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Abstract. In this paper we introduce new algorithms that, based only
on the independent round keys assumption, allow to practically compute
the exact expected differential probability of (truncated) differentials and
the expected linear potential of (multidimensional) linear hulls. That is,
we can compute the exact sum of the probability or the potential of
all characteristics that follow a given activity pattern. We apply our
algorithms to various recent SPN ciphers and discuss the results.
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1 Introduction

Differential and linear cryptanalysis are two powerful statistical attacks in symm-
etric-key cryptography. Differential cryptanalysis was first introduced by Biham
and Shamir in 1990 [BS90] and linear cryptanalysis by Matsui in 1993 [Mat93].
Although the first target of both attacks was DES [Nat77], they were applied to
numerous other block ciphers. Due to their wide applicability, it is necessary to
evaluate the security of all block ciphers against these two attacks.

To analyze a cipher’s susceptibility to these attacks, evaluating or at least ap-
proximating the quality of a differential or linear approximation is an essential,
but difficult step. While both were originally (and are still most often) evalu-
ated based on differential or linear characteristics, it was soon observed that
the relevant metrics are rather the probability of a differential [LMM91] or the
correlation of a linear hull [Nyb94]. The first specifies the difference or linear
mask in every intermediate state of the cipher, while the latter determines only
those in the input and output states. Thus, many characteristics contribute to
one differential or linear hull. While individual characteristics (under some as-
sumptions [LMM91]) can easily be evaluated, precisely evaluating a differential
or linear hull is generally infeasible.

The full version of the paper is available on ePrint archive:
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Numerous variants and improvements of differential and linear cryptanaly-
sis have been proposed, including truncated differentials [Knu94] and multiple
and multidimensional linear cryptanalysis [JR94,HCN19]. Both consider collec-
tions of many differentials or linear masks to make the attack more efficient.
Again, exactly computing their probability is usually impossible. When applied
to substitution-permutation-network (SPN) ciphers, the notion of activity pat-
terns becomes key. An activity pattern specifies for each round which S-boxes
have a zero and which have a non-zero difference/mask (active), but does not
specify the exact value. A truncated characteristic is thus the collection of all
characteristics that follow the given activity pattern. Even though a truncated
characteristic contains only a subset of all characteristics of a differential resp.
a linear hull, it is still in general infeasible to compute their probability.

As truncated characteristics are the essential objects for assessing the security
of many modern SPN ciphers against differential and linear cryptanalysis, the
absence of suitable algorithms to tackle this problem was – and still is – an
interesting research area within symmetric cryptography.

Related Work Several algorithms have been developed in the past. We provide a
detailed discussion of related work in Section 3 after having fixed the notation.
Here we limit ourselves to note that a variety of methods for estimating the ex-
pected probability of truncated differential (characteristics) have been proposed,
e.g. [KB96,MSAK99,MG00,AL12,Köl14,CFG+14,Leu15,AK18,EK18]. One gen-
eral approach is to treat a truncated differential characteristic as a collection of
individual differential characteristics, and to derive an estimate by enumerating
and evaluating the individual characteristics based on the transition probabil-
ities for the nonlinear layer. A second direction is to focus on local properties
such as the conditions imposed by the truncated differential characteristic, and
to derive an estimate based on these conditions.

Unfortunately, those algorithms either add additional assumptions to be ef-
ficient or work only in very specific cases. In the former case they result only
in approximations of the probabilities instead of exact values. Even more prob-
lematic, it is often not possible to determine if this approximation under- or
overestimates the correct value.

Our Contribution In this paper, we introduce new methods to compute the exact
expected probability of truncated differential characteristics and the potential
of truncated linear characteristics for SPN block ciphers. As all previous work,
our algorithms rely on the independent round keys assumption.3 However, due
to a careful analysis of the involved structures, we achieve efficiency without
making additional simplifications or further assumptions. For most ciphers of
interest, the running time of the algorithm is a few minutes on a standard desktop
computer.

By applying our ideas to concrete instances, we are (i) able to show how
well previous methods approximate the exact values and (ii) derive interesting

3 It is also known as Markov cipher assumptions.
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results on a list of modern SPN ciphers. Concerning (i), we in particular show
that although Moriai’s et al. method [MSAK99] for approximating probability
of a truncated differential characteristic is fast, since it is independent of the
underlying S-box, the given value can be very different from the correct value.
With respect to (ii) we like to highlight several results: For Prince, we find many
6-round differentials with comparable probability to the ones in [CFG+14] which
is suitable for similar attacks. For Skinny64, we identify differentials with higher
probability or for one more round than previous analysis based on enumerating
characteristics [AK18]. For Midori64, we find truncated differentials covering
more rounds than a recently proposed MILP-based approach [MA19].

Outline In Section 2, we introduce background on differentials. In Section 3, we
discuss previous methods for computing the probability of truncated differentials
and their limitations. In Section 4, we propose a new method to compute the
probability of truncated differential characteristics together with optimization
techniques. We apply our algorithms to several block ciphers and discuss the
results in Section 5.

2 Preliminaries

A block cipher is a function E : Fk2 × Fn2 → Fn2 with C = E(K,P ) such that
for each fixed K, EK(·) := E(K, ·) is a permutation of Fn2 . K, P , and C are the
master key, plaintext, and ciphertext, with bit-sizes k, n, and n, resp. In this
paper, we focus on key-alternating SPN ciphers. The cipher’s state is separated
into m words of s bits each, where n = s ·m. Each round includes three layers
(see Fig. 1):

– Key addition (AKi): xor the n-bit round key Ki to the whole state.
– Non-linear layer (Si): apply m parallel bijective s-bit S-boxes Si to the words.
– Linear layer (Li): multiply an n× n bijective binary matrix Li to the state.

The i-th round (0 ≤ i < r) is denoted by Ri = Li ◦ Si ◦ AKi , and rounds
i to j by Ri···j = Rj ◦ . . . ◦ Ri. After r rounds, the ciphertext is EK(P ) =
AKr ◦ Rr−1 ◦ · · · ◦ R0(P ). We use R∗i to denote round operations excluding the
key addition, i.e., R∗i = Li ◦ Si. By Xi, Yi, and Zi, we denote the states before
Si, before Li, and after Li layers. Xi[j] denotes the corresponding j-th word of
the state Xi.

R0

R∗0

S0 L0
K0

X0 Y0 Z0

R1

R∗1

S1 L1
K1

X1 Y1 Z1 · · · Zr−2

Rr−1

R∗r−1

Sr−1 Lr−1

Kr−1
Xr−1 Yr−1 Zr−1

Kr

CP

Fig. 1: Structure of the considered block cipher in this paper.
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2.1 Differential Cryptanalysis

In differential cryptanalysis, the attacker wants to find non-uniformity in the oc-
currence of plaintext differences ∆P = P ⊕P ′ and the corresponding ciphertext
differences ∆C = C⊕C ′, usually by finding a high-probability pair (∆P,∆C), to
distinguish the cipher from a random permutation. We denote the intermediate
states in the computation of C,C ′ byX,X ′ and their difference by∆X = X⊕X ′.

Definition 1 (Differential Probability of EK). For a block cipher EK and
α, β ∈ Fn2 , the fixed-key differential probability of the differential (α, β) is

P(α
EK−−→ β) = 2−n ·

∣∣ {P ∈ Fn2 | EK(P )⊕ EK(P ⊕ α) = β}
∣∣ .

Since the attacker has no knowledge of the key in EK , he wants to find a differen-
tial with fixed-key probability significantly higher than 2−n for most keys in Fκ2 .
Thus, he wants to find a differential with a high expected differential probability
(EDP).

Definition 2 (EDP of E). For any α, β ∈ Fn2 , the EDP of the differential
(α, β) for the encryption E over a uniformly distributed random key K ∈ Fκ2 is

EDP(α
E−→ β) := 2−κ ·

∑
K∈Fκ2

P(α
EK−−→ β) .

Definition 3 (Differential Characteristics). An r-round differential charac-
teristic of differences (α0, . . . , αr) ∈ (Fn2 )r+1 between the rounds has probability

P(α0
R0−−→ α1 → . . .→ αr−1

Rr−1−−−→ αr) =

2−n ·
∣∣{P ∈ Fn2 | ∀i, Ri ◦ . . . ◦ R0(P )⊕Ri ◦ . . . ◦ R0(P ⊕ α0) = αi+1}

∣∣.
It follows that for a key alternating cipher, the probability of a differential is

the sum of the probability of all containing characteristics whose plaintext and
ciphertext differences are the same as in the differential, i.e.,

P(α0
EK−−→ αr) =

∑
α1,...,αr−1

P(α0
R0−−→ α1 → . . .→ αr−1

Rr−1−−−→ αr).

Computing these probabilities is not an easy task; since for a given differential
(characteristic), they need computation over all the message and the key space,
i.e., the computation complexity is O(2n+κ).

Even for the smallest applied values of n and κ, this is an unapproachable
complexity. Therefore, it comes to mind how efficiently one can compute the
probability of a differential (characteristic). One assumption that makes it easier
to compute EDP of differential characteristic is known as the independent round
keys assumption that it is assumed that the all r+1 round keys are independent
of each other4.

4 In [LMM91], the authors used the term Markov cipher assumption.
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Theorem 1. [LMM91] In a key alternating cipher with independent round keys,

EDP(α0
R0−−→ α1 → . . .→ αr−1

Rr−1−−−→ αr) =

r−1∏
i=0

P(αi
R∗i−−→ αi+1), (1)

EDP(α0
E−→ αr) =

∑
α1,...,αr−1

r−1∏
i=0

P(αi
R∗i−−→ αi+1). (2)

Theorem 1 shows that the independent round keys assumption makes the
computation much easier, especially if the round functions are quite simple ones.
In differential cryptanalysis of key alternating ciphers, it is common to assume
that the all round keys are independent. Then, EDP of a differential (character-
istic) can be computed as given in Eq.(1) and Eq.(2). This assumption allows
to compute EDP without considering the value of the master key. Using this
assumption, it is easy to compute EDP of a differential characteristic, however,
computing EDP of a differential using this assumption remains challenging since
it requires considering all differential characteristics with different α1, . . . , αr−1.

Using Theorem 1, for an r-round SPN block cipher with independent round
keys, the EDP of characteristic (α0, . . . , αr) is equal to

EDP(α0
R0−−→ α1 → . . .→ αr−1

Rr−1−−−→ αr) =

r−1∏
i=0

m−1∏
j=0

P(αi[j]
Si−→ βi[j]), (3)

where βi := L−1i (αi+1) with 0 ≤ i < r. Furthermore,

EDP(α0
E−→ αr) =

∑
α1,...,αr−1

r−1∏
i=0

m−1∏
j=0

P(αi[j]
Si−→ βi[j]). (4)

The differential probability of the nonlinear layer Si is the product of the
individual differential probabilities of all S-boxes, as indicated in the S-box’s
differential distribution table (DDT); in particular, of all S-boxes with non-zero
input difference, which we denote as active S-boxes. We denote the activity in
X using the activity function δ(X), where δ(X)[i] = 1 if and only if X[i] 6= 0,
else δ(X)[i] = 0. We use the shorthand δi = δ(∆Xi) = δ(∆Yi) and refer to
(δ0, . . . , δr−1) as the activity pattern of the characteristic.

