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Abstract. The security of cryptosystems based on Chebyshev recursive relation,

Tn(x) = 2xTn−1(x) − Tn−2(x), relies on the difficulty of finding the large degree of

Chebyshev polynomials from given parameters. The relation cannot be used to evaluate

Tn(x) if n is very large. We will investigate other three methods: matrix-multiplication-

based evaluation, halve-and-square evaluation, and root-extraction-based evaluation.

Though they have the same theoretical complexity O(log n log2 p), we find in some cas-

es the root-extraction-based method is more efficient than the others, which is as fast

as the general modular exponentiation. The result indicates that the hardness of some

cryptosystems based on modular Chebyshev polynomials is almost equivalent to that

of solving general discrete logarithm.

Keywords: Chebyshev polynomials; matrix-multiplication-based evaluation; halve-

and-square evaluation; root-extraction-based evaluation.

1 Introduction

Chebyshev polynomials are defined by

Tn(x) = cos(n arccosx), x ∈ [−1, 1], n = 0, 1, 2, · · · (1)

which can make a sequence of orthogonal polynomials, and has a big contribution in the theory of

approximation. Chebyshev polynomials have many interesting properties [8, 16, 18, 21]. Since

cos(n arccosx) + cos((n− 2) arccosx) = 2 cos(arccosx) cos((n− 1) arccosx)

we have the general Chebyshev recursive relation,

T0(x) = 1, T1(x) = x, Tn(x) = 2x · Tn−1(x)− Tn−2(x), n = 2, 3, · · · (2)
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Notice that

Tn(Tm(x)) = cos(n arccos(cos(m arccosx))) = cos(nm arccosx) = Tnm(x) (3)

which is just the so-called semi-group property of Chebyshev polynomials (see Fig.1 for the first

12 Chebyshev polynomials). By the polynomial equality, we have Tn(Tm(a)) = Tnm(a) mod N for

some integers a and N .

Figure 1: The first 12 Chebyshev polynomials

At Eurocrypt’91, Habutsu et al. [7] suggested a cryptosystem based on iterating a chaotic

map. But Biham [3] pointed out that it was insecure against some attacks. After that, many

cryptosystems have been proposed, which were based on the difficulty of finding the large degree

of Chebyshev polynomials from given parameters. Kocarev et al. [9, 14, 19, 24] have presented

some public-key encryptions based on Chebyshev maps. In 2015, Truong et al. [23] presented

an authentication scheme based on chaotic Chebyshev polynomials in client-server environment.

Lawnik and Kapczynski [10] investigated the application of modified Chebyshev polynomials in

asymmetric cryptography. In 2019, Li et al. [11] proposed an outsourcing scheme for verifiable

Chebyshev maps-based chaotic encryptions in the cloud/fog scenarios.

The security of cryptosystems based on Chebyshev polynomials was discussed by Bergamo et al.

[2, 6, 15]. In 2010, Liao et al. [5, 12, 13] suggested some restrictions on the selection of underlying

module. Shakiba et al. [17, 20, 25] pointed out some flaws of multiplicative coupled cryptosystems

based on Chebyshev polynomials. But so far, we have not found any work on evaluating Chebyshev

polynomials.

In this paper, we focus on the problem of evaluating modular Chebyshev polynomials, and

propose two new algorithms, halve-and-square evaluation, and root-extraction-based evaluation,

different from the general matrix-multiplication-based evaluation. We find both halve-and-square

method and matrix-multiplication-based method can be efficiently implemented. Though the three
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methods have the same complexity O(log n log2 p), the root-extraction-based method could be more

efficient than the others, if the number x can be expressed as a+a−1

2 for some number a. It almost

runs as fast as the general modular exponentiation. The result indicates that the security of some

systems based on modular Chebyshev polynomials is not always stronger than that of systems

based on the general discrete logarithm.

