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Abstract

A hash function family H is correlation intractable for a t-input relation R if, given a random
function h chosen from H, it is hard to find x1, . . . , xt such that R(x1, . . . , xt, h(x1), . . . , h(xt))
is true. Recent works have constructed correlation-intractable hash families for single-input
relations from standard cryptographic assumptions. However, the case of multi-input relations
(even for t = 2) is wide open: there are two known constructions, the first of which relies on a
very strong “brute-force-is-best” type of hardness assumption (Holmgren and Lombardi, FOCS
2018); and the second only achieves the much weaker notion of output intractability (Zhandry,
CRYPTO 2016).

Our main result is the construction of several multi-input correlation intractable hash families
for large classes of interesting input-dependent relations from either the learning with errors
(LWE) assumption or from indistinguishability obfuscation. Our constructions follow from
a simple and modular approach to constructing correlation-intractable hash functions using
shift-hiding shiftable functions (Peikert-Shiehian, PKC 2018). This approach also gives an
alternative framework (as compared to Peikert-Shiehian, CRYPTO 2019) for achieving single-
input correlation intractability (and NIZKs for NP) based on LWE.
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1 Introduction

The random oracle model [BR94] is a powerful and controversial paradigm in cryptography where
the proof of security of a cryptographic scheme assumes that a certain publicly computable function
H that is used in the scheme behaves like a random function to the adversary. The random
oracle model is hugely influential in designing concretely efficient cryptosystems, but is inherently
problematic theoretically: how could a public, and therefore completely predictable, function behave
in all aspects like a random function? Indeed, Canetti, Goldreich and Halevi [CGH98] came up
with cryptographic schemes that one could prove secure in the random oracle model, but which
are insecure no matter how one tries to instantiate the oracle with a concrete function (or even a
function chosen at random from an exponential-size family). Nevertheless, this negative result and
the notions introduced therein led to a long line of research that asked what concrete properties of
a random oracle are instantiable in the standard model (see, e.g., [CMR98] for an early work in
this direction), and opened the door to groundbreaking positive results two decades later [CCR16,
KRR17,CCRR18,HL18,CCH+19,PS19].

The key notion introduced in [CGH98] is that of correlation intractability, which captures a
general and powerful form of cryptographic hardness for a hash function family H. For any relation
R(x1, . . . , xt, y1, . . . yt), a hash family H is correlation-intractable for R if it is computationally hard
(given a hash function h ← H) to find inputs x1, . . . , xt such that (x1, . . . , xt, h(x1), . . . , h(xt)) ∈
R. For this definition to make sense, we require that the relation R be sparse, that is, for any
x = (x1, . . . , xt), all but a negligible fraction of y = (y1, . . . , yt) do not satisfy the relation with
x. Thus, if H were a random oracle, it would be correlation-intractable for any sparse R. On
the other hand, [CGH98] showed that there exist sparse relations R for which no family H is
correlation-intractable.

Let us examine the [CGH98] in more detail. What they show is that for every hash function
family H, there exists a sufficiently large t = t(λ) along with a t-input (sparse) relation R for which
H fails to be correlation-intractable (CI). This suggests a way to circumvent the negative result:
flip the quantifiers! That is, perhaps for every fixed t = t(λ), there is a hash family H that is CI
with respect to t-input relations. To the best of our knowledge, with this relaxation, correlation
intractability is potentially achievable in its full generality.

Correlation intractability for relations with a fixed number of inputs is very useful. Indeed, if
there were a CI family for even (the class of all) single-input relations, that would suffice to instan-
tiate the storied Fiat-Shamir transform [FS87] in the standard model [DNRS99,CCRR18] for any
constant-round public-coin interactive proof system. The Fiat-Shamir transform is a generic trans-
formation from a public-coin interactive proof (or argument) system into a non-interactive one using
a hash function to compute the verifier’s challenges. The challenge with such a transformation is
to show that the resulting non-interactive protocol remains sound (indeed, by reducing interaction,
we are taking away the leverage from the verifier). The soundness of the Fiat-Shamir transform
was shown in the random oracle model [BR94,PS96,BCS16], but the question of whether – for any
specific protocol of interest – soundness can be achieved in the plain model by instantiating the
hash family appropriately was open for a long time.