Truncated Differential We consider truncated differentials, where the plain-
text difference is chosen from a set U and the ciphertext one from a set V. Its
probability is defined as follows, assuming all differences in U occur uniformly:

EDP(U E−→V) =
1

|U| ·
∑

α∈U,β∈V

EDP(α0
E−→αr).

Note that in classical truncated differentials, only differences in some bits of
the plaintext and ciphertext are determined, while the other bits can take any
values. In this case, U and V are a special kind of linear subspaces excluding
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the zero value. In this paper, we use the general definition for the truncated
differential.

If the attacker finds U and V such that EDP(U E−→ V) is significantly larger
than |V| · 2−n, he can use this to distinguish E from a random permutation. We
define the Expected Differential Distinguishability (EDD) as the average differ-
ential probability in the truncated differential, which must be significantly larger
than 2−n to distinguish:

EDD(U E−→ V) =
1

|U| · |V| ·
∑

α∈U,β∈V

EDP(α
E−→ β) .

3 Related Work on Probability of Truncated Differentials

Enumerating Characteristics. A simple, but inefficient approach to evalu-
ate the EDP follows directly from its definition as in Eq.(2). We can compute
or approximate this probability by enumerating and individually evaluating all
or many of the compatible differential characteristics (α0, . . . , αr) based on their
S-box transition probabilities. This works well when there are only few compat-
ible characteristics which dominate this probability and these can be identified
efficiently. However, in practice, this is often not the case, limiting the applica-
bility of this approach, particularly for larger sets U ,V. A heuristic automated
approach for enumerating compatible characteristics is implemented in the SAT-
based tool CryptoSMT [Köl14] and was evaluated on differentials (α0, αr) for
a large selection of ciphers [AK18].

Transition Probabilities Matrices. We consider the 2n×2n transition matrix
of differential probabilities from each input difference to each output difference
for one round, i.e., the scaled DDT of a round. Under the independent round
keys assumption, the powers of this matrix describe the differential behavior of
more rounds. Correlation matrices [DGV94] similarly model linear cryptanalysis.

Explicitly computing or multiplying the full 2n × 2n matrices is, however,
only feasible in very particular cases, i.e. n ≤ 32 and a transition matrix that is
very sparse, such as Katan32 [AL12] or Speck32 [Goh19]. Usually, the transi-
tion matrices must be reduced by considering only the submatrices for specific
differences, or by taking marginal distributions for groups of differences.

Some fine-grained approaches have been proposed, for example the transition
probabilities matrices for a stochastic analysis of Crypton block cipher [MG00]
or the differential analysis of Lac’s underlying block cipher, Lblock-s [Leu15].

It has also been proposed to apply different marginalization criteria for dif-
ferent layers of the cipher, for example in the semi-truncated differential analysis
of Mantis [EK18]. Sometimes, it is possible to derive a precise closed-form ex-
pression for the powers of the matrix, as in the analysis of Prince by [CFG+14].
These approaches represent trade-offs between the previously discussed two main
approaches: Enumerating characteristics and evaluating local constraints.

One way to make this computation efficient is to partition the underlying
characteristics by their activity patterns. By partitioning over activity patterns,
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EDP
(
α0

E−→ αr | (δ0, . . . , δr−1)
)

is used to denote the sum of probabilities of
characteristics whose activity pattern is (δ0, . . . , δr−1). Thereby,

EDP(α0
E−→ αr) =

∑
δ1,...,δr−2

EDP
(
α0

E−→ αr | (δ0, . . . , δr−1)
)

where,

EDP
(
α0

E−→ αr | (δ0, . . . , δr−1)
)

=
∑

α1,...,αr−1

∀i αi∈Ai

r−1∏
i=0

P
(
αi
Si−→ L−1i (αi+1)

)
,

and Ai is the set of all αi ∈ Fn2 with δ(αi) = δi, δ(L−1i (αi)) = δi−1. Similarly, for

truncated differentials, we use the notation EDP
(
U E−→ V | (δ0, . . . , δr−1)

)
.

Definition 4 (Truncated Differential Characteristic). For a given activity
pattern (δ0, . . . , δr−1), the truncated differential characteristic is the set of all
differential characteristics that follow the activity pattern, i.e., all (α0, . . . , αr)
with δ(α0) ∈ δ0, δ(αr) ∈ δr−1, and δ(αi) = δi, δ(L−1i (αi)) = δi−1 with 0 < i < r.

We denote the set of all (2s −1)hw(δi) values for αi such that δ(αi) = δi by Uδi
and the set of all (2s −1)hw(δi) values for αi+1 such that δ

(
L−1i (αi+1)

)
= δi by

Vδi .5 Therefore, for a truncated differential characteristic, U is the same as Uδ0
and V is the same as Vδr−1

, and EDP
(
Uδ0

E−→ Vδr−1
| (δ0, . . . , δr−1)

)
denotes its

EDP. Note that this is different from the typical definition of truncated differen-
tials where U and V cover all the corresponding linear subspaces (excluding zero)
where |U| = 2s·hw(δ0) −1 and |V| = 2s·hw(δr−1) −1. We denote the probability of

this notion of truncated characteristics by EDP
(
Uδ∗0

E−→ Vδ∗r−1
| (δ0, . . . , δr−1)∗

)
an it is defined as∑

δ′0,...,δ
′
r−1

∀i, δ′i�δi

(2s −1)hw(δ′0)

2s·hw(δ0) −1
· EDP

(
Uδ′0

E−→ Vδ′r−1
| (δ′0, . . . , δ′r−1)

)
,

which is described over uniformly distributed differences in Uδ∗0 .6

Partitioning a (truncated) differential over the truncated characteristics makes
it possible to give a close lower estimation by only considering the ones which
has prominent role in the EDP of the (truncated) differential, those are usually
the truncated characteristics with less number of active S-boxes or the ones with
less number of conditions in the linear layers.

Approach by Moriai et al. [MSAK99] introduced an estimation of the EDP
of a truncated differential for SPN block ciphers, assuming independent round
keys. It has since been widely applied due to its simple evaluation and good
accuracy for AES-like designs with highly uniform S-boxes and strong diffusion.

It assumes uniform differential probabilities for the s-bit S-box S, i.e., that

P(a
S−→ b) is either 1 (if a = b = 0) or p = (2s −1)−1 (if a 6= 0, b 6= 0) or 0

5 hw(δi) is the Hamming weight of δi and it is equal to the number of active S-boxes
in the i-th round.

6 For x, y ∈ Fm2 , we use x � y to denote that for all i with 0 ≤ i < m, x[i] ≤ y[i].
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Fig. 2: 5-round Truncated Characteristic for Midori-64 from [MA19]. Note that
the final linear layer is omitted.

otherwise. Note that no S-box fulfills this assumption, but it allows to easily

evaluate truncated characteristics based on the probability P(δi
δLi−−→ δi+1) that

βi with δ(βi) = δi maps to a value with activity pattern δi+1 over each linear layer
Li. However, the results may both under- or overestimate the real probabilities.

Example 1. Fig. 2 shows a truncated characteristic for 5-round Midori which is
borrowed from [MA19]. The EDP of this truncated characteristic, EDP

(
Uδ0 →

Vδ4 | (δ0, . . . , δ4)
)

is equal to

15−3 ·
∑(

P(a0
S−→ x0) · P(a1

S−→ x0) · P(a2
S−→ x0) · P(x0

S−→ x1) · P(x1
S−→ x2)·

P(x1
S−→ x3) · P(x1

S−→ x4) · P(x4
S−→ x5) · P(x4

S−→ x6) · P(x4
S−→ x7)·

P(x2
S−→ x8) · P(x2

S−→ x9) · P(x2
S−→ x6) · P(x3

S−→ x9) · P(x3
S−→ x6)·

P(x3
S−→ x5) · P(x5

S−→ c0) · P(x5
S−→ c1) · P(x6

S−→ c2) · P(x9
S−→ c3)·

P(x9
S−→ c4) · P(x8

S−→ c7) · P(x7
S−→ c8) · P(x7 ⊕ x8

S−→ c5) · P(x7 ⊕ x8
S−→ c6)

)
where sum is over a0, a1, a2, x0, . . . , x9, c0, . . . , c8 ∈ F4

2\{0}.
To compute the exact value of this EDP, we need to do 25 (number of active S-

boxes) table look-ups and arithmetic operations for each 1522 value of a0, . . . , c8
which is about 290.60 table look-ups and arithmetic operations.

On the other hand, using Moriai’s et al. method, it is enough to multiply

P(δ0
δL−−→ δ1) = 15−2, P(δ1

δL−−→ δ2) = 1, P(δ2
δL−−→ δ3) = 1, P(δ3

δL−−→ δ4) = 14·15−5,

resulting in 14 · 15−7 ≈ 2−23.54.
To compute EDP

(
Uδ∗0 → Vδ∗4 | (δ0, . . . , δ4)∗

)
, we need to consider all other

possible underlying activity patterns (δ′0, . . . , δ
′
4). There is only one such activity

pattern (δ0, . . . , δ
′
4), where δ4 and δ′4 are different on the corresponding S-boxes

for c5 and c6. (δ0, . . . , δ
′
4) occurs if and only if x7 = x8, then P(δ3

δL−−→ δ′4) = 15−5

and EDP
(
Uδ0 → Vδ4 | (δ0, . . . , δ′4)

)
= 15−7 ≈ 2−27.35. In this way, EDP

(
Uδ∗0 →

Vδ∗4 | (δ0, . . . , δ4)∗
)

= 15−3/(163−1) ≈ 2−23.72, approximated as 2−24 in [MA19].

Using the techniques in the next section, we compute the exact value of
EDP

(
Uδ∗0 → Vδ∗4 | (δ0, . . . , δ4)∗

)
for the S-box given in the specification of Mi-

dori, which is 2−20.60. Thus, there is a gap between the exact value and the
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Table 1: Minimum and maximum probability of the truncated differential in
Fig. 2 among the Golden S-boxes. The probability p is shown as − log2 p.

