shor’s algorithm [3], most of the current cryptosystems will
be broken by quantum computing. Hence, Post-Quantum Cryptography (PQC)
algorithm are going to replace the classic public key cryptography algorithms.
PQC based on elliptic curves is available for example in [4,5,6]. However, the
transition to PQC includes an emerging field called hybrid systems, which require
both classic and PQC [7]. Hence, ECC is going to be used in the hybrid mode
for maintaining accordance with industry or government regulations, while PQC
updates will be applied completely. Therefore, classical cryptosystems cannot be
eliminated even if PQC will significantly be developed, so designing high-security
ECC is crucial.

As a part of the Transport Layer Security (TLS) [8], Curve448 provides
224-bit security designed by Hamburg in 2015 [9,10]. Moreover, Curve448 be-
longs to [11], and Safe-Curve policies are considered in its design procedures.
Although Curve25519 is highly investigated in recent years for different appli-
cations [12,13,14,15], there are few FPGA-based Curve448 implementations due
to its optimal software-based design.

The closest related works that can be directly compared to ours are pro-
posed by Sasdrich and Güneysu in [16], and the protected architecture in [13] by
adding re-randomization countermeasure to design the resistant scheme against
horizontal attacks. In these works, a field arithmetic unit based on schoolbook
multiplication is designed by cascading arithmetic and reduction core employ-
ing 28 and 5 DSP blocks, respectively. These architectures heavily rely on the
DSP blocks which leads to work in high operating frequency (i.e. 357 and 341
MHz). Furthermore, Shah et al. in [17] proposed a LUT-based scheme for high-
performance point multiplication employing the most significant digit multiplier.
Other FPGA implementations of ECC for Montgomery curves in the literature
cannot be directly compared to ours, because they target different curves. Ananyi
et al. in [18] introduced a flexible hardware ECC processor over several NIST
prime fields. Furthermore, Alrimeih et al. designed an enhanced architecture
over different NIST prime fields up to 521-bit in [19] including several counter-
measures.

Based on the aforementioned discussions, implementation gaps are identified
in: (i) the need for exploration of the different trade-offs between resource uti-
lization and performance considering different optimization goals, and (ii) the
lack of employing the Karatsuba-friendly property of Curve448.

2

Our contributions: To the best of our knowledge, there appear to be extremely
few hardware implementations that focus only on Curve448 and make the best
of all its features. The main contributions of this work are as follows:
– We Investigate three design strategies to port Curve448 to various platforms

with different design goals (i.e., time-constrained, area-constrained, and area-
time trade-off applications) using a precise schedule corresponding to each ar-
chitecture. Hence, different modular multiplication and addition/subtraction
modules are developed particularly tailored on a Xilinx Zynq 7020 FPGA to
perform variable-base-point point multiplications. Furthermore, all schemes
are extended by side-channel countermeasures.

– The proposed architectures are combined with interleaved multiplication and
reduction employing redundant number presentation and refined Karatsuba
multiplication to increase efficiency in comparison with those presented in
previous.

– Our proposed architectures outperform the counterparts available in the
literature.

The rest of this paper is organized as follows: In Sec. 2, some relevant mathe-
matical background and side-channel considerations are reviewed. In Sec. 3, the
proposed architectures are investigated. In Sec. 4, our proposed FPGA imple-
mentations are detailed. In Sec. 5, the results and comparison with other works
are discussed. Eventually, we conclude this paper in Sec. 6.

2 Preliminaries

In this section, the mathematical background of ECC will be covered briefly.
Additionally, Curve448 and its specifications will be introduced. Then, the re-
spective side-channel analysis attack protection will be described.

2.1 Field Arithmetic and ECDH Key Exchange

The Galois Field GF (p) is described by finite elements including {0, 1, . . . , p−1}
to define a finite field. Curve448 over GF (p) is defined by E : y2 + x2 ≡
1 + dx2y2 mod p where p = 2448 − 2224 − 1 and d = −39081. This curve is a
Montgomery curve and also an untwisted Edwards curve which is called Ed-
wards448 [2].

Curve448 specifications can be employed to speed up the elliptic curve Diffie-
Hellman (ECDH) Key-Exchange. Using the advantage of 448 = 7 × 64 = 14 ×
32 = 28 × 16 = 56 × 8 provides more flexibility to design efficient architecture
for different platforms. Additionally, due to its Solinas prime with golden ratio
φ = 2224, fast Karatsuba multiplication can be performed as follows:

C = A ·B = (a1φ+ a0) · (b1φ+ b0)
= a1b1φ

2 + a0b0 + ((a1 + a0) · (b1 + b0)− a1b1 − a0b0)φ
≡ (a1b1 + a0b0) + ((a1 + a0) · (b1 + b0)− a0b0)φ (mod p) (1)

3

Table 1. Comparison of different ECC specifications over prime fields

Curve Ref. Prime Shape Security Public Key Private Key
Level Size (bits) Size (bits)

Curve25519 [2] 2255 − 19 127-bit 255 255
FourQ [20] 2127 − 1 128-bit 2×127 2×127

NIST P-256 [21] 2256 − 2224 + 2192 + 296 − 1 128-bit 256 256
BrianpoolP320rl [22] Not Specific 160-bit 320 320
NIST P-384 [21] 2384 − 2128 − 296 + 232 − 1 192-bit 384 384

BrianpoolP384r1 [22] Not Specific 192-bit 384 384
Secp384r1 [23] 2384 − 2128 − 296 + 232 − 1 192-bit 384 384
Curve448 [2] 2448 − 2224 − 1 224-bit 448 448

NIST P-521 [21] 2521 − 1 260-bit 521 521

where A = (a1φ+ a0), B = (b1φ+ b0), and A,B,C ∈ GF (p).
To implement modular inversion over GF (p) using Fermat’s Little Theorem

(FLT), a−1 ≡ ap−2 mod p is computed by consecutive operations including 447
squaring and 15 multiplications.

