
Gadget-Based iNTRU Lattice Trapdoors

Nicholas Genise1 and Baiyu Li2

1 SRI International†,
nicholas.genise@sri.com

2 University of California, San Diego,
baiyu@cs.ucsd.edu

Abstract. We present two new related families of lattice trapdoors
based on the inhomogeneous NTRU problem (iNTRU) defined in Genise
et. al [16] (ASIACRYPT 2019). Our constructions are “gadget-based”
and offer compact secret keys and preimages and compatibility with ex-
isting, efficient preimage sampling algorithms. Our trapdoors can be used
as a fundamental building block in lattice-based schemes relying lattice
trapdoors. In addition, we implemented our trapdoors using the PAL-
ISADE library.

1 Introduction

Lattice-based cryptography provides powerful building blocks used to create a
plethora of advanced cryptographic capabilities. For example, lattices yield fully
homomorphic encryption [19], fully-homomorphic signatures [21], and attribute-
based encryption (ABE) [6]. Further appealing aspects of lattice-based cryptog-
raphy are its potential post-quantum hardness‡ and its inherent parallelism.

Many of the listed schemes rely on short integer solution (SIS) lattice-trapdoors
and their most efficient implementations are in the ring setting (RSIS). Let Rq
(R) be a polynomial ring with coefficients in Zq (Z) and X ⊂ Rm be a set of
small-norm polynomials. Then, RSIS trapdoors are summarized as follows: the
user generates a (pseudo)random a ∈ Rmq together with a trapdoor which allows
one to invert the function fa : X → Rq, defined as fa(x) := atx (mod q). A pow-
erful method used to invert this function is discrete Gaussian sampling [20,28]
where the trapdoor is used to sample a discrete, Gaussian-like distribution over
all RSIS preimages of an output of the RSIS function, u ∈ Rq.

There are two ways to instantiate the GPV paradigm [20]. The first is to
generate an RSIS instance which is statistically close to uniformly random to-
gether with a trapdoor. The second, more efficient, way to instantiate the GPV
paradigm is to generate a pseudorandom RSIS instance whose trapdoor is also
the secret used in the pseudorandom generator. Lattice cryptography’s promi-
nent sources of pseudorandomness are the (ring-)learning with errors problem

†This work was done at Rutgers supported by National Science Foundation grant
SaTC-1815562.
‡https://csrc.nist.gov/Projects/post-quantum-cryptography/

round-2-submissions

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions

(RLWE) [26,35] and the NTRU learning problem [22,32]. RSIS trapdoors whose
pseudorandomness is based on RLWE were introduced in [28] (MP12). Here
the trapdoor is used as a linear transformation and the trapdoor is hidden via
Peikert’s discrete Gaussian perturbation method [31]. We call these trapdoors
“gadget-based” since the trapdoor reduces inverting RSIS on a (pseudo)random
matrix to a “gadget” matrix on which RSIS is easy to solve. The study of GPV
trapdoors whose pseudorandomness is based on NTRU was initiated in [13].
Here the seed to the NTRU PRG is used to construct a short basis and trapdoor
inversion is done via a structured version, [15], of the GPV discrete Gaussian
sampler [20].

For the remainder, let approximate trapdoor sampling denote a trapdoor
scheme where the trapdoor is used to sample a short vector whose RSIS im-
age is close to the input’s RSIS image: given u ∈ Rq, sample a short x ∈ Rm
such that fa(x) ≈ u ∈ Rq. Approximate trapdoors are used in [13] via the
HNF optimization and [7]’s adaptation of MP12 to save a constant fraction of
preimage and public key memory.

Contribution. We introduce two similar families of gadget-based RSIS (approxi-
mate) trapdoors whose pseudorandomness is based on the inhomogeneous NTRU
problem (iNTRU), introduced in [16]. Of the two instantiations presented in this
paper, the first trapdoor is a noisy version of an RSIS trapdoor, but with the
advantage that it can be almost entirely parallelized, down to the ring level. The
second is an exact analog to MP12, but with a secret key nearly half the size
of MP12 when we fix the parameters n, q,m, and R: ours has just one vector of
small polynomials serving as a trapdoor instead of two vectors in MP12. Com-
paring the two iNTRU trapdoors gives an interesting trade-off: the second can
have a smaller modulus making it suitable for use over cyclotomic rings where
we can take advantage of the ring structure to sample perturbations as in [15,17],
while the first scheme offers more parallelism at the cost of a noisy verification
and larger modulus. The larger modulus implies a ring other than a cyclotomic
should be used in order to avoid subfield lattice attacks [2,23].

From a theoretical point of view, our results show MP12’s efficient gadget-
based trapdoor framework exists on a family of NTRU lattices. This provides
another connection between NTRU and ring-LWE, which have similar crypto-
graphic functionality despite apparent structural differences.

Lastly, we implemented our trapdoors in the PALISADE§ lattice cryptog-
raphy library to demonstrate efficiency. The trapdoors presented in this paper
offer interesting trade-offs with applicability to a large selection of lattice-based
schemes.

Technical Details. Similar to MP12, our RSIS inversions can be broken into
two steps: offline (precomputation) sampling of perturbation vectors dependent
only on the trapdoor/secret key and online sampling which depends on the
RSIS image we are inverting. If we precompute the perturbation vectors, as is

§https://palisade-crypto.org/

2

https://palisade-crypto.org/

standard, then we can reduce preimage sampling in the first, parallel trapdoor
scheme to the following computations (with parallelism listed in parentheses):

– one polynomial addition,
– one G-lattice sample (parallelism n, the ring’s dimension),
– one ring polynomial multiplication (parallelism m = O(log q)),
– and one polynomial addition (parallelism m = O(log q)).

Now we briefly discuss the trapdoor mechanism. A matrix R is a g-trapdoor
for the RSIS instance at if atR = gt and R has small entries [28, Definition 5.2].
The public vector gt is called a “gadget” since it is easy to solve RSIS on gt.
The iNTRU problem is to distinguish at := r−1(gt + et) from uniformly random
where (r, e)← χk+1 is drawn from a distribution with small entries and gt is a
gadget matrix, usually taken to be gt := [1, b, b2, . . . , bk−1] ∈ Rk and k = logb q.
In the first, parallelized version of the trapdoor, the polynomial r is almost a
g-trapdoor for at := r−1(gt + et):

r · at = gt + et ≈ gt.

Let us proceed naively in an attempt to construct a preimage: given u ∈ Rq,
sample a discrete Gaussian x satisfying gtx = u and return y := rx. Clearly,
y leaks information about r, but the verification equation u − aty = etx leaks
information about e in the range of the RSIS function. This implies we need to
add a perturbation in the domain and the range of the RSIS function, unlike
previous convolution based trapdoors which only perturb in the RSIS domain.
The second trapdoor scheme is given by correcting the error term et. This is
realized by using

[
−et

rI

]
as a g-trapdoor for [1,a] = [1, r−1(gt + et)].

In terms of applications, we describe the simple hash-and-sign digital signa-
ture scheme provided by the former trapdoor scheme and prove its security in
the random oracle model (ROM) in the appendix. In the ROM, we have that
the message is hashed to an element in Rq and this hash is modeled as uniformly
random, u← H(m) = U(Rq). Other applications, like identity-based encryption,
attribute-based encryption, and others follow from the fact that the trapdoor is
statistically hidden.

Both trapdoor schemes can be instantiated with the approximate gadget/trapdoor
introduced in [7]. The approximate trapdoor increases the verification error while
lowering the memory of the scheme and keeping the same concrete security of the
underlying SIS problem. This is in contrast to the large base gadget g = [1,

√
q]

which decreases the concrete hardness of the trapdoor’s underlying SIS problem
since the shortness needed to break the SIS problem scales with the gadget base
in MP12 trapdoors. Further, [7, Section 1.3] give parameter sets incompatible
with g = [1,

√
q].

