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Abstract. A t-out-of-N threshold ring signature allows t parties to
jointly and anonymously compute a signature on behalf on N public
keys, selected in an arbitrary manner among the set of all public keys
registered in the system.
Existing definitions for t-out-of-N threshold ring signatures guarantee
security only when the public keys are honestly generated, and many
even restrict the ability of the adversary to actively participate in the
computation of the signatures. Such definitions do not capture the open
settings envisioned for threshold ring signatures, where parties can in-
dependently add themselves to the system, and join other parties for
the computation of the signature. Furthermore, known constructions of
threshold ring signatures are not provably secure in the post-quantum
setting, either because they are based on non-post quantum secure prob-
lems (e.g. Discrete Log, RSA), or because they rely on transformations
such as Fiat-Shamir, that are not always secure in the quantum random
oracle model (QROM).
In this paper, we provide the first definition of t-out-of-N threshold
ring signatures against active adversaries who can participate in the sys-
tem and arbitrarily deviate from the prescribed procedures. Second, we
present a post-quantum secure realization based on any (post-quantum
secure) trapdoor commitment, which we prove secure in the QROM. Our
construction is black-box and it can be instantiated with any trapdoor
commitment, thus allowing the use of a variety of hardness assumptions.
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1 Introduction

A threshold cryptographic scheme enforces that a certain cryptographic action
is performed only if a quorum of users agree to proceed. For instance, in a
threshold signature scheme, a signature for a message msg should be accepted
only if at least t signers within a larger group of N signers used their secret keys
to compute it. One benefit of a threshold scheme is the tolerance to failures: even
if an adversary learns some (less than t) keys of compromised machines, she still
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will not be able to generate valid signatures. A threshold scheme is also tolerant
to benign misbehavior of users: if a set of nodes is off-line, signatures can still be
produced, as long as at least t users are active. Due to these additional robustness
properties of threshold signatures, there is interest from real applications (e.g.,
multi-signatures in Bitcoin). Threshold signatures are also target of the latest
NIST standardization effort [28].

In this paper, we describe a threshold ring signature scheme, where in addi-
tion to a quorum of t-out-of-N secret keys, one requires that: (1) the identity
of the t signers remains private (from anyone who did not participate in the
signing process) within the N public keys of the ring and (2) the set of N public
keys is established in an ad-hoc manner among the set of all available public
keys in the system (which can be more than N). There is no group manager,
nor a centralized join procedure: parties join the system freely with keys of their
choice, hence the name ring instead of group 1.

Threshold ring signatures [10] suit decentralized settings where parties dy-
namically join and leave the system, the number of active parties at any point
is not known, and there is an interest in protecting the identity of the parties
that endorse a certain statement. For example, in a trust blockchain, one could
impose that certain transactions are added to the blockchain only if at least t
trustees approved the operation, without revealing their identity. Threshold ring
signatures can be applied to any scenario where a statement must be endorsed
by a quorum, but parties need to protect their identities.

We want two security properties in a threshold ring signature: unforgeability
and anonymity. Unforgeability requires that fewer than t users together cannot
compute a signature on behalf of any ring. Anonymity requires that if a signature
is associated to a ring R of N users, then any possible subset of t users is equally
likely to be the set of signers. This can be modeled as: given a signature over a
ring R, any either of the two subsets S0 and S1 of R are equally likely to be the
set of keys used for computing the signature. We call S0 (S1) the signing set.

Since ring signatures target open settings where keys are generated indepen-
dently by each party, when evaluating the security of the scheme one should
take into account that some keys can be generated maliciously and possibly
adaptively on the public keys already present in the system and the signatures
already produced. For example, an adversary could try to join a system with
a key that is generated adaptively based on the other keys generated so far,
with the purpose of being able to sign a message even if she controls less than t
signers, or she can craft her public keys in such a way that if it is included in a
ring R by set of signers S, she will be able to learn some information about the
signing set S. This observation was already made by Bender, Katz and Morselli
in [4] for the case of 1-out-N ring signatures. Note that in the threshold setting,
t people must collaborate to obtain the signature, thus the adversary has the
additional capabilities of interacting with the honest parties when computing a
signature.

1 In group signatures [14], a group manager computes the keys for the users, and
posseses the trapdoors to violate the anonymity of a signer.
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1.1 Limitations of Previous Work

Security Definitions Capture only Passive Adversaries. Several thresh-
old ring signature schemes have been provided in literature but, somewhat sur-
prisingly, most consider adversaries with the following restrictions. First, the
adversary cannot create keys maliciously, that is, an adversary can only obtain
honestly generated keys, and in some cases, cannot even choose to receive more
(honest) keys, since all public keys are created once and for all and given to her
(e.g., [5,31]). Second, the adversary cannot corrupt parties (e.g. [30,31,5]), or, if
corruption is allowed, the adversary never participates in the signing process as
a member of the signing set. Only Abe et. al [1,2] consider the possibility of an
adversary who can add their own keys to the ring, but only for the unforgeability
property. Anonymity still relies on all keys being generated honestly.

In the real world, the above restrictions mean that no anonymity (and in
most work no unforgeability) guarantee is provided when the adversary is able
to observe honest parties’ keys (or signatures) before generating her public key,
and can be involved in the computation of some of the signatures.

Bender, Katz and Morselli observed in [4] that such restrictions on the ad-
versary do not reflect the setting for which 1-out-N ring signatures were devised
in the first place, which is a decentralized open systems where parties can join
dynamically. In the case of threshold ring signatures where t parties need to col-
laborate to produce a signature, definitions that precisely capture the capability
of an active adversary are crucial. Specifically, while it is true that anonymity of
a signature σ∗ for a ring R can be guaranteed only as long as the adversary did
not participate in computing σ∗, one should take into account that the adversary
can still participate in the computation of other signatures σ1, σ2, . . ., with some
of the same signers that computed σ∗, and can use this knowledge to infer infor-
mation about the signers who compute σ∗. To the best of our knowledge there
seem to be no definition in literature that captures all of the above adversarial
(and realistic) capabilities.

No Provable Post-quantum Security. Existing threshold ring signature
schemes do not present a provably post-quantum secure analysis. They are ei-
ther based on hard problems that are not post-quantum resistant [10,25,30,34,41]
(e.g., Discrete Log, RSA, bilinear maps), or, when based on post-quantum re-
sistant hardness assumptions [27,5,11,31] (e.g., lattices, multivariate code) they
use the Fiat-Shamir transform [18], the security of which is not known to hold
in general in the quantum random oracle model (QROM) [7,3]. Exciting recent
work [17,26] show that for Sigma-protocols with special properties the Fiat-
Shamir transform is secure even in the QROM, however it is not known whether
this result can be applied to the existing threshold signatures. We note that it is
possible that Abe et al.’s [2] scheme could be instantiated using post-quantum
Sigma-protocols (and thus be post-quantum secure), but it is not clear whether
this is the case. We discuss previous signatures in more detail in Section. 2.
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1.2 Our Contribution

Our contributions are security definitions and provable post-quantum security.
We elaborate on each contribution below.

Security Definitions in presence of Active Adversaries. We provide
the first definitions for threshold ring signatures that capture realistic adversar-
ial capabilities. The adversary may deviate arbitrarily from any of the signature
procedures (i.e, key generation and signature generation). This is in contrast with
previous work that considered passive adversaries who follow the prescribed pro-
cedures.
Provably Post-Quantum Secure Threshold Ring Signature in QROM.
We provide a general construction of threshold ring signatures in the QROM
based on any post-quantum secure trapdoor commitment scheme. The trap-
door commitment scheme is treated as a black-box and therefore can be instan-
tiated with various hardness assumptions. Our construction is an abstraction
and generalization of previous approaches. Post-quantum security in the QROM
is achieved by applying the Unruh’s transform [36]. For completeness, we also
discuss an implementation of post-quantum secure trapdoor commitment from
any (post-quantum secure) one-way-function using the circuit of the one-way-
function and a folklore transformation from Sigma-protocols to trapdoor com-
mitments.

Security Definitions in presence of Active Adversaries. We define new security
games for capturing anonymity and unforgeability for threshold ring signatures
in presence of adversaries that are actively participating in the system. In our
anonymity definition, our adversary can actively participate by adding keys that
she maliciously crafted, and by participating in the signing process. More specif-
ically, in the anonymity game, the adversary is given access to oracles that allow
her to generate new public keys (on behalf of honest parties), corrupt a party by
learning her secret key, and compute signatures for rings R and signings sets S
of her choice that can contain arbitrarily malicious keys, added on the fly in the
system. The adversary can use these oracles to train by participating in many
joint signature computation with other honest parties.

In the challenge phase, the adversary chooses a ring R that can contain
malicious or corrupted keys, and two candidate signing sets S0, S1. These signing
sets must contain only honest keys. She queries the signing oracle with R, S0,
S1 and a message msg and obtains a signature σ∗, computed using signing set
Sb, and she wins the game if she guesses b.