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15

min 21.55 21.60 21.61 22.30 22.36 22.26 22.28 22.32 21.62 22.07 22.10 22.27 22.36 22.31 22.06 22.06

max 20.77 20.60 20.79 22.11 21.77 21.95 21.70 21.74 20.44 21.41 21.40 21.58 21.69 21.78 21.60 21.64

value given by the method of Moriai et al.. To show that changes of the S-box
can make a significant difference in the value of EDP, all 4-bit bijective S-boxes
are tried and the EDP of the same characteristic is computed7. The minimum
observed value is 2−22.36 for the following two S-boxes:

(0, 8, 3, b, 6, 5, 2, 9, e, 4, a, c, 7, 1, d, f) and (0, 7, 9, e, 2, b, a, 4, 5, 8, d, f, 1, c, 3, 6),

while the maximum is 2−8.09 for any linear S-box. Clearly, the EDP of a trun-
cated differential depends not only on the linear layer of the cipher, but also
on its S-boxes. To show that this EDP can be different for S-boxes within an
Affine equivalence class, all S-boxes within the 16 Affine equivalence classes with
minimum possible uniformity and linearity, which are known as Golden S-boxes
[LP07], are checked. The minimum and maximum value for the EDP within
S-boxes of the same class are given in the Table 1. Interestingly, the smallest
logarithmic difference between minimum and maximum EDP is for G3, which
is the Affine equivalence class of the inversion in F24 . The DDTs of the S-boxes
in this class are those closest to uniformly distributed. Also note that the two
S-boxes given above are golden S-boxes.

4 Our Methods for Computing EDP of Differentials

In this section, we present our methods to compute the EDP of differentials
with a given activity pattern under the independent round keys assumption.
Then, we extend it to compute EDP of truncated differentials. We also discuss
several techniques to reduce the time and/or memory complexity of the algo-
rithms and finally present an efficient algorithm for computing EDP of truncated
characteristic. We use two different approaches, one based on a state-view on the
differences and one based on a word-view. While the state based method is easier
to apply, the word based method in many cases outperforms the former by better
minimizing the dependency between parts of the differential characteristics.

4.1 State-by-State Method

To compute EDP
(
α0

E−→ αr | (δ0, . . . , δr−1)
)
, first we need to find all possible

αis such that δ(αi) = δi and δ
(
L−1i (αi)

)
= δi−1 for each i and save them in a

table Ai. We use Ai[j] to denote j-th possible value for αi.

7 Due to the structure of the Midori cipher, it is enough to check for representative
S-boxes of Affine equivalence classes together with a bijective 4 × 4 matrix in the
output of S-box, i.e., 302× 20160 ≈ 222.5 S-boxes.
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By expanding the product and separating the sum, we get∑
α1,...,αr−1
∀i αi∈Ai

r−1∏
i=0

P
(
αi
Si−→ L−1i (αi+1)

)
=

∑
αr−1∈Ar−1

P
(
αr−1

Sr−1−−−→ L−1r−1(αr)
)
·

(
. . .
( ∑
α2∈A2

P
(
α2
S2−−→ L−12 (α3)

)
·
( ∑
α1∈A1

P
(
α1
S1−−→ L−11 (α2)

)
·P
(
α0
S0−−→ L−10 (α1)

)))
· · ·
)

This equation offers a round-by-round method to compute the probability. For
the S0 layer and for each 0 ≤ j < |A1|, we compute

P
(
α0

S0−→ L−10 (A1[j])
)

and insert it in a table as T1[j]. Then, for the S1 layer and 0 ≤ j < |A2|, compute∑|A1|−1
k=0 T1[k] · P

(
A1[k]

S1−→ L−11 (A2[j])
)

and insert it in T2[j]. Continuing the same way for Si and 0 ≤ j < |Ai+1|, get∑|Ai|−1
k=0 Ti[k] · P

(
Ai[k]

Si−→ L−1i (Ai+1[j])
)

and insert it in Ti+1[j]. Finally, for the last round, we compute∑|Ar−1|−1
k=0 Tr−1[k]·P

(
Ar−1[k]

Sr−1−−−→ L−1r−1(αr)
)

= EDP
(
α0

E−→ αr | (δ0, . . . , δr−1)
)
.

Regarding the complexity, in round i with 0 < i < r−1 (i.e., all of the rounds
except the first and last ones), we need to do multiplication and addition for |Ai|·
|Ai+1| times. Hence, computation complexity of this method in multiplication
and addition operations is about

|A1|+ |Ar−1|+
∑r−2
i=1 |Ai| · |Ai+1| .

In each round, we only need to keep two tables, one for the current round to save
and one from the previous round to use, so the memory complexity is about

max
1≤i<r−1

(|Ai|+ |Ai+1|) .

Note that this method can be also applied for computing other EDPs with

small modification as explained in the following. To compute EDP
(
α0

E−→ αr |
(δ0, . . . , δr−1)∗

)
, we only need to modify the set of αis with 1 ≤ i < r−1. Thereby,

A∗i s are defined as the set of all αis such that δ(αi) � δi and δ
(
L−1i (αi)

)
� δi−1.

To compute EDP
(
U E−→ V | (δ0, . . . , δr−1)

)
with general U and V sets but

with restriction that the activity pattern of all elements in U is δ0 and the activity
pattern of elements in V transformed by L−1 is δr−1, we use a similar method.
There, we need to change computations in the first and the last S-box layers. In
the first and last layer, we compute∑
α0∈U

P
(
α0

S0−→ L−10 (A1[j])
)
, and

1

U
∑
αr∈V

|Ar−1|−1∑
k=0

Tr−1[k]·P
(
Ar−1[k]

Sr−1−−−→ L−1r−1(αr)
)
.

The above extensions and modifications to compute can be combined together
to make it possible to compute the other remaining EDPs. Except the compu-
tation complexity of the extension to truncated EDP, memory and computation
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complexity of the extensions stays the same, while for computation complexity
of the extension to truncated EDP we have

|U| · |A1|+ |V| · |Ar−1|+
∑r−2
i=1 |Ai| · |Ai+1| .

Algorithm 1 in lists our method for computing EDP
(
α0

E−→ αr | (δ0, . . . , δr−1)
)

in detail. For saving spaces in the equations, we use x ←+ y notation instead
of x ← x + y. Note that this algorithm only needs the knowledge about the
linear layers and DDT of the S-boxes applied in the block cipher. In case that
all the linear layers are the same or all the S-boxes are the same, this algorithm
can be optimized. More important, the FindAllBetas procedure can be re-
place to a complicated one which by using linear algebra techniques reduces the
computation cost of this procedure.

Besides, to compute EDP
(
α0

E−→ αr | (δ0, . . . , δr−1)∗
)
, we can use the same

algorithm by only modifying lines 20, 22, 27, and 29: instead of checking δ(·) =
δI/O, we check δ(·) � δI/O.

To compute EDP
(
U E−→ V | (δ0, . . . , δr−1)

)
with general U and V sets, where

the activity pattern of all elements in U is δ0 and the activity pattern of elements
in V transformed by L−1r−1 is δr−1, we use a similar method as in Algorithm 1,
iterating over all elements of U and V. Algorithm 2 lists the updated procedure
in detail. We can again use the same modifications as for Algorithm 1 to compute

EDP
(
U E−→ V | (δ0, . . . , δr−1)∗

)
.

Performance Improvements by Eliminating S-boxes We can improve the
complexity of this method for computing EDP of a truncated characteristic by
eliminating some unnecessary computations. For a bijective s-bit S-box S, we
know that for any non-zero a ∈ Fs2 and any b ∈ Fs2,∑
x∈Fs2\{0}

P(x
S−→a) = 1 ,

∑
x∈Fs2\{0}

P(a
S−→x) = 1 ,

∑
x∈Fs2

P(x
S−→b) = 1 ,

∑
x∈Fs2

P(b
S−→x) = 1 .

Using this property, for an S-box layer S which is application of m parallel s-bit
bijective S-boxes, and for any α, β ∈ Fs·m2 with δ(α) = δi and δ(β) � δi, we have∑
x∈Fs·m2

δ(x)=δi

P(x
S−→α) = 1,

∑
x∈Fs·m2

δ(x)=δi

P
(
α
S−→x
)

= 1,
∑

x∈Fs·m2

δ(x)�δi

P(x
S−→β) = 1,

∑
x∈Fs·m2

δ(x)�δi

P
(
β
S−→x
)

= 1.

This simplification eliminates the computations for the first and last S-box layers
when we are computing EDP of a truncated characteristic:

EDP
(
Uδ0

E−→ Vδr−1
| (δ0, . . . , δr−1)

)
= (2s−1)− hw(δ0)·∑

α1,...,αr−1

∀i αi∈Ai

r−2∏
i=1

P
(
αi
Si−→ L−1(αi+1)

)
,

Algorithm 3 lists the detailed procedure for computing EDP of a truncated
characteristic and it can be modified similarly to the previous algorithms to

compute EDP
(
Uδ0

E−→ Vδr−1
| (δ0, . . . , δr−1)∗

)
.
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Example 2. With this technique, the EDP of the characteristic in Example 1 is

EDP
(
Uδ0

E−→ Vδ4 | (δ0, . . . , δ4)
)

=

15−3 ·
∑

x0,...,x9∈F4
2\{0}

x7 6=x8

(p01 · p12 · p13 · p14 · p45 · p46 · p47 · p28 · p29 · p26 · p39 · p36 · p35)

where pij = P(xi
S−→ xj).If we want to compute EDP

(
Uδ∗0

E−→ Vδ∗4 | (δ0, . . . , δ4)∗
)
,

the factor is (163−1)−1 and the sum is over x0, . . . , x9 ∈ F4
2 with no conditions.

To compute these equations without the proposed state-by-state method, we
would need 13 table look-ups and arithmetic operations for all 14 · 159 and 1610

values of x0, . . . , x9 which are about 242.67 and 243.70 computations, resp.

On the other hand, computing EDP
(
Uδ0

E−→ Vδ4 | (δ0, . . . , δ4)
)

with our state-
by-state method needs 2 table look-ups and arithmetic operation for each 152

values for x0 and x1 in S1 layer, 4 table look-ups and arithmetic operations for
each 154 values for x1, x2, x3, x4 in S2 layer and 10 table look-ups and arithmetic
operations for each 14 · 157 values for x2, x3, . . . , x9 in S3 layer that in total it is
about 234.48 table look-ups and arithmetic operations. Note that this method, in
each round needs hw(δi) + 1 (with 1 ≤ i < r−1) table look-ups, one for calling
the reduced-round probability from Table Ti and the rest for active S-boxes of

current (i-th) round. Computing EDP
(
Uδ∗0

E−→ Vδ∗4 | (δ0, . . . , δ4)∗
)

in a similar
way needs 2 · 162 + 4 · 164 + 10 · 168 ≈ 235.32 table look-ups and arithmetic
operations. Both computations need about 165 = 220 blocks of memory.

Not only the active S-boxes in the first and the last rounds can be simplified,
but also some in the second and second-to-last rounds. This is possible if there
is an active nibble of ∆X1 (or ∆Yr−2) that is linearly independent of the other
active nibbles of the state to satisfy the conditions of the activity pattern.