Comparison to other SIS signatures and trapdoors. The most natural comparison
is Falcon [13]¶, since it is an efficient NTRU-based, discrete Gaussian, hash-and-
sign digital signature scheme. Falcon reports a signing time of .16 milliseconds

¶https://falcon-sign.info/

3

https://falcon-sign.info/

for dimension n = 512 and .36 milliseconds when n = 1024 on an Intel i5 CPU.
In contrast, for n = 512 we match Falcon’s online sampling with preprocessing
and less classical concrete security (roughly 100 bits versus 130 bits) and we
have slower online signing times by an order of magnitude with preprocessing for
n = 1024. In addition, our computations were done on a faster CPU (Intel i7).
We expect our online sampling to be an order of magnitude slower in dimension
n = 512 due to this difference in CPU (four cores versus eight cores). Our ex-
periments are reported in Table 1. We emphasize that the larger modulus in our
trapdoors is significant since it lowers the concrete security and increases the
storage costs. On the other hand, Falcon’s signing algorithm uses the power of
two cyclotomic subfield structure whereas the trapdoor schemes presented here
only use the subfield structure during their offline phase. Our iNTRU trapdoors
have an efficient online sampling in any ring with efficient polynomial multiplica-
tion, like the NTRUPrime ring [5], R = Z[x]/(xp−x−1) whose lack of subfields
resists the overstretched subfield attack [2] (yet still susceptible to [23] for a
large modulus). In addition, our scheme is compatible with advanced protocols
like ABE [6] and fully-homomorphic signatures [21] since the SIS matrix has the
same length as some underlying gadget matrix whereas Falcon’s is not. Falcon
has much smaller public keys (two ring elements) and signature sizes (one ring
element with small coefficients). It should be noted that the recent ModFalcon
[10,9] scheme is compatible with these advanced schemes due to its longer length
and retains its efficient sampling (12ms in [9]).

Another comparison is MP12 [28] and its approximate trapdoor version [7].
These schemes’ online sampling phase involves a matrix-vector multiplication
whereas our first trapdoor’s online sampling can be parallelized to one ring
multiplication and gadget-lattice sample. Our first trapdoor’s offline sampling
involves a diagonal covariance over R, so it can be parallelized to the ring-
level as well. The second trapdoor is a direct NTRU analog of MP12 but with
nearly half the memory for the secret key. Conversely, the use of NTRU lattices
invites the dense sublattice attack of [23] and has a lower concrete security in
comparison with RLWE-based trapdoors as the modulus q increases for a fixed
ring dimension n.

We performed experiments to compare the performance of our trapdoor
schemes with [7]. The offline and online running times as well as the key sizes are
collected in our experiments, summarized in Table 1. The parameter set in the
first column of Table 1 is a toy example for our schemes as by our estimation it
provides only 40 bits of security, while the rest of the parameters provide at least
100 bits of security. These experimental results show our schemes have similar
online and offline running times comparing to [7], and our secret signing keys
are smaller. In Section 4 we explain concrete security estimations and we also
provide more detailed discussion about performance comparisons with [7].

2 Preliminaries

Let N,Z,R,C denote the natural, integer, real, and complex numbers respec-
tively. We denote numbers as lowercase plain (possibly Greek) letters, vectors

4

Params Exact Exact Exact Approx Exact Approx Exact Approx Exact

n 512 512 1024 1024 1024 1024 1024 1024 8192
dlog2 qe 13 20 20 20 27 27 30 30 30

b 4 4 4 4 4 4 8 8 32
j 0 0 0 3 0 3 0 4 0
σ 10 32 32 32 107 107 181 181 181

Alg 2, offline (ms) - - - - 19 16 16 12 105
Alg 2, online (ms) - - - - 2 2 2 2 12
Alg 4, offline (ms) 6 6 20 13 21 18 18 13 113
Alg 4, online (ms) 0.12 0.16 2 2 2 2 2 2 14

[7], offline (ms) 6 6 16 14 19 15 15 12 113
[7], online (ms) 1 1 2 2 3 3 2 2 12

Alg 2 & 4, |sk| (KB) 7 7 32 24 53 42 47 31 248
Alg 2 & 4, |vk| (KB) 7 7 29 21 49 39 43 28 217

[7], |sk| (KB) 13 13 58 42 98 77 86 55 434
[7], |vk| (KB) 8 8 35 27 56 46 51 35 279

Table 1. Summary of online preimage sampling times and key sizes of the hash-and-
sign signature schemes based our trapdoors versus the RLWE based trapdoor of [7].
For our schemes we set σ = q1/4, while for [7] we set σ = 8. The running times shown
are the mode of the data collected from 100 runs for each parameter set. For some
parameters, the verification error in Algorithm 2 exceeds q/2, and hence we discard its
statistics and denote using “-”.

as lowercase boldface letters (e.g. u,v ∈ Rn), and matrices as boldface capital
letters (e.g. T,M ∈ Zn×n). Complex conjugation is denoted as z for z ∈ C and
matrix transpose is denoted as Mt. The symbol Σ will be reserved for positive-
(semi)definite matrices. We will often use the integers modulo q for some integer
q ≥ 2, Zq := Z/qZ. Denote the logarithm base b ≥ 2 as logb, and denote log
as logarithm base two when b is omitted. We say a function f : N → [0, 1] is
negligible if f(λ) = λ−ω(1). The letter λ is reserved for the security parameter
of a cryptographic scheme.

For a probability distribution X with support S, we denote x← X to denote
an independent sample from X . Let X (s) be shorthand for Pr[x = s | x ← X]
for s ∈ S. We denote the uniform distribution over a finite set, Y , as U(Y). We
will use the max-log metric on discrete probability distributions over the same
support, ∆ml(X ,Y) := maxz∈S | log(X (z))−log(Y(z))| [30,34] and we abbreviate
two probability distributions being close under this metric as X ≈s Y (meaning
they are statistically close).

Linear algebra. We view vectors as column vectors, and matrices as collections of
column vectors B = [b1, . . . ,bk] ∈ Rn×k. For any matrix A ∈ Rm×n, its singular
values are the square roots of the first d := min(m,n) eigenvalues of its Gram
matrix AtA, listed in non-increasing order: s1(A) ≥ s2(A) ≥ · · · ≥ sd(A) ≥ 0.

A symmetric matrix Σ ∈ Rn×n is positive-(semi)definite if for all non-zero
x ∈ Rn, xtΣx > 0 (≥). We denote a matrix as being positive-(semi)definite as

5

Σ � 0 (�), and denote Σ1 − Σ2 � 0 (�) as Σ1 � Σ2 (�). This relation forms
a partial ordering on the set of positive-(semi)definite matrices. We abbreviate
scalar matrices, σIn, by their scalar σ and denote σ � Σ for σIn − Σ � 0. For
any two matrices R,S ∈ Rn×k, we denote R ≥ S if RRt � SSt. We call R a
square-root of Σ if RRt = Σ. We denote square-roots of Σ as

√
Σ. If R is a

square-root of Σ, then so is RQ for any orthogonal matrix Q (QQt = I).
View Σ � 0 through its block form, Σ =

[
A B
Bt D

]
. The Schur complement

of D is Σ/D := A − BD−1Bt, and the Schur complement of A is Σ/A :=
D−BtA−1B. A symmetric matrix Σ is positive definite if and only if Σ/A and
A are positive definite—or equivalently Σ/D and D. Further, Σ with D � 0 is
positive semidefinite if and only if Σ/D � 0.

2.1 Lattices and Discrete Gaussians

A lattice is a discrete subgroup in euclidean space, Λ ⊂ Rn, and can be expressed
as the set of all integer combinations of a basis Λ = BZk = {

∑k
i=1 zibi : zi ∈ Z}

for B = [b1, . . . ,bk] ∈ Rn×k. The rank of a lattice Λ = BZk is k and it is
full-rank if k = n. Each lattice of rank k ≥ 2 has infinitely many bases: any
B′ = BU for U ∈ Zk×k with det(U) = ±1 is a basis of the same lattice.

A lattice coset is a set of the form Λ+ a := {v + a : v ∈ Λ}. Further, we call
a subspace V of Rn a Λ-subspace if Λ intersect V spans V , span(Λ ∩ V) = V .

The Gram-Schmidt orthogonalization of a basis B is B̃ = [b̃1, . . . , b̃k] where

b̃i := bi ⊥ span(b1, · · · ,bi−1). We define the minimum GSO length of a lattice

as b̃l(Λ) := minB maxi ‖b̃i‖2, where the minimum is taken over all bases B of Λ.
The dual of a lattice is the set of vectors mapping the lattice to the integers

via the inner product, Λ∗ = {x ∈ span(Λ) : 〈x,v〉 ∈ Z,∀v ∈ Λ}. Let T be an
invertible linear transformation. Then we have (TΛ)∗ = T−tΛ∗.

Discrete Gaussians. We define the Gaussian function centered at t ∈ Rn as
ρt(x) := e−π‖x−t‖

2

, and the warped Gaussian as

ρt,
√
Σ := e−π(x−t)

tΣ−1(x−t)

for some Σ � 0. We denote the Gaussian function as ρt,s(·) whenever Σ is a
scalar, Σ = s2I. A discrete Gaussian distribution over a lattice Λ, or a lattice
coset Λ + a, is the probability distribution proportional to ρ√Σ(x) for x ∈
Λ + a. We denote this distribution as DΛ+a,t,

√
Σ and x ← DΛ+a,t,

√
Σ to mean

x is efficiently sampled from DΛ+a,t,
√
Σ . In practice, we often sample from a

distribution statistically close to DΛ+a,t,
√
Σ .