To generate a shared secret key Q between two parties through an insecure
channel, i.e., internet, ECDH Key-Exchange protocol can be implemented using
elliptic curve point multiplication (ECPM) Q = k · P over Curve448 where k
and P are a secret scalar and a known base point, respectively. Moreover, public
keys of Curve448 are reasonably short and do not require validation as long as
the resulting shared secret is not zero.

Table 1 lists security level, public key size, private key size, and prime shape
for security level in the range of about 128 to 256-bit.

2.2 Group Arithmetic and Montgomery Ladder

Scalar multiplication is broken down into 448 iterations considering bit values
of k. To perform efficient scalar multiplication over the Montgomery curve, the
Montgomery ladder was introduced [24] to perform one point addition (PA)
and one point doubling (PD) in each iteration. Furthermore, using this method
in projective coordinate increases efficiency. If P = (xp, yp) is a base point in
affine coordinate, it can be transmitted to projective coordinate such that P =
(X,Y, Z) where xp = X/Z and yp = Y/Z. Suppose P1 = (X1, Z1) and P2 =
(X2, Z2) are two points in projective coordinates. Therefore, P1 + P2 and 2P1
are computed by following equations:

XP D =(X1 − Z1)2 · (X1 + Z1)2 (2)
ZP D =4X1Z1 · (X2

1 + 39081X1Z1 + Z2
1) (3)

XP A =4(X1X2 − Z1Z2)2 (4)
ZP A =4xp(X1Z2 − Z1X2)2 (5)

4

2.3 Side-Channel Protection

To implement a resistant architecture against side-channel analysis (SCA) at-
tacks, different considerations are taken into account. Hence, several counter-
measures should be embedded in the cryptographic implementations to prevent
information leakage. Two basic protection including (i) constant-time implemen-
tation against timing attack, and (ii) secret-independent implementation against
simple power analysis (SPA) can be achieved by performing inherently resistant
algorithms. Hence, the proposed architecture is resistant against timing attacks
and SPA attacks due to performing a constant number of operations in each it-
eration of the Montgomery ladder and employing constant-time FLT Inversion.
Furthermore, some countermeasures which were introduced by Coron [25] are
considered to avoid differential power analysis (DPA) attacks. These counter-
measures include point randomization and scalar blinding which change both
terms in the scalar multiplication Q = k · P .

Point Randomization: Point randomization can be achieved by adding a
degree of freedom to represent a base point using projective coordinate repre-
sentations. In this method, the base point P = (X,Z) is projected from affine
coordinates using a random value λ ∈ Z2448 \ {0} such that Pr = (λ ·X,λ · Z).
However, the scalar multiplication output is not changed, as proven in (6).

xp = X

Z
= λX

λZ
(6)

Point randomization provides different point representations corresponding
to random value λ to avoid any information extraction employing statistical
analysis.

Scalar Blinding: The second term in scalar multiplication is randomized in
scalar blinding. In this method, multiple group order #E is added to k such that
kr = k + r ×#E where r is a random value. According to the fact that adding
group order times of base point results in the point in infinity, the correctness
of the scalar blinding approach can be proven as follows:

kr · P = (k + r ×#E) · P = k · P + r ·O = k · P (7)

This computation takes away data dependency between the swap function in
the Montgomery ladder and the corresponding bit in k.

3 Proposed Algorithm and Architecture

In this section, the proposed algorithms for three different performance lev-
els including lightweight, area-time efficient, and high-performance designs are
covered. Moreover, their architectures and modular arithmetic units are investi-
gated.

5

The top-level architecture used in our schemes for different design strategies
is illustrated in Fig. 1 composed of three stages: (i) the dedicated controller stage
including an FSM and program ROM, (ii) the field arithmetic units in the middle
stage including modular addition/subtraction and modular multiplication, and
(iii) a memory stage to store the intermediate results. All stages are customized
based on the corresponding design strategy for increasing efficiency.

In lightweight and area-time efficient design, a major determinant of efficiency
is matching the compute power to the memory bandwidth, so that most cycles
the compute units and the memory units are used to accomplish as much work
as possible. However, in high-performance design, more resources are utilized to
reduce the required time for computation.

Implementing the Karatsuba multiplication requires a complex memory ac-
cess pattern. Therefore, in lightweight architecture, the product scanning ap-
proach is proposed to perform repetitive operations with shared resources. In
Design II and III, Karatsuba-based modular multiplication is employed.

3.1 Design I: Lightweight Architecture

The proposed architecture for lightweight design is shown in Fig. 1. This de-
sign includes a controller, modular addition/subtraction, modular multiplica-
tion, ROM, and dual-port RAM in the top-level architecture. Program ROM
consists of 2183 instruction lines (28 lines for Montgomery ladder, 1233 lines
for multiplication, and 922 lines for inversion) for modular arithmetic units and
memory addresses. Each line of ROM is 15-bit wide: 1 bit for modular mul-
tiplication, 2 bits for modular addition, and three 4-bit operand addresses for
the RAM. The controller is connected to the ROM to read the instruction code
for each cycle. Additionally, the controller sets required addresses for arithmetic
units considering the corresponding bit of chosen scalar k and the instruction
code. The intermediate data is stored into a dual-port RAM to decrease the
required resources. A 448-bit data is stored by splitting to 28 words in 16-bit
chunks due to DSP block input size. Therefore, the RAM bit width is 16-bit.
To reduce the utilized resources in the proposed lightweight architecture, all
required computations are performed sequentially.