Example 3. In the previous example, in ∆X1, there is only one active S-box
(corresponding to x0) and it can be removed from both above equations:

EDP
(
Uδ0

E−→ Vδ4 | (δ0, . . . , δ4)
)

=
1

153
·
∑

x0,...,x9
x7 6=x8

(p01 · p12 · . . . · p35)

=
1

153
·
∑

x1,...,x9
x7 6=x8

(
(
∑
x0

p01) · p12 · . . . · p35
)

=
1

153
·
∑

x1,...,x9
x7 6=x8

(p12 · . . . · p35) ,

EDP
(
Uδ∗0

E−→ Vδ∗4 | (δ0, . . . , δ4)∗
)

= . . . =
1

(163−1)
·
∑

x1,...,x9

(
p12 · . . . · p35

)
.

Although x7, x8 appear only once in ∆Y3, due to the condition x7 6= x8, we

cannot remove them for EDP
(
Uδ0

E−→ Vδ4 | (δ0, . . . , δ4)
)
. But since there is no
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such condition in EDP
(
Uδ∗0

E−→Vδ∗4 |(δ0, . . . , δ4)∗
)
, we can remove them both:

EDP
(
Uδ∗0

E−→ Vδ∗4 | (δ0, . . . , δ4)∗
)

=

1

(163−1)
·

∑
x1,...,x6,x9

(
p12 · p13 · p14 · p45 · p46 · p29 · p26 · p39 · p36 · p35

)
. (5)

To compute these probabilities without the state-by-state method, we would
need 12 · 14 · 158 ≈ 238.65 table look-ups and 10 · 167 ≈ 231.32 arithmetic opera-
tions with a negligible memory. With the state-by-state method, after removing
unnecessary S-boxes, we need 154 + 14 · 157 ≈ 231 operations with 220 blocks of

memory and to compute EDP
(
Uδ∗0

E−→ Vδ∗4 | (δ0, . . . , δ4)∗
)
, it is 164 + 166 ≈ 224

operations with 2 · 163 = 213 blocks of memory.

Thus, there might be unnecessary S-boxes that can be simplified in comput-

ing EDP
(
Uδ0

E−→ Vδ4 | (δ0, . . . , δr−1)
)

and EDP
(
Uδ∗0

E−→ Vδ∗r−1
| (δ0, . . . , δr−1)∗

)
.

Since the number of such S-boxes may be higher in the second case, the compu-

tation cost of EDP
(
Uδ∗0

E−→ Vδ∗r−1
|(δ0, . . . , δr−1)∗

)
might be lower.

Finding Partially Independent S-boxes To find possible S-boxes to remove
from the computation, first we need to formulate the input and output difference
of each active S-box under the conditions of linear layer to fulfill the activity
pattern, as in the Example 1. Recall that the size of each word is s bits, the same
as the S-box bit-size. For each active S-box, we assign two variables, one for its
input and one for its output, and find the linear relations of variables through
the linear layer by considering the activity pattern conditions. We obtain a set
of linear equations for relations between the variables. We also consider one set
for all active S-boxes and one set for all variables. Then, we need to find the
S-boxes where either the input variable or the output one is independent of all
input/output variables of other remaining active S-boxes. If we found such an
S-box, we remove the S-box from set of active S-boxes. Also, if there are some
linear equations involving the corresponding variable for other side of this active
S-box, we simplify these equations in a Gaussian way to remove this variable.
We repeat this procedure until there is no longer any removable S-box. If in the
beginning there were nS active S-boxes, the number of steps to reach the final
set of active S-boxes cannot exceed nS · (nS + 1)/2.

In this way, by removing some of the active S-boxes and variables, the com-
plexity of proposed state-by-state method will be improved because removing
independent variables may decrease the number of possible states in each round.

4.2 Simple Word-by-Word Method

In the previous method, we considered the entire S-box layer together and com-
puted the differential transition through it, i.e., we compute the table of probabil-
ities (Tis) state by state. An alternative technique to reduce the time complexity
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is to consider each S-box of the layer separately and update the probability tables
by each active S-box.

Assume that ∆Xi and ∆Yi, the states before and after the i-th S-box layer,
and we have a table where the probability of the reduced i-round differen-
tial is saved for all possible ∆Xi. If we consider the entire Si-layer together
and compute the probability of the (i + 1)-round differential, then we need
|Ai| · |Ai+1| computations. But instead, we can separate the Si layer differ-
ential transition into m smaller steps where the j-th step considers the j-th
S-box transition. I.e., in step 0, we consider all possible differential transitions
from (∆Xi[0], ∆Xi[1], . . . ,∆Xi[m−1]) to (∆Yi[0], ∆Xi[1], . . . ,∆Xi[m−1]). Then
in step 1, we consider all transitions from (∆Yi[0], ∆Xi[1], . . . ,∆Xi[m−1]) to
(∆Yi[0], ∆Yi[1], . . . ,∆Xi[m−1]) and so on. In the last step, all transitions from
(∆Yi[0], . . . ,∆Yi[m−2], ∆Xi[m−1]) to (∆Yi[0], . . . ,∆Yi[m−2], ∆Yi[m−1]) are con-
sidered. Here, we assumed that all S-boxes of the round are active. If an S-box
is inactive, we can just go to the next step without updating the tables.

Example 4. Consider Eq.(5) which is the simplified EDP after removing unnec-
essary active S-boxes for Example 1. We have 10 S-boxes to compute the prob-
ability. First, for each ∆X2 = (0, . . . , 0, x1, x1, 0, x1), we initialize table T0[x1]
with value 1. For the first S-box, for each (0, . . . , 0, x2, x1, 0, x1), we initialize
T1[x1, x2] with zero and then for each [x1, x2], we compute p12 ·T0[x1] and add it
to T1[x1, x2]. For the second S-box, for each (0, . . . , 0, x2, x3, 0, x1), we initialize
T2[x1, x2, x3] with zero and then for each [x1, x2, x3], we compute p13 ·T1[x1, x2]
and add it to T2[x1, x2, x3].For the third S-box, for each (0, . . . , 0, x2, x3, 0, x4),
we initialize T3[x2, x3, x4] with zero and then for each [x1, x2, x3, x4], we com-
pute p14 · T2[x1, x2, x3] and add it to T3[x2, x3, x4]. We repeat computing the
probability tables for the other S-boxes. Finally, after computing T10[x5, x6, x9],
we need to sum all the values of this table and divide it by 163−1 to have the

value of EDP
(
Uδ∗0

E−→ Vδ∗4 | (δ0, . . . , δ4)∗
)
. Thus, the steps are:

1. ∀x1 : T0[x1]← 1.
2. ∀x1, x2 : T1[x1, x2]←+ T0[x1] · p12.
3. ∀x1, x2, x3 : T2[x1, x2, x3]←+ T1[x1, x2] · p13.
4. ∀x1, x2, x3, x4 : T3[x2, x3, x4]←+ T2[x1, x2, x3] · p14.
5. ∀x2, x3, x4, x5 : T4[x2, x3, x4, x5]←+ T3[x2, x3, x4] · p45.
6. ∀x2, x3, x4, x5, x6 : T5[x2, x3, x5, x6]←+ T4[x2, x3, x4, x5] · p46.
7. ∀x2, x3, x5, x6, x9 : T6[x2, x3, x5, x6, x9]←+ T5[x2, x3, x5, x6] · p29
8. ∀x2, x3, x5, x6, x9 : T7[x3, x5, x6, x9]←+ T6[x2, x3, x5, x6, x9] · p26.
9. ∀x3, x5, x6, x9 : T8[x3, x5, x6, x9]←+ T7[x3, x5, x6, x9] · p39.

10. ∀x3, x5, x6, x9 : T9[x3, x5, x6, x9]←+ T8[x3, x5, x6, x9] · p36.
11. ∀x3, x5, x6, x9 : T10[x5, x6, x9]←+ T9[x3, x5, x6, x9] · p35.
12. p← 0 and ∀x3, x5, x6, x9 : p←+ T10[x5, x6, x9]. Then return p · 2−12.

Here, we assumed each table is initialized to 0. It is worth noting that in each
step, we need to keep only two consecutive tables. This computation needs about
3 · 165 + 5 · 164 ≈ 222 arithmetic operations and 2 · 165 = 221 blocks of memory.
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Updating the probability tables using this word-by-word method instead of
state-by-state might increase the memory complexity, but decrease the compu-
tational time. For the given example, this improvement of time is not a good
trade-off. In Section 5, using the the simple word-by-word method, we are able
to compute the EDP of truncated differential characteristics for Klein block
cipher while it is very expensive using the state-by-state method.

For a cipher which is not using a word-wise linear layer, using the word-
by-word method in an efficient way is ad-hoc. On the other hand, for a cipher
with AES-like linear layer that the linear layer is word-wise, this method can be
improved to reduce the computational complexity significantly.

4.3 First Advanced Word-by-Word Method

Assume that for a given activity pattern in a cipher with AES-like linear layer
that the linear layer is word-wise, we already formulated the input and output
difference of each active S-box under the conditions of the linear layer and re-
moved the partially independent S-boxes. Now, we have variables and S-boxes
which can not be further simplified. We define an undirected graph for the EDP
equation, where each vertex determines one of the remaining variables and each
edge determines if there is a relation between the corresponding two variables
either through the conditions of linear layer or because both variables are in an
input/output equation for a remaining S-box.

To compute EDP of a truncated characteristic, we need to multiply all re-
maining S-boxes’ probability for each possible value of all remaining variables
and then sum them. If there is an S-box probability which does not depend on
all variables, one can separate the summing into several steps to reduce the com-
putation cost. However, note that when we sum over variable xi, the value of all
neighbor variables of xi in the corresponding graph must be considered. When
we sum over a variable, it means that this variable does not appear in the next
steps of the computation, which may help reduce the costs of the next steps. For
now, assume that we are summing over variables by their lexicographic order.

To sum over the first variable, for each possible value of its neighbor variables,
we compute the sum of multiplication of S-box probabilities corresponding to
this variable and save it in table T0 indexed by value of neighbor variables. We
denote this index with I0 and the set of corresponding variables with I0; i.e., I0
determines the value of I0. Then, we can remove this variable and the involved
S-boxes or linear conditions from the set of remaining variables or S-boxes. We
can update the graph by removing the first variable and all its connecting edges.

Then, to update the probability table and sum over the second variable, we
need to consider its neighbor variables. But since we already computed the prob-
abilities involving first variable and saved them in table T0, we need to consider
the variables in I0. I.e., to sum over the second variable, we need to consider
all neighbor variables of the second variable in the updated graph together with
the variables of I0 except the second variable itself. We denote this set with I1
and the corresponding value for all its variables with I1. Then, for each value of
I1 and the second variable, we compute the sum of multiplication of remaining
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x1
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x9x6x5 x8x7

∆X2

∆X3

∆X4

(a) EDP
(
Uδ0

E−→ Vδ4 | (δ0, . . . , δ4)
)

x1

x2x3x4

x9x6x5

∆X2

∆X3

∆X4

(b) EDP
(
Uδ∗0

E−→ Vδ∗4 | (δ0, . . . , δ4)∗
)

Fig. 3: Graph representation of the variable relations in the previous example.