Fix ε > 0, then the smoothing parameter [29] of Λ is

ηε(Λ) := min{s > 0 : ρ(sΛ∗) ≤ 1 + ε}.

Informally, this is the smallest width of a discrete Gaussian over Λ which acts
like a continuous Gaussian distribution. Notice that s ≥ ηε(Λ) if and only if
1 ≥ ηε((1/s)Λ). We extend the definition to invertible matrices and say T =

6

√
Σ ≥ ηε(Λ) if and only if 1 ≥ ηε(T−1Λ). We will use the following two lemmas

in our analysis.

Lemma 1 ([29,20]). Let Λ′ ⊆ Λ be full-rank lattices in Rn, ε ∈ (0, 1), and
s ≥ ηε(Λ

′). Let X be the probability distribution given by sampling x ← DΛ,s
and returning x mod Λ′. Then,

∆ml(X,U(Λ/Λ′)) ≤ log
1 + ε

1− ε
≤ 2ε

1− ε
.

Lemma 2 ([20, Lemma 3.1]). For any rank-n lattice Λ and ε > 0, we have
ηε(Λ) ≤ b̃l(Λ) ·

√
log(2n(1 + 1/ε))/π.

The next lemma is helpful in analyzing smoothness criteria.

Lemma 3. For any ε > 0 and invertible matrix S,T ∈ Rn×n, ηε(Λ) ≤ S if and
only if ηε(TΛ) ≤ TS.

Proof. ηε(Λ) ≤ S is equivalent to ηε(S
−1Λ) = ηε(S

−1(T−1T)Λ) ≤ 1.

The following theorem (first proved in [12] for the integer lattice Zn) regarding
linear transformations and discrete Gaussians is most useful for this work.

Theorem 1 ([18, Theorem 3.2]). For any matrix S, lattice coset A = Λ+a ⊂
span(S), and linear transformation T, if ker(T) is a Λ-subspace, and ηε(ker(T)∩
Λ) ≤ S, then

∆ml(T(DA,S),DTA,TS) ≤ log
1 + ε

1− ε
≤ 2ε

1− ε
.

The following concentration bound is useful since we will be working with ap-
proximate trapdoors.

Lemma 4 (Lemma 4.4, [29]). Let Λ be a lattice of rank n, c ∈ span(Λ), and
s ≥ ηε(Λ). Then for x← DΛ,c,s,

Pr[‖x− c‖ ≥ s
√
n] ≤ 1 + ε

1− ε
2−n.

2.2 Polynomial Rings

We use R to denote some underlying polynomial ring, R := Z[x]/f(x) where f(x)
is a monic, irreducible polynomial. Further, we use Rq := R/(qR) to denote its
coefficients modulo q. The letter n is reserved for the ring’s dimension, or f(x)’s
degree. Common choices for R are cyclotomic rings and the NTRUPrime ring [5]
Z[x]/(xp−x−1) for p prime. We emphasize that the online sampling phase of our
trapdoors works for any polynomial ring, but its offline perturbation sampling
phase is most efficient in cyclotomic rings.

Here we discuss power of two cyclotomic rings since our implementation
is done in these rings. Let n be a power of two and ζ2n ∈ C be a 2n-th
primitive root of unity. The 2n-th rational cyclotomic field’s ring of integers

7

is R := Z[ζ2n] ∼= Z[x]/(x2n + 1). Given an element in R, f =
∑
fiζ

i
2n, define its

coefficient embedding as its vector of coefficients (f0, . . . , fn−1). All norms will
be the l2 (euclidean) norm in the coefficient embedding. Further, the coefficient
embedding allows us to treat Rm as the lattice Znm.

We will represent multiplication by a fixed ring element (say p ∈ R) as an
“anticylic” matrix and call this ring embedding ϕ : R→ Zn×n,

ϕ(p) =


p0 −pn−1 . . . −p1
p1 p0 . . . −p2
...

...
. . .

...
pn−1 pn−2 . . . p0

 .
Further, we apply ϕ entry-wise to vectors and matrices over the ring R. An
important fact is that matrix transpose of a ring element’s matrix representa-
tion corresponds to the complex conjugation automorphism of a ring element,
ϕ(f)t = ϕ(f). This implies ϕ(ff) � 0 and ϕ(ete) � 0 for any non-zero f ∈ R
and e ∈ Rm since ζ2n is primitive. For a matrix with independent discrete Gaus-
sian entries over R← Dm×kR,s , we have s1(ϕ(R)) ≤ s

√
nO(
√
m+
√
k+ω(

√
log n))

with overwhelming probability in n, [14, Appendix A]. Further, the empirically
observed constant is ≈ 1/

√
2π [28, Section 2].

2.3 G-Lattices

Fix a modulus q > 1, an integer base 2 ≤ b ≤ √q. Let gt := [1, b, . . . , bk−1] ∈ Rkq
with k = dlogb qe. The matrix gt is commonly referred to the gadget matrix since
the Ring-SIS (RSIS) problem is easily solved on gt [28]. The trapdoor schemes
presented in Section 3 will sample a discrete Gaussian over the lattice coset

Λ⊥u (gt) := {x ∈ Rk : gtx = u ∈ Rq}.

We denote the process of sampling from the discrete Gaussian DΛ⊥u (gt),σg
as

x ← SampleG(u, σg). Efficient algorithms for SampleG(·, ·) can be found in
[28,17].

2.4 RSIS and iNTRU

Here we discuss the hardness assumptions used throughout the paper. Our main
result’s hardness relies on the RSIS problem [1,27,25,33] and the inhomogeneous
NTRU (iNTRU) problem [16]. The RSIS problem with parameters q,m ∈ N, β ∈
R+, denoted as RSISq,m,β , over a ring R is: given a random vector a← U(Rmq),
find a short vector x 6= 0 with ‖x‖ ≤ β such that atx = 0 ∈ Rq. The HNF
optimization of the RSIS problem is the RSIS where we are given (1,a′) ∈ Rmq ,
with a′ uniformly random in place of a.

Let q be an integer modulus, χ be a distribution over R whose coefficient em-
bedding is� q with all but negligible probability, and gt := [1, b, b2, . . . , bk−1] ∈
Rkq be the gadget matrix (defined below). The iNTRUq,χ distribution is r−1(gt+

8

Notations Description

n Polynomial ring dimension
ηε Smoothing parameter
q Modulus

b, k = logb q Base and number of entries of the gadget vector g
j # components dropped in the approximate gadget f

m = k − j The dimension of the approximate gadget f
σg Gaussian width for G-lattice sampling, see Tables 3 and 4
Σp,s Covariance and parameter of the perturbation p, see Theorems 2 and 3
Σe,serr Covariance and parameter of the perturbation pe, see Theorem 2
σe Gaussian width of the verification error, see Tables 3 and 4
α,β Approximate RSIS bounds, see Table 4

Table 2. A summary of parameters used to define our trapdoors. The pair Σp,s rep-
resents a discrete Gaussian convolution. For example, the perturbation has shape Σp
and the output of the online sampling phase is statistically close to a spherical discrete
Gaussian of width s. The same for the pair Σe,serr. See Algorithms 2 and 4.

et) where (r, e)← χk+1 and the iNTRU assumption is that (r, e) 7→ r−1(gt+et)
is a PRG. There is a reduction [16, Proposition 4.3] from iNTRU to a strength-
ened version of the RLWE problem [26].

We call (a,R) an (α, β)-approximate trapdoor if a ∈ Rmq is (pseudo)random,
and R is any matrix having the following property. Given u ∈ Rq as input, R
allows one to efficiently find an x ∈ Rm such that ‖x‖ ≤ β and ‖atx− u‖ ≤ α.
It is shown in [7, Lemma 5.2] that (α, β)-approximate trapdoors is related to
the RSIS problem via near collisions. We give the same proof in Lemma 7, for
completeness.

3 iNTRU Trapdoors

Fix a finite dimensional polynomial ring R := Z[x]/f(x) of degree n and its
quotient ring modulo q for some modulus q ∈ N, Rq := R/qR. Let R∗q denote
the polynomials of Rq which have multiplicative inverses. Fix an integer base
b ≥ 2, a gadget dimension k = dlogb qe, and a gadget-approximate gadget pair
gt := [1, b, b2, . . . , bk−1] = [mt|f t] for f t := [bj , . . . , bk−1], where j ≥ 0 is the
dimension of m. Let m := k−j be the approximate gadget’s dimension. Further,
let χ be a distribution over R such that ‖χ‖ � q with high probability. We list
the parameters used to define our trapdoors in Table 2 for reference.