In large part due to the Fiat-Shamir connection, single-input CI has been the subject of much
recent work [CCR16,KRR17,CCRR18,HL18,CCH+19,PS19,BKM20,LV20]. In particular, this line
of work has led to new feasibility results for correlation intractability for a wide class of relations.
Most notably, [CCH+19,PS19] construct (under standard cryptographic assumptions) a hash family
H that is CI for relations R defined by any (a priori-bounded) poly-size circuits C, where R(x, y) = 1
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iff y = C(x). In other words, the hash family H has the property that for any efficiently computable
function f , given h← H, it is provably hard to find an input x such that h(x) = f(x).

Multi-Input Correlation Intractability. In contrast to the single-input case, multi-input cor-
relation intractability (for any t ≥ 2) is a far less well-understood primitive. Perhaps the simplest
interesting example of multi-input CI is for the relation R where R(x1, x2, y1, y2) = 1 if and only if
y1 = y2 but x1 6= x2. A CI hash family for R is precisely a collision-resistant hash family. CI for
more general multi-input relations also has interesting applications, including:

1. As a useful tool for the untrusted setup of public parameters [CCR16,Zha16]: Multi-input CI
hash functions allow n parties P1, . . . , Pn with inputs x1, . . . , xn to compute public outputs
yi = H(xi) that can be used to generate public parameters for a multi-party protocol. Cor-
relation intractability of H is necessary to ensure that a “bad CRS” is not accidentally (or
maliciously) agreed on.

2. As a hash function in proof-of-work protocols [CCR16, CCRR18]: In the bitcoin proto-
col [Nak08], a miner succeeds in adding a block to the blockchain when she finds an x such
that y = H(x||Bi) starts with a specified number of zeroes (here, Bi is the i-th block and
once found, y is placed in the next block Bi+1). A very desirable property in this setting is
that a single miner (or collection of colluding miners) cannot find multiple consecutive blocks
with significantly less effort than finding them sequentially. This property can be formalized
as a quantitatively precise variant of multi-input CI. For example, in the case of two consec-
utive blocks, simplifying the setting a little, we require a 2-input CI for the relation R where
R(x1, x2, y1, y2) = 1 iff y1 and y2 start with a pre-specified number ` of zeroes, and y1 is a
suffix of x2.

Unfortunately, multi-input CI has so far proved hard to achieve. In particular, the constructions
of [CCR16, KRR17, CCRR18, CCH+19, PS19, BKM20] are only known to achieve single-input CI.
Holmgren and Lombardi [HL18] do achieve multi-input CI for a large class of relations that they
call locally sampleable relations. However, they require both an indistinguishability obfuscation
(iO) scheme [BGI+01] as well as an “optimally-secure” one-way product function [HL18]. While iO
can now be achieved under relatively standard assumptions [BDGM20,GP20,JLS20], the latter is a
very strong “brute force is optimal”-type assumption. Zhandry [Zha16] constructed a hash family
satisfying a very special form of multi-input CI called “output intractability”. Output intractability
is a form of CI for relations R(x1, . . . , xt, y1, . . . , yt) that depend only on the yi, which captures some
variants of application (1) above. On the plus side, the construction is based on the exponential
hardness of the Diffie-Hellman problem.1 To sum up, multi-input CI is either known for a small
class of relations under standard assumptions, or for a larger class of relations under very strong
assumptions. We refer the reader to Section 1.2 for more details and further comparisons.

We remark that constructing (single- or multi-input) CI hash functions even assuming indis-
tinguishability obfuscation is far from straightforward. Indeed, the initial works [CCR16, KRR17,
HL18] in this line all made non-standard assumptions in addition to iO. Non-standard assump-
tions were required until the work of [CCH+19] which constructed single-input CI hash functions
under circular-secure LWE. However, they only managed to do this for a tiny subset of relations

1Moreover, given an inverse-subexponential lower bound on the sparsity of the relation, Zhandry’s construction is
secure under (the more standard) sub-exponential DDH.
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that [CCR16,KRR17] achieved. In particular, replicating the results of [KRR17] or even [CCR16]
assuming only iO (plus standard assumptions) is a challenging open problem.

1.1 Our Results and Techniques

Our main result is a new framework for constructing (single- and) multi-input correlation-intractable
(CI) hash functions using a cryptographic primitive called shift-hiding shiftable functions (SHSFs)
[PS18], a twist on private constrained pseudorandom functions [BW13,BGI14,KPTZ13]. A SHSF
family is a PRF family {Fmsk} that additionally supports the ability to delegate a constrained key
skf that computes the function Fmsk(x)+f(x), without revealing the “shift function” f . Shift-hiding
shiftable functions were originally introduced for the purpose of constructing private pseudorandom
functions, but have since found several other applications [PS20,DVW20].