S-box probabilities corresponding to the second variable together multiplied by
value of index T0[I0] and save it in the index I1 of table T1. Then, we can again
remove this variable and the involved S-boxes or linear conditions from the cor-
responding sets and update the graph. We continue these steps until the last
variable in the set of remaining variables.

Example 5. We illustrate the graphs for EDP
(
Uδ0

E−→ Vδ4 | (δ0, . . . , δ4)
)

and

EDP
(
Uδ∗0

E−→ Vδ∗4 | (δ0, . . . , δ4)∗
)

of the previous example in Fig. 3. For instance,
in Fig. 3b, we first sum over x1, then x2, x3, x4, x5, x6 and at the end x9. This
way, we can write the sum of equation from Example 4 as∑
x5,x6,x9

∑
x4

(
p45 ·p46 ·

∑
x3

(
p39 ·p36 ·p35 ·

∑
x2

(
p29 ·p26 ·

∑
x1

(p12 ·p13 ·p14)
)))

For the same graph, if we want to sum over x1, we must consider the values for x2,
x3, and x4. Therefore, we compute

∑
x1

(p12 ·p13 ·p14) and save it in T0[x2, x3, x4]
with I0 = [x2, x3, x4]. In the next step I1 = [x3, x4, x6, x9] and we compute∑
x2

(p29 · p26 · T0[x2, x3, x4]). We summarize each step of the computation for
this example in the following and the first steps of updating the corresponding
graph in Fig. 4.

1. I0 = [x2, x3, x4] , ∀I0 T0[I0]←∑
x1

(p12 · p13 · p14)).
2. I1 = [x3, x4, x6, x9] , ∀I1 T1[I1]←∑

x2
(p29 · p26 · T0[I0]).

3. I2 = [x4, x5, x6, x9] , ∀I2 T2[I2]←∑
x3

(p39 · p36 · p35 · T1[I1]).
4. I3 = [x5, x6, x9] , ∀I3 T3[I3]←∑

x4
(p45 · p46 · T2[I2]).

5. I4 = [x6, x9] , ∀I4 T4[I4]←∑
x5
T3[I3].

6. I5 = [x9] , ∀I5 T5[I5]←∑
x6
T4[I4].

7. I6 = ∅ , return 2−12 ·∑x9
T5[I5].

Complexity of the Method Each step of this method needs 2s·(|Ii|+1) com-
putations together with 2s·|Ii| blocks of memory. But since we need to keep only

x1

x2x3x4

x9x6x5

(a) Resolve x1

x1

x2x3x4

x9x6x5

(b) Resolve x2

x1

x2x3x4

x9x6x5

(c) Resolve x3

Fig. 4: First Advanced Word-by-Word Method for Example 5.
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(a) x5

x1

x2x3x4

x9x6x5

(b) x1

x1

x2x3x4

x9x6x5

(c) x4

x1

x2x3x4

x9x6x5

(d) x6

x1

x2x3x4

x9x6x5

(e) x2

x1

x2x3x4

x9x6x5

(f) x9

Fig. 5: First Advanced Word-by-Word Method for Example 5 with an Optimum
Order for the Variables.

two consecutive tables, the general memory complexity is about 2s·maxi |Ii|+1

while its computational cost is 2s ·∑i 2s·|Ii|.
Thus, to reduce the complexity, it is important to keep the size of Ii as

small as possible, which is highly dependent on the order of variables that we
are summing over. When number of variables is low, we can check for all nv!
possible orders, where nv is the number of remaining variables. Then we can
choose the one which gives the minimum complexity. But if we have more than
15 variables, we need to check at least 240 orders, which is expensive.

Example 6. For the previous example, x5, x1, x4, x6, x2, x3 and x9 is one of the
orders with minimum complexity, illustrated in Fig. 5. Then, maxi |Ii| = 3 and
the corresponding computation needs 213 operations and 213 memory blocks.

Order of Variables in the First Advanced Method We use a greedy
method to choose the order of variables. The first variable is chosen among
those with the minimum number of neighbors. Then, for each choice of the first
variable, we go to the next step. In the second step, for each remaining variable,
we compute the corresponding I1 and choose the second one from the ones with
minimum I1. Then, for each choice of the second variable, we go to the next
step. We continue until the last variable is chosen and the order is complete.
Then, we compute the complexity and keep the order if it has the minimum
complexity between the orders that we already checked.

This approach does not guarantee that the final result is the general minimum
through all nv! possible choices, but it is comparably fast. In particular, if in a
step the minimum cost s higher than an upper bound, we can cut the branch
and return to the previous step. In this way, we can save the time and just go
through the orders whose complexity is less than the upper bound.

4.4 Second Advanced Word-by-Word Method

Previous method of computing EDP for AES-like ciphers, updates the probabil-
ity tables only using the previous one. In the new method that we are explaining
now, we compute each probability table by using multiple of the previously com-
puted tables. Same as the previous method, we assume that the input and output
difference equations of each active S-box is given and all the unnecessary S-boxes
and variables are removed. We define the corresponding graph same before.

Now, for each remaining active S-box, we assign a table with its transition
probability. I.e., for each possible value for all variables involving in the input
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and output difference equations of the S-box, we compute the input and out-
put difference values and take the corresponding probability from DDT. That
means, to this point, we need ns tables T0, . . . , Tns−1, where each determines
the transition probability over one S-box. We denote the corresponding index in
table Ti as Ii and the set of corresponding variables as Ii.

In the second part, we use the corresponding graph and update it step by step
with a greedy approach similar to the one in the first advanced word-by-word
method. We take the first variable with minimum degree in the graph and do
sum over this variable for each possible value of its neighbor variables. To doing
this we use all previous tables T0, . . . , Tns−1 which this variable is involved. For
each value of neighbor variables and this variable itself, we get the corresponding
values from those tables and multiply them together and then add this value to
a new table Tns indexed by value of all neighbor variables of the chosen variable,
i.e., Ins . Then we remove all the tables that we used for computing Tns and
also we update the graph in a way that we remove the chosen variable and all
the connecting edges. But we connect all the neighbor variables of the removed
variable to each other. Note that this updating is different than the previous
one. We continue this step, until the point that the graph is an empty one.
Algorithm 4 explains all the details of this method in pseudo-code.

Example 7. For instance, in Example 5 with the given graph in Fig. 3b, variable
x5 is chosen as the first one and when we update the graph after removing its
edges, we add an extra edge between x3 and x4. We summarize each step of this
method for this example in the following.

0. ∀x1, x2 : T0[x1, x2]← p12, ∀x1, x3 : T1[x1, x3]← p13,
∀x1, x4 : T2[x1, x4]← p14, ∀x4, x5 : T3[x4, x5]← p45,
∀x4, x6 : T4[x4, x6]← p46, ∀x2, x9 : T5[x2, x9]← p29,
∀x2, x6 : T6[x2, x6]← p26, ∀x3, x9 : T7[x3, x9]← p39,
∀x3, x6 : T8[x3, x6]← p36, ∀x3, x5 : T9[x3, x5]← p35.

1. ∀x3, x4 : T10[x3, x4]←∑
x5

(T3[x4, x5] · T9[x3, x5]).
2. ∀x2, x3 : T11[x2, x3]←∑

x9
(T5[x2, x9] · T7[x3, x9]).

3. ∀x2, x3, x4 : T12[x2, x3, x4]←∑
x1

(T0[x1, x2] · T1[x1, x3] · T2[x1, x4]).
4. ∀x3, x4, x6 : T13[x3, x4, x6]←∑

x2
(T6[x2, x6] · T11[x2, x3] · T12[x2, x3, x4]).

5. ∀x4, x6 : T14[x4, x6]←∑
x3

(T8[x3, x6] · T10[x3, x4] · T13[x3, x4, x6]).

6. ∀x6 : T15[x6]←∑
x4

(T4[x4, x6] · T14[x4, x6]). return 2−12 ·∑x6
T15[x6].

Complexity of the Method Each step in the second part of the method needs
2s·(|Ii|+1) computations and 2s·|Ii| blocks of memory where |Ii| is the degree of
the corresponding vertex in the updated graph for variable we are summing over.

We assign a table for each active S-box, but one can use a complicated code
to compute these tables on the fly without using a memory to allocate. This tech-
nique does not have extra computational cost. Therefore, the general memory
complexity is

∑ns+nv−1
i=ns

2s·|Ii| and its computational cost is 2s ·∑ns+nv−1
i=0 2s·|Ii|.

Similar to the first method, to reduce the complexity of this method, it is
important to keep |Ii| as minimal as possible and this is highly dependent on
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the order of variables that we are summing over. Again for lower number of
variables, we can check for all nv! possible orders, but for higher number of of
variables, we suggest to use the above mentioned greedy method.

4.5 EDP of Differentials within a Truncated Characteristic

Computing EDP
(
Uδ0

E−→ Vδr−1
| (δ0, . . . , δr−1)

)
has the same or less computa-

tional complexity than the one for EDP
(
α0

E−→ αr | (δ0, . . . , δr−1)
)

with α0 ∈ Uδ0
and αr ∈ Vδr−1 . To find differentials of a given activity pattern which have max-
imum EDP, we need to search through all differentials with in the truncated
characteristic. This means complexity of finding such differentials, increase com-
plexity of computing an EDP with factor of |Uδ0 |·|Vδr−1

| = (2s −1)hw(δ0)+hw(δr−1).

Here, we provide an inequality between EDP of a truncated characteristic and
EDP of differentials within the same activity pattern. That is by having value

of EDP
(
Uδ0

E−→ Vδr−1 | (δ0, . . . , δr−1)
)
, this inequality gives an upper-bound for

max
α0∈Uδ0 ,αr∈Vδr−1

EDP
(
α0

E−→ αr | (δ0, . . . , δr−1)
)
.

Using Theorem 2, once we computed EDP of the truncated characteristic, we
have an upper-bound for EDP of underlying differentials. In case that the value
for this upper-bound is smaller than 2−n, we can conclude that there is no
differential within this activity pattern that is useful as a distinguisher.

Theorem 2. For a given r-round activity pattern (δ0, . . . , δr−1), we have

max
α0∈Uδ0 ,αr∈Vδr−1

EDP
(
α0

E−→ αr | (δ0, . . . , δr−1)
)
≤(

uni(S)·2−s
)hw(δ0)+hw(δr−1)·(2s −1)hw(δ0)·EDP

(
Uδ0

E−→ Vδr−1
| (δ0, . . . , δr−1)

)
.