Modular Addition/Subtraction: Two 16-bit data are loaded from RAM
in each iteration, and addition/subtraction is performed between them. Then,
the result is stored into RAM in the next iteration. The carry/borrow should
be propagated to the next digit which is shown in the proposed architecture.
Thus, modular addition/subtraction takes 56 cycles of which 28 are required
for the computation and the remaining ones for reading/storing data. Moreover,
the last carry/borrow is considered for the reduction procedure. To design a
constant time computation, addition/subtraction is interleaved by a reduction
based on the fact that 2448 ≡ 2224 + 1 mod p. Eventually, this computation
requires another 56 iterations to complete for reduction.

6

P (base point)

k

Controller

(FSM)

Program

ROM

Modular MultiplicationModular Addition

Dual Port

RAM

D
es

ig
n

 I
D

es
ig

n
 I

I
D

es
ig

n
 I

II

c0

1616

1616 1616
+/-

1616

c 11

c0

16

16 16
+/-

16

c 1

128128

128128
128128

+/-
128128

128

128
128

+/-
128

128128

+/-
Mult

64×64bi1

bi0

bi1

bi0

ai1

ai0

ai1

ai0

128128

128128

64

64

+/-
Int.

RAM

m0

m1

Cs
A

B

Int. ai

Int. bi

A

B

Int. bi

Int. ai

m0

m1

C

s
128128

128128

128128

128128

128128

5
-L

e
v

e
l

K
a
ra

ts
u
b

a

5
-L

e
v

e
l

K
a
ra

ts
u
b

a

...

P
a
rt

ia
l

P
ro

d
u

c
t

In
t.

P
a
rt

ia
l

P
ro

d
u

c
t

In
t. 452452

DSP

0

DSP

80

C
+/-

c

c01

228228

228228

Ch0

Ch1

Cl0

Cl1

Cm0

Cm1

Accu.

Accu.

Accu.

448448

448448

448448

b1

b0

b1

b0

a1

a0

a1

a0

+/-
224224

448448

c

c01

224224

224224
0

224224224

3333

1616
1616

1717
DSPDSP +/-

8484

A

B

B<<1

33

16
16

17
DSP +/-

84

A

B

B<<1

A

B C

C

A

B C

A

B

448448

448448

C

A B

Accu.

Mult ROM

Fig. 1. Proposed hardware architecture for different performance levels over Curve448:
(Design I) The arithmetic units architecture in the lightweight design with 16-bit dat-
apath, (Design II) The arithmetic units architecture in the area-time efficient design
with 128-bit datapath, and (Design III) The arithmetic units architecture in the high-
performance design with 448-bit datapath. A and B are read from the memory unit,
and C are stored in the memory unit.

Modular Multiplication: Modular multiplication is designed based on the
product scanning approach. To perform this approach, 28 multiplications are
required for each 16-bit digit. In [16], the authors introduced a schoolbook mul-
tiplication with interleaved reduction performed in parallel using 28 DSPs. In
lightweight architecture, only one DSP is utilized to perform multiplication se-
quentially. Due to the proposed interleaved reduction, different numbers of mul-
tiplication are performed corresponding to each product digit. Besides, several
multiplications are duplicated for some operands. Thus, considering 1 bit free of
DSP input, one bit shifted of the second operand can be selected to accelerate
computation. For example, the fourteenth digit of the final product requires 54
16×16-bit multiplications of which 26 are duplicated. Hence, they can be per-
formed in 28 16×16-bit and 13 17×16-bit multiplications. The partial product is
accumulated in a register shown by Accui+1 × 216 +Ci where Accui and Ci are
carry and product digit of ith element. The Ci is stored in the RAM, and the

7

Accui is shifted 16 bits to propagate to the next product digit. However, Accu28
should be considered for the second stage of reduction.

In the proposed lightweight design, each multiplication is followed by modular
addition to implement an efficient reduction algorithm. Due to the special form
of the prime, the addition between Accu28×214×16 +Accu28 and C27×227×16 +
. . .+ C0 leads to modular multiplication result.

3.2 Design II: Area-Time Efficient Architecture

The proposed area-time efficient design is shown in Fig. 1. This scheme is de-
rived from our previous work presented in [26]. Program ROM consists of 480
instruction lines (18 lines for Montgomery ladder and 462 lines for inversion)
for modular arithmetic units and memory addresses. Each line of ROM is 15-bit
wide: 1 bit for modular multiplication, 2 bits for modular addition, and three
4-bit operand addresses for the RAM. For efficient resource utilization, the mul-
tiplication is performed based on a dedicated ROM consists of 69 lines of 17-bit
width to generate the control commands.

The most important advantage of special form p is the implementation of the
fast Karatsuba multiplication based on (1) [9]. In an area-time efficient design,
a 448×448-bit multiplication in the first level can be converted by the Karat-
suba method [27] to three 225×255-bit multiplications considering the addition
carry. Furthermore, Bernstein in [28] introduced the refined Karatsuba identity
as follows:

(a0 + a1t
n) · (b0 + b1t

n) = (1− tn) · (a0b0 − tna1b1) + tn(a0 + a1) · (b0 + b1) (8)

A 448-bit data is represented in four integer pieces in radix 2448/4 = 2112, i.e.
, A is written as A = a0 +a1×2112 +a2×2224 +a3×2336, and B is decomposed
similarly to A. Applying Karatsuba multiplication provides A0B0, A1B1, and
A10B10 such that:

A×B = (A0B0 +A1B1) + 2224(A10B10 −A0B0) (9)

where:

A0B0 =(a0 + a1 × 2112) · (b0 + b1 × 2112) (10)
A1B1 =(a2 + a3 × 2112) · (b2 + b3 × 2112) (11)

A10B10 =(a0 + a2 + (a1 + a3)× 2112) · (b0 + b2 + (b1 + b3)× 2112) (12)

For the second level, refined Karatsuba identity is applied where tn is equal
to 2112. Hence, for example, A0B0 is decomposed such that:

A0B0 = (1− 2112) · (a0b0 − 2112a1b1) + 2112(a0 + a1) · (b0 + b1)
= (1− 2112) · (a0b0 − 2112a1b1) + 2112(a10b10) (13)

8

Therefore, three 114×114-bit multiplications are required (i.e., a0b0, a1b1,
and a10b10) which are implemented by schoolbook method with 64-bit digit size.