In this section, we present two efficient, gadget-based (approximate) RSIS
trapdoor constructions. Both are pseudorandom whose pseudorandomness relies
on the iNTRU problem, introduced in [16]. The first is a parallel approximate
trapdoor where the online sampling portion of inversion can be done, after some
preprocessing which corresponds to perturbation generation, by:

– one G-lattice sample,

9

– one polynomial multiplication (in-parallel),
– then one vector addition.

In addition, the first trapdoor’s offline perturbation sampling is parallelized to
sampling one non-spherical ring element. This is because the perturbation’s
shape is diagonal over the ring, Σp = γIm for γ a polynomial with positive-
definite coefficient embedding.

The second trapdoor is an even more direct iNTRU-analog to the MP12 RLWE
trapdoor than the first. Its ability to vary verification error allows for a smaller
modulus, q. This is because the verification error only depends on if it uses the
approximate gadget f or the exact gadget g. Also, its secret signing key is m+ 1
polynomials in R with small entries compared to MP12’s 2m polynomials, and
the offline perturbation sampling reduces to sampling two positive-definite ring
elements (with parallelism). Lastly, this second trapdoor scheme is compatible
with applications requiring tag matrices. These are the trapdoor schemes where
atR = hgt for some h ∈ R∗q (R is the trapdoor). Both of the RSIS trapdoor
schemes we present rely on Peikert’s perturbation technique [31]. This technique
is used to statistically hide the trapdoor. We analyze both trapdoors using the
approximate gadget f t in place of the gadget gt for flexibility in parameter
choices and because the analysis is nearly the same. Importantly, the second
trapdoor scheme becomes an approximate trapdoor when using f t in place of gt.

Trapdoor descriptions. Recall, [28, Definition 1] defines a g-trapdoor for at ∈
Rmq as any matrix R with small entries such that atR = gt ∈ Rmq . One can
easily invert the function fa(·) on any u ∈ Rq when armed with a g-trapdoor:
sample x← SampleG(u, σg), for σg ≥ ηε(Λ⊥q (gt))‖, then return Rx. Notice that
atRx = u ∈ Rq and Rx has small entries since R has small entries. However, this
clearly leaks information about the trapdoor. So, [28] uses Peikert’s perturbation
method [31] to hide the trapdoor.

Now recall the iNTRU distribution: a := r−1(gt + et) ∈ Rmq where (r, e) ←
χm+1 has small norm and gt = [1, b, b2, . . . , bk−1] is the gadget matrix. The
polynomial r is almost a g-trapdoor for at since rat = gt + et ≈ gt. As a result,
we can simply sample x← SampleG(u, σg) and return y := rx. Then, we have

aty = gtx + etx ≈ gtx = u ∈ Rq.

The relation above shows that we have two areas where we can leak information
about the trapdoor, (r, e). The first is in the domain of fa(·) given by rx. The
second is in the range of fa(·), given by the verification error u − aty = etx.
This implies we need to use Peikert’s perturbation method twice: once in fa(·)’s
domain and again in its range.

All of the above goes through when we replace the gadget gt with the ap-
proximate gadget f t, similar to [7]. So, let at := r−1(f t+et) for this construction.
Now, we have an algorithmic outline for approximate trapdoor inversion. Given
a trapdoor (r, e) and a target, we perform the following:

‖The smoothing parameter of ηε(Λ
⊥
q (gt)) can be lower-bounded by ≈ b · ηε(Znk)

[28, Section 4]. And, ηε(Znk) is no more than
√

log(2nk(1 + 1/ε))/π by Lemma 2.

10

1. Sample a perturbation for the domain

p← DRm,
√
Σp
,

where Σp := (s2 − σ2
grr)Im � 0, and a perturbation for the range

pe ← DR,√Σe
,

where Σe := s2err − σ2
ge
te � 0∗∗.

2. Set the shifted coset and sample from the G-lattice: v := u − atp + pe and
x← SampleG(v, σg).

3. Add the perturbation in the domain of fa(·):

y := rx + p.

Notice that the perturbations in the first step are statistically independent of
the coset u ∈ Rq. Therefore, we can precompute them offline and store them, as
is done in [28]. Further, we can store their hashes atp ∈ Rq. These perturbations
can be computed in time O(n log n) using the algorithms of [15,17] and p can be
computed in parallel since its Gaussian shape is a diagonal over R. Then, online
inversion is just a few efficient, parallel operations:

1. Shifting the coset (v := u− atp + pe);
2. G-lattice sampling (x← SampleG(v, σg)); and
3. Polynomial multiplication and addition (y := rx + p).

The detailed trapdoor generation in this construction is shown in Algorithm 1
and the preimage sampling is shown in Algorithm 2.

Now we describe our second trapdoor scheme. Let a′ := r−1(g + e), a :=

(1,a′) be the function description and R :=
[
−et

rIm

]
the trapdoor. Then, atR = gt

and we can carry on as in [28]: To sample a preimage of u ∈ Rq,

1. first sample a perturbation p← DRm+1,
√
Σp

for Σp := s2Im+1 − σ2
gRRt,

2. set the shifted coset as v := u = atp and sample from the G-lattice x ←
SampleG(v, σg),

3. then return y := Rx + p ∈ Rm+1.

Note, here the online signing does not have a natural parallelization since Rx
involves a polynomial multiplication by r and an inner product with −et. We
can also turn this into an approximate trapdoor scheme by replacing gt with f t

for smaller preimages and public keys at the cost of a verification error. This
verification error is smaller than the verification error in the first, parallel trap-
door.

∗∗Notice how these are the best Gaussian shapes, in terms of spectral width, that
one can hope for. The Gaussian shape of rx is σ2

grrIm and the Gaussian shape of etx
is σ2

ge
te.

11

Algorithm 1: Approx.TrapGen(1λ)

Input: The security parameter 1λ.
Output: A function-approximate trapdoor pair.

1 Sample r ← χ, e← χm.
2 Set a := r−1(f + e) ∈ Rmq .
3 return (vk, sk) := (a, (r, e)) ∈ Rmq ×Rm+1.

Algorithm 2: Approx.SamplePre(a, u, sk, s, serr)

Input: A coset u ∈ Rq, a trapdoor (r, e).
Output: An approximate preimage of u.

1 Sample (offline) perturbation p← DRm,
√
Σp

for Σp := s2Im − σ2
grrIm.

2 Sample (offline) perturbation pe ← DR,√Σe
for Σe := s2err − σ2

ge
te.

3 Set coset v := u− atp + pe ∈ Rq.
4 Sample the G-lattice x = (x1,x2)← SampleG(v, σg) for x2 ∈ Rm.
5 Set the approximate preimage y := rx2 + p ∈ Rm.
6 return y.

Fig. 1. The trapdoor generation (Algorithm 1) and approximate preimage (Algo-
rithm 2) sampling algorithms of our parallel trapdoor construction. The perturbations
in Algorithm 2 are independent of the input image, u ∈ Rq, and can be precom-
puted and stored before, along with atp. These perturbations can be computed in
time O(n logn) using [15] or [17, Section 4]. The rest of Algorithm 2 is the “online”
sampling portion. This consists mostly of G-lattice sampling, which can be done in
time O(log q) for each polynomial coefficient [17].

The rest of this section is organized as follows. Subsection 3.1 proves that
the first iNTRU-based approximate RSIS trapdoor construction is secure in the
random oracle model, which are summarized in Theorem 2. The associated al-
gorithms are Algorithms 1 and 2. Subsection 3.2 contains the algorithms for
the g-trapdoors, Algorithms 3 and 4, as well as the theorem statement for its
security in the random oracle model, Theorem 3.

3.1 Trapdoor 1: Approximate Trapdoor with Parallel Online
Sampling

Our first trapdoor construction is specified in Algorithms 1 and 2. Here we state
and prove that the approximate preimage samples are statistically close to a
trapdoor-independent distribution in the random oracle model.

Theorem 2. Sample r ← χ, et ← χm and set the trapdoor function description
as at := r−1(f t + et) ∈ Rmq as in Algorithm 1. Let η := ηε(Znm) = ηε(R

m),

σg = ηε(Λ
⊥
q (gt)) ≥

√
b2 + 1 · η for some ε ∈ (0, 1), s ≥

√
σ2
grr + η2, and serr ≥√

σ2
ge
te + η2. Then, the following distributions are within a max-log distance of

3 log 1+ε
1−ε ≤

6ε
1−ε : The “real” distribution with an honestly sampled approximate

12

Preimage Gaussian Width, s Verify Gaussian Width, σe√
(b2 + 1)s21(χ) + 1 · η

√
(b2j − 1)

(
1 + 2

b2−1

)
+m(b2 + 1)s21(χ) + 1 · η

Table 3. The parameters for the first approximate trapdoor construction from iNTRU.
Let η := ηε(R

m) = ηε(Znm) be the smoothing parameter of the underlying integer
lattice. Let s1(χ) be the expected singular value of ϕ(χ). We assume σg :=

√
b2 + 1η.