Our main technique is a lifting theorem that allows us to construct multi-CI hash functions for
complex relations starting from multi-CI hash functions for simpler relations (captured by output
intractability). This gives us two new constructions of multi-CI hash functions under different
assumptions:

• Our first construction considers the shifted linear relation

Rlin = {(x1, . . . , xt, y1, . . . , yt) :
∑

wiyi =
∑

wif(xi) (mod p)}

where p is some large integer, wi are small weights and f is an arbitrary polynomial-time
computable functions. We construct a multi-input CI hash function for Rlin under standard
lattice assumptions, namely learning with errors (LWE) and 1D-short integer solutions (1D-
SIS) [BV15]. We note that in the special case t = 1, our security notion is equivalent to CI
for efficient functions [CCH+19,PS19]; we therefore give an alternative construction to [PS19]
for achieving single-input CI (and NIZKs for NP) based on standard lattice assumptions.

• Our second construction considers the shifted general relation

R = {(x1, . . . , xt, y1, . . . , yt) : R0(y1 − f(x1), . . . , yi − f(xi)) = 1}

where R0 is any polynomial-time decidable relation. We construct a multi-input CI hash
function for R under subexponential iO, subexponential OWFs, and (sufficiently) lossy func-
tions.

Our constructions are rather simple, indeed simple enough that we will be able to describe them
in the following introductory overview.

1.1.1 Single-Input CI.

We give an overview of our technical ideas starting from the simplest setting of single-input CI.
The interesting feature of our description below is that all the ideas transparently generalize to the
multi-input setting, as we detail later.

We start with a simple theorem which states that any SHSF family (for a function class F)
satisfying a very weak form of correlation intractability can be used to construct a hash family
satisfying a stronger form of correlation intractability.
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Theorem 1.1 (Informal). Suppose that SHSF = {Fmsk} is a family of SHSFs for a function class
F , and suppose that Fmsk satisfies a one-wayness property: given msk, it is hard to find (an element
in) F−1msk(0). Then, SHSF can be used to construct a hash family H that is correlation-intractable
for the relation Rf (x, y) = 1 iff y = f(x), for all functions f ∈ F .

The hash function is extremely simple. Hash keys are shifted keys skZ for the all-zero function
Z. Indeed, the hash function evaluation is simply the shifted evaluation using skZ which computes
exactly the function Fmsk. (Philosophically, the CI hash family constructed in this theorem is a
form of “obfuscated PRF evaluation” although shift-hiding functions are decidedly more complex
to construct than PRFs.) The proof of Theorem 1.1 is also simple.

Proof Sketch. If an adversary A, given a hash key skZ , finds an input x such that FskZ (x) = f(x),
then by the shift-hiding property of SHSF, A also produces such an x when given skf instead of
skZ . In that case, A solves the equation

f(x) = Fskf (x) = Fmsk(x) + f(x),

which is equivalent to the equation Fmsk(x) = 0. This yields a 0-inversion attack on Fmsk, which is
hard by assumption.

We note that Theorem 1.1 could be proved under a weaker one-wayness assumption, namely,
that it is hard to find an input x such that Fmsk(x) = 0, given a shifted key skf for any pre-specified
f” (as opposed to being given msk in the clear). However, we phrase Theorem 1.1 under the
assumption that Fmsk is one-way (given msk in the clear) because this is a clean, f -independent
security property. Moreover, in our instantiations below, we are able to prove the stronger one-
wayness property of Fmsk.

Given Theorem 1.1, it remains to construct an SHSF family satisfying this one-wayness property.
We show that a modified variant of the Peikert-Shiehian SHSF [PS18] satisfies this.

Theorem 1.2 (Informal). Assuming the hardness of standard lattice problems (LWE and 1D-SIS),
there exists an SHSF family that is one-way (as above).

We now sketch our proof, at a very high level and assuming some knowledge of LWE-based
cryptography.

Proof Sketch. In the Peikert-Shiehian SHSF construction, msk = s, an LWE secret, and

Fmsk(x) = bsAxep

where Ax is a matrix with small entries constructed out of matrices A1, . . . ,A` using the gadget
homomorphisms from [BGG+14], and b·ep denotes the rounding operation that, roughly speaking,
keeps the top log p bits of the argument and discards the rest.

If the adversary finds an x such that Fmsk(x) = 0, there are two cases; the easier case is when Ax

is non-zero. In that case, we have an (approximate) subset sum (SIS) solution w.r.t. the instance
s, that is, sAx ≈ 0. This is as hard as SIS and therefore worst-case lattice problems.