To diminish the cost of the carry propagation, redundant representation is
employed in the proposed architecture. Datapath is considered 128-bit to provide
a more 16 bits for each digit. Moreover, in [29], the authors used reduced refined
Karatusba technique in top-level to decrease the number of additions. Based
on [26], we employ the interleaved reduction technique into the first Karatsuba
level. Hence, we reduce the second term in (9), i.e., 2224 × (A10B10 − A0B0),
before adding with (A0B0 +A1B1).

Addition/Subtraction: In the area-time efficient architecture, addition/subtraction
is designed non-modular. Based on the Montgomery ladder, addition/subtraction
units are followed by multiplication. Due to redundant representation in this ar-
chitecture, the reduction stage can be postponed to the multiplication stage.
Moreover, carry propagation is removed between digits considering redundancy
in representation. Addition/subtraction is computed in four cycles between two
128-bit data in parallel with multiplication. Thus, its latency is absorbed by
multiplication cycles to increase performance.

Modular Multiplication: Modular multiplication includes a 64×64-bit mul-
tiplication using 16 DSPs. The multiplier is designed pipelined with 8 stages to
increase throughput. Two 128-bit data are stored in its input registers. Further-
more, a register is considered in its output to accumulate partial products. The
throughput of the proposed architecture is 1 multiplication per 4 cycles employ-
ing the pipeline architecture. Hence, in 3 × 4 = 12 clock cycles, three required
multiplications in (13), i.e., a1b1,a0b0, and a10b10, are computed.

The proposed middle-level recombination is shown in Fig. 2-(a). After com-
puting the three lowest-level products, i.e., a0b0, a1b1, and a10b10, we need only 5
additions performed in 3 steps to compute A0B0 which are pipelined with A1B1
computing. We obtain A0B0 as follows:

– Step 1: Compute s1 = (a0b0 − 2112a1b1). We subtract the first digit a1b1
from the second digit a0b0. Note that the second digit a1b1 is not actually
subtracted from 0. Hence, it should be implicitly negated during the recom-
bination.

– Step 2: Compute s2 = (1−2112)s1. Multiplying s1 by (1−2112) is equivalent
to subtracting the shifted s1 from itself. Therefore, we align the first digit of
s1 with the second digit and subtract.

– Step 3: Compute s3 = s2 + 2112(a10b10). We align the first digit of a10b10
with the second digit of s2. Hence, this level of computation is finished by
performing two additions between the first and second digits of a10b10, and
the second and third digits of s2, respectively.

Moreover, A1B1 and A10B10 can be computed in the same way as A0B0. The
total cost for these three steps is 15 128-bit additions.

9

A0B0

A1B1

A0B0

A0B0

A10B10

A10B10

AB

+

+

-

-

+

+

23 3 223 3 2

01 01

01 01

0123 0123

0123 0123

3 2 233 2 23

0123 0123

128-bit128-bit128-bit128-bit128-bit128-bit128-bit128-bit

A0B0

A1B1

A0B0

A0B0

A10B10

A10B10

AB

+

+

-

-

+

+

23 3 2

01

01

0123

0123

3 2 23

0123

128-bit128-bit128-bit128-bit

a0b0

a1b1

s1=(a0b0-2
112a1b1)

s1

s2=(1-2112)s1

a10b10

s3=s2+2112a10b10 +

-

--

+

S
te

p
 1

S
te

p
 2

S
te

p
 3

128-bit128-bit128-bit128-bit128-bit128-bit128-bit128-bit

a0b0

a1b1

s1=(a0b0-2
112a1b1)

s1

s2=(1-2112)s1

a10b10

s3=s2+2112a10b10 +

-

--

+

S
te

p
 1

S
te

p
 2

S
te

p
 3

128-bit128-bit128-bit128-bit

(a) (b)

Fig. 2. Proposed recombination in efficient modular multiplication. (a) middle-level
recombination: only five highlighted operations are performed. (b) top-level recombi-
nation: applying interleaved reduction cancels the highlighted digits.

Fig. 2-(b) illustrates the top-level recombination. According to this figure,
the two most significant digits of A0B0, i.e., the third and forth digits, cancel
themselves considering the reduction algorithm. Then, several consecutive ad-
ditions between partial products for the carry propagation and reduction are
performed.

For efficient control of the operation sequences, a dedicated controller and
an internal RAM are considered in this unit. Eventually, modular multiplication
latency is 69 clock cycles employing the pipelined architecture.

3.3 Design III: High-Performance Architecture

The proposed high-performance design is shown in Fig. 1. Program ROM consists
of 1554 instruction lines (168 lines for Montgomery ladder and 1386 lines for
inversion) for modular arithmetic units and memory addresses. Each line of ROM
is 12-bit wide: 1 bit for modular multiplication, 2 bits for modular addition, 1
bit for storing data on RAM, and two 4-bit memory addresses for the RAM

There are different multiplication methods for designing high-performance
architecture, e.g., Schoolbook or Toom-3 approach. For Curve448, Karatsuba
multiplication has a special advantage due to its golden ratio. Different levels
of Karatsuba multiplication can be applied in 448×448-bit multiplication. In
this design, 5-level Karatsuba multiplication is considered to decrease multiplier
latency considering DPS block input size. Although increasing the number of
Karatsuba level drops operating frequency due to expanding addition tree, paral-
lelization in the lowest level of computation reduces considerably the required cy-
cles to speed up the computation. According to this approach, high-performance
architecture is designed which is illustrated in Fig. 1. This architecture includes
a controller, modular addition/subtraction, modular multiplication, ROM, and
dual-port RAM. To decrease loading/storing latency from/to RAM, datapath is
implemented with 448-bit wide.