This assumes that the differential uniformity of all active S-boxes in the first
and the last layer is uni(S). This is only for the simplicity and does not add any
restrictions to the theorem. The proof of the theorem is given in Appendix A.

5 Results on some SPN Block Ciphers

In this section, we report on the results of applying our methods to Midori,
Skinny, Craft, Klein, and Prince. Our algorithms are all written in C++
language and are publicly available at

Midori, Skinny, Craft. We first target Midori-64, Skinny-64, and Craft.
Since they are similar, we only need to change the linear matrix and DDT/LAT.
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Truncated Differential Characteristics. First, for each cipher, we find all the
activity patterns with (close to) the minimum number of active S-boxes for
different number of rounds. For each activity pattern, we run our program to:
1. compute the equations for input and output differences in each active S-
box, 2. remove the partially independent S-boxes, 3. compute the complexity
of the computation for the first and second advanced word-by-by methods (it
computes the max |Ii|), 4. if max |Ii| ≤ 8, it computes the EDP and the EDD of
the truncated characteristic. Note that for order of the variables, we only choose
the first choice from the greedy method. Also max |Ii| = 8 corresponds to about
232 blocks of memory and 236 computations and this is the reason that we use
this restriction. It is important to mention that if max |Ii| = 8 the time for
evaluating EDP/EDD is about 10 to 15 minutes, while for max |Ii| < 8, it takes
less than a minute in a normal PC with single-tread computation. We summarize
the results in Table 3 by showing the maximum and minimum EDP p and EDD
q for the activity patterns with the same number of rounds and active S-boxes.
We denote the number of rounds by nr and number of active S-boxes by ns and
note that instead of p or q, we show − log2 p or − log2 q.

One interesting observation is that we found several 7-round truncated char-
acteristics for Midori whose EDD is larger than 2−64 while using Moriai’s et al.
method, there is no such characteristic. For Skinny and Craft, the maximum
number of rounds where we found characteristics with (near) minimum number
of S-boxes and q greater than 2−64 is 10 and 12, resp. which is the same number
of rounds using Moriai’s et al. method. For Craft, the EDD for some of the
characteristics with nr = 13 and ns = 48 is 2−63.15 which is slightly better than
2−64. Another important, but not very surprising, observation that happens in
all the three ciphers, for the same number of rounds, having fewer active S-boxes
does not promise a better probability or distinguishability.

We also used the activity patterns suggested by Moriai’s et al. method. For
this, we first find all the activity patterns with (near) minimum number of con-
ditions nc, where

nc = hw(δr−1) + 1
m ·
∑r−2
i=0 − log2 P(δi

δL−−→ δi+1) ,

for 5-round Midori, 8- to 10-round Skinny and 10- to 13-round Craft. Then
with the same approach as for the activity pattern with minimum number of
active S-boxes, we compute the EDP/EDD of the truncated characteristic. Using
Moriai’s et al. method, the EDD of a characteristic with nc conditions is equal
to 2−s·nc . But we observed that the exact value can be both higher or lower
than this value. We summarized the results in Table 4. For instance, for 11-
round Craft characteristics with nc = 15, the maximum observed value for
q is 2−55.58 and the minimum is 2−68.03, while Moriai’s et al. method suggests
2−60 for all of these characteristics. Clearly, there is a significant gap between
the exact value and the one suggested by previous method.

Specific Input and Output Differences/Masks. For each activity pattern used as
truncated characteristic, we checked some of input/output differences or linear
masks to find those with maximum EDP or ELP. We summarized the best results
for each number of rounds and number of active S-boxes in Table 5.
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Again, an observation from this table is that for the same number of rounds,
having less active S-boxes do not promise a better probability or correlation.
For example, we found 7-round Midori differentials with 37 active S-boxes and
probability 2−55.75, while best found probability for characteristics with 35 or
36 active S-boxes are 2−58.37 and 2−59.96, resp.

The maximum number of rounds for which we found a differential with EDP
higher than 2−64 for Midori, Skinny and Craft are 8, 9 and 14, resp. For the
linear hull case, these number are 6, 8 and 13, resp.

Comparing to results from [AK18], they found an 8-round Skinny differen-
tial with probability 2−56.55 based on 821896 characteristics (that not necessarily
follow a same activity pattern), while we have 8-round differentials with higher
probability 2−49.50 and also 9-round differential with probability 2−59.24. In case
of Midori, there is an 8 round differential with probability −60.86 based con
693730 characteristics in [AK18] which is higher than the probability for differ-
ential patterns that we checked.

Related-Tweak Differentials of Craft. Since tweakey schedule of Craft is
linear and makes it possible to separate tweak and key schedules, we can use
similar equations for the EDP of a related-tweak differential under the indepen-
dent round key assumption.

Using the related-tweak characteristics with minimum active S-boxes, we
computed the EDP of all differentials for each activity pattern and the values
we found are the same as the ones given in the Craft proposal paper.

It is important to mention that finding the best differential within one of the
mentioned related-tweak truncated characteristics (which needs to go through
all input/output/tweak differentials) takes less than 5 minutes in normal PC
with single-tread computation, while in [HSN+19] using the CryptoSMT tool
of [Köl14], they were not able to finish the computations even for some specific
given differentials in more than a day.

Klein. In [LNP14], Lallemand and Naya-Plasencia presented a truncated differ-
ential cryptanalysis of Klein based on 4 truncated differential characteristics,
denoted as cases I–IV. The probability for r > 3 rounds is estimated as 2−6r+2.5,
2−6r+12.5, 2−6r+6 and 2−6r+11.

We used our simple word-by-word method to compute the exact probability
of these truncated differential characteristics up to 15 rounds. The results are
given in the Table 2. Interestingly, the difference between the estimated value in
[LNP14] and our computed value is rather small. These differences in logarithmic
scale are +0.29, +0.55, +0.00 and −0.12, resp. for truncated characteristics
denoted by cases I, II, III and VI.

In all cases, each round (after third round) includes 226 possible states, which
needs 252 computations with the state-by-state method. But using our simple
word-by-word method, by separating each round to 8 steps for each active S-
box in the round, one round needs about 233 computations. Each round of our
programming takes 6 minutes and it needs to save 233 64-bit blocks, i.e. 64 GB.
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Prince. Fig. 6 in Appendix D illustrates an 8-round PRINCE truncated differen-
tial characteristic, where ∗ denotes any value in F4

2 and x0, x3, y0, y3, x
′
0, x
′
3, y
′
0, y
′
3 ∈

{0, 2, 8, a} and x1, x2, y1, y2, x
′
1, x
′
2, y
′
1, y
′
2 ∈ {0, 1, 4, 5}. Using Moriai’s et al.

method, the probability of the linear layer for rounds indexed as 0, 2, 3 and 5
is estimated as 2−24 and for the rounds indexed as 1 and 4, it is 1. In total,
the approximated EDP using this method is 2−96. Similar to Fig. 6, there are
7 other truncated differential characteristics with the same input and output
activity patterns and the same approximated probability, 2−96.

Using our state-by-state method to compute the exact probability, we derive
that the correct value is actually either 2−83 or 2−84 (four times the first case
and four times the later one), which is significantly higher. Note that due to the
partially independent S-box technique, the computation of first and last rounds
are for free. Then, the simple state-by-state method needs 28 · 232 computation
per round. One can compute the corresponding probability for two consecutive
rounds for each of the 28·2 different possible states and save it in a large DDT.
In other words, for each of the 256 possible X = [x0x1x2x3] and 256 possible
Y = [y0y1y2y3], we compute the probability of two corresponding rounds and in
the same way for each Y = [y0y1y2y3] and Y ′ = [y′0y

′
1y
′
2y
′
3]. Each such a table

needs 28 · 216 = 224 computation. Thus, using the state-by-state technique will
need 3 ·22·8 computations, less than the previous step. Note that to compute the
middle round difference transition, we must use 16-bit Super S-boxes.

In [CFG+14], the authors introduced several 6-round differentials based on
activity patterns with four active S-boxes per round (covered by our character-
istic). The highest differential probability that they could compute is 3 · 2−58 ≈
2−56.42 while the second highest one is 13 · 2−61 ≈ 2−57.30. For each 6-round
differentials covered by our truncated differential characteristic, we compute the
probability and find out that the two highest ones are about 2−55.83 and 2−57.25

for the same differentials as in [CFG+14]. Beyond the differentials in [CFG+14],
we find others with probability significantly higher than 2−64.

We like to mention that similar to the attack in [CFG+14], one can use this
differentials to attack 10-round Prince by adding two rounds before and two
rounds after the pattern. The key recovery part and the plaintext/ciphertext
differences are the same as the one in [CFG+14], but using the patterns given
here, the time and data complexity of the attack improves slightly.
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Supplementary Material

A Proof of Theorem 2

Proof. Since

r−1∏
i=0

P
(
αi
Si−→ L−1i (αi+1)

)
≤
r−2∏
i=1

P
(
αi
Si−→ L−1i (αi+1)

)
·

max
α1

P
(
α0

S0−→ L−10 (α1)
)
·max
αr−1

P
(
αr−1

Sr−1−−−→ L−1r−1(αr)
)
,

we have∑
α1,...,αr−1

∀i αi∈Ai

r−1∏
i=0

P
(
αi
Si−→ L−1i (αi+1)

)
≤

∑
α1,...,αr−1

∀i αi∈Ai

( r−2∏
i=1

P
(
αi
Si−→ L−1i (αi+1)

)
·

max
α′1∈A1

P
(
α0

S0−→ L−10 (α′1)
)
· max
α′r−1∈Ar−1

P
(
α′r−1

Sr−1−−−→ L−1r−1(αr)
))
.

Therefore

EDP
(
α0

E−→ αr | (δ0, . . . , δr−1)
)
≤
( ∑
α1,...,αr−1

∀i αi∈Ai

r−2∏
i=1

P
(
αi
Si−→ L−1i (αi+1)

))
·

max
α1∈A1

P
(
α0

S0−→ L−10 (α1)
)
· max
αr−1∈Ar−1

P
(
αr−1

Sr−1−−−→ L−1r−1(αr)
)
.

We know that for any α0 ∈ Uδ0 and any αr ∈ Vδr−1

max
α1∈A1

P
(
α0

S0−→ L−10 (α1)
)
≤
(
uni(S) · 2−s

)hw(δ0)
,

max
αr−1∈Ar−1

P
(
αr−1

Sr−1−−−→ L−1r−1(αr)
)
≤
(
uni(S) · 2−s

)hw(δr−1)
.