The harder case is when the adversary finds an x such that Ax = 0. We show that the adversary
cannot make this happen without violating SIS (again!) Roughly speaking, we use the fact that
if we program the matrices Ai = ARi + hiG where Ri are matrices with small entries, G is the
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gadget matrix, and h is the description of some function, the following equation holds due to the
gadget homomorphisms of Boneh et al. [BGG+14]:

GAx = ARx + h(x)G

for some Rx that is a function of R1, . . . ,R`. We know by assumption that GAx = 0. We argue
that if h is “random-enough” function, it is statistically unlikely that h(x) = 0 as the programming
hides h. (For the random enough function, in this case, a shift by a random vector suffices; further
down in the intro, in the t-input setting, we will need to use a t-wise independent function). This
means that the adversary found a solution Rx to the (inhomogenous) SIS problem w.r.t. A, which is
hard assuming that worst-case lattice problems are hard. This finishes the proof of one-wayness.

Combining Theorem 1.2 with Theorem 1.1, we already recover a similar result to [PS19]. That
is, assuming the hardness of LWE (and 1D-SIS), there exists a hash family that is correlation-
intractable for all bounded-size functions. By appealing to [CCH+19], this also gives a lattice-
based NIZK argument system for NP. Our construction is very different from and appears to
be conceptually simpler than that of [PS19]. Furthermore, as we describe below, this technique
directly generalizes to the multi-input setting, giving us new feasibility results.

1.1.2 Multi-Input CI.

One consequence of our shift-hiding technique is a collection of feasibility results for multi-input
correlation intractability based on standard assumptions. We obtain two flavors of results: construc-
tions from standard (lattice) assumptions, and constructions from indistinguishability obfuscation.

For any output-only relation R0, we say that a hash family H is R0-output intractable if it is
hard (given h) to find distinct2 inputs x1, . . . , xt such that (y1, . . . , yt) ∈ R0 for yi = h(xi). Output
intractability as a standalone property (like collision-resistance) is known to be instantiable based
on standard cryptographic assumptions (e.g., lossy functions [PW08]) as we discuss in Section 1.2.
We show that SHSFs that are output-intractable lead to interesting new CI constructions.

Theorem 1.3. Suppose that SHSF is a shift-hiding shiftable function family. Assume that it is
hard, given msk, to find distinct x1, . . . , xt such that R0(y1, . . . , yt) = 1 where yi = Fmsk(xi) and
R0 is some polynomial-time computable relation. Then, there is a CI hash family for the shifted
output relation

R = {(x1, . . . , xt, y1, . . . , yt) : R0(y1 − f(x1), . . . , yi − f(xi)) = 1}

The proof of Theorem 1.3 follows from that of the single-input CI case, namely Theorem 1.1,
mutatis mutandis. All that remains is to construct SHSFs that are output-intractable. We show
two constructions.

Instantiation from LWE. To obtain a construction of multi-input CI from LWE, we combine
Theorem 1.3 with a generalization of Theorem 1.2:

2For the relation
∑
i wiyi = 0 implicitly described above, it is enough to assume that the inputs xi are not all equal

for the relation to be sparse. We elaborate on this weakening of output intractability as compared to [Zha16,HL18]
in Section 2.
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Theorem 1.4. Under standard lattice assumptions (LWE and 1D-SIS), there exists a SHSF family
SHSF satisfying the following form of correlation intractability: for every vector w ∈ {−1, 0, 1}t, it
is hard (given msk) to find t distinct inputs x1, . . . , xt such that∑

i

wi · Fmsk(xi) = 0,

where the sum is computed modulo some (large enough) integer p.

Our modification of the Peikert-Shiehian [PS18] construction satisfies this more general form of
output intractability (for small linear equations). Note that this is a strict generalization of both
single-input CI for functions (where t = 1, w = 1) and collision-resistance (where t = 2, w = (−1, 1)
and f is the constant function). Previously, this form of correlation intractability was only known
assuming iO and (extremely hard) one-way product functions [HL18].

Instantiation from IO. Our second construction achieves correlation intractability for shifted
R0-output relations for a large class of R0 simultaneously (as opposed to linear R0 as in the
LWE case above). It can be thought of as a (non-black-box) combination of our approach with a
construction due to Zhandry [Zha16] of output-intractable hash functions.