10

Modular Addition/Subtraction: Addition/subtraction is implemented be-
tween two 224-bit to decrease critical path delay (CPD). The data is loaded from
RAM and stored in its input registers. Then, a0 + b0 and a1 + b1 are performed
and the results are stored in a register, while the first carry/borrow is propagated
and the second one is considered for reduction. Then, an interleaved reduction
follows the addition/subtraction operation. Therefore, multiplexers are designed
for selecting operands, carry/borrow bit, and inputs. Finally, although modular
addition/subtraction requires 4 clock cycles for operation and 3 cycles for data
transmission, its latency is entirely absorbed by modular multiplication.

Modular Multiplication: Modular multiplication splits a 448×448-bit multi-
plication into 35 = 243 partial multiplications employing 5 levels of Karatsuba.
Due to the number of available DSP blocks in the proposed FPGA (i.e., 220
DSPs), the first level is designed pipeline, while the rest of the multiplications are
performed parallel using 81 DSP blocks. Then, an addition tree is implemented,
and its achieved results are stored into three registers including Ch = A1B1,
Cl = A0B0, and Cm = A10B10. There are registers between different stages of
multiplier and addition tree to design pipeline architecture. Therefore, a next
multiplication (i.e., A0B0) is exactly started after that the first stage of previous
multiplication (i.e., A1B1) is completed. Thus, all three registers are filled in 5
clock cycles with 452-bit wide.

An addition/subtraction circuit is build to compute the top-level addition
and interleaved reduction. Therefore, computing C0 = Ch0 + Cl0 + Cm1 − Cl1
and C1 = Ch1 + Cl1 + Cm0 − Cl0 leads to the proposed result. Multiplexers
determine inputs, carry/borrow propagation, and operands in each iteration.
Eventually, the last reduction stage is computed considering C1 carry. This pro-
cedure takes 9 cycles. However, its first stages are arranged with the last stages
of multiplication. Thus, modular multiplication is completed in 15 cycles con-
sidering RAM interfacing.

4 FPGA Implementations

In this section, we present details of the proposed ECPM, in particular the
Montgomery ladder, its scheduling, and latency. Second, SCA considerations for
implementing enhanced architecture are discussed.

4.1 ECPM implementation

Point multiplication is implemented employing field arithmetic units including
modular addition, subtraction, multiplication, and inversion. Modular addition,
modular subtraction, and modular multiplication are entirely explained corre-
sponding to each optimization goals. Furthermore, modular inversion is imple-
mented based on the FLT constant-time algorithm using consecutive modular
multiplications performed after point multiplication.

11

Z2X1 Z1 X2

AdditionAddition SubtractionSubtraction MultiplicationMultiplication SquaringSquaring

(clock cycles)
Latency

(clock cycles)
Latency

XPDXPD

ZPDZPD

XPAXPA

ZPAZPA

S0: A

S1: M

a24a24

xpxp

S2: M

S3: M

S4: M

S5: M

S6: M

S7: M

S8: M

S9: M

S10: M

Total:

A+10M

Fig. 3. Design II and III data dependency diagram for one step Montgomery ladder
execution over Curve448. The total latency is A + 10M where A and M are modular
addition and multiplication latency, respectively. Furthermore, a24 is equal to 39081
for Curve448.

Montgomery ladder is implemented using precis scheduling of arithmetic
units. It consists of 8 additions (or subtraction) and 10 multiplications (or squar-
ing). Fig. 3 shows the data dependency diagram for executing a step Montgomery
ladder in area-time efficient and high-performance architectures. As one can see,
the total latency is A+10M where A andM are modular addition and multipli-
cation latency, respectively. In other words, addition latency is absorbed by mul-
tiplication employing parallel computing. However, in our proposed lightweight
architecture each multiplication is followed by an additional addition to perform
reduction which leads to an increase in its latency.

4.2 Side-Channel Protected Implementation

Different SCA countermeasures are embedded for the proposed designs to pro-
vide enhanced architecture against DPA. As it is explained earlier, three differ-
ent approaches are considered including scalar blinding, base point randomiza-
tion, and continuous point randomization. Designing a random number generator
(RNG) is not in the scope of this study, so we assume the randomized numbers
are provided externally.

Scalar Blinding: According to [30], at least half of the field size is recommended
to be used for scalar blinding. Therefore, r with 224-bit length builds kr with
672-bit which makes longer execution time compared to unprotected design.

12

However, it does not change resource utilization considering externally provided
kr assumption.

Base Point Randomization: Base point randomization is achieved by using
randomized base point Pr = (λ · xp, λ). We assume Pr is externally delivered
to the ECPM core. Due to implementing variable-base-point architecture, base
point randomization is achieved without any cost.

Continues Point Randomization: Although exploiting of randomized base
point provides more resistance against DPA, point randomization can also be
applied consecutively to prevent horizontal attacks. In this approach, two more
modular multiplications (i.e., λ·xP A and λ·zP A) are performed to re-randomized
Montgomery ladder outputs. Hence, continuous point randomization increases
Montgomery ladder latency, and consequently total latency.