The RSIS− β bound is s
√
nm and the verification error’s Gaussian width is σe.

preimage in the random oracle model (as in Figure 1)

{(a,y, u, e) : u← U(Rq), y← SamplePre(a, u, sk, s, serr), e = u− aty ∈ Rq},

and the “programmed,” trapdoor-independent approximate preimage, distribution

{(a,y, u, e) : y← DRm,s, e← DR,σe
mod q, u = aty + e ∈ Rq},

for σe :=
√
s2err + σ2

g
b2j−1
b2−1 .

The intuition of the above theorem is clear once we see the samples from the
viewpoint of the adversary:

{(a,y, u, e) : u← U(Rq), y← SamplePre(a, u, sk, s, serr), e = u− aty ∈ Rq}.

Let y ← DRm,s and e′ ← DR,serr (trapdoor-independent samples). The proof
is given through five hybrids as expressed through the shifted coset v in Algo-
rithm 2:

u = v + atp− pe
≈s gtx + atp− pe
= f tx2 + atp− pe + mtx1

= [at, 1]

[
Im 0 rIm
0t −1 −et

] p
pe
x2

+ mtx1

≈s aty + mtx1 + e′.

Note how this equation allows us to analyze the perturbations in the function
domain and the function range simultaneously. Let

L :=

[
Im 0 rIm
0t −1 −et

]
.

Then, the proof comes down to showing

L

 p
pe
x2

 ≈s DRm+1,
√
s2I⊕s2err

.

13

This is done by analyzing linear transformations of discrete Gaussians, Theo-
rem 1††. We summarize the parameters in Table 3. Now we give a formal proof
of Theorem 2

Proof (Theorem 2). Our proof is done via hybrids on the distribution of (a,y, u, e).

Notice that f t = [at, 1]
[
rIm
−et

]
. Let gt = [mt|f t]. Let p ∼ D

Rm,
√
Σp

for Σp :=

s2I− σ2
grrI and pe ← DR,√Σe

for Σe := s2err − σ2
ge
te, as in Algorithm 2.

Hybrid 0. Let this distribution be honestly sampled preimage in the ROM. That
is, u← U(Rq) and y← SamplePre(a, u, sk, s, serr). Or in SamplePre(a, u, sk, s, serr),
p ← D

Rm,
√
Σp

, pe ← DR,√Σe
, v := u − atp + pe ∈ Rq, (x1,x2) = x ←

SampleG(v, σg), set y := rx2 + p, and return (a,y, u, e).

Hybrid 1. Swap the order in which u and v are sampled. So, sample v ← U(Rq),
sample the perturbations as before, and set u = v + atp− pe ∈ Rq. Sample the
preimage as before: x ← SampleG(v, σg) and return y := rx2 + p. Hybrid 0
and Hybrid 1 have the same distribution on (a,y, u, e).

Hybrid 2. Here we first sample over the G-lattice cosets x← DRk,σg
and replace

v with gtx ∈ Rq. Since σg ≥ ηε(Λ
⊥
q (g)), Hybrids 1 and 2 are within a max-log

distance of log 1+ε
1−ε by Lemma 1. Notice that

u = [at, 1]L

 p
pe
x2

+ mtx1

in this hybrid.

Hybrid 3. Here we sample the trapdoor-independent preimage. Sample v and
x as before and sample (y, e′) ← D

Rm+1,
√
s2I⊕s2err

. Theorem 1 combined with

Lemma 5 (below) tells us the max-log distance between

L

 p
pe
x2

 and D
Rm+1,

√
s2I⊕s2err

is at most log 1+ε
1−ε . We set u := aty + e′ +mtx1. Therefore, Hybrids 2 and 3 are

within a max-log distance of log 1+ε
1−ε .

††We remark that the analogous proof in [20] amounts to s being above the smooth-
ing parameter, s ≥ ηε(Λ⊥q (A)), and Lemma 1. In our situation, we must carefully show
the trapdoor is statistically hidden with the kernel lemma, Lemma 5.

14

Hybrid 4. Here we combine the error terms mtx1 and e′ using Theorem 1. Note
that mtx1 + e′ can be expressed as [1|mt

1]DRj+1,
√
s2err⊕σ2

gIj
(over the ring). Now,

the kernel of [1|mt
1] is spanned by (1,−1,0) and

(0, b,−1,0), (0, 0, b,−1, 0, . . .), . . . , (0, b,−1)

and its intersection with Rj+1 has smoothing parameter at most
√
b2 + 1η by

the GPV bound, Lemma 2. The kernel lattice is full-rank in the kernel of [1|mt
1]

and the discrete Gaussian is smooth over the kernel lattice Theorem 1.

Next, we prove the main statistical lemma used in the Theorem 2’s proof.

Lemma 5. Let

– Σp = s2Im − σ2
grrIm,

– Σe = s2err − σ2
ge
te,

– L =
[
Im 0 rIm
0t −1 −et

]
, as in Theorem 2’s proof,

– Γ = {x ∈ R2m+1 : Lx = 0 ∈ Rm+1},
– and σg > ηε(Znm), for some ε ∈ (0, 1).

Then,
√
Σp ⊕Σe ⊕ σ2

gI ≥ ηε(Γ) if

s2I � σ2
grr + η2ε (Znm)I and s2errI � σ2

ge
te + η2ε (Znm)I.

Proof. We write ring elements, and vectors and matrices over the ring, without
the coefficient embedding, ϕ(·), throughout the proof with the understanding
that we are using ϕ’s euclidean geometry. This significantly improves the proof’s
readability.
Consider that a basis for Γ is

B =

−rIm−et
Im

 ∈ R(2m+1)×m.

One can see this via Γ ’s definition,

Γ = {x = (x1, x2,x3) ∈ R2m+1 : x1 + rx3 = 0 ∈ Rm, x2 + etx3 = 0 ∈ R}.

Next, we use Lemma 3. Let

T :=

[
Im+1 Q
0 Im

]
where Q :=

[
rIm
et

]
.

Notice that

TB =

[
0
Im

]
∈ R(2m+1)×m.

In other words,
T · Γ = {0} ⊕Rm.

15

Lemma 3 tells us
√
Σp ⊕Σe ⊕ σ2

gI ≥ ηε(Γ) if and only if T
√
Σp ⊕Σe ⊕ σ2

gI ≥
ηε(TΓ) = ηε(R

m). Let Σ := Σp ⊕Σe ⊕ σ2
gI. Then a (tedious) computation tells

us

Σ′ := TΣTt =

[
A σ2

gQ
σ2
gQ

t σ2
gIm

]
where

A =

[
s2Im σ2

gre
σ2
gre

t s2err

]
.

Let η := ηε(R
m) = ηε(Znm). Now we use Schur complements in order to show

Σ′′ := Σ′ − η2I � 0. Let D := (σ2
g − η2)I and recall D � 0 by assumption.

Recall, a symmetric matrix Σ′′ =
[

A B
Bt D

]
with D � 0 is positive-semidefinite if

and only if Σ′′/D � 0.

Notice that

Σ′′/D =

[
(s2 − η2 − σ2

grr)I 0
0 s2err − η2 − σ2

ge
te

]
.

Therefore, Σ′′/D is positive semidefinite assuming

s2err � σ2
ge
te + η2, and s2I � (σ2

grr + η2)I.

3.2 Trapdoor 2: f-Trapdoor

Our second trapdoor construction is an iNTRU-analog of MP12’s trapdoor. Let

at = [1, r−1(f t + et)] be the SIS matrix and let R =
[
−et

rIm

]
be the trapdoor.

Then, we have the trapdoor relation atR = f t. Now we can proceed as in [28,7]
when given an RSIS image u ∈ Rq:

– Sample a perturbation p independent of the image u. This can be done
offline.

– Sample the input coset shifted by the perturbation’s SIS image, as in x ←
SampleG(v, σg) for v = u − atp. We drop the necessary entries of x to
match f ’s dimension.

– Convolve the samples by returning y := Rx + p.

The algorithms are given in Algorithms 3 and 4. Further, we list the parameters
in Table 4. If R is a cyclotomic rings, we can efficiently sample the perturba-
tion by using the structured samplers of [15,17]. A detailed example is given in
Section 4. Similar to the previous trapdoor, this trapdoor has efficient online
sampling over any ring with efficient polynomial multiplication.