The main difference with existing definitions is that in previous work the
adversary could only query the signing oracle with keys honestly generated (via
the key generation oracle) and could not participate with malicious keys in the
signing process. Such definitions only anonymity guarantee security against an
external observer who does not actively interact with the system. Our definitions
are inspired by Bender et al. [4] but they are not a straightforward extensions
of theirs. They are provided in Section 3.
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Post-Quantum Threshold Ring-Signature from any Trapdoor Commitment A
well known paradigm to construct a t-out-of-N threshold signature schemes is to
use a t-out-of-N threshold Secret Sharing scheme (e.g. Shamir [33] secret sharing
scheme2) and leverage the unpredictability properties of a random oracle H to
force t parties to use their secret keys to “adjust” their shares so that they match
the output of H.

We follow such a paradigm and use trapdoor commitments to allow signers to
adjust the t shares. More specifically, recall that a trapdoor commitment scheme
is defined by some public key pk that anyone can use to compute a commitment c
of a message y i.e., c← Compk(y) such that c is hiding, that is, it reveals nothing
about y; and binding, that is, later c can only be opened as y. However, if one
knows a secret trapdoor sk associated to the parameters pk, she can compute a
“fake” commitment c ← TCompk(sk) that can be later opened as any message
y′ using the trapdoor.

At a high level, our threshold ring signature works as follows: the public key
of a signer corresponds to the public key pk of a trapdoor commitment T C (as
well as a field element α used for Shamir’s secret sharing); the signing key is the
trapdoor sk. When t parties want to jointly sign a message msg, they choose
N − t other keys (pks1 , pks2 , . . . , pksN−t) from the set of all keys published so
far 3; they then choose N − t points (ys1 , ys2 , . . . , ysN−t) and use the non-signer
public keys to commit to each point, thus obtaining N− t commitments. For the
remaining t commitments, each signer pks will prepare his own fake commitment.
The result of this step is a vector of N commitments (c1, . . . , cN ) of which t are
trapdoor (and thus can be equivocated later), and N − t are binding.

Next, the random oracle is evaluated on the vector of all N commitments to
obtain another point (0, z) where z = H(msg, c1, . . . , cN ). Now, the signers have
(N − t+ 1) points that uniquely identify a polynomial P of degree N − t. Once
P is defined, each signer pks can compute ys = P (αs) and use the trapdoor
sks to equivocate commitment cs so that it opens to ys. The final signature
simply consists of the N commitments and openings. The verifier will simply
check that the openings are valid and lead to points (α1, y1), . . . , (αN , yN ), (0, z)
that lie on the same N − t-degree polynomial P . The verifier will also check that
z = H(msg, c1, . . . , cN ).

For unforgeability, due to the unpredictability of H, the value z is known to
an adversary only after the points have been committed in (c1, . . . , cN ). If the
adversary controls less than t signers—and thus knows less than t trapdoors—she
cannot adjust t points, unless she is breaking the (post-quantum4) binding prop-
erty of the underlying commitments. For anonymity, recall that the difference

2 In (t,N)- Shamir Secret Sharing, to share a secret s, a dealer compute a random
polynomial P of degree t − 1 with constant term s. The i-th share of the secret is
computed as yi = P (αi), for some field element αi. Given t shares the secret can be
reconstructed using polynomial interpolation

3 In practice we will have a leader choosing such points. We stress that the leader does
not have to be trusted.

4 In Section 6.1 we discuss in more detail why the issue of binding in presence of
quantum adversaries, discussed in [3], does not affect our construction.

5



between a signature computed by signers in set S0 versus S1 is in the positions
of the trapdoor commitments. Thus, an adversary winning the anonymity game
is able to distinguish which commitments are computed using the trapdoor,
therefore violating the (post-quantum) trapdoor property of the commitment.

These security arguments are straightforward at a high level. However, in
the formal proof via hybrid arguments one has to switch from the case where
the trapdoors are used (and signers and non-signers behave differently) to the
case where no trapdoor is used, and thus the adversary has no advantage in
breaking anonymity. This is possible by leveraging the programmability of the
random oracle H that would allow the reductions to know the point (0, z) of the
polynomial before computing the commitments (thus, such commitments do not
need to be equivocated). Similarly, when reducing unforgeability to the binding
of the underlying trapdoor commitment, we need the reduction to simulate the
signing oracle without knowing the trapdoor (otherwise, it would not possible
to break binding). In particular, to break binding the reduction needs to know
two openings of at least one commitment. In the classical case, this can be done
by rewinding the adversary and adaptively programming the random oracle.
However, this proof technique is not directly applicable when the adversary has
quantum access to the random oracle. As shown by Unruh in [36], rewinding
a quantum-capable adversary and programming the random oracle impacts the
state of the adversary, and does not guarantee extraction.

In our construction, we obtain on-line extractability by applying the Unruh
transform [36]. The main idea of this transform is not to extract by rewinding the
adversary. Rather, all the outputs that are needed are contained in the signature.
In the proof, we replace H with a 2q-wise independent function (where q is the
maximum number of oracle queries), which is indistinguishable from the random
oracle. Thus, the extractor can invert the function and find two openings.

The signature is modified so the same vector of commitments (c1, . . . , cN )
is associated to multiple points z1, . . . , zm and therefore will require m different
openings. The signers will then encrypt, using a random permutation G, modeled
as a random oracle, m multiple openings of the same commitments cs. Namely,
for a commitment cs, the signer additionally sends m encryptions (gs1, . . . , g

s
m)

where gj = G(ysj ||opsj ||rsj ) and where ysj , op
s
j is the j-th opening of cs and rsj is

a random key used for encryption. Here m is the statistical security parameter.
Among the m encrytions, each signers will only provide the decryption of one
opening (ysj , op

s
j) for a single j ∈ [m] (chosen via a random oracle). Note that for

the non-signers, the openings will all be the same value. This technique allow the
reduction, who sees all encryptions, to “invert” the values random permutation
G and obtain at least two openings (ysj , op

s
j), (ỹsj , õp

s
j) for the same commitment

cs.

To amplify the probability of inverting and extracting enough openings, this
is repeated n times, using cut-and-choose techniques. To sum up, the value n is
the number of commitments (of a single ring member) and m is the number of
openings a signer makes for each. For each of the n commitments and their m
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possible openings, in the signature, one will see only one “line” of openings. For
programmability, we also use a indistinguishability lemma shown in Unruh [36].

While the secret sharing and Random Oracle paradigm is common to con-
struct ring and threshold ring signatures, our construction presents two novel
benefits. First, it is black-box in any trapdoor commitment, and thus it can
be instantiated under any assumption that allows one to construct trapdoor
commitments (e.g., lattice-based or hash-based trapdoor commitments) and it
generalizes previous constructions [1]. In particular, this allows parties to poten-
tially use different trapdoor commitment schemes, as long as they publish the
corresponding public key and the procedure to commit. This does not violate
security, since the security of honest parties should not depend on the quality of
the other’s parties key. Indeed, in the security game, anonymity is guaranteed
as long as there are two subsets S0 and S1 containing all honest keys, while
unforgeability is guaranteed as long as ≤ t keys are corrupted. In the other
cases, security cannot be guaranteed. Second, our construction is the first to be
analyzed in the quantum random oracle model, and therefore provides provably
post-quantum security guarantees.

Trapdoor Commitment from Post-Quantum secure One-way Function For com-
pleteness, we informally discuss a possible implementation of post-quantum se-
cure trapdoor commitment (details are provided in Section 6). It is folklore
that trapdoor commitment schemes can be constructed from any honest-verifier
zero-knowledge (HVZK) Sigma-protocol [16], for a language L. Let f be a
post-quantum secure one-way function (e.g., SHA-3), let Cf be the associated
arithmetic of boolean circuit. Let (Σ.P1, Σ.V,Σ.P2) be the 3 moves of a (post-
quantum secure) Sigma protocol, with a transcript (c, e, z) and let Σ.Sim be the
HVZK simulator associated to Σ. Let X ∈ L if there exists an W such that
X = Cf (W ). The public key of a party is X. The trapdoor key is W . To com-
mit to a message msg honestly, a party simply runs Sim(X,msg) and obtain c, z
where c is the commitment and z,msg will be the opening. To create a trapdoor
commitment, a party computes c ← Σ.P1(X,W ) and then to open to a mes-
sage m∗ she will simply run Σ.P2(X,Y, c,msg∗) and obtain the opening z. A
post-quantum secure Σ protocol can be based for example on Blum’s protocol
for Graph Hamiltonicity instantiated with a statistically binding commitment.
ZkBoo [21] is another example of post-quantum secure Sigma-protocol.

Discussion on Our Contribution and Previous Work. A natural question is
whether previous constructions of threshold ring signatures also satisfy our
stronger security definition – at least classically.

As most previous constructions assume only honest participants, at the very
least they lack the appropriate consistency checks. It may be the case that if these
schemes are modified to check for malicious participants, they would preserve
their security in the presence of active adversaries.

However, we stress that this should not suggest that previous security defi-
nitions are sufficient. Indeed, one could devise a threshold ring signature scheme
that satisfies all of the security properties in the presence of passive adversaries
but that are completely insecure in the presence of active adversaries.