5 Implementation Results and Comparison

Our three different performance level architectures are synthesized and imple-
mented with Xilinx Vivado 2019.2 on a Xilinx Zynq-7020 FPGA device. All
given results are obtained after place-and-route (PAR). Furthermore, several
test vectors have been tested to verify our implementations, and the results for
suggested vectors by [2] are reported in Appendix A.

5.1 Performance Results

Table 2 summarizes the number of clock cycles and latency requirements for
all proposed architectures in our unprotected schemes broken down into the
group and field arithmetic operations. According to this table, the operating
frequency for high-performance design compared to other schemes is dropped as
expected to 95 MHz due to the increasing level of Karatsuba multiplication. As
described before, the most time-consuming operation in Design III is modular
multiplication with 15 clock cycles which absorb addition/subtraction latency.
Furthermore, modular inversion is implemented in the last stage of ECPM for
back transformation from projective coordinates to affine coordinates at the cost
of about 10% of the clock cycles. In total, the unprotected core can execute 35,
363, and 1,219 ECDH operations per second for lightweight, area-efficient, and
high-performance architectures, respectively.

5.2 Comparison

Recently, there are considerable efforts to implement ECC using instruction set
processors [31]. It makes the design smaller, slower, and more controllable/programmable
at cost of implementing a software-based processor. However, pure hardware im-
plementations are better as it is faster and could be any time integrated with
hardware/software co-design techniques.

13

Table 2. FPGA implementation results for different performance level architectures
in terms of clock cycles and latency requirements

Proposed Architecture Design I Design II Design III
Clock Freq. [MHz] 250 127 95

FpOperation

Addition 112 8 7
Subtraction 112 8 7

Multiplication 1,233 69 15
Inversion 620,047 32,272 6,917

Unprotected
Mont. step 14,346 708 158

Point Multiplication 7,047,055 349,546 77,702
Latency [ms] 28.19 2.75 0.82

Additionally, our target is optimization based on the area-time trade-offs
point of view, while other trade-offs from a time-memory perspective can be
investigated. However, the latter method relies on the pre-computation over a
fixed-base-point, while we focus on variable-base-point architectures.

To the best of our knowledge, there are only a few FPGA implementations
for security level more than 128-bit. For comparison, we have selected point mul-
tiplications presented in [16] and [13] with the same platform, and [17] mapped
to a Xilinx Virtex FPGA. Additionally, we have opted [19] and [18] for NIST
P-384 and P-521, since they are in the same security level as Curve448. More-
over, to estimate area equivalent for efficiency computing, we force the Vivado
synthesis tool to implement DSP block employing only LUTs, so we investigate
each DSP is equivalent to almost 100 occupied Slices.

The area and time specifications for our proposed work and comparison to
the counterparts are reported in Table 3. Three different levels of protection are
considered including no protection, protection with scalar blinding and point ran-
domization, and high protection with scalar blinding and point re-randomization
countermeasures.

Design I requires only a few resources on our target device, i.e., 137 (1%) of
the Slices, 1 (0.5%) of DSP block, and 2 (1.4%) BlockRAM. It occupies at least
96% fewer resources compared to other works while decreasing utilized resources
increases latency by more than 7 million cycles.

Design II utilizes the available resources more than Design I and less than
Design III, i.e., 760 of the Slices, 16 of DSPs, and 9 of BlockRAM. Our proposed
Design II saves 52% of Slice utilization compared to the unprotected scheme in
[16]. Furthermore, the critical resource in FPGA is the DSP component which
has a significant effect on performance. So, the proposed architecture for an area-
time efficient scheme saves 52% of DSP utilization at the cost of longer execution
time compared to [16] and [13], respectively. Thus, this design can be considered
for some applications which need a trade-off between area and time. Moreover,
the protected scheme of Design II saves 60%, 52%, and 36% Slices, DSPs, and
BRAM compared to the high-protected scheme presented in [13], while the total
time is 3× slower.

14

Table 3. FPGA implementation results for different ECPM cores over prime fields
above 128-bit security

Work SCA4
Area Time

LUTs FFs Slices DSPs BRAMs Latency Freq Total time OP/s
[CCs] [MHz] [ms]

NIST P-384 (192-bit security)
[19]1 (+) 32900 ~ 11,200 289 128 ~ 100 1.18 847
[18]2 (-) 31946 ~ 20,793 32 1 ~ 60 17.50 57

NIST P-521 (260-bit security)
[19]1 (+) 32900 ~ 11,200 289 128 ~ 100 1.60 625
[18]2 (-) 31946 ~ 20,793 32 1 ~ 60 39.90 25

Curve448 (224-bit security)

[16]3 (-) 2,555 7,049 1,580 33 14 328,286 357 0.92 1,087
(+) 3,583 7,423 1,648 35 14 473,926 335 1.41 708

[13]3 (+) 4,624 8,209 1,985 33 14 499,344 341 1.46 685
(++) ~ ~ 2,056 33 14 547,728 341 1.61 622

[17]4 (-) 50,143 ~ ~ 0 ~ 372,742 325 1.15 869

Design I3 (-) 321 174 137 1 2 7,047,055 250 28.19 35
(++) 509 438 203 1 2 12,068,239 250 48.27 21

Design II3 (-) 2,233 1,152 760 16 9 349,546 127 2.75 363
(++) 2,587 1,629 842 16 9 602,801 127 4.75 211

Design III3 (-) 13,132 4,035 4,354 81 0 77,702 95 0.82 1,219
(++) 13,415 4,610 4,424 81 0 133,254 95 1.40 713

1 Platform: XC6VLX760 2 Platform: XC4VFX100 3 Platform: XC7Z7020 4 Plat-
form: Virtex-7
4(-): no protection, (+): scalar blinding and point randomization countermeasures,
(++): scalar blinding and point re-randomization countermeasures

Design III is implemented employing 4,354 of the Slices, 81 DSPs, and no
BlockRAM. It is designed based on 5-level Karatsuba multiplication employing
the distributed memory to reduce total latency. Design III generates 1,219 ECPM
per second which leads to 76% and 12% improvement in terms of the required
clock cycles and throughput compared to [16], respectively. Besides, its protected
scheme improves 76% and 15% of the required clock cycles and throughput
compared to the high-protected scheme in [13] at the cost of utilizing 2.1× and
2.5× more Slices and DSPs, respectively.