Theorem 1.5. Assume the existence of subexponential iO, subexponential OWFs, and lossy func-
tions with input domain {0, 1}n with a range of size ≤ 2` in lossy mode. Then, there exists a hash
family H that is CI for all (efficiently decidable) shifted t-ary output relations with sparsity at most
2−t`.

As a corollary, we conclude that additionally assuming the existence of extremely lossy functions
[Zha16], there is a hash familyH that is CI for all (efficiently decidable) shifted t-ary output relations
with sparsity 2−ω(t). As another corollary, we note that by combining Theorem 1.5 with [CCH+19],
we obtain a construction of dual-mode NIZKs for NP based on iO, (injective) lossy functions, and
lossy encryption. This closely matches the assumptions used in the work [HU19] but with a simpler
construction. The corollary follows because the hash family from Theorem 1.5 satisfies “somewhere
statistical correlation intractability.”

A Separation between Single-Input and Multi-Input CI. Finally, we show that single-
input and multi-input CI hash functions are fundamentally different beasts, by showing a separation
between them.

Theorem 1.6. Assume the existence of subexponentially secure indistinguishability obfuscation,
subexponentially secure one-way functions, and a hash family H such that H is R0-output in-
tractable, and for a random input X, hk(X) is 2−n-indistinguishable from uniform (even given k).
Then, there exists a hash family that is CI for shifted R0-relations.

This theorem says that assuming subexponential iO and one-way functions, shifted-CI for R0

can be constructed (semi-)generically from output intractability for R0. Theorem 1.6 is proved by
combining Theorem 1.3 with a construction of anR0-output intractable SHSF using iO, puncturable
PRFs, and an output-intractable hash function satisfying the above statistical requirement.
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We note that as a corollary to Theorem 1.6, we obtain a construction of single-input CI for all
efficient functions from iO and one-way permutations.3

Corollary 1.7. If subexponential iO, subexponential OWFs, and (polynomially-secure) OWPs exist,
then there exists a hash family that is CI for all efficient functions, that is, relations R(x, y) which
is true iff y = f(x).

This construction is notable in that it separates single-input correlation intractability (the-
oretically) from two-input correlation intractability: due to an impossibility result of Asharov-
Segev [AS15], it is known that there is no (black-box) construction of CRHFs from iO and one-way
permutations (even with exponential security). A similar separation was shown in [HL18], but the
“positive result” required assuming optimally hard one-way functions along with iO to obtain CI
for all efficient functions (and more). In contrast, our construction is based on assumptions in the
quantitatively standard regime.

1.2 Related Work

Multi-Input Correlation Intractability We summarize what was previously known regarding
multi-input correlation intractability:

• For subexponentially sparse output relations R0, output intractability for R0 can be con-
structed based on lossy functions (following [Zha16], but relying on less extreme forms of
lossiness). Based on “extremely lossy functions”, Zhandry [Zha16] constructs a hash family
that is CI for all sparse (efficiently decidable) output relations.4

• Similarly to Zhandry [Zha16], the construction x 7→ p(Hk(x)) (where Hk is a sufficiently
shrinking collision-resistant hash function and p is sampled from a t-wise independent hash
family) also yields output intractability for subexponentially sparse (and efficiently decidable)
output relations.

• Holmgren and Lombardi [HL18] construct output-intractable hash functions for all sparse
(even inefficient) R based on “one-way product functions” (OWPFs), OWFs satisfying a
quantitiatively extreme assumption about the hardness of inverting many one-way function
challenges in parallel. OWPFs (in different parameter regimes) are existentially incomparable
to lossy functions and CHRFs. Under sufficiently strong assumptions, these hash families
achieve quantitiatively better security than is possible for the previous two constructionss.

• Holmgren and Lombardi [HL18] also construct correlation-intractable hash families for rela-
tions R(x,y) that include all shifted output relations. However, they rely on both indistin-
guishability obfuscation and OWPFs (as above).

3As is common [GR13], one must be careful about which definitions of “one-way permutation” suffice for this
result. In our proof (which is a proof of concept), we assume that the one-way permutation has domain {0, 1}n. It
turns out that the proof can be made to work for discrete log-based one-way permutations, but does not appear to
work for the (trapdoor) permutations constructed based on iO [BPW16].

4This is a special case of Zhandry’s actual result; we refer the reader to [Zha16] for more details.
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Comparison with Peikert-Shiehian [PS19]. [PS19] constructs single-input CI based on the
LWE (or SIS) assumption. Their construction improves upon the construction of [CCH+19] based
on circular-secure FHE: by making use of special properties of the [GSW13] (and related) FHE
schemes, they can remove the need for a circular ciphertext Enc(sk, sk) in a specific GSW-based
construction. By comparison, we show that any SHSF that is one-way is also CI for bounded
functions, and that (essentially) the [PS18] SHSF is one-way. It does not seem easy to abstract out
a simple, generic property of the [PS19] hash function that implies correlation intractability.