The following theorem’s statement and proof are nearly identical to [7]’s
modification to [28]. The intuition is the same as Theorem 2, and we include a
detailed proof in Appendix A for completeness.

16

Algorithm 3: f .TrapGen(1λ)

Input: The security parameter 1λ.
Output: A function-approximate trapdoor pair.

1 Sample r ← χ, e← χm.
2 Set a′ := r−1(f + e) ∈ Rmq and a := (1,a′) ∈ Rm+1

q .
3 return (vk, T) := (a, (r, e)) ∈ Rmq ×Rm+1.

Algorithm 4: f .SamplePre(a, u, sk, s)

Input: A coset u ∈ Rq, and a trapdoor (r, e).
Output: An approximate preimage of u.

1 Sample perturbation p← DRm+1,
√
Σp

for Σp := s2Im+1 − σ2
g

[
ete −ret
−re rrIm

]
.

2 Set coset v := u− atp ∈ Rq.
3 Sample the G-lattice x = (x1,x2)← SampleG(v, σg).

4 Define the f -trapdoor as R :=
[
−et

rIm

]
.

5 Set the approximate preimage y := Rx2 + p ∈ Rm.
6 return y.

Fig. 2. The trapdoor generation and approximate preimage sampling algorithms of our
second f -trapdoor construction. The perturbations in Algorithm 4 are independent of
the input image u, and can be precomputed and stored before, along with atp. The
covariance Σp can be decomposed using the Schur decomposition, and the perturbation
p can be computed in parallel time O(n logn) in cyclotomic rings as in [17, Section 4].
The rest of Algorithm 4 is the “online” sampling phase, which consists mostly of G-
lattice sampling that can be done in time O(log q) for each polynomial coefficient [17].

Theorem 3. Sample r ← χ, et ← χm and set the trapdoor function descrip-
tion as a = (1,a′) := (1, r−1(f + e)) ∈ Rm+1

q as in Algorithm 3. Let η :=

ηε(Znm) and σg = ηε(Λ
⊥
q (gt)) ≥

√
b2 + 1 · η for some ε ∈ (0, 1), and let

s �
√
σ2
gRRt + η2Im+1. Then, the following distributions are within a max-

log distance 3 log 1+ε
1−ε ≤

6ε
1−ε : The “real” distribution with an honestly sampled

approximate preimage in the random oracle model (as in Figure 2)

{(a,y, u, e) : u← U(Rq), y← SamplePre(a, u, sk, s), e = u− aty ∈ Rq},

and the “programmed,” trapdoor-independent approximate preimage, distribution

{(a,y, u, e) : y← DRm,s, e← DR,σe
mod q, u = aty + e ∈ Rq},

for σe := σg

√
b2j−1
b2−1 .

17

Preimage Gaussian Width, s Verify Gaussian Width, σe√
m(b2 + 1)s21(χ) + 1 · η

√
(b2j − 1)

(
1 + 2

b2−1

)
· η

Table 4. The parameters for the second f -trapdoor construction from iNTRU. Let
η := ηε(R

m) = ηε(Znm) be the smoothing parameter of the underlying integer lattice.
Let s1(χ) be the expected singular value of ϕ(χ). We assume σg :=

√
b2 + 1η. Also,

the RSIS−β bound is s
√
nm and the verification width α is σe

√
n. These are the same

α, β as in Theorem 4. We remark that the verification width matches [7] and s matches
[28].

4 Implementation and Experiment

We implemented both our trapdoor schemes using the PALISADE library. In
our proof-of-concept implementations‡‡, we use power-of-2 cyclotomic rings, and
we set the size of modulus to be no more than 30 bits. These parameters allow
us to take advantage of the fast ring operations available in PALISADE and use
native integer arithmetic. We conducted some experiments on an Intel i7-4790
CPU with 8 cores to compare the performance of the hash-and-sign signature
schemes using our trapdoors versus the RLWE based approximate trapdoor in
[7]. We now describe some implementation details and discuss the experiment
results.

4.1 Perturbation Generation

The offline part of our preimage sampling algorithms require some perturbation
vectors being sampled from discrete Gaussian distributions with certain covari-
ances. Efficient sampling algorithms for power-of-2 cyclotomic rings have been
proposed in [17,11], and they are implemented in PALISADE. Among them, we
are particularly interested in the algorithm SampleFz, which on input a ring
element f samples a perturbation p̂← DZn,c,

√
φ(f)

.

In Algorithm 2, since Σp and Σe are both diagonal matrices, we can directly
call SampleFz on their diagonal entries to sample p and pe. More specifically,
we make m parallel and independent calls to SampleFz on the diagonal entries
s2 − σ2

grr to sample p. Similarly, we compute s2err − σ2
ge
te and call SampleFz

to sample pe.

In Algorithm 4, we compute the Schur complement decomposition of the
covariance matrix Σp as

Σp =

[
A B
Bt D

]
=

[
I BD−1

0 I

] [
Σ/D 0
0 D

] [
I 0

D−1Bt I

]
,

‡‡Source code can be downloaded at https://www.dropbox.com/s/

uz3g3atpqu7u87n/intrusign.zip?dl=0

18

https://www.dropbox.com/s/uz3g3atpqu7u87n/intrusign.zip?dl=0
https://www.dropbox.com/s/uz3g3atpqu7u87n/intrusign.zip?dl=0

where A = s2−σ2
ge
te, B = σ2

gre
t, D = (s2−σ2

grr)Im, and Σ/D = A−BD−1Bt.
Using the convolution theorem in [17, Lemma 4.1], we generate the perturbation
p = (p1,p2) in the following steps:

1. Sample p2 ← DZnm,
√
D. Since D is diagonal, we simply call SampleFz m

times in parallel to sample each entry of q.
2. Compute c = BD−1q.
3. Sample p1 ← DZm,c,

√
A−BD−1Bt .

4.2 Concrete Parameters.

We estimated concrete security by estimating how long it would take the BKZ
algorithm to break the scheme. Recall, BKZ [36] is a family of basis reduction
algorithms which reduces to an SVP oracle of dimension k < r, where r is the
input lattice’s rank. The BKZ algorithm with block size k is expected to return
a basis with shortest vector length δrk det(Λ)1/r where δk is the root Hermite
factor. The root Hermite factor is, asymptotically, the following function of the
block size [8]

δk ≈
(

k

2πe
(πk)1/k

) 1
2(k−1)

.

We used the core SVP hardness model [3] for BKZ. Here, we assume BKZ only
needs one SVP oracle call. Further, we use [4] for the best known heuristic
SVP time complexities: 2.292k(1+o(1)) classically and 2.265k(1+o(1)) for a quantum
computer [24].

Given the above, we found the smallest block size k which would break the
underlying RSISq,m+1,2(α+β). We remark that this is a crude concrete security
estimate, but we choose this method for its simplicity. This is not a state-of-the-
art concrete security estimate.

We selected several sets of concrete parameters, which are summarized in
Table 5 along with the estimated bit security levels.

4.3 Performance Comparisons with other schemes

Our first two sets of parameters fall into the regime of Falcon, with n = 512,
q = 12289 and log q = 20. and σ = q1/4 = 10 and 32. For such parameters, the
verification error width β exceeds q/2, so the signing error for our first trap-
door becomes big enough such that verification would not be able to distinguish
correct and incorrect plaintexts. However, our second trapdoor works just fine.

The next several sets of parameters have n = 1024 and various sizes of
modulus q and gadget base b. When log q ≥ 27, the signing error in our first
trapdoor becomes sufficiently small to allow valid verification. Notice that for
these parameters, the modulus q falls into the range of the overstretched attack,
and we set σ = q1/4 as suggested in [2].

Our last parameter chooses a large ring dimension n = 8192 but with rel-
atively small modulus log q = 30. We observed that our preimage sampling

19

Params Exact Exact Exact Approx Exact Approx Exact Approx Exact

n 512 512 1024 1024 1024 1024 1024 1024 8192
dlog2 qe 13 20 20 20 27 27 30 30 30

b 4 4 4 4 4 4 8 8 32
j 0 0 0 3 0 3 0 4 0
σ 10 32 32 32 107 107 181 181 181
s 2259.23 7229.5 10224.1 10224.1 34186.7 34186.7 113080 113080 1.27009e+06
nm 3072 3072 10240 7168 13312 10240 10240 6144 49152
κ 42 103 243 243 278 278 251 251 2192
κ′ 299 299 397 397 220 220 179 179 2819

Table 5. Summary of the concrete bit security estimations for the parameters men-
tioned in Section 4.2, where κ = 0.292k is the classical bit security estimation using the
method mentioned in Section 4.2, and κ′ is the classical bit security estimation using
the overstretched attack of [23].

algorithms still run very fast with such parameters. In contrast, when Falcon
is instantiated using large rings, the online stage may become slow due to the
complicated ring decomposition operations.