That means for any α0 ∈ Uδ0 and any αr ∈ Vδr−1
, we have

EDP
(
α0

E−→ αr | (δ0, . . . , δr−1)
)
≤
(
uni(S) · 2−s

)hw(δ0)+hw(δr−1)·( ∑
α1,...,αr−1

∀i αi∈Ai

r−2∏
i=1

P
(
αi
Si−→ L−1i (αi+1)

))
. ut

B Extending to Computing ELP of Linear Hulls

The general idea of this attack is to approximate a linear relation between bits
of the plaintext, ciphertext, and the master key [MY92,Mat93]. More precisely,
the attacker is interested in the correlation of 〈α, P 〉⊕〈β, EK(P )〉⊕〈γ,K〉, where
α, β ∈ Fn2 and γ ∈ Fκ2 are linear masks of the plaintext, ciphertext, and key.

Definition 5 (Correlation). The correlation of a Boolean function f : Fn2 →
F2 is

cf = 2−n ·
(∣∣{X ∈ Fn2 | f(X) = 0}

∣∣− ∣∣{X ∈ Fn2 | f(X) = 1}
∣∣).
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Definition 6 (Linear Approximation). Let F : Fn1
2 → Fn2

2 be a vectorial
Boolean function. For any α ∈ Fn1

2 and any β ∈ Fn2
2 , 〈α,X〉 ⊕ 〈β, F (X)〉 is a

linear approximation of F and Cor(α
F−→ β) is used to denote c〈α,X〉⊕〈β,F (X)〉.

If an adversary can find a linear approximation which holds with significantly

high absolute correlation
∣∣Cor(α

EK−−→ β)
∣∣ > 2−n/2, for some values of K, then he

can distinguish the encryption EK from a random permutation. By querying the
oracle for enough known inputs and by checking if the linear approximation oc-
curs as often as the one expected by the correlation of the linear approximation,
he decides whether the oracle is the encryption or a random permutation.

The correlation of a linear approximation is a key-dependent value. Nyberg
[Nyb01][Theorem 3] showed that the correlation of a linear approximation over
EK can be given as a signed sum of correlations over E(·, ·), i.e.,

Cor(α
EK−−→ β) =

∑
γ∈Fκ2

(−1)〈γ,K〉 Cor
(
(γ, α)

E−→ β
)
,

where Cor
(
(γ, α)

E−→ β
)

is the fixed-key correlation c〈α,P 〉⊕〈γ,K〉⊕〈β,EK(P )〉. The
attacker wants to find an approximation such that the fixed-key correlation is
higher than 2−n/2 for most keys, i.e., approximations with a high expected linear
approximation correlation (ELC).

Definition 7 (ELC of E). For any α, β ∈ Fn2 , the ELC of the linear approxi-
mation (α, β) for E over uniformly distributed keys K ∈ Fκ2 is

ELC(α
E−→ β) := 2−κ ·∑K∈Fκ2

Cor(α
EK−−→ β) .

Similar to the differential case, Matsui [Mat93] assumed the Hypothesis of
Stochastic Equivalence that the fixed-key linear approximation correlation for
almost all the keys is about the same as the ELC.

Definition 8 (Linear Characteristics). An r-round linear characteristic
(α0, . . . , αr) is a vector of r + 1 elements in Fn2 denoting the masks before each
round. For a key-alternating cipher, its correlation is

Cor(α0
R0−−→ α1 → . . .

Rr−1−−−→ αr) = (−1)
⊕r
i=0〈Ki,αi〉 ·∏r−1

i=0 Cor(αi
R∗i−−→ αi+1) .

This implies that the absolute correlation of a linear characteristic is indepen-
dent of the actual round keys and the master key. For a key-alternating cipher,
the correlation of a linear approximation over an encryption, or linear hull, is
the sum of the correlation of all containing characteristics whose plaintext and
ciphertext linear masks are the same as the ones for encryption [Nyb94,DGV94].
In this way, the ELC of a linear approximation is equal to

ELC(α0
E−→ αr) =

∑
α1,...,αr−1

(∑
K∈Fκ2

(−1)
⊕r
i=0〈Ki,αi〉

)
·∏r−1

i=0 Cor(αi
R∗i−→ αi+1).

Computing this correlation is usually infeasible. Considering independent
round keys does not help because, for any non-zero linear characteristic,∑

K∈Fn·(r+1)
2

(−1)
⊕r
i=0〈Ki,αi〉 = 0.
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To compare the strength of linear approximations over an encryption, Nyberg
[Nyb94] introduced the Expected Linear Hull Potential :

ELP(α0
E−→ αr) = 2−κ ·∑K∈Fκ2

Cor(α0
EK−−→ αr)

2 .

In a key alternating cipher with independent round keys, this can be com-
puted from the square correlations of all compatible characteristics [DR02, The-
orem 7.9.1]:

ELP(α0
E−→ αr) =

∑
α1,...,αr−1

∏r−1
i=0 Cor(αi

R∗i−−→ αi+1)2.

For r-round SPN block ciphers with independent round keys and βi := LTi (αi+1),

ELP(α0
E−→ αr) =

∑
α1,...,αr−1

∏r−1
i=0

∏m−1
j=0 Cor(αi[j]

Si−→ βi[j])
2.

The linear approximation table (LAT) indicates (a multiple of) the relevant
S-box correlations.

Multidimensional Linear Hulls Similarly to truncated differentials, in mul-
tiple and multidimensional linear hull analysis, the plaintext/ciphertext masks
are chosen from sets U ,V. The ELC and ELP of a multidimensional linear hull
U ,V is the average over all linear hulls, assuming uniformly random masks in U :

ELP(U E−→ V) =
1

|U| ·
∑

α∈U,β∈V

ELP(α0
E−→ αr).

In the classical multidimensional linear hulls, U and V are a special kind of
linear subspaces excluding the zero value. The more general case where U and V
are arbitrary sets can be handled similarly, but care has to be taken due to ad-
ditional dependencies. In this paper, we use the general multidimensional linear
hull definition and will mention explicitly when the sets are linear subspaces.

Computing ELP of Linear Hulls with Our Methods Our methods intro-
duced in 4 is not only applicable to compute the EDP of a (truncated) differ-
ential, it can be easily modified to compute ELP of (multidimensional) linear

hulls. To do so, we need to replace P
(
Ai[k]

Si−→ L−1i (Ai+1[j])
)

by Cor
(
Ai[k]

Si−→
LTi (Ai+1[j])

)2
in the algoritms and define Ai sets where each Ai with 1 ≤ i < r−1

is the set of all αis with δ(αi) = δi and δ
(
LTi (αi)

)
= δi−1 where LT denotes the

tronspose operation of the linear layer.
It is important to mention that, in case of computing ELP of a multidi-

mensional linear hull, the partially independent S-boxes technique is not easily

applicable. The reason for this is that for a given a ∈ Fs2, the
∑
x∈Fs2

Cor(x
S−→ a)2

is not a constant value and it varies for different as. Instead, we can compute∑
x∈Fs2

Cor(x
S−→ a)2 for each a ∈ Fs2, save it in a table, then use it for S0 and

again in the last step for Sr−1.

C Algorithms
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Algorithm 1 Computing EDP of a Differential with Given Activity Pattern

Input: α0, αr and (δ0, . . . , δr−1)

Output: EDP
(
α0

E−→ αr | (δ0, . . . , δr−1)
)

1: procedure ComputeEDP
2: [B0, A0, n0]← FindAllBetas(δ0, δ1, 0)
3: for 0 ≤ j < n0 do
4: T0[j]← SBoxProb(α0, B0[j], δ0, 0)

5: for 1 ≤ i < r − 1 do
6: [B1, A1, n1]← FindAllBetas(δi, δi+1, i)
7: for 0 ≤ j < n1 do
8: T1[j]← 0
9: for 0 ≤ k < n0 do

10: T1[j]←+ T0[k] · SBoxProb(A0[k], B1[j], δi, i)

11: [B0, A0, n0]← [B1, A1, n1] . It is just a binary index swapping!

12: p← 0
13: αr ← L−1

r−1(αr)
14: for 0 ≤ k < n0 do
15: p←+ T0[k] · SBoxProb(A0[k], αr, δr−1, r−1)

16: return p

Finding All Beta Values Fitting to the Activity Pattern of Li Layer

17: procedure FindAllBetas(δI , δO, i)
18: n← 0
19: if hw(δI) ≤ hw(δO) then
20: for all β s.t. δ(β) = δI do
21: α← Li(β)
22: if δ(α) = δO then
23: B[n]← β
24: A[n]← α
25: n←+ 1

26: else
27: for all α s.t. δ(α) = δO do
28: β ← L−1

i (α)
29: if δ(β) = δI then
30: B[n]← β
31: A[n]← α
32: n←+ 1

33: return [B,A, n]

Computing Differential Probability of Si Layer

34: procedure SBoxProb(∆X,∆Y, δ, i)
35: d← 1
36: for 0 ≤ j < s do
37: if δ[j] = 1 then
38: d← d ·DDT(Si)[∆X[j]][∆Y [j]]

39: return d · 2−s·hw(δ)
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Algorithm 2 Computing EDP of a General Truncated Differential with Given
Activity Pattern

Input: U ,V and (δ0, . . . , δr−1)

Output: EDP
(
U E−→ V | (δ0, . . . , δr−1)

)
1: procedure ComputeEDP
2: [B0, A0, n0]← FindAllBetas(δ0, δ1, 0)
3: for 0 ≤ j < n0 do
4: T0[j]← 0
5: for 0 ≤ k < |U| do
6: T0[j]←+ SBoxProb(U [k], B0[j], δ0, 0)

7: for 1 ≤ i < r − 1 do
8: [B1, A1, n1]← FindAllBetas(δi, δi+1, i)
9: for 0 ≤ j < n1 do

10: T1[j]← 0
11: for 0 ≤ k < n0 do
12: T1[j]←+ T0[k] · SBoxProb(A0[k], B1[j], δi, i)

13: [B0, A0, n0]← [B1, A1, n1]

14: p← 0
15: for 0 ≤ j < |V| do
16: V[j]← L−1

r−1(V[j])
17: for 0 ≤ k < n0 do
18: p←+ T0[k] · SBoxProb(A0[k],V[j], δr−1, r−1)

19: return p · |U|−1

Algorithm 3 Computing EDP of a Truncated Differential Characteristic

Input: (δ0, . . . , δr−1)

Output: EDP
(
Uδ0

E−→ Vδr−1 | (δ0, . . . , δr−1)
)

1: procedure ComputeEDP
2: [B0, A0, n0]← FindAllBetas(δ0, δ1, 0)
3: for 0 ≤ j < n0 do
4: T0[j]← 1

5: for 1 ≤ i < r − 1 do
6: [B1, A1, n1]← FindAllBetas(δi, δi+1, i)
7: for 0 ≤ j < n1 do
8: T1[j]← 0
9: for 0 ≤ k < n0 do

10: T1[j]←+ T0[k] · SBoxProb(A0[k], B1[j], δi, i)

11: [B0, A0, n0]← [B1, A1, n1]