Given our generalization to multi-input CI, it is also reasonable to ask whether the [PS19] hash
function also satisfies a form of multi-input CI. In fact, it appears likely that it satisfies CI for
shifted-sum relations (just like our construction). However, a proof of this fact requires some of
our analysis in the security proof of our multi-input CI construction (Theorem 1.4).

Comparison with Brakerski-Koppula-Mour [BKM20]. We also note that our construction
shares some conceptual similarity to the recent CI construction of [BKM20]. We highlight the
similarity here:

• In [BKM20], they show that a hash function x 7→ hk(x) − r (for a random r) is CI for
a (low-degree) function f by writing down an indistinguishable key distribution kf so that
hkf (x)−f(x) lies in some sparse set Sf . Then, hkf (x)−f(x) = r typically has no (information
theoretic) solution.

• In our construction, we show that a hash function x 7→ hk(x)− r is CI for f by writing down
an indistinguishable key distribution kf so that hkf (x) − f(x) is the evaluation of a PRF
PRFs(x). Then, as long as it is computationally hard to find a PRF inverse F−1s (r) (i.e. as
long as Fs is one-way), we can conclude that the equation hkf (x)−f(x) = r is computationally
hard to solve.

2 Preliminaries

Some of the preliminaries below are adapted from [HL18,CCH+19].

2.1 Hash Functions and Correlation Intractability

Definition 2.1. For a pair of efficiently computable functions (ν(·), µ(·)), a hash family with input
length ν and output length µ is a collection H = {hλ : {0, 1}κ(λ) × {0, 1}ν(λ) → {0, 1}µ(λ)}λ∈N of
keyed hash functions, along with a pair of p.p.t. algorithms:

• H.Gen(1λ) outputs a hash key k ∈ {0, 1}κ(λ) describing a hash function h.

• H.Hash(k, x) computes the function hλ(k, x) = h(x). We may use the notation h(x) to denote
hash evaluation when the hash family is clear from context.

Following [HL18,CCH+19], we consider the security notion of correlation intractability [CGH98]
for multi-input relations.
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Definition 2.2 (Multi-Input Correlation Intractability). For a given relation ensemble R = {Rλ ⊆
({0, 1}ν(λ))t(λ) × ({0, 1}µ(λ))t(λ)}, a hash family H = {hλ : {0, 1}κ(λ) × {0, 1}ν(λ) → {0, 1}µ(λ)} is
said to be R-correlation intractable with security (s, δ) if for every s-size adversary A = {Aλ},

Pr
k←H.Gen(1λ)

x=(x1,...,xt)←A(k)

[(
x,y = (h(x1), . . . , h(xt))

)
∈ R

]
= O(δ(λ)).

We say that H is R-correlation intractable with security δ if it is (λc, δ)-correlation intractable for
all c > 1. Finally, we say that H is R-correlation intractable if it is (λc, 1

λc )-correlation intractable
for all c > 1.

A random oracle is correlation intractable for relations that are sparse, defined as follows:

Definition 2.3 (Sparsity). A relation ensemble R = {Rλ ⊆ ({0, 1}ν(λ))t(λ) × ({0, 1}µ(λ))t(λ)}, is
ρ(λ)-sparse if for every x ∈ ({0, 1}ν(λ))t(λ),

Pr
y←({0,1}µ(λ))t(λ)

[(x,y) ∈ R] ≤ ρ(λ).

We say that R is sparse if it is negl(λ)-sparse.

In this work, we focus on distinct input relations, i.e., relations R such that for any (x,y) ∈ R,
we have that xi 6= xj for any pair (i, j).

We now describe some special cases of the above definition. Two of them (CI for efficient
functions and Output Intractability) have been discussed in prior works [Zha16, HL18, CCH+19,
PS19], while a third – which we call “CI for shifted relations” – we introduce in this work.

Definition 2.4 (Correlation Intractability for Functions). For a given function ensemble F = {fλ :
{0, 1}ν(λ) → {0, 1}µ(λ)}, a hash family H = {hλ : {0, 1}κ(λ) × {0, 1}ν(λ) → {0, 1}µ(λ)} is said to be
f -correlation intractable if it is R-correlation intractable for the single-input relation

R =
{

(x, f(x)) : x ∈ {0, 1}∗
}
.