7



2 Related Work

In this section, we review previous work. We first describe (threshold) ring sig-
natures, pointing out the definitions of security as well as whether their work
considered post-quantum security. We summarize the schemes in Table 1. The
purpose of the table is not to argue efficiency of our construction, but to highlight
the stronger security guarantees that we provide, while achieving asymptotically
comparable efficiency. Next, we describe thresholdization techniques, finally, and
how to ensure post-quantum security.
(Threshold) Ring Signatures. Threshold ring signatures were introduced by Bres-
son, Stern and Szydlo (BSS) in [10] as an extension of the ring signatures intro-
duced by Rivest, Shamir and Tauman (RST) [32] to the t-out-of-N case. Schemes
such as BSS, Liu et al., Okamoto et al., and Yuen et al. [10,24,29,41] are based
on hard problems that are not post-quantum secure. Moreover, their security
definitions do not allow adversarially chosen keys.

More recently Bettaieb and Schrek [5] (improving on Aguilar et al. [27])
showed a lattice-based threshold signature. However, the security game they
consider is weak: the adversary cannot create nor corrupt keys before choosing
the signing sets and the ring for the challenge phase. Furthermore, the security
of their scheme is not formally analyzed in the post-quantum setting. Katz,
Kolesnikov, and Wang [23] showed a method for building efficient ring signatures
using symmetric-key primitives only, it is an interesting question how to extend
it to the threshold case, while preserving the efficiency.

Thresholdizing. The concept of trapdoor commitments comes from Brassard et
al. [9], and is used by Jakobsson et al. [22] for designated verifier signatures.
It is possible to thresholdize their scheme using the ideas of Cramer et al. [15].
Cramer et al. show how to build a threshold scheme in which the prover shows
he knows at least t out of N solutions without revealing which t solutions are
involved. This concept has obvious parallels with the techniques in our scheme,
although it uses different terminology. Many threshold schemes use the same
techniques as set forth by Cramer et al.

The basic concept is the use of a secret sharing scheme, in which a secret is
distributed among the N parties so that any t of them can recreate the secret.
In the first ring signature scheme RST [32], the authors suggested the idea of
using [15] to thresholdize their scheme, which was later done by BSS [10].

Related to our work are Boldyreva [6], which discusses threshold and multi-
signature schemes though does not focus on anonymity, and the “thresholdizers”
shown by Boneh et al. in [8]. However, both works focus on systems that have
a centralized setup and group managers; moreover, the work of [6] is based on
non-post-quantum secure assumptions such as DDH and RSA.
Post-Quantum Security. The Fiat-Shamir transformation [18] is a method to
turn a Sigma-protocol into a non-interactive signature. Many of the threshold
ring signatures described above utilize Fiat-Shamir. However, as Ambainis et
al. [3] showed, the Fiat-Shamir construction is not secure against quantum ad-
versaries in general.
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Table 1: Comparison of other threshold ring signature schemes. Other schemes
may not use post-quantum secure problems. t,N are the threshold and ring size.

Work
Hardness Assumption/

PQ-Secure?
QROM

Adv.
Keys

Signature Size

Our work Trapdoor Commitment X Yes Yes 3Nn+Nmn †

Abe et al. [2] Trapdoor OWPs, Σ-Prot ? No Yes (N − t) +N

Aguilar et al. [27] Syndrome Decoding X No (FS) No Nk †
Bettaieb et al. [5] Lattice X No (FS) No 1 + 3t+Nt

Bresson et al. [10] RSA 7 No No 1O(t)dlog1(N)e(t+N)

Chang et al. [12] T-OWP; Σ-Prot ? No No 1(N − t) +N , cf. [2]

Liu et al. [25] Bilinear Maps 7 No No N − t+N

Okamoto [30] Discrete Log 7 No No O(kN)

Petzoldt [31] Quadratic MQ Problem X No (FS) No O(N)

Wong et al. [40] Trapdoor OWPs ? No No N + 1N cf. [10]

Yuen et al. [41] CDH, subgroup 7 No No 1N+1
X Post-quantum secure problem
7 Not post-quantum secure
? Shows instances where the generic hardness assumption Trapdoor One-Way Permu-
tations (T-OWP) could be post-quantum secure, although no candidate of PQ-secure
T-OWP currently exists. They instantiated their scheme with a discrete logarithm/RSA
type of function.
† n,m and k statistical security parameters.

To show the security of a scheme using the Fiat-Shamir transformation, one
typically uses rewinding. This means that a simulation measures the output from
an adversary, rewinds him, and then runs another execution from some save
point onwards. However, a quantum adversary may notice that a simulation has
measured his output, and this changes his quantum state.

Another possible transformation is Fischlin [20], but Ambainis et al. [3] also
showed that Fischlins’s scheme is insecure in general. The transformation does
not require rewinding, but has a concept of saving the list of all query inputs.
In the quantum setting, this list is not well-defined. Furthermore, Fischlin’s
transformation has the condition that the Sigma-protocols must have “unique
responses”, which means that it cannot transform all Sigma-protocols. On the
other hand, Fiat-Shamir can transform arbitrary Sigma-protocols.

Applying the quantum rewinding technique introduced by Watrous [39] to
Sigma-protocols with a “strict soundness” property, Unruh [35] was able to create
quantum proofs of knowledge. Requiring strict soundness is stringent, and yields
inefficient schemes. Recently, Don et al. [17] and Zhandry/Liu [26] proved some
less restrictive settings. Both works find methods that allow reprogramming
of the QROM by using “collapsing” Sigma-protocols. The notion of collapsing
comes from Unruh [38]. The idea is that it is not possible to tell whether a
superposition of responses in a Sigma-protocol were measured or not. While it
may be possible to pick settings such that Fiat-Shamir (or Fischlin) remains
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secure even in the post-quantum setting, the Unruh transformation [36] is a
generic quantum-secure construction and can be applied to any Sigma-protocol.

Chase et al. [13] also proposed post-quantum digital signature schemes, in
which they showed two variants of a signature scheme. The first, named Fish,
was created using the Fiat-Shamir transformation, whereas the second, Picnic,
used the Unruh transformation.

3 Preliminaries

In the following, we describe the basic notation. Then we describe the concepts
needed to create our threshold ring signature scheme.

Notation. When not explicitly stated, we assume that the algorithms are param-
eterized by a security parameter λ. We write [N ] = {1, . . . , N}, and (ai)i∈[N ] to
indicate a sequence of values indexed by i. A negligible function negl(n) : N→ R
is a function such that for every positive polynomial poly(n) there exists an N
such that for all n > N , negl(n) (n) < 1

poly(n) . Most algorithms we describe

are classical and probabilistic polynomial time (PPT). Other algorithms are
quantum polynomial time (QPT), which is a quantum algorithm that runs in
polynomial time. In this paper, a QPT adversary is one who can locally run
quantum computation and may have quantum access to the random oracle. We
use the notation s←$S to say that s is randomly chosen from a set S. We use
the notation y ← f(x) to show that f is a randomized algorithm. For deter-
ministic algorithms we use y := f(x). We may make randomness explicit and
write y := f(x; r). Finally, a family of functions F is k-wise-independent if for
any distinct x1, . . . , xk, it is the case that for any f ←$F , f(x1), . . . , f(xk) are
independent and uniform random values. Random polynomials of degree k − 1
are a k−wise-independent family.

Trapdoor Commitment Scheme A commitment scheme involves two parties, a
sender and a receiver. A sender sends some commitment of a message to the
receiver. The commitment is hiding, meaning the receiver cannot discover what
the message is. Later, the sender may open their commitment by sending the
message and some auxiliary opening information, which acts as evidence. The
commitment is binding, meaning that the sender cannot change what the original
message is.

Trapdoor commitment schemes are commitment schemes [19] where if the
user knows some trapdoor, then he can open a commitment to any message
he wishes. In contrast, without a trapdoor, a user can only open the original
message he committed to.

A trapdoor commitment scheme has four security properties: completeness,
hiding, binding, and trapdoor indistinguishability. Completeness demands that
the receiver always accepts any honest execution of the commitment and open-
ing phase. That is, for any message, the receiver is convinced by any correctly
computed commitment and opening. Hiding is the same as for a commitment
scheme, and binding is the same for users without access to the trapdoor (thus we
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omit more detailed description). Finally, trapdoor indistinguishability (or trap-
door for short) means that, upon opening, it should be infeasible for the receiver
to distinguish whether the original commitment was honest or a counterfeit. We
formalize this property in Experiment 1.

Definition 1 (Trapdoor Commitment Scheme.). A trapdoor commitment
scheme is a tuple of PPT algorithms T C = (Setup, KGen, Com, TCom, TOpen,
VerifyOpen) for a messages space M where:

– pp← Setup(1λ). On input the security parameter λ, Setup returns public pa-
rameters pp. In some commitment schemes this algorithm may not be needed.

– (pk, trap) ← KGen(1λ, pp). On input the security parameter λ and (possibly
empty) public parameters pp, outputs a public key pk and a trapdoor trap.

– (c, op)← Compk(m): On input a public key pk and a message m, Com returns
a commitment c to message m and opening information op.