We also report NIST P-384 and NIST P-521 hardware implementations. Most
of these results are hard to compare since the implementations differ in various
ways. According to Table 3, [18] in both field size 384 and 521-bit utilizes almost
20,800 Slices and 32 DSPs on a Virtex4 FPGA (2LUTs per Slice) to generate
57 and 25 ECPM per second. Moreover, [19] uses 11,200 Slices and 289 DSPs to

15

5 5.5 6 6.5 7
Log(#Clock Cycles)

0

0.5

1

1.5

2

2.5

3

3.5

4
E

q
u

iv
al

en
t

A
re

a
[#

S
lic

e]

104

 1 2

 3 4 5

 6 7
 8 9

10 11
12 13

1. Alrimeih14-p384 [16]
2. Alrimeih14-p521 [16]
3. Our Design III
4. Our Design III
5. Shah20[14]
6. Sasdrich17 [10]
7. Sasdrich17 [10]
8. Sasdrich18 [13]
9. Sasdrich18 [13]
10. Our Design II
11. Our Design II
12. Our Design I
13. Our Design I

Our Design II
Our Design I

Our Design III

Fig. 4. Efficiency comparison between FPGA-based ECPM architectures in terms of
A · T (Area×Time). Area is considered as Slices + DSPs equivalent, while each DSP
is assumed equivalent to 100 Slices based on the Vivado synthesis tool. A fixed low-
frequency is considered for all architectures, hence, the required clock cycle is used
rather than time. It should be notified that a low-frequency is employed for IoT devices
to reduce power consumption. (red: unprotected, blue: protected, black: high-protected)

compute 847 and 625 ECPM per second over 384 and 521-bit NIST prime on a
Virtex-6 FPGA, respectively.

It is worth mentioning that the aforementioned references (i.e., [16] and [13])
take advantage of the high operating frequency, thanks to designing a novel
architecture with the optimized critical path. They implement an arithmetic
core and a reduction core using pipelined DSPs with different configurations
corresponding to the required operations.

One of the most important challenges in developing IoT devices is reducing
power consumption due to their resource constraints. Although area utiliza-
tion has an undeniable role to decrease power consumption, increasing oper-
ating frequency grows the required dynamic power. Hence, considering a fixed
low-frequency to reduce the required power, we compare the efficiency of our
proposed architectures to other works in terms of A · T (Area×Time). Fig. 4
illustrates the efficiency of different FPGA-based point multiplication architec-
tures. According to this figure, our proposed Design I utilizes minimum resources.
Our proposed Design III achieves the lowest latency, while more resources are
employed compared to [16,13]. Eventually, the proposed Design II stands be-
tween these two designs with better performance in comparison with the previous
works.

According to the target platform each scheme can be implemented which
addresses the restrictions of the system. The proposed architecture in [16] and

16

[13] result in 3× speedup compared to our Design II, when they work in 357 and
341 MHz, respectively. However, a more technology-independent measurement is
the required cycle. An operating frequency in a limited range is mostly considered
to reduce the required power. Thus, efficiency can be computed by the required
clock cycles×area. In this case, the efficiency of the proposed lightweight design
is almost equal to the best previous work, while unprotected and high-protected
Design II improve 48% and 50% efficiency compared to [16] and [13], respectively.
Furthermore, Design III increases efficiency by 40% and 43% compared to [16]
and [13], respectively.

6 Conclusion

In this work, three hardware implementations for security level 224-bit are pre-
sented for area-constrained, time-constrained, and area and time trade-off ap-
plications. All proposed architectures are implemented on a mid-range Xilinx
FPGA XC7Z7020, while side-channel countermeasures are simultaneously in-
vestigated. We choose efficient techniques for each application, which include
interleaved reduction, consecutive Karatsuba multiplication, refined Karatsuba
identity, and pipelined architecture. These architectures can compute 1219, 363,
and 35 ECDH operations per second for high-performance, area-time efficient,
and lightweight designs, respectively.

Acknowledgment

The authors would like to thank the reviewers for their comments. Also, we
thank Mike Hamburg for his constructive comments. This work is supported by
a grant from ARO W911NF-17-1-0311.

References

1. Chen, L., Moody, D., Regenscheid, A., Randall, K.: Recommendations for discrete
logarithm-based cryptography: Elliptic curve domain parameters. Computer Se-
curity, Draft NIST Special Publication, National Institute of Standards and Tech-
nology 800-186, (2019)

2. Langley, A., Hamburg, M., Turner, S.: Elliptic curves for security (2016)
3. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-

toring. In: 35th Annual Symposium on Foundations of Computer Science, Santa
Fe, New Mexico, USA, 20-22 November 1994. 124–134 (1994)

4. Elkhatib, R., Azarderakhsh, R., Mozaffari Kermani, M.: Highly optimized mont-
gomery multiplier for SIKE primes on FPGA. In: 27th IEEE Symposium on
Computer Arithmetic, ARITH 2020, Portland, OR, USA, June 7-10, 2020. 64–71
(2020)