Formally, the requirement is that for every poly-size A = {Aλ},

Pr
k←H.Gen(1λ)
x←A(k)

[
h(k, x) = f(x)

]
= negl(λ).

Definition 2.5 (Output Intractability). For a given relation ensemble Rout = {Rout,λ ⊆ ({0, 1}µ(λ))t(λ)},
a hash family H = {hλ : {0, 1}κ(λ) × {0, 1}ν(λ) → {0, 1}µ(λ)} is said to be Rout-output intractable if
it is R-correlation intractable for the relation

R =
{

(x,y) : y ∈ Rout and xi 6= xj for all i 6= j
}
.

Formally, the requirement is that for every poly-size A = {Aλ},

Pr
k←H.Gen(1λ)

x=(x1,...,xt)←A(k)

[
xi 6= xj for all i 6= j and

(
y = (h(x1), . . . , h(xt)) ∈ Rout

]
= negl(λ).
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In this work, we also consider a strengthening of Rout-output intractability (as defined above)
in which the inputs x1, . . . , xt are not required to be distinct; of course, this larger relation must
still be sparse in order for correlation intractability to be feasible.

Definition 2.6 (Not-All-Equal (NAE) Output Intractability). For a given relation ensemble Rout =
{Rout,λ ⊆ ({0, 1}µ(λ))t(λ)}, a hash family H = {hλ : {0, 1}κ(λ) × {0, 1}ν(λ) → {0, 1}µ(λ)} is said to
be not-all-equal Rout-output intractable if it is R-correlation intractable for the relation

R =
{

(x,y) : y ∈ Rout and x1, . . . , xt are not all equal
}
.

When t is a constant, not-all-equal output intractability for a t-output relation Rout follows
from standard output intractability for ≤ tt different relations defined based on Rout (there is one
distinct-input relation for each partition of [t]). When t is superconstant it becomes better to prove
the security property directly (without incurring a tt security loss).

Definition 2.7 ((Not-All-Equal) Multi-Input CI for Zp-Shifted Relations). Let p = p(λ) be an
efficiently computable function of λ.

For a given function ensemble F = {fλ : {0, 1}ν(λ) → Zµ(λ)p } and relation ensemble Rout =

{Rout,λ ⊆ (Zµ(λ)p )t(λ)}, a hash family H = {hλ : {0, 1}κ(λ) × {0, 1}ν(λ) → Zµ(λ)p } is said to be
(Rout, f)-correlation intractable (respectively,not-all-equal (Rout, f)-correlation intractable) if it is cor-
relation intractable for the shifted relation

R =
{

(x,y) : xi 6= xj for all i 6= j and (y1 − f(x1), . . . , yt − f(xt)) ∈ Rout

}
,

respectively,

RNAE =
{

(x,y) : x1, . . . , xt are not all equal (y1 − f(x1), . . . , yt − f(xt)) ∈ Rout.
}

We note that Theorem 2.7 generalizes both Theorem 2.4 and Theorem 2.5/Theorem 2.6. In
particular, when p(λ) is a power-of-two, Theorems 2.5 and 2.6 can be recovered (identifying
Zµp = {0, 1}µ log p) by setting f to be the all-zero function, while Theorem 2.4 can be recovered
by setting Rout = {0µ ∈ Zµp = {0, 1}µ log p}.

Finally, we describe an interesting special case of Theorem 2.7 that we securely instantiate
under LWE.

Definition 2.8 (Weighted Sum Resistance mod p). Let t = t(λ). A hash function family H with
output space Zµp is weighted sum resistant mod p with weights w ∈ {−1, 0, 1}t if it is not-all-equal
output intractable for the t-output relation

Rout =
{

y :

t∑
i=1

wiyi = 0µ (mod p)
}
.

We say that H is weighted sum resistant if it is sum resistant for all nonzero weight vectors
w. As shown in Section 4, our LWE-based hash family satisfies (NAE) multi-input CI for shifted
weighted sum resistance mod p with p = poly(λ).
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2.2 Shift-Hiding Shiftable Functions

We consider a weakening of the original definition of Peikert and Shiehian [PS18] that does not
give the adversary oracle access to the SHSF. We also consider a modified definition with exact
correctness rather than approximate correctness (this corresponds to the “rounded version” of
the [PS18] construction).