– (state, c)← TCompk(trap). On input a public key pk, a trapdoor trap, TCom
returns a counterfeit commitment c, and a state state.

– op ← TOpen(trap, state, c,m). On input a trapdoor trap, state, a commit-
ment c, and a message m, TOpen returns an opening op.

– b := VerifyOpenpk(c, op,m). Given a commitment c, a public key pk, auxiliary
opening information op, and a message m, outputs a bit b.

– b := Valid(pp, pk): On input public parameters pp and a public key pk, returns
whether pk is well-formed.

Experiment 1 (Trapdoor Indistinguishability TrapT CA (λ).) We define an
oracle TrapRealb which on input mi, outputs a commitment and opening for mi.
If b = 0, TrapReal0 computes (ci, opi) ← Compk(mi). If b = 1, then TrapReal1

computes (state, ci)← TCompk(trap) and opi ← TOpen(trap, state, c,mi).
Let A be a QPT with classical access to the challenger.

Training Phase

1. The challenger runs pp← Setup(1λ) and (pk, trap)← KGen(1λ, pp) and gives
pp and pk to A.

2. A uniform bit b ∈ {0, 1} is chosen.
3. A can (classically) query TrapRealb on input messages mi and obtain ci, opi

for polynomially many i.

Challenge Phase

1. Finally, A outputs b′.
2. If b = b′, then the output of the experiment 1 (and we say A wins the game).

Else, output 0.

Definition 2 (Trapdoor Indistinguishability). A trapdoor commitment scheme
T C satisfies post-quantum secure trapdoor indistinguishability if for all QPT ad-
versaries A, there exists a negligible function negl such that:

Pr[TrapT CA (λ) = 1] ≤ 1

2
+ negl(λ)
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3.1 Threshold Ring Signatures in Presence of Active Adversaries

We provide our new definition of a t-out-of-N ring signature scheme which con-
siders active (and thus more realistic) adversaries. We denote the set of all public
keys which are added to the system as P = (vk1, vk2, vk3, . . . ). We call P a ring.
The notation R denotes the indices of the keys chosen from P , which we call a
subring, where |R| = N . A signer s is represented by their public-private key
pair (vks, sks). We always enumerate the members of R as 1, . . . , N . The sign-
ers are represented by the subset S ⊆ R, while the non-signers are denoted as
NS ⊆ R. We have S tNS = R, where t represents the disjoint union. We use
T to represent the secret keys of the signers, that is: T = {sks|s ∈ S}.

Definition 3 ((t,N)-Threshold Ring Signature Scheme). A (t,N)-threshold
ring signature scheme is a 4-tuple of algorithms (Setup,KGen,ThSign,Vfy). A set
of signers S ⊂ P signs the message msg with respect to a subring R ⊂ P with
|S| ≥ t.

– pp ← Setup(1λ). On input the security parameter, generates public parame-
ters pp.

– (vks, sks)← KGen(pp, 1λ): On input the security parameter λ and the public
parameters pp generates a public-private keypair for ring member s.

– σ ← ThSignpp(msg, T,R). This is a possibly interactive procedure. The play-
ers owning the secret keys in set T interact in order to jointly produce a ring
signature σ on a message m and subring P ⊆ P , where |T | ≥ t.

– b := Vfypp(msg, R, σ). Verifier checks that σ is a correct threshold signature
on message msg with respect to R. If the signature is valid, then b = 1,
otherwise b = 0.

A threshold ring signature scheme satisfies completeness, t-unforgeability, and
t-anonymity. Completeness means that if the signers follow the ThSign algorithm
correctly, an honest verifier should accept their proof. Formally:

Definition 4 (Perfect completeness). (Setup, KGen, ThSign, Vfy) is com-
plete if for QPT A it holds:

Pr


pp← Setup(1λ)
{(vks, sks)← KGen(pp)}s∈P
(msg, S,R)← A(pp, {(vks, sks)}s∈P )
σ ← ThSignpp(msg, T (S), R)

:
S ⊆ P =⇒
Vfy(msg, R, σ) = 1

 = 1

Classical Oracles For the security properties of unforgeability and anonymity,
we give the adversary the ability to (classically) query three different types of
oracles in arbitrary interleaf during training. The only difference between an
adversary to anonymity and to unforgeability is in the challenge phase.

– OKGen(s): The oracle produces (vks, sks) for player s using KGen and returns
vks to A. The set of honestly generated keys is updated by P = P ∪ {vks}.
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– OSign(msg, S,R): A requests a signature on message msg with signers S with
respect to a ring R, where |R| = N and R ⊂ P . S could contain both honestly
generated keys or adversarially generated keys, hence, S = Scorr tShon (the
disjoint union of corrupted and honest members), where Scorr denotes the
set of corrupted members and Shon is the set of honest members. T is the set
of private keys of signers in Shon. The oracle follows the algorithm for OSign
with the secret keys that he controls. R and S may include adversarially
chosen keys or keys of corrupted parties. To produce a signature, A must
cooperate with the oracle and participate in the signing procedure. Then the
oracle outputs σ ← ThSign(msg, T,R).

– Corrupt(s): Let Pcorr be the set of corrupted keys. If vks /∈ Pcorr then return
the secret key sks to A. Update Pcorr = Pcorr ∪ {vks}.

– ORegister(s, vk): On input a signer s and a public key vk, if vk ∈ P , return
⊥. Otherwise, the oracle adds vks = vk to P and Pcorr.

Experiment 2 (t-Unforgeability Game SigForgeTRSF (t, λ)) . On a (t,N)- thresh-
old ring signature scheme TRS = (Setup, KGen, ThSign, Vfy) we define a game
for a QPT adversary A and security parameter is λ.
Training Phase

1. The challenger runs pp← Setup(1λ) and forwards pp to A.
2. Initially, the ring P = ∅ and the set of corrupted users is Pcorr = ∅.
3. The adversary F is given (classical) access to a key generation oracle OKGen,

a signing oracle OSign, and a corruption oracle Corrupt, and may add keys
using ORegister.

Challenge Phase F produces σ∗, msg∗ and R∗. F wins the game if

1. |R∗| ≥ t
2. |Pcorr ∩R∗| < t
3. (msg∗, R∗) is new
4. Vfy(msg∗, R∗, σ∗) = 1

Definition 5 (t-Unforgeability wrt Insider Corruption). A (t,N)- thresh-
old ring signature scheme TRS satisfies t-Unforgeability wrt Insider Corruption
if for all QPT adversaries F , there exists a negligible function negl such that:

Pr[SigForgeTRSF (t, λ)→ 1] ≤ negl(λ)

Experiment 3 (t-Anonymity wrt adversarial keys) On a (t,N)-threshold
ring signature scheme TRS, we define the t-anonymity game AnonKeyTRSA (t, λ)
for a QPT adversary A.

Training Phase

1. The challenger runs pp← Setup(1λ) and forwards pp to A.
2. Initially, the ring P = ∅ and the set of corrupted users is Pcorr = ∅.
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3. The adversary A is given (classical) access to a key generation oracle OKGen,
a signing oracle OSign, and a corruption oracle Corrupt, and may add keys
using ORegister.

Challenge Phase

1. A requests a signature on message msg∗ from one of two signing sets S0, S1

with respect to a ring R, where |S0| = |S1| = t and S0 ∪S1 ∩ Pcorr = ∅ (i.e.,
signing sets do not contain corrupted parties). However, the remaining keys
in R may contain corrupted parties.

2. The challenger returns σ∗ ← ThSign(msg∗, Tb, R), for a random bit b. Here
Tb represents the secret keys corresponding to Sb.

3. A returns the bit b′. A is said to win the game if b′ = b.

Definition 6 (Anonymity wrt adversarial Keys). A (t,N)-threshold ring
signature scheme TRS satisfies t-Anonymity wrt Adversarial Keys if for all QPT
adversaries A, there exists a negligible function negl such that:

Pr[AnonKeyTRSA (t, λ)→ 1] ≤ 1

2
+ negl(λ)

4 Post-Quantum Secure Threshold Ring Signatures
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. . .

...

g1i,m . . . gNi,m

Hash invertibly

Inputs/Openings for comiCommitments for each i “Encryptions” using G

Fig. 1: Graphical representation of a signature.

We describe our (t,N)-threshold ring signature scheme TRS. For reference,
all notation in the protocol is in Table 2. We call an ordered list of public keys
a ring P , where P = (vk1, vk2, . . .). We denote a subring of P as R. We always
enumerate the R as 1, . . . , N . This allows us to avoid more cumbersome notation
such as vkis . Finally, we reference a signer by their index s, so that he is the
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s-th public key in R. A ring member s ∈ [N ] is represented by their public-
private key pair (vks, sks). In TRS each ring member s has their public key as
vks = (pks, αs), where pks is the public key for T C and αs ∈ F is a random
element of F. Their private key sks is their trapdoor for T C. To simplify the
indexing in the construction and proof we denote the set S as a set of indices,
that is S ⊆ [N ].