17

5. Seo, H., Sanal, P., Jalali, A., Azarderakhsh, R.: Optimized implementation of SIKE
round 2 on 64-bit ARM cortex-a processors. IEEE Trans. Circuits Syst. I Regul.
Pap. 67-I(8), 2659–2671 (2020)

6. Seo, H., Anastasova, M., Jalali, A., Azarderakhsh, R.: Supersingular isogeny key
encapsulation (SIKE) round 2 on ARM cortex-m4. IACR Cryptol. ePrint Arch.
2020, 410 (2020)

7. Bindel, N., Herath, U., McKague, M., Stebila, D.: Transitioning to a quantum-
resistant public key infrastructure. IACR Cryptology ePrint Archive 2017, 460

8. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(2018)

9. Hamburg, M.: Ed448-goldilocks, a new elliptic curve. IACR Cryptology ePrint
Archive 2015, 625 (2015)

10. Mike Hamburg: Ed448-goldilocks, a new high-strength curve and implementa-
tion. url: https://csrc.nist.gov/csrc/media/events/workshop-on-elliptic-curve-
cryptography-standards/documents/presentations/session7-hamburg-michael.pdf
(June 2015)

11. Bernstein, D.J., Lange., T.: Safecurves: choosing safe curves for elliptic-curve cryp-
tography. url: https://safecurves.cr.yp.to/. (2016)

12. Sasdrich, P., Güneysu, T.: Efficient elliptic-curve cryptography using curve25519 on
reconfigurable devices. In Goehringer, D., Santambrogio, M.D., Cardoso, J.M.P.,
Bertels, K., eds.: Reconfigurable Computing: Architectures, Tools, and Applica-
tions - 10th International Symposium, ARC 2014, Proceedings. 25–36 (2014, Vil-
amoura, Portugal)

13. Sasdrich, P., Güneysu, T.: Exploring RFC 7748 for hardware implementation:
Curve25519 and curve448 with side-channel protection. J. Hardware and Systems
Security 2(4), 297–313 (2018)

14. Bisheh Niasar, M., Elkhatib, R., Azarderakhsh, R., Mozaffari Kermani, M.: Fast,
small, and area-time efficient architectures for key-exchange on curve25519. In:
27th IEEE Symposium on Computer Arithmetic, ARITH 2020, Portland, OR,
USA, June 7-10, 2020. 72–79 (2020)

15. Salarifard, R., Sarmadi, S.B.: An efficient low-latency point-multiplication over
curve25519. IEEE Trans. on Circuits and Systems 66-I(10), 3854–3862 (2019)

16. Sasdrich, P., Güneysu, T.: Cryptography for next generation TLS: implementing
the RFC 7748 elliptic curve448 cryptosystem in hardware. In: Proceedings of the
54th Annual Design Automation Conference, DAC 2017, Austin, TX, USA, June
18-22, 2017. 16:1–16:6 (2017)

17. Shah, Y.A., Javeed, K., Shehzad, M.I., Azmat, S.: Lut-based high-speed point
multiplier for goldilocks-curve448. IET Computers Digital Techniques 14(4), 149–
157 (2020)

18. Ananyi, K., Alrimeih, H., Rakhmatov, D.: Flexible hardware processor for elliptic
curve cryptography over nist prime fields. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 17(8), 1099–1112 (2009)

19. Alrimeih, H., Rakhmatov, D.: Fast and flexible hardware support for ecc over
multiple standard prime fields. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 22(12), 2661–2674 (2014)

20. Järvinen, K., Miele, A., Azarderakhsh, R., Longa, P.: FourQ on FPGA: new hard-
ware speed records for elliptic curve cryptography over large prime characteris-
tic fields. In Gierlichs, B., Poschmann, A.Y., eds.: Cryptographic Hardware and
Embedded Systems - CHES 2016 - 18th International Conference, Proceedings.
517–537 (2016, Santa Barbara, CA, USA)

18

21. U.S. Department of Commerce/National Institute of Standards and Technology:
Digital signature standard (DSS) (2013)

22. Lochter, M., Merkle, J.: Elliptic curve cryptography (ecc) brainpool standard
curves and curve generation (2010)

23. Brown, D.R.L.: Sec 2: Recommended elliptic curve domain parameters (2010)
24. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.

Mathematics of Computation 48, 243–264 (1987)
25. Coron, J.: Resistance against differential power analysis for elliptic curve cryp-

tosystems. In Koç, Ç.K., Paar, C., eds.: Cryptographic Hardware and Embedded
Systems, CHES’99. 292–302 (1999, Worcester, MA, USA)

26. Bisheh Niasar, M., Azarderakhsh, R., Mozaffari Kermani, M.: EdDSA for hardware
implementation: Highly optimized Ed25519 and Ed448 signatures. Accepted in
IEEE Transactions on Circuits and Systems I: Regular Papers, (2020)

27. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Soviet physics doklady 7, 595 (1963)

28. Bernstein, D.J.: Batch binary edwards. In: Advances in Cryptology - CRYPTO
2009, 29th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2009. Proceedings. 317–336 (2009)

29. Bernstein, D.J., Chuengsatiansup, C., Lange, T.: Curve41417: Karatsuba revis-
ited. In: Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th
International Workshop, Busan, South Korea, September 23-26, 2014. Proceed-
ings. 316–334 (2014)

30. Schindler, W., Wiemers, A.: Efficient side-channel attacks on scalar blinding on
elliptic curves with special structure. NIST Workshop on ECC standards, (2015)

31. Ogawa, H.S., Luther, T.E., Ricardini, J.E., Cunha, H., Jr., M.S., Aranha, D.F.,
Derwig, R., Kupwade-Patil, H.: Accelerated v2x provisioning with extensible pro-
cessor platform. Cryptology ePrint Archive, Report 2019/1039 (2019)

19