2 Encryptions based on Chebyshev recursive relation

There are many cryptographic applications of Chebyshev polynomials [9, 10, 12, 14, 19, 21–24]. In

this section, we only review two kinds of encryptions: one is over the real number field, and the

other is over finite fields or rings. The attacks [2, 3, 5, 6, 13, 15, 17, 20, 25] are not true threats to

such cryptographic protocols, because the flaws can be successfully eliminated by choosing some

proper module to ensure that the period of generated sequence is quite large.

2.1 Encryption over real number field

In 2003, Kocarev and Tasev [9] presented a public key encryption based on Chebyshev recursive

relation over real number field, which can be described as follows.

Setup. Pick a large integer s and a random number x ∈ (−1, 1). Set the public key as (x, Ts(x))

and the secret key as s.

Encrypting. Represent a given message as a number M ∈ (−1, 1). Pick a large integer r to

compute the ciphertext (c1, c2) = (Tr(x),M · Tr(Ts(x))).

Decrypting. Recover the plaintext M = c2/Ts(c1).

Its correctness is due to that Ts(c1) = Ts(Tr(x)) = Tr(Ts(x)). But the equality does not strictly

hold because of the involved computational errors.

2.2 Encryption over finite fields or rings

The Kocarev-Tasev encryption can be converted into a counterpart over finite fields or rings. There

are many such encryptions [10, 12, 14, 19, 21, 24]. We now only describe the Li et al.’s scheme [11].

Setup. Let λ be a secure parameter, q be a λ-bit prime, H0 : Z2
q → {0, 1}λ, H : Z2

q ×{0, 1}λ →
{0, 1}λ be two hash functions. Pick x0 ∈ Zq and s0, s1, s2 ∈ {0, 1}λ. compute x1 = Ts0(x0), y1 =

Ts1(x0), y2 = Ts2(x1), and set the public key as (q, x0, x1, y1, y2, H,H0), and the secret key as

(s1, s2).

Encrypting. For a message m ∈ {0, 1}λ, pick r ∈ {0, 1}λ. Compute the ciphertext

(c1, c2, c3, c4) = (Tr(x0), Tr(x1), H0(Tr(y1), Tr(y2))⊕m, Tr(y2) · Tα(Tr(y1))),

where α = H(c1, c2, c3).
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Decrypting. Compute α = H(c1, c2, c3) and check that c4 = Ts2(c2) · Tα(Ts1(c1)). If true,

Compute m = H0(Ts1(c1), Ts2(c2))⊕ c3.
Its correctness is due to that

Ts1(c1) = Ts1(Tr(x0)) = Tr(Ts1(x0)) = Tr(y1),

Ts2(c2) = Ts2(Tr(x1)) = Tr(Ts2(x1)) = Tr(y2).

3 Evaluating Chebyshev polynomials

The recursive relation Eq.(2) cannot be used to compute Tn(x) if n is very large, because it needs to

do O(n) multiplications. So, we need to find other methods for evaluating Chebyshev polynomials.

If x ∈ (−1, 1), the expression Tn(x) = cos(n arccosx) can be used to evaluate. The related series

representations are

arccos(x) = π/2− x− x3/6− (3x5)/40− · · · ,

cos(x) = 1− x2/2 + x4/24− · · ·

The numerical computational errors for calculating arccosx must be kept very small. Otherwise,

the numerical values between cos(n arccosx) and cos((n + k) arccosx) for some moderate integer

k, cannot be practically distinguished. That is to say, if n = 2160, the computational error of

calculating arccosx must be restricted to 2−160 at least. In practice, the requirement is too harsh

to meet. So, the method is only suitable for moderate n, say, n ≤ 220.

3.1 Matrix-multiplication-based evaluation

The Chebyshev recursive relation can be written as Tn(x)

Tn−1(x)

 =

 2x −1

1 0

n−1 T1(x)

T0(x)

 (4)

for n > 1, T0(x) = 1, T1(x) = x.