Our building blocks are a post-quantum secure trapdoor commitment scheme
T C, a (t,N) Shamir secret sharing scheme, a random oracle H = (H1, H2) and
a random permutation G. The index 1 or 2 for H informs the random oracle
which type of query is being made. H and G are fixed in the Setup phase.

Suppose that a set of t parties, which we call signers, would like to sign a
message msg on behalf of a subring R ⊆ P . Let S be the set of indices denoting
the signers. Let the remaining members of the subring be denoted as NS = R\S.

At a high level, a signature for message msg will consist of N commitments
(c1, . . . , cN ) – one for each public key pki in the ring R – to N points y1, . . . , yN

that interpolate to (N − t)-degree random polynomial rpoly with constant term
z (i.e., such that rpoly(0) = z). The value z is chosen as H1(msg, c1, . . . , cN ).
The commitments are computed as follows. Among the signers there is one
distinguished member known as the leader, who is chosen by some arbitrary
process. Each of the signers creates a trapdoor commitment, under they public
key pks, which they can later open to any message. For each of the non-signers
in NS the leader creates an honest commitment to a random point y. Using the

Sym Meaning

t Threshold

N Number of members of the ring.

P Ordered list of public keys P = (vk1, vk2, . . . ).

R Subring R ⊆ P .

S Set of indices identifying the signers in R.

T Secret keys to signers in S, T = {sks}s∈S .

NS Set of indices denoting non-signers where NS ⊆ [N ]

n Number of commitments each signer will make.

i Indexing over n

m Number of openings each signer will make.

j Indexing over m

Lagrange Lagrange interpolation.

M Message space over field F.

C Commitment space over some field F.

G G←$RO. G :M× F× F→M× F× F.

H H = (H1, H2) where H ←$RO.

H1 H1 :M×CN × [m]→ F
H2 H2 :M×CN × (ran(G))N×m → [m]

T C Trapdoor commitment scheme.

λ ∈ N Security parameter.

Table 2: Notation.
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N − t points committed in the non-signer’s commitment and the output of the
random oracle z, the leader has N − t + 1 points to interpolate a polynomial
rpoly using Lagrange interpolation (that we denote by Lagrange). Then each
signer uses rpoly to compute the point ys := rpoly(αs). Finally, they use their
trapdoor sks to equivocate their commitment cs to ys.

The signature will consist of all commitments (c1, . . . , cN ) and openings
(y1, . . . , yN ) for polynomial rpoly. However, since for the security proof we need
to extract two openings (and thus violate binding), we must force the signers to
generate many openings for the same trapdoor commitment. This is where we
use the Unruh transformation [36]. This is done by having m points z1, . . . , zm
and thus m distinct polynomials that should be interpolated using the same
set of points committed in com=(c1, . . . , cN ). The signers therefore prepare m
set of openings, one for each polynomial rpoly1, . . . , rpolym. All these openings
are “encrypted” using the one-way permutation G (which is invertible by the
reduction during the proof), producing the line (g1i , . . . , g

N
i ) for each point zi.

Only one set of openings, denoted by J , is eventually revealed to the verifier. J
is chosen using another random oracle H2, computed by (com, gsi ) for all i ∈ [n].
To amplify the probability of extraction, the above process is repeated n times
in parallel. The values n and m are statistical security parameters. The descrip-
tion of the leader and signer procedures is provided in Fig. 2 and 3. Finally, the
verification is described in Fig. 4.

To sum up our (t,N) ring signature signature σ consists of the following
elements. n “lines” of commitments comi where comi = (csi )s∈[N ]. For each line
we have m rows that represent possible “openings” of the same commitments:
σi=({(csi ,ysi,Ji , op

s
i,Ji

,rsi,Ji)}
N
s=1, {gsi,j}

N,m
s=1,j=1). We will only reveal one of these

m rows. See Figure 1 for a pictorial representation of the final signature.

(t,N)- Threshold Ring Signature TRS

Setup: Setup(1λ).
Chooses G←$Perm and H ←$RO, where H is diversified as H1, H2. Returns
pp = (H,G).

Key Generation: KGen(pp).
For the s − th member joining the ring, running the key generation yields
(pks, sks)← T C.Setup and αs←$F. Set vks = (pks, αs).

Threshold Signing Procedure: ThSignpp(msg, T,R)
This is an interactive procedure run among the parties in the set S to jointly
sign a message msg on behalf of the ring R, with |R| = N and |S| ≥ t. The
non-signers are indexed as NS, so that R = S t NS. Before starting the
protocol, all participants check whether the other keys in the chosen ring
are valid using Valid. The procedure starts with one party in S (chosen
arbitrarily) running the Leader procedure (Fig. 2). Every party in S runs
the Signer procedure (Fig. 3). The two algorithms Leader and Signer run
in parallel.
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Verification: Vfy(msg, R, σ) Calculate for each σi, i = 1, . . . , n:

b
?
= Valid(pks)∀s ∈ R

1
?
= VerifyOpenpks

(csi , op
s
i,Ji

, ysi,Ji
)∀s ∈ R

comi = {csi}s∈[N ]

Ji := H2(msg, comi, {gsij}N,m
s=1,j=1)

zi,Ji := H1(msg, comi, Ji)

gsi,Ji

?
= G(ysi,Ji

||opsi,Ji
||rsi,Ji

)∀s ∈ R
rpoly(·) = Lagrange({(αs, ysi,Ji

)|s ∈ R} ∪ (0, zi,Ji))

deg(rpoly)
?

≤ N − t

rpolyi,Ji
(αs)

?
= ysi,Ji

for all s ∈ R

If the values match on all checks, then the verifier outputs 1. Otherwise, 0.

5 Post-Quantum Security of TRS

Theorem 1. If T C := (Setup, Com, TCom, TOpen, VerifyOpen) is a post-
quantum secure Trapdoor Commitment Scheme, and H1, H2, G are modeled as
quantum-accessible random oracles then TRS achieves perfect completeness (per
definition 4), t-Anonymity wrt to Adversially Chosen Keys (per Definition 3) and
t-Unforgeability w.r.t to Insider Corruption (per Definition 2) in the quantum
random oracle model in presence of QPT adversaries.

Our threshold ring signature scheme has the properties of completeness,
signer anonymity, and unforgeability for a threshold t-out-of-N . The anonymity
and unforgeability proofs are similar. The difference is in the challenge phase. For
unforgeability, the adversary produces a threshold ring signature; in anonymity,
the adversary chooses between two signing sets. Anonymity is proven via reduc-
tion to trapdoor indistinguishability, while unforgeability is proven via reduction
to binding of the underlying trapdoor commitment scheme.

In both proofs, the QPT adversary has quantum access to the random ora-
cles H1, H2, G, to the underlying trapdoor commitment procedure, and classical
access to the oracles OSign, Corrupt, and OKGen. This captures the fact that
honest parties run classically.

5.1 Proofs

Completeness. Completeness is the idea that honest signers produce a signa-
ture which is accepted by an honest verifier, and is proven using the guarantees
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ThSignpp(msg, T,R)

Leader

for i = 1 to n do
for q ∈ NS do

yqi ←$F
(cqi , op

q
i )← Compkq (yq)

Multicast: Send cqi , y
q
i ,

opqi to all s ∈ S.
for s ∈ S do

Wait: Get csi from s ∈ S.
comi := (csi )Ns=1

for j = 1 to m do
zi,j := H1(msg, comi, j)

rpolyi,j(·) :=
Lagrange({(αq, yqi )|q ∈ NS} ∪
(0, zi,j))

for s ∈ S do
Wait: Get gsi,j ∀s ∈ S.

for q ∈ NS do
rqi,j ←$F
gqi,j := G(yqi ||op

q
i ||r

q
i,j)

Multicast: Sends gqi,j , r
q
i,j

for q ∈ NS.
Ji =

H2(msg, comi, (g
s
ij)

N,m
s=1,j=1)

Wait: Get openings on index
Ji from ∀s ∈ S.

if VerifyOpenpks(csi , op
s
i,Ji

,

ysi,Ji
)

?
= 1 ∀s ∈ S then

σi =
({(csi , ysi,Ji

, opsi,Ji
, rsi,Ji

)}Ns=1,

{gsi,j}N,m
s=1,j=1)

else
Abort . Aborts if a signer

does not give correct opening.
Return σ = ((σi)

n
i=1, R)

Fig. 2: The Leader is chosen arbitrarily
from among the signers.

Signer

for i = 1 to n do
statesi , c

s
i ← TCom(sks).

Wait: Get yqi , c
q
i , op

q
i of q ∈ NS

from Leader, then verify.
for q ∈ NS do

1
?
= VerifyOpenpks(cqi , op

q
i )

Multicast: Send csi to ∀s ∈ S
Wait: Get csi ∀s ∈ S
comi = (csi )Ns=1

for j = 1 to m do
zi,j := H1(msg, comi, j)

rpolyi,j(·) :=
Lagrange({(αq, yqi )|q ∈ NS} ∪
(0, zi,j))

y′sij := rpolyij(α
s)

opsi,j ← TOpen(sks, states,
csi , y

′s
i,j).

rsi,j ←$F
gsi,j := G(y′si,j ||opsi,j ||rsi,j)
Multicast: Send gsij .