12: p← 0
13: for 0 ≤ j < n0 do
14: p←+ T0[j]

15: return p · (2s −1)− hw(δ0)



30 M. Eichlseder, G. Leander and S. Rasoolzadeh

Algorithm 4 Computing Probability of Truncated Differential in Ciphers with
Word-wise Linear Layer using the Second Advanced Word-by-Word Method

Input: ns, nv, IE[ns][nv], OE[ns][nv]

Output: EDP
(
Uδ0

E−→ Vδr−1 | (δ0, . . . , δr−1)
)

Computing the EDP of the Truncated Characteristic

1: procedure ComputeEDP
2: IT ← DetermineIndexingTable(IE,OE)
3: G← ComputeGraphMatrix(IT )
4: dmin ← nv
5: for 0 ≤ i < ns do
6: d← GetDegree(G[i])
7: if dmin > d then
8: dmin ← d

9: for 0 ≤ I < 2m·d do
10: V ← GetVariablesValue(I, IT [i])
11: x← GetXorValue(V, IE[i])
12: y ← GetXorValue(V,OE[i])
13: T [i][I]← DDT [x][y] · 2−s

14: k ← ns
15: r[]← {1}ns+nv
16: for 0 ≤ i < nv do
17: d← GetDegree(G[i])
18: if d = dmin then
19: dmin ← d
20: IT [k]← G[i]
21: r′[]← {0}k
22: for 0 ≤ j < k do
23: if r[j]&IT [i][j] then
24: r′[j]← 1

25: for 0 ≤ I < 2m·d do
26: T [k][I]← 0
27: V ← GetVariablesValue(I, IT [k])
28: for 0 ≤ x < 2m do
29: V [i]← x
30: p← 1
31: for 0 ≤ j < k do
32: if r′[j] then
33: J ← GetCompleteIndex(V, IT [j])
34: p← p× T [j][J ]

35: T [k][I]← T [k][I] + p

36: (G, dmin)← UpdateGraphMatrix(G, i)
37: for 0 ≤ j < k do
38: if r′[j] then
39: r[j]← 0

40: i← 0
41: k ← k + 1
42: if k = (ns + nv) then
43: break;
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Algorithm 4 (continued)

Determining Which Variables Are Involved in Each Probability Table

44: procedure DetermineIndexingTable(IE[ns][nv], OE[ns][nv])
45: IT [][]← {0}(ns+nv)×nv
46: for 0 ≤ i < ns do
47: for 0 ≤ j < nv do
48: IT [i][j]← IE[i][j] ∨OE[i][j]

49: return IT

Computing The Connectivity Matrix of the Graph

50: procedure ComputeGraphMatrix(IT [ns][nv])
51: G[][]← {0}nv×nv
52: for 0 ≤ i < ns do
53: for 0 ≤ j < nv do
54: if IT [i][j] then
55: G[i][j]← 1
56: G[j][i]← 1

57: return G

Computes Degree of a Vertex in the Graph

58: procedure GetDegree(A[nv])
59: d← 0
60: for 0 ≤ i < nv do
61: d← d+A[i]

62: return d

Get Variables Value From the Complete Index

63: procedure GetVariablesValue(X,A[nv])
64: V []← {0}nv
65: for 0 ≤ i < nv do
66: if A[i] then
67: V [i]← last word of X
68: X get shifted to right by one word

69: return V

Get Complete Index From Variables Value

70: procedure GetCompleteIndex(V [nv], A[nv])
71: X ← 0
72: for 0 ≤ i < nv do
73: if A[i] then
74: X get shifted to left by one word
75: X ← X ⊕ V [i]

76: return X

Get Xor Value From Variables Value

77: procedure GetXorValue(V [nv], A[nv])
78: X ← 0
79: for 0 ≤ i < nv do
80: if A[i] then
81: X ← X ⊕ V [i]

82: return X
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Algorithm 4 (continued)

Updating the Graph Matrix by Removing the Given Variable

83: procedure UpdateGraphMatrix(G, v)
84: for 0 ≤ i < nv − 1 do
85: if G[v][i] then
86: for i+ 1 ≤ j < nv do
87: if G[v][j] then
88: G[i][j]← 1
89: G[j][i]← 1

90: for 0 ≤ i < nv do
91: G[i][v]← 0
92: G[v][i]← 0

93: dmin ← nv
94: for 0 ≤ i < nv do
95: d← 0
96: for 0 ≤ j < nv do
97: if G[i][j] then
98: d← d+ 1

99: if 0 < d < dmin then
100: dmin ← d

101: return G, dmin
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D Results and Characteristics

D.1 Klein

Table 2: Comparing our results with the ones given in [LNP14] for Klein trun-
cated differentials. Note that instead of the probability p, we show − log2 p. Be-
sides, each case corresponds to one of the truncated characteristics introduced
in [LNP14].

r 4 5 6 7 8 9 10 11 12 13 14

Case I
21.5 27.5 33.5 39.5 45.5 51.5 57.5 63.5 69.5 75.5 81.5 [LNP14]
21.42 27.75 33.79 39.79 45.79 51.79 57.79 63.79 69.79 75.79 81.79 Ours

Case II
11.5 17.5 23.5 29.5 35.5 41.5 47.5 53.5 59.5 65.5 71.5 [LNP14]
12.04 18.05 24.05 30.05 36.05 42.05 48.05 54.05 60.05 66.05 72.05 Ours

Case III
18 24 30 36 42 48 54 60 66 72 78 [LNP14]
18 24 30 36 42 48 54 60 66 72 78 Ours

Case VI
13 19 25 31 37 43 49 55 61 67 73 [LNP14]
12.9 18.88 24.88 30.88 36.88 42.88 48.88 54.88 60.88 66.88 72.88 Ours

D.2 Prince
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Fig. 6: Truncated differential characteristic for Prince.

D.3 Midori, Skinny, Craft
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Table 3: Minimum and maximum EDP p and EDD q of the truncated differ-
entials for r rounds with ns active S-boxes.

(a) Midori-64

r 6 7 8 9
ns 30 32 33 34 35 36 37 38 40 41

max p 43.70 35.94 38.64 37.18 46.57 54.19 43.70 52.91 57.44 61.00

min p – 54.84 50.64 62.91 52.91 54.41 59.42 61.00 61.00 –

max q 55.70 58.44 62.64 61.98 56.81 62.18 62.00 64.91 70.09 73.00

min q – 75.35 – 82.52 66.57 62.40 67.98 – 77.44 –

(b) Skinny-64

r 8 9 10
ns 36 37 38 39 40 41 42 43 44 45 46 47 48 50

max p 33.31 40.74 26.31 23.97 23.12 46.72 43.41 41.42 42.12 36.74 50.73 50.21 46.72 48.70

min p 49.57 53.57 59.61 63.61 62.54 50.73 54.73 55.97 59.97 62.07 54.72 62.20 66.20 55.39

max q 61.24 57.38 54.63 54.17 53.01 62.72 63.41 58.60 62.17 57.98 70.72 66.62 66.07 67.10

min q 79.63 75.59 79.59 82.65 76.35 62.73 67.42 77.57 76.12 77.33 70.73 74.73 79.00 75.39

(c) Craft

r 9 10 11 12
ns 32 33 34 35 36 37 38 39 40 41 42 43 44 45

max p 35.57 32.11 31.92 27.96 39.61 36.15 35.70 31.99 43.65 40.18 39.62 36.01 47.68 44.21

min p – 39.57 40.48 47.48 39.62 43.62 47.72 51.72 – 50.85 54.85 55.61 – 51.68

max q 47.57 48.11 47.70 47.96 51.61 50.86 49.91 51.99 55.65 56.18 55.97 56.01 59.68 60.21

min q – 51.57 59.51 67.01 51.62 55.62 59.72 63.72 – 62.85 66.85 67.72 – 63.68

r 12 13 14 15
ns 46 47 48 49 50 51 52 53 54 55 56 57 58 59

max p 43.99 40.03 51.70 48.23 48.02 44.05 55.73 52.25 52.04 48.07 59.77 56.29 56.08 52.10

min p 54.08 59.65 – 55.70 56.95 63.68 57.92 61.92 66.02 70.02 – 69.15 73.15 72.18

max q 59.99 60.03 63.70 64.23 64.02 64.05 67.73 68.25 72.25 68.07 71.77 72.28 72.06 72.10

min q 64.21 78.08 – 67.70 70.79 75.68 69.92 73.92 78.02 82.02 – 81.15 85.15 86.02
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Table 4: Minimum and maximum EDP p and EDD q of the truncated differ-
entials for r rounds with nc conditions.

(a) Midori

r 5
nc 14

max p 17.76

min p 34.52

max q 57.20

min q 62.07

(b) Skinny

r 8 9 10
nc 14 15 15 15

max p 37.00 16.78 40.19 49.88

min p 49.62 56.50 56.33 55.98

max q 52.63 57.64 52.63 57.68

min q 57.29 61.43 57.29 59.88

(c) Craft

r 10 11 12 13
nc 12 13 14 15 14 15 16

max p 36.26 28.23 36.27 32.24 44.46 36.27 44.21

min p – 44.54 52.46 57.99 – 52.64 56.27

max q 48.26 49.90 55.34 55.34 56.46 58.65 63.15

min q – 56.55 64.46 68.59 – 64.63 68.64

Table 5: Maximum EDP of differentials and ELP of linear hulls for r rounds
with ns active S-boxes.

(a) Midori-64

r 6 7 8 9
ns 30 32 33 34 35 36 37 38 40 41

max EDP 44.04 47.98 51.75 51.59 58.37 59.96 55.75 62.37 65.19 67.13

max ELP 59.68 65.47 66.87 70.64 72.02 – 76.96 76.11 78.59 80.17

(b) Skinny-64

r 7 8 9 10
ns 26 27 29 32 33 34 35 32 33 34 35 36 37 38 39 44 48 49

max EDP 38.29 36.87 39.60 44.57 45.27 46.35 47.03 – – – – 49.50 – 52.24 50.94 59.24 67.23 65.28

max ELP – – – – – – – 59.87 57.01 64.70 57.39 58.93 61.48 – – – – –

(c) Craft

r 10 11 12
ns 36 37 38 39 40 41 42 43 44 45 46 47

max EDP 42.32 42.18 41.97 45.76 48.22 49.46 49.81 49.62 52.39 53.62 53.24 53.91

max ELP 47.72 48.01 48.23 49.11 52.01 52.24 52.49 53.32 56.22 56.48 56.71 57.30

r 13 14 15
ns 48 49 50 51 52 53 54 55 56 57 58 59

max EDP 56.55 57.22 57.03 58.54 60.12 59.92 59.72 62.65 64.72 65.78 65.95 66.66

max ELP 60.46 60.70 60.94 61.75 64.67 64.92 65.16 65.97 68.90 69.13 69.37
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