Theorem 1. The matrix-multiplication-based evaluation of Tn(x) needs to do O(log n) number

multiplications.

Proof. Let bkbk−1 · · · b1b0 be the binary string of n− 1. We have

 2x −1

1 0

n−1

=

· · ·

 2x −1

1 0

2 2x −1

1 0

bk−1


2

· · ·

 2x −1

1 0

b1


2 2x −1

1 0

b0

So, the method using repeated squaring needs to do log n matrix multiplications, and each requires

8 number multiplications. Thus, it requires O(log n) number multiplications. If the computations
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are executed over the finite field Fp, its computational complexity is O(log n log2 p).

3.2 Halve-and-square evaluation

Notice that

cos(n arccosx) =

 2 · cos2(n2 arccosx)− 1, 2 | n

2 · cos(n+1
2 arccosx) · cos(n−12 arccosx)− cos(arccosx), 2 - n.

Hence, we have

Tn(x) =

 2 · T 2
n/2(x)− 1, 2 | n

2 · T(n+1)/2(x) · T(n−1)/2(x)− x, 2 - n
(5)

For convenience, we will call it halve-and-square method.

Theorem 2. The halve-and-square evaluation of Tn(x) needs to do O(log n) number multipli-

cations.

Proof. Given the odd degree q, we have

Tq(x) = 2 · T(q+1)/2(x) · T(q−1)/2(x)− x

intermediate values T(q+1)/2(x), T(q−1)/2(x)

if 2|(q+1)/2−−−−−−−−−−→ T(q+1)/2(x) = 2 · T 2
(q+1)/4(x)− 1, T(q−1)/2(x) = 2 · T(q+1)/4(x) · T(q−3)/4(x)− x

intermediate values T(q+1)/4(x), T(q−3)/4(x)

if 2|(q−3)/4−−−−−−−−−−→ T(q+1)/4(x) = 2 · T(q+5)/8(x) · T(q−3)/8(x)− x, T(q−3)/4(x) = 2 · T 2
(q−3)/8(x)− 1

intermediate values T(q+5)/8(x), T(q−3)/8(x)

· · ·

Clearly, the size of the constructed intermediate structure is a linear function of the recursive depth

log n. Thus, the method can be efficiently executed. There are 2 log n intermediate values, and

each requires one multiplication. So it needs to do O(log n) number multiplications. If the method

is executed over the finite filed Fp where p is a prime, then its complexity is O(log n log2 p).

The semi-group property Eq.(3) can also be used to evaluate Chebyshev polynomials. To do

so, one needs to factor n. Ultimately, it turns to the evaluation of Tq(x) for some large prime q.

In theory, this method can generate a small-size intermediate structure in comparison with the

halve-and-square method. But its programming code seems quite difficult to compose.

To implement this method, one needs to find the halve-chain of the degree n. For instance,

n = 1001, its halve-chain is {1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 62, 63, 125, 126, 250, 251, 500, 501, 1001}.
Then the recursive description can be converted into its iterative version. We have tested the
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algorithm for the module p = 2521 − 1, the number x = 1234567890987654320, and the degree

n = 100000000000000000000000000000000001. The value of Tn(x) mod p is

3993370074966945731467333314441957009970464636793334345345017105800660841895880

784945487106938957173024107508599144549241834530181194450432365257682575893211.

3.3 Root-extraction-based evaluation

If set x = a+a−1

2 , we have

an + a−n

2
= 2× a+ a−1

2
× a(n−1) + a−(n−1)

2
− a(n−2) + a−(n−2)

2
mod N,

Tn

(
a+ a−1

2

)
=
an + a−n

2
mod N. (6)

So, the intractability of some cryptosystems based on modular Chebyshev polynomials is equivalent

to finding n such that y = an+a−n

2 mod N , for given a, y,N , which is not the standard discrete

logarithm.