Wait: Get gsi,j for all s ∈ S.

Wait: Get from leader ∀q ∈
NS gsi,j and rsi,j .

Ji = H2(msg, comi,

(gsi,j)
N,m
s=1,j=1)

Check gqi,Ji

?
=

G(yqi,Ji
||opqi,Ji

||rqi,Ji
) for q ∈ NS

Return (csi,Ji
, ysi,Ji

opsi,Ji
, rsi,Ji

)ni=1

Fig. 3: The Signer algorithm works in
parallel with the Leader algorithm.
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of Shamir’s secret sharing and the commitment scheme. Completeness demands
that any t honest parties can compute an accepting signature on any message
msg with respect to a subring R ⊆ P (|R| = N) of which they are members. We
assume that the public keys of the underlying trapdoor commitment scheme T C
have the correct format and can be used by anyone to compute valid commit-
ments and openings; the signers may check this using Valid on all public keys of
the chosen subring. The t signers can compute valid commitments for the N − t
non-signers as well as themselves.

For the ring members from s = 1, . . . , N , consider the vector of commitments
comi and the associated The inputs and openings for comi at Ji:[

c1i,j · · · cti,j c
t+1
i,j · · · cNi,j

][
(y1i,1, op

1
i,1) · · · (yti,1, opti,1) (yt+1

i,1 , op
t+1
i,1 ) · · · (yNi,1, opNi,1)

]
For the inputs (ysi,Ji)

N,n
s=1,i=1, the Leader picks and commits to random points

(yqi,Ji)q∈NS . With up toN−t non-signers, there areN−t+1 points {(αq, yqi,Ji)|q ∈
NS} ∪ (0, zi,Ji). Lagrange interpolation on these points yields a polynomial
rpolyi,Ji such that deg(rpolyi,Ji) ≤ N − t. Using rpolyi,Ji , the s ∈ S use their
trapdoors to find points ysi,Ji that fit on rpolyi,Ji . The commitments computed
with both non-signers and signers are valid, so all the openings provided as part
of the signature will correctly verify.

Because rpolyi,Ji is the unique polynomial that fits on all points (ysi,Ji)
N
s=1,

it does not matter which points the verifier uses to recalculate rpolyi,Ji . The
verifier will see that deg(rpolyi,Ji) ≤ N − t and rpolyiJi(αs) = ysi,Ji for all i and
for all s and for any Ji.
Hybrids (Common for both Anonymity and Unforgeability). We recall
that in the t-Anonymity 3 and t-Unforgeability Experiment 2, the adversary has
access to the same oracles in the training phase. It is only in the challenge phase
that the experiments differ: an adversary Aanon to anonymity produces two
signing sets and must distinguish between them, and a forger F must produce
a t-out-of-N threshold ring signature (knowing only t− 1 secret keys).

For both proofs, we replace each trapdoor commitment with an honest com-
mitment over a sequence of arguments. Each step is computationally indistin-
guishable from the previous step due to trapdoor indistinguishability. To show
this formally, we use a hybrid argument where we move from hybrid H0 where
honest signers use their trapdoor to compute their commitments, to hybrid HN+5

where all commitments are computed honestly.
In the last hybrid HN+5 no honest keys involved in the signatures use the

trapdoor. We change how the OSign oracle behaves in order to remove usage of
trapdoors in an indistinguishable manner. We denote as OSignH`

as the modified
OSign algorithm in the hybrid sequence.

The proof is divided into two stages. In the first stage, we show a sequence of
hybrids to program the output of the random oracles H1 and H2. In particular,
we program the values Ji and zi,j ahead of time so that for the unopened rows,
we no longer use valid openings. Once we have the possibility of not having to
use trapdoors anywhere (since we need to provide only one opening, that we
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know ahead of time), we move to the second stage of hybrids, where we replace
trapdoor commitments with honest commitments.

In order to do this, the random oracle H must be programmed such that
H(x) = z for a particular x and z, so long as the values still look random for
the adversary. By knowing the point z ahead of time, an oracle can produce a
valid signature using only honest commitments.

We define H`+5 for ` ∈ [N ] so that on a signature request, ring members
s ∈ [`] are always calculated using an honest commitment, regardless of whether
vks is in the signing set. We use the OSign described in HN+5 in both proofs of
unforgeability and anonymity. We describe the list of hybrids below, changing
the OSign oracle.

H0: The original game with OSign (and H) as defined in section 3.1.
H1: Instead of getting Ji, i ∈ [n] from the random oracle, the challenger chooses

Ji at random and programs the random oracle H to return the values for
Ji. This allows the challenger to know ahead of time which of the lines he
needs to open. To show H0 and H1 are computationally indistinguishable in
presence of a QPT adversary who makes q-queries to the QRO, we use a
result by Unruh (see Sec. 3 of [36]).

H2: (Bridging step). Because Ji is known ahead of time now, we add an if-
statement to note when the iteration j = Ji occurs and continue. The chal-
lenger is going through the same steps for the inner loop, so this makes no
difference.

H3: The challenger replaces the intercept value zi,Ji with a randomly chosen
value and programs H to return zi,Ji on query H1(msg, comi, Ji). Since H1

is chosen from RO, it is indistinguishable from random by a QPT algorithm.
Programming H to return zi,Ji is indistinguishable to a QPT algorithm.We
use the fact that that comi has superlogarithmic entropy.

H4: As zi,Ji is picked before commitments are created, when the challenger knows
the openings for the non-signers, he can calculate the polynomial rpolyi,Ji .
If the leader is honest, the challenger can simply pick the inputs for the
commitments (the ysi,Ji). Even if the adversary controls the leader and selects
inputs in an adversarial way, the use of zi,Ji ensures that the polynomial is
random. For corrupted parties, the challenger waits for the adversary to give
the inputs. In both H3 and H4, Lagrange gives a random polynomial. We
only change the order of when the polynomial is calculated. Now that zi,Ji
is chosen even before commitments are created,

H5: Since the values for j 6= Ji of ysi,j , op
s
i,j , r

s
i,j are never to be opened, instead

of calculating these points using the normal system, the challenger simply
picks the inputs and other values at random for all s ∈ [N ]. G is hiding, so
it is not feasible for any QPT adversary to learn anything more about the
pre-image to G. Even when the adversary knows what the openings to the
commitments are, G is salted with a random value.

H`+5 : For ` = 1, . . . , N . For hybrid H`+5, on a signature query, ring members
s = 1, . . . , ` are always calculated using an honest commitment, whether
s is in the signing set or not. To show H(`+1)+5 is indistinguishable from
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H`+5: On a signing query, in H(`+1)+5, the commitment for signer ` + 1 is
calculated using an honest commitment. In H`+5, the commitment for ring
member ` + 1 is calculated by using a trapdoor commitment. These two
cases are computationally indistinguishable if trapdoor commitments and
honest commitments are computationally indistinguishable. We see that for
all ` = 1, . . . , N+5 where |R| = N , the probability of distinguishing between
H` and H(`−1) is negligible.

Anonymity. Following Figure 1, a signature σ parses into n lines: comi (where
comi = (csi )s∈[N ]) and for each line there are m associated rows. The difference
between the signers and non-signers is in the columns. A non-signer column
contains the same openings across all m rows; a signer column instead will have
a different opening on each row. We note thatAanon is given only one row (among
the m) of openings. For other rows he is only given gsi,j , which is calculated as
gsi,j := G(ysi,j ||opsi ||rsi,j). If Aanon can distinguish between the signing sets simply
observing the openings that were made available, then either it is possible to
(1) learn something about the pre-image of gsi,j or (2) to distinguish between
trapdoor and honest commitments. Such an Aanon is therefore either violating
the hiding properties of G or the trapdoor indistinguishability of T C. Note that
following hybrids H`+5 for ` = 1, . . . , N , an adversary who could distinguish
between the signing sets could also distinguish between trapdoor and honest
commitments. In H5, we use the hiding properties of G.

In the t-Anonymity Experiment 3, the QPT adversary Aanon submits a mes-
sage msg and two signing sets S0, S1 from a subring R. S0 and S1 must not be
corrupted, but R may contain malicious keys. The challenger flips a bit b ∈ {0, 1}
and computes the signature σ on msg with the keys of Sb. Then Aanon will guess
which of S0, S1 was used.

Suppose that an adversary in H0 wins with advantage ν. We change OSign
via the hybrids as described before. In HN+5, all honest keys involved in the
signature no longer use a trapdoor. This means that regardless of which sets S0

and S1 Aanon picks, the signature will be calculated in exactly the same way.
Thus the probability of Aanon winning the anonymity game in HN+5 must be
1
2 . We conclude that the probability of Aanon winning in H0 must be at most
1
2 + ν(λ). Using the fact that each hybrid is computationally indistinguishable
from the previous one, we can conclude that no adversary can win the original
t-Anonymity game in H0 except with negligible advantage ν(λ).