Experiments and performance results. For each set of parameter, we ran our
signature schemes 100 times each, and we recorded the offline and online signing
times. To compare with [7], we modified PALISADE’s implementation of [28]
by adding the approximate trapdoor capability. The RLWE based schemes do
not require large σ, so we ran it using the same parameters except with σ = 8,
and we measure the offline and online signing times in the same way. These
experiment results show that both the offline sampling times of our signature
schemes are very close to the RLWE based signature schemes in [7], with about
5% to 20% slowdowns, while the online signing times are the same or shorter
in a few cases. We also measured the sizes of the signing and the verification
keys in these schemes, and as expected, the results show that our signing keys
are almost half in size comparing to [7], and our verification keys are slightly
smaller. The detailed performance numbers are shown in Table 1.

In the offline stage, the slowdowns are mainly due to more complicated covari-
ance matrices for the perturbation vectors, as our trapdoors require non-spherical
discrete Gaussian sampling over integers for all m+1 perturbation ring elements,
where as in [28] only two perturbation ring elements are non-spherical. However,
with the help of parallel computation, the slowdowns are not significant.

Moreover, with the help of parallel computation, signing using our second
f -trapdoor of Algorithm 4 takes only about 10% more time comparing with our
first, noisy trapdoor of Algorithm 2. The extra time is mainly spent on computing
the center and covariance for the first part p1 of the perturbation.

For the online stage, our signing algorithms take the same number of opera-
tions comparing to [7], but because we can take advantage of parallel computa-
tion, our schemes run slightly faster.

20

References

1. Miklós Ajtai. Generating hard instances of lattice problems (extended abstract).
In STOC, pages 99–108. ACM, 1996.

2. Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on over-
stretched NTRU assumptions - cryptanalysis of some FHE and graded encoding
schemes. In CRYPTO (1), volume 9814 of Lecture Notes in Computer Science,
pages 153–178. Springer, 2016.

3. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In USENIX Security Symposium, pages
327–343. USENIX Association, 2016.

4. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in
nearest neighbor searching with applications to lattice sieving. In SODA, pages
10–24. SIAM, 2016.

5. Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van
Vredendaal. NTRU prime: Reducing attack surface at low cost. In SAC, volume
10719 of Lecture Notes in Computer Science, pages 235–260. Springer, 2017.

6. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
EUROCRYPT, volume 8441 of Lecture Notes in Computer Science, pages 533–556.
Springer, 2014.

7. Yilei Chen, Nicholas Genise, and Pratyay Mukherjee. Approximate trapdoors for
lattices and smaller hash-and-sign signatures. In ASIACRYPT (3), volume 11923
of Lecture Notes in Computer Science, pages 3–32. Springer, 2019.

8. Yuanmi Chen. Réduction de réseau et sécurité concréte du chiffrement
complétement homomorphe. PhD thesis, Paris 7, 2013.

9. Jung Hee Cheon, Duhyeong Kim, Taechan Kim, and Yongha Son. A new trap-
door over module-ntru lattice and its application to id-based encryption. IACR
Cryptology ePrint Archive, 2019:1468, 2019.

10. Chitchanok Chuengsatiansup, Thomas Prest, Damien Stehlé, Alexandre Wallet,
and Keita Xagawa. Modfalcon: compact signatures based on module NTRU lat-
tices. IACR Cryptology ePrint Archive, 2019:1456, 2019.

11. David Bruce Cousins, Giovanni Di Crescenzo, Kamil Doruk Gür, Kevin King,
Yuriy Polyakov, Kurt Rohloff, Gerard W. Ryan, and Erkay Savas. Implement-
ing conjunction obfuscation under entropic ring LWE. In 2018 IEEE Symposium
on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA, pages 354–371, 2018.

12. Léo Ducas, Steven D. Galbraith, Thomas Prest, and Yang Yu. Integral matrix gram
root and lattice gaussian sampling without floats. In EUROCRYPT (2), volume
12106 of Lecture Notes in Computer Science, pages 608–637. Springer, 2020.

13. Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based en-
cryption over NTRU lattices. In ASIACRYPT (2), volume 8874 of Lecture Notes
in Computer Science, pages 22–41. Springer, 2014.

14. Léo Ducas and Daniele Micciancio. Improved short lattice signatures in the stan-
dard model. In CRYPTO (1), volume 8616 of Lecture Notes in Computer Science,
pages 335–352. Springer, 2014.

15. Léo Ducas and Thomas Prest. Fast fourier orthogonalization. In ISSAC, pages
191–198. ACM, 2016.

21

16. Nicholas Genise, Craig Gentry, Shai Halevi, Baiyu Li, and Daniele Micciancio.
Homomorphic encryption for finite automata. In ASIACRYPT (2), volume 11922
of Lecture Notes in Computer Science, pages 473–502. Springer, 2019.

17. Nicholas Genise and Daniele Micciancio. Faster gaussian sampling for trapdoor
lattices with arbitrary modulus. In EUROCRYPT (1), volume 10820 of Lecture
Notes in Computer Science, pages 174–203. Springer, 2018.

18. Nicholas Genise, Daniele Micciancio, Chris Peikert, and Michael Walter. Improved
discrete gaussian and subgaussian analysis for lattice cryptography. In Public Key
Cryptography (1), volume 12110 of Lecture Notes in Computer Science, pages 623–
651. Springer, 2020.

19. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178. ACM, 2009.

20. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. In STOC, pages 197–206. ACM, 2008.

21. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully ho-
momorphic signatures from standard lattices. In STOC, pages 469–477. ACM,
2015.

22. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public
key cryptosystem. In ANTS, volume 1423 of Lecture Notes in Computer Science,
pages 267–288. Springer, 1998.

23. Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on overstretched
NTRU parameters. In EUROCRYPT (1), volume 10210 of Lecture Notes in Com-
puter Science, pages 3–26, 2017.

24. Thijs Laarhoven. Search Problems in Cryptography. PhD thesis, Eindhoven Uni-
versity of Technology, 2015.

25. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks
are collision resistant. In ICALP (2), volume 4052 of Lecture Notes in Computer
Science, pages 144–155. Springer, 2006.

26. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. In EUROCRYPT, volume 6110 of Lecture Notes in
Computer Science, pages 1–23. Springer, 2010.

27. Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient
one-way functions from worst-case complexity assumptions. In FOCS, pages 356–
365. IEEE Computer Society, 2002.

28. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In EUROCRYPT, volume 7237 of Lecture Notes in Computer
Science, pages 700–718. Springer, 2012.

29. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based
on gaussian measures. SIAM J. Comput., 37(1):267–302, 2007.

30. Daniele Micciancio and Michael Walter. Gaussian sampling over the integers:
Efficient, generic, constant-time. In CRYPTO (2), volume 10402 of Lecture Notes
in Computer Science, pages 455–485. Springer, 2017.

31. Chris Peikert. An efficient and parallel gaussian sampler for lattices. In CRYPTO,
volume 6223 of Lecture Notes in Computer Science, pages 80–97. Springer, 2010.

32. Chris Peikert. A decade of lattice cryptography. Foundations and Trends in The-
oretical Computer Science, 10(4):283–424, 2016.

33. Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In TCC, volume 3876 of Lecture Notes in Computer
Science, pages 145–166. Springer, 2006.

22

34. Thomas Prest. Sharper bounds in lattice-based cryptography using the rényi diver-
gence. In ASIACRYPT (1), volume 10624 of Lecture Notes in Computer Science,
pages 347–374. Springer, 2017.

35. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In STOC, pages 84–93. ACM, 2005.

36. Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Math. Program., 66:181–199, 1994.

A Proof of Theorem 3

We now prove Theorem 3.

Proof. Notice that f t = atR. Let gt = [mt|f t]. Let p ← DRm,Σp for Σp :=

s2Im+1 − σ2
g

[
ete −ret

−re rrIm

]
as in Algorithm 4. Then, the following sequence of sta-

tistical hybrids gives an outline to the proof:

u = v + atp

≈s gtx + atp

= f tx2 + atp + mtx1

= at
[
Im+1 R

](p
x2

)
+ mtx1

≈s aty + mtx1

≈s aty + e.

Let K denote the matrix [Im+1 R] for the rest of the proof.

Hybrid 0. Let this distribution be honestly sampled preimage in the ROM.
That is, u ← U(Rq) and y ← f .SamplePre(u, r). Or in f .SamplePre(u, r, s),
p ← DRm+1,Σp

, v := u − atp ∈ Rq, (x1,x2) = x ← x ← SampleG(v, σg), and
return y := Rx2 + p.