For the Chebyshev polynomials over Fp where p is a prime, if x can be expressed as a+a−1

2 , the

evaluation of Eq.(6) could be very fast because it does not need to store any intermediate value,

and only involves one modular exponentiation and two inverse elements. Note that

x =
(x+

√
x2 − 1) + (x+

√
x2 − 1)−1

2
.

If x2 − 1 mod p has square roots, we have a = x+
√
x2 − 1 mod p, and

Tn(x) =
(x+

√
x2 − 1)n + (x+

√
x2 − 1)−n

2
mod p (7)

The built-in function PowerMod[ ] cannot tackle a large exponent due to overflows. So, we need

to design a new function MyPowerMod[ ] by using repeated squaring (See Appendix 1).

There is an efficient algorithm for root extraction, i.e., Adleman-Manders-Miller algorithm [1].

Its basic idea can be described as below. Write p−1 = 2ts, 2 - s. Given a quadratic residue δ and a

quadratic nonresidue ρ, i.e., (δs)2
t−1

≡ 1 mod p, (ρs)2
t−1

≡ −1 mod p.. If t ≥ 2, then (δs)2
t−2

mod

p ∈ {1,−1}. Take k1 ∈ {0, 1} such that (δs)2
t−2

(ρs)2
t−1·k1 ≡ 1 mod p. Since (δs)2

t−3

(ρs)2
t−2·k1 mod

p ∈ {1,−1}, take k2 ∈ {0, 1} such that (δs)2
t−3

(ρs)2
t−2·k1 (ρs)2

t−1·k2 ≡ 1 mod p. Likewise, take

k3, · · · , kt−1 ∈ {0, 1} such that δs (ρs)2·k1+22·k2+···+2t−1·kt−1 ≡ 1 mod p. Thus,(
δ

s+1
2

)2 (
(ρs)k1+2·k2+···+2t−2·kt−1

)2
≡ δ mod p.
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Its computational complexity is O(log3p+t2log2p) (see [4]). Since p is usually set as a strong prime,

i.e., t = 1, it becomes O(log3 p), and δ
p+1
2 ≡ δ mod p. If 4 | p+ 1, then δ

p+1
4 mod p is just a square

root of δ modulo p. The evaluation of Eq.(7) needs O(log n log2 p) cost. So, if pick a ∈ Fp, and

compute x = a+a−1

2 mod p, then the method only needs O(log n log2 p) cost.

3.4 Comparisons

Both the matrix-multiplication-based method and halve-and-square method can be used to eval-

uate Chebyshev polynomials for x ∈ (−1, 1). For modular Chebyshev polynomials, both meth-

ods naturally have to compute the successive values Tk−1(x), Tk(x) in each loop, while the root-

extraction-based method only needs to compute the value Tk(x) in each loop. See the Table 1 for

the comparisons of the three methods.

Table 1: Comparisons of some evaluation methods
Numerical Modular Immediate Multiplications

Complexity
evaluation evaluation structure in each loop

Matrix-multiplication-based method Yes Yes No 8 O(log n log2 p)

Halve-and-square method Yes Yes Yes 2 O(log n log2 p)

Root-extraction-based method No Yes No 2
O(log3 p) or

O(log n log2 p)

We find there has no any significant performance difference between the methods (Appendix

1). In theory, the root-extraction-based method could be more efficient. If one directly picks a and

sets x = a+a−1

2 mod p, this method almost is as fast as the general modular exponentiation. So the

claim that the security of systems based on modular Chebyshev polynomials is stronger than that

of systems based on the general discrete logarithm is not always sound.

4 Conclusion

In this paper, we propose two new evaluation methods for Chebyshev polynomials. They have

the same complexity O(log n log2 p) as the general matrix-multiplication-based method. The ex-

plicit expression Tn(a+a
−1

2 ) = an+a−n

2 indicates that the hardness of some cryptosystems based on

modular Chebyshev polynomials is almost equivalent to that of solving general discrete logarithm.
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Appendix 1: Wolfram Mathematica codes for three evaluation methods
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