To be more specific, here we show the reduction for each step in hybrids H`+5

for ` = 1, . . . , N + 5. Let Aanon be playing in H`+5 such that on on each request
for OSign, the challenger will return OSignH`+5

. Suppose that Aanon wins H`+5

with probability p`(λ) for all ` ∈ [N ], i.e.,

|Pr[Aanon(σ) = 1|σ ← ThSign(msg∗, S0, R)]−
Pr[Aanon(σ) = 1|σ ← ThSign(msg∗, S1, R)]| = p`(λ).

We write the difference between the probability of Aanon winning when play-
ing in H`+5 and in H(`+1)+5 as |p`+1 − p`|. Assume that |p`+1 − p`| is non-
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negligible. Next, we construct an adversary to trapdoor Atr who uses Aanon.

Reduction 1: Atr

1. Atr is given a public parameter pk from his challenger.
2. Atr picks a random index ` ∈ [N ] and sets pk` := pk.
3. Atr activates Aanon. Then on each query:

– OKGen(s): if ` 6= s, Atr generates (pks, sks) and αs←$F. He for-
wards vks = (pks, αs) to Aanon. For s = `, Atr forwards pk` := pk
and some α`←$F.

– Corrupt(s): Aanon requests sks, which Atr sends. If s = `, Atr will
Abort.

– OSign(msg, S,R), Atr will follow OSignH(`−1)+5
(msg, S,R), except

for signer `. If ` is in the signing set, then Atr will query his chal-
lenger y` and receive (c`, op`) in return. Otherwise, he calculates
(c`, op`)← Com(y`).

4. When Aanon requests two signing sets, S0 and S1, Atr picks a bit b and
signs with respect to Sb. Atr follows his same strategy as in the training
phase, sending a request out to his challenger if ` ∈ Sb.

5. Aanon responds with b.
6. When D outputs b, Atr outputs the same.

Probability Analysis Case 1. Atr is playing with the trapdoor oracle, Ot.
Then for each y` requested from Ot, Atr receives c` and op` back, where

state`, c` ← TCom(ski) and op` ← TOpen(sk`, state
`, c`, y`). Then c` is a trap-

door if vk` ∈ S. Thus to D, the view looks exactly the same as the game for
H`+5, i.e.,

Pr[Aanon wins |H`+5] = Pr[AOt
tr = 1]

Case 2. Atr is playing with the commitment oracle, Oc. For each request y`, Atr
receives (c`, op`) ← Compk`(y

`) back. Then c` is always an honest commitment
regardless of whether vk` ∈ S. Thus to Aanon, the view looks exactly the same
as the game with a challenger for H(`+1)+5, i.e.,

Pr[Aanon wins |H`+1+5] = Pr[AOc
tr = 1] =⇒

|Pr[Aanon wins |H`+5]− Pr[Aanon wins |H`+1+5]| =
|Pr[AOc

tr = 1]− Pr[AOt
tr = 1]| = |p`+1 − p`|

Then Atr can win the trapdoor indistinguishability game with non-negligible
probability, a contradiction. We see that Aanon cannot win H`+5 and H(`+1)+5

with non-negligible differences for ` = 1 to N .
Unforgeability. A successful forgery verifies for t signers, but the adversary has
knowledge of only up to t − 1 secret keys. As in the anonymity proof, we swap
each trapdoor commitment out with an honest commitment over a sequence of
arguments. In the final step, the forger receives only honest commitments for all
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signing queries. The commitments com = c1, . . . , cN must be produced before
learning the value z, which is necessary to produce the unique polynomial rpoly
of degree N − t. In a valid signature, all the openings must somehow fall onto
rpoly. As H is unpredictable, the forger cannot guess what z is ahead of time, so
she also cannot guess the inputs such that they all fall on rpoly. This means the
forger must be able to open the commitments to a different value after learning z.
Thus, if the forger is able to produce a valid signature, then with high probability
she must have broken the binding of an honest commitment.

In the t-Unforgeability Experiment 2, the adversary has access to the same
oracles as in the Anonymity game in the training phase. To win the game she
needs to provide a valid signature σ∗, computed on a ring of her choice, and
the only restriction is that the ring contains at most t− 1 corrupted keys. If the
adversary provides a valid signature where fewer than t keys were corrupted, then
at least one commitment was created using an uncorrupted key (the adversary
was not given the corresponding trapdoor). Two openings of that commitment
can be extracted using the permutation G.

In addition to the hybrids described above, we write a hybrid in which G is
replaced by a uniformly random polynomial of degree 2qO−1. Such a polynomial
is a 2qO independent function, and is indistinguishable from G (per Zhandry [42])
in presence of a quantum adversary making at most qO queries to the G. On a
successful forgery, the simulation can invert the values using G and obtain many
openings (ysj , op

s
j), (ỹsj , õp

s
j) for the same commitment cs. With high probability,

at least one commitment must have two valid openings. As all commitments are
honest now, the two valid openings for the same commitment break binding.

In the reduction 2, we show B that uses a successful forgery by F to break
the binding property of T C. Recall that in the binding experiment, an adversary
is given public parameters pk, and their goal is to compute a commitment under
pk and two different openings msg, op and msg′, op′ where msg 6= msg′. The idea
is that B will place the public pk as the answer of the idx-th query to the key
generation oracle.
B will simulate all the oracles to F . B will abort only when F asks to corrupt

key pk. When F provides a forgery σ∗ for a ring containing pk, B checks if pk
was chosen by F as as one of the signers in the forgery. Then B will try to extract
the openings for the commitments computed under key pk by inverting G.

Reduction 2: B(1λ, pk)

1. B picks an index idx ∈ [qKG] at random.
2. B picks G to be a random polynomial of degree 2qO − 1, and gets H ←$RO.

Then pp = (H,G).
3. B activates F . B forwards pp to F . F has (quantum) access to H and G. B

emulates the oracles to F as follows:
(a) On each OKGen(s) request from F , B calculates (vks, sks) ← KGen(pp)

and forwards vks to F . On the idx − th query, B will send the pk she
received along with some αidx ←$F.
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(b) On each Corrupt(s) query, B returns sks. If F requests Corrupt(idx),
Abort.

(c) For OSignHN+6
(msg, S,R): B returns σ ← OSignHN+6

(msg, S,R) (i.e., us-

ing all honest commitments). Note that if F does not cooperate, then B
must Abort.

4. F has to query H and G for its forgery. For queries to H, B will answer as
H would (except where H has been reprogrammed). B will calculate answers
for G herself.

5. Finally, F will output a forgery (σ∗,msg∗, R∗). The forged signature contains
for i = 1, . . . , n:

σi = ({(csi , ysi,Ji
, opsi,Ji

, rsi,Ji
)}Ns=1, {gsi,j}N,m

s=1,j=1)

6. If F has a successful forgery, and idx ∈ R∗, B will for i = 1, . . . , n, take σi

and for j = 1, . . . ,m calculate

yidxi,j ||opidxi,j ||ridxi,j = G−1(gidxi,j ).

For all j, B will scan (yidxij , opidxij ). If there exist j, j′ (j 6= j′) such that:

(yidxi,j , op
idx
i,j ) 6= (yidxi,j′ , op

idx
i,j′)

1 = VerifyOpenpk(cidxi , opidxi,j , y
idx
i,j )

1 = VerifyOpenpk(cidxi , opidxi,j′ , y
idx
i,j′)

Then B will output (yidxi,j , op
idx
i,j ), (yidxi,j′ , op

idx
i,j′), c

idx
i .

Suppose F makes qKG(λ) queries to KGen, qS(λ) queries to OSign, and qO(λ)
to the random oracle H and G. For shorthand, we will write qKG, qS , qO without
the security parameter. Consider the following cases where F has a forgery

σ∗ = {σi = ({(csi , ysi,Ji , op
s
i,Ji , r

s
i,Ji)}

N
s=1, {gsi,j}

N,m
s=1,j=1)}i∈[N ].

Since B is capable of inverting all of G, B can see all the openings for every
commitment for each ring member.
Probability Analysis. B will for i = 1, . . . , n take σi and for j = 1, . . . ,m calculate

yidxi,j ||opidxi,j ||ridxij = G−1(gidxi,j ).

For all j, B will scan (yidxij , opidxij ). We note that B wins if there exists an i for

which idx has two valid openings on cidxi . B does not win if for all i, idx has
one or fewer valid openings. We can describe these outcomes as one of the three
following cases:

1. (Good: idx is in the signing set and openings are correct) For some i, idx has
two valid openings to the commitment cidxi which are given by (yidxij , opidxij )

and (yidxij′ , op
idx
ij′ ). We call idx a signer in this case.

2. (Bad: idx is non-signer.) If for all i, (ysi,j , op
s
i,j), j ∈ [m] are all equal, or we

have that idx /∈ R∗. In this case we call idx a non-signer. Then B fails.
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3. (Bad: idx has invalid openings) The signature verifies, but ∀j 6= Ji, if
(yidxi,j , op

idx
i,j ) 6= (yidxi,Ji , op

idx
i,Ji

), then it is not true that

1 = VerifyOpenpkidx(cidxi , opidxi,j , y
idx
i,j ).