Definition 2.9 (Shift-Hiding Shiftable Functions [PS18]). Let p = p(λ) be an efficiently computable
function of λ. We define a family of shift-hiding shiftable functions with input space {0, 1}ν(λ) and

output space Zµ(λ)p = {0, 1}µ(λ) log p(λ) for arbitrary polynomial functions (ν(λ), µ(λ)).

For a given class C of function ensembles F = {fλ : {0, 1}ν(λ) → Zµ(λ)p }, a shift-hiding shiftable
function family SHSF = (Gen,Shift,Eval, SEval) consists of four PPT algorithms:

• Gen(1λ) outputs a master secret key msk and public parameters pp.

• Shift(msk, f) takes as input a secret key msk and a function f ∈ F . It outputs a shifted key
skf .

• Eval(pp,msk, x), given a secret key msk and input x ∈ {0, 1}ν(λ), outputs an evaluation y ∈
Zµ(λ)p .

• SEval(pp, skf , x), given a shifted key skf and input x ∈ {0, 1}n(λ), outputs an evaluation

y ∈ Zµ(λ)p .

We will sometimes use the notation Fsk(x) to mean either Eval(sk, x) or SEval(sk, x) when the
context is clear.

We require that SHSF satisfies the following two properties:

• Computational Correctness: for any function f ∈ F , given public parameters pp and a
shifted key skf ← Shift(msk, f) (for (pp,msk) ← Gen(1λ)), it is computationally hard to find
an input x ∈ {0, 1}ν(λ) such that Eval(skf , x) 6= Eval(msk, x) + f(x) (mod p). In other words,
the equation

Fskf (x) = Fmsk(x) + f(x)

holds computationally (mod p).

• Shift Hiding: for any pair of functions f, g ∈ F ,

skf ≈c skg,

where skf ← Shift(msk, f), skg ← Shift(msk, g), and msk← Gen(1λ).

2.3 One-Dimensional Short Integer Solution (1D-SIS)

For the definition of the LWE and SIS problems, we refer the reader to Peikert’s survey [Pei16].
We make use of the hardness of a special “one-dimensional” SIS problem [BV15]. This is no

easier to solve than LWE, but for clarity, as was done in [BV15,PS18], it is convenient to define it
separately.
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Definition 2.10 (1D-SIS [BV15, PS18]). Let p ∈ N and p1 < p2 < . . . < pn be pairwise coprime
and relatively prime to p. Let Q = p ·

∏n
i=1 pi. Then, for positive integers m ∈ N and B, the

1D-SISm,p,q,B problem is as follows: given a uniformly random vector v ∈ Zmq , find a vector z ∈ Zm
such that

• ||z||∞ ≤ B; and

• 〈v, z〉 (mod q) ∈ q
p · Z + [−B,B].

For sufficiently large pi ≥ B · poly(n, log q), solving 1D-SIS is at least as hard as approximating
certain short vector problems on arbitrary n-dimensional lattices to within B ·poly(n) factors [Ajt96,
MR04,BV15].

3 Correlation Intractability from Shift-Hiding Shiftable Functions

In this section, we show that shift-hiding shiftable functions (Theorem 2.9) that are output in-
tractable (Theorems 2.5 and 2.6) can be used to construct correlation-intractable hash functions
for shifted relations (Theorem 2.7). As a special case, this shows that SHSFs that are hard to invert
yield correlation-intractable hash functions for all circuits (Theorem 2.4) supported by the SHSF
function class C. In other words, SHSFs allow us to lift a form of output intractability to a more
general form of correlation intractability.

Formally, let SHSF = (Gen,Shift,Eval) be a SHSF family that represents functions of the form

Fsk : {0, 1}ν(λ) → Zµ(λ)p and supports shifts for functions f ∈ F . We then consider two hash
functions Hplain,Hshift:

• Hplain uses msk as a hash key, and computes the function h(msk, x) = Fmsk(x).

• Hshift uses skZ as a hash key, where Z : {0, 1}ν → Zµp is an identically zero function. It
computes the function h(skZ , x) = FskZ (x).

Theorem 3.1. Let Rout be an efficiently decidable output relation. If SHSF is a shift-hiding shiftable
function family and Hplain is Rout-output intractable, then Hshift is (R, f)-correlation intractable
for any f ∈ F .

Moreover, if Hplain is NAE-Rout-output intractable, then Hshift is NAE-(R, f)-CI for any f ∈ F .

Proof. Suppose that a PPT adversary A breaks the (R, f)-correlation intractability of Hshift, which
means that A wins the following challenger-based security game with non-negligible probability:

1. The challenger samples msk← Gen(1