Hybrid 1. Swap the order in which u and v are sampled. So, sample v ← U(Rq),
sample the perturbations as before, and set u = v + atp ∈ Rq. Sample the
preimage as before: x ← x ← SampleG(v, σg) and return y := Rx2 + p.
Hybrid 0 and Hybrid 1 have the same distribution.

Hybrid 2. Here we first sample over the G-lattice cosets x← DRk,σg
and replace

v with gtx ∈ Rq. Since σg ≥ ηε(Λ
⊥
q (g)), Hybrids 1 and 2 are within a max-log

distance of log 1+ε
1−ε by Lemma 1. Notice that

u = atK

(
p
x2

)
+ mtx1

in this hybrid.

23

Hybrid 3. Here we sample the trapdoor-independent preimage. Sample v and x
as before and sample y← DRm,s . Lemma 6 (below) tells us the max-log distance
between

K

(
p
x2

)
and DRm+1,s

is at most log 1+ε
1−ε . We set u := aty + mtx1. Therefore, Hybrids 2 and 3 are

within a max-log distance of log 1+ε
1−ε .

Hybrid 4. Here we simplify the error term mtx1 using Theorem 1. Note that
mtx1 can be expressed as mt

1DRj ,σg
(over the ring). Now, the kernel of mt

1] is
spanned by

(0, b,−1,0), (0, 0, b,−1, 0, . . .), . . . , (0, b,−1)

and its intersection with Rj+1 has smoothing parameter at most
√
b2 + 1η by

the GPV bound, Lemma 2. The kernel lattice is full-rank in the kernel of [mt
1]

and the discrete Gaussian is smooth over the kernel lattice Theorem 1.

Lemma 6. Let

– Σp := s2Im+1 − σ2
g

[
ete −ret

−re rrIm

]
,

– K = [Im+1 R], as in Theorem 3’s proof,
– Γ = {x ∈ R2m : Kx = 0 ∈ Rm+1},
– and σg > ηε(Znm), for some ε ∈ (0, 1).

Then,
√
Σp ⊕ σ2

gI ≥ ηε(Γ) as long as

s ≥
√
σ2
gRRt + η2Im+1.

Proof. We write ring elements, and vectors and matrices over the ring, without
the coefficient embedding, ϕ(·), throughout the proof with the understanding
that we are using ϕ’s euclidean geometry. This significantly improves the proof’s
readability.
Consider that a basis for Γ is

B =

 et

−rIm
Im

 =

[
−R
Im

]
∈ R(2m+1)×m.

Next, we use Lemma 3. Let

T :=

[
Im+1 R
0 Im

]
.

Notice that

TB =

[
0
Im

]
∈ R(2m+1)×m.

24

In other words,

T · Γ = {0} ⊕Rm.

Lemma 3 tells us
√
Σp ⊕ σ2

gI ≥ ηε(Γ) if and only if T
√
Σp ⊕ σ2

gI ≥ ηε(TΓ) =

ηε(R
m). Let Σ := Σp ⊕ σ2

gI. Then a computation tells us

TΣTt =

[
s2Im+1 σ

2
gR

σ2
gR

t σ2
gIm

]
= Σ′.

Let η := ηε(R
m) = ηε(Znm). Now we use Schur complements in order to show

Σ′′ := Σ′ − η2I � 0. Let D := (σ2
g − η2)I and recall D � 0 by assumption.

Recall, a symmetric matrix Σ′′ =
[

A B
Bt D

]
with D � 0 is positive-semidefinite if

and only if Σ′′/D � 0.
Notice that

Σ′′/D = s2Im+1 − (σ2
gRRt + η2Im+1).

Therefore, Σ′′/D is positive semidefinite assuming

s ≥
√
σ2
gRRt + η2Im+1.

B Additional Background

Signature scheme definition. A digital signature scheme is a tuple of efficient
algorithms (KeyGen,Sign,Verify). The first two algorithms are probabilis-
tic polynomial time (PPT) in an underlying security parameter, λ ∈ N, and
the latter is deterministic. The correctness of the scheme is the probability
Verify(vk, σ) = 1 for a validly generated signature, σ ← Sign(sk,m) and
(sk, vk) ← KeyGen(1λ). We say it is correct if this correctness is one minus
a negligible function in λ. The signature scheme we describe in this paper is a
hash-and-sign scheme in the random oracle model (ROM) [?]. We use the usual
strong EU-CMA definition of security, where a scheme is secure if for all PPT
adversaries A given a signing oracle and the verification key vk, the probability
that A outputs a valid signature, even on a message A has queried, is negligible.

C Signature Scheme

In this section, we construct a hash-and-sign signature scheme from the algo-
rithms detailed in Section 3, in the random oracle model. The signature scheme
is nearly the same as [20], but verification checks ‖aty −H(m)‖ ≤ α instead of
checking for equality.

Construction. Using either trapdoor from the previous section and a hash func-
tion H := Hλ : {0, 1}∗ → Rq modeled as a random oracle, we build a signature
scheme as follows:

25

– KeyGen(λ): The key-generation algorithm samples a ∈ Rmq together with
its (α, β)-approximate trapdoor (r, e) as in Approx.KeyGen. It returns
(vk, sk) := (a, {r, e}).

– Sign(sk,m): The signing algorithm checks if the message-signature pair
(m,xm) has been produced before. If so, it outputs xm as the signature
of m; if not, it computes u = H(m), and samples an approximate preimage
xm ← Approx.SamplePre(a, (r, e), u, s, se). It outputs xm as the signa-
ture and stores (m,xm) in the list.

– Verify(a,m,x): The verification algorithm checks if ‖x‖ ≤ β and ‖atx −
H(m)‖ ≤ α. If so, it outputs ACCEPT; otherwise, it outputs REJECT.

Theorem 4. The hash-and-sign signature scheme above is strongly EU-CMA
secure in the random oracle model assuming the hardness of RSISq,m+1,2(α+β)

and iNTRUq,χ.

C.1 Security Proof

Lemma 7. [7, Lemma 5.2] If there exists an efficient (PPT) adversary A which
given a uniformly random a ∈ Rmq returns x 6= x′ ∈ Rm satisfying

‖x‖, ‖x′‖ ≤ β and ‖at(x− x′)‖ ≤ 2α,

then there exists an efficient adversary solving HNF-RSISq,m+1,2(α+β).

Proof. We are given an HNF-RSIS instance: (1,a) where a← U(Rmq). Then, we
give a to A. To construct the adversary using A, we define e := at(x− x′) ∈ R
and y := x′ − x and we return (e,y) as the HNF-RSISq,m+1,2(α+β) solution.

We now prove Theorem 4.

Proof. We show that we can build an adversary breaking RSISq,m+1,2(α+β) given
access to an adversary A which breaks strong EU-CMA security of the hash-
and-sign scheme in the random oracle model, assuming the pseudorandomness of
iNTRUq,χ. The adversary A has access to hash queries and signature queries. We
play the role of the random oracle and signing oracle. Without loss of generality,
we assume the adversary has queried the message m∗ it forges a signature on.
Let qs be the number of distinct hash and signature queries combined.

Hybrid 0. This is the honest security game played withA. We generate (vk, sk)←
KeyGen(1λ). For each hash query, we check local storage for a um ∈ Rq and
return it if it exists. Otherwise, we sample σm := x ← Sign(sk,m) with a uni-
formly chosen hash of the message H(m) := um ← U(Rq), store (m,um, σm) in
local storage and return um. For each message query, we check if σm is in local
storage and return it if it is. Otherwise, we sample and store (m,um, σm), as
before, then return σm.

26

Hybrid i for i = 1, . . . , qs. In Hybrid i, we keep the first qs − i queries as they
are in Hybrid 0, and the remaining are sampled from the trapdoor-independent
distribution given in Theorem 2. The max-log distance between Hybrid i and
Hybrid 0 is at most 6iε/(1− ε). Note that Hybrid qs has queries solely from the
trapdoor-independent distribution in Theorem 2.

Hybrid qs+1. Here we replace vk with the a ∈ Rmq given to us as in the HNF-RSIS
instance, (1,a). We now replay Hybrid qs. Notice that the statistical behavior of
A is not noticeably different than in Hybrid qs assuming the pseudorandomness
of iNTRUq,χ. We now combine the forgery, σm∗ = xm∗ , and the signature in
storage, σ′m∗ = x′m∗ , to solve HNF-RSISq,m+1,2(α+β) as in Lemma 7.

27

	Gadget-Based iNTRU Lattice Trapdoors