Case 2: There is a threshold requirement that there must be at least t distinct
signers. There are at most qKG ring members. B picks index idx at random from
[qKG]. That means B picked an index inside F ’s eventual signing set for his ring
signature with probability t

qKG
. The probability of not being a signer covers both

the case of idx being in the ring but not a signer, as well as idx not being in
the ring at all. This means B fails to pick a member of the signing set with
probability 1− t

qKG
= qKG−t

qKG
.

Case 3: The signature verifies, but for all j 6= Ji, if (yidxi,j , op
idx
i,j ) 6= (yidxi,Ji , op

idx
i,Ji

),

then 1 6= VerifyOpenpkidx(cidxi , opidxi,j , y
idx
i,j ). This means F picked the point yidxiJi to

commit to such that (αidx, yidxi,Ji) would be on a polynomial rpolyi,Ji . Recall that
rpolyi,Ji has the point (0, ziJi), where zi,Ji = H1(msg, comi, Ji). Furthermore,
zi,Ji completely determines the polynomial. Even knowing every other coefficient
of rpolyi,Ji , F cannot determine any points on the polynomial.

As zi,Ji is random, F can determine the correct value of (αidx, yidxi,Ji) with

probability no better than 1
F . Also, F would also have to know the point Ji where

the commitments would be opened. The value of Ji comes from H2, which is a
random oracle. F would have to have guessed Ji in advance and his probability
of doing so is 1

m . Finally, F must guess Ji for all i ∈ [n]. Uniformly choosing
a correct random Ji and a point (αidx, yidxi,Ji) for i ∈ [n] occurs with probability
1
mn

1
F .

The bad cases occur with probability: qKG−tqKG
+ 1

mn ·
1
F ≤

qKG−t
qKG

+ negl(λ)).

If F forges with probability p(λ), B breaks binding with probability

p(λ) ·
(

t

qKG
− negl(λ)

)
.

This means that if p(λ) is non-negligible, then B is able to break binding
with non-negligible probability. We conclude that no adversary F can produce
a successful forgery except with negligible probability.

6 Trapdoor Commitments from OWFs

In this section, we discuss a possible instantiation of a post-quantum secure
trapdoor commitment from any post-quantum secure one-way function (OWF).
The idea is to leverage a folklore transformation of Σ-protocol into a trapdoor
commitment. We start by describing a Σ-protocol and then show how to create
a trapdoor commitment scheme from a Σ-protocol. Second, we show how to use
any OWF to create an efficiently decidable language L. Finally, we show that
how to construct post-quantum Σ-protocols on the language of L.
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Description of Σ-protocol. Let L be an NP language, with a witness relation
RL. For our purposes, relation RL is hard, meaning that for any (x, y) ∈ RL,
given only the statement x it is hard to find the witness y. A Σ-protocol [16] for a
language L is a three-message proof system between two interactive algorithms,
a prover P and a verifier V. P knows (x, y) which is a statement and witness
where (x, y) ∈ RL. V is given x. The interaction for a Σ-protocol goes as follows:

1. Σ.P1: P starts the interaction by sending a commitment c to the verifier.

2. Σ.V : Upon receipt of c, V sends a challenge e.

3. Σ.P2: P calculates the response z and sends z to V.

V uses the the transcript (c, e, z) and statement x ∈ L and outputs a bit to
either accept or reject.

A Σ-protocol for a relation RL has three security properties: completeness,
special soundness, and special honest verifier zero-knowledge (SHVZK). The
completeness property of a Σ-protocol guarantees that if the prover knows a
witness y for x ∈ L, then for a commitment c, he is able to answer to any chal-
lenge e in the challenge space with z such that the transcript (c, e, z) and x ∈ L is
accepting. Secondly, special soundness guarantees that from any two transcripts
for x ∈ L with the same commitment, i.e., (c, e, z) and (c, e′, z′) one can extract
the witness y. Finally, the SHVZK property guarantees that, if the challenge e
is given in advance (that is, before computing c), then a simulator can compute
an accepting transcript (c, e, z) in polynomial time without knowing the witness.
The transcript computed by the simulator has the same distribution as that
of a transcript produced by an interaction between the prover and verifier. We
denote the simulator by Sim(x, e) which outputs (c, z).

Let Σ be a Σ-protocol associated with the language L with prover and verifier
(P,V). Let Sim be a SHVZK simulator for Σ. Let M be the challenge space
for Σ. Then Σ = (Σ.P1, Σ.V,Σ.P2). Σ.P1 is the first step where P sends a
commitment c, Σ.V has V send a challenge, and Σ.P2 is the response from P.

At a high level, the challenge of the Σ-protocol will correspond to the mes-
sage that a committer wants to commit to. A committer who knows the witness
can answer any challenge, meaning he can open to any message he wants. A com-
mitter without knowledge of the witness can still create a transcript using Sim,
using their desired input as the challenge. Then we define a trapdoor commit-
ment scheme T C which is parameterized by a language L and (Σ.P1, Σ.P2, Σ.V )
for L, simulator Sim.

T C[Σ]

– pp ← Setup(1λ). On input the security parameter λ, generates public
parameters: the NP language L for instances of size poly(λ) and the
associated proof system (Σ.P1, Σ.P2, Σ.V,Σ.Sim).

– (pk, trap) ← KGen(1λ, pp). Generates an instance (x, y) ∈ R and sets
pk = x and trap = y.
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– (c, op) ← Compk(m): To commit to a message m, run (c, op) ←
Sim(pk,m). Output commitment c. The opening op is the response.

– (state, c)← TComx(trap). Output (c, state) from Σ.P1(x, y) where state
is the internal randomness used by Σ.P1.

– op ← TOpen(trap, state, c,m′). On a message and commitment m′, c
output op = Σ.P2(x, c,m′, y, state).

– b := VerifyOpenx(c,m, op). Output V(x, c,m, op).

Theorem 2. If Σ is a Σ-protocol over a hard relation R, then T C[Σ] is hiding,
binding, and trapdoor indistinguishable.

Proof. (Sketch)
Binding. Binding follows from special soundness, since one commitment and two
openings, i.e., (c,m, op) and (c,m′, op′) allows one to extract the witness.
Trapdoor and Hiding. Hiding follows from trapdoor indistinguishability. Infor-
mally, trapdoor indistinguishability follows from the SHVZK property that guar-
antees that the simulated transcript (honest commitment) is indistinguishable
from the prover’s transcript (trapdoor commitment).

How to instantiate a Post-Quantum Secure Relation Let f be a post-
quantum secure OWF. An hard relationship R can be instantiated with f as
follows: (x,w) ∈ R if x = f(w). Statement-witness pairs can be generated as
follows: let f : {0, 1}poly(λ) → {0, 1}poly(λ) be an OWF. Pick a random w ∈
{0, 1}poly(λ) and compute x = f(w). Concretely, one can instantiate f with a
collision-resistant hash function such as SHA-3, which is currently considered
post-quantum secure.

Post-quantum secure Σ-Protocol A post-quantum secure Σ-Protocol must
maintain special soundness and HVZK in presence of quantum adversaries. A
possible instantiation of such a Σ-Protocol is from the Blum protocol for Hamil-
tonian Graph (which is NP-complete) when the first round is computed using a
statistically binding commitment and the hiding of which is preserved in presence
of quantum adversaries. As we discussed in Section 6.1, while in the quantum
case, the definition of binding does not protect the case in which the adver-
sary might not be actually committed to the message until the actual opening,
this does not affect the 2-special soundness property, which simply states that
if two transcripts (and thus two openings) are provided, then a witness can be
extracted.

6.1 On the Notion of Binding in Presence of Quantum Adversaries

In order to allow signers to be able to change their inputs to the commitments,
we use a computationally binding commitment scheme. Computational bind-
ing (classical style) intuitively covers the idea that an adversary cannot change
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his mind on what the input message is. It is hard to find c, where (m, op) and
(m′, op′) are valid openings for c but m 6= m′. Unruh posits [37] that this defini-
tion is no good in the quantum realm because of the following attack:

1. A creates c, a commitment.
2. A receives a random m from his challenger.
3. A produces the op s.t. (m, op) is a valid opening to c.

This breaks the intuitive idea that A can’t “change his mind”. Is a trapdoor
commitment-based ring signature scheme in fact secure against quantum adver-
saries? Because of the way the ThSign algorithm is constructed, if a trapdoor
commit scheme has only the property of classical binding, the threshold ring
signature is secure against quantum adversaries.

The Leader is required to come up with inputs and commitments for the
non-signers. If the underlying TCom is susceptible to the attack, the Leader
could create cqi for some non-signer q. However, then he must somehow produce
yqi , op

q
i that opens cqi . As only up to t− 1 other signers are corrupt, at least one

of the other signers will not accept cqi unless he also sees some valid message
and opening for it. Thus, the attack of producing any new message and open-
ing (m′, op′) happens only after the corrupted signer has produced (m, op) as
some valid message and opening ahead of time. Producing the original (m, op)
collapses the quantum state. We conclude that a commitment scheme which is
computationally binding against quantum polynomial time adversaries is suffi-
cient for the security of our threshold ring signature scheme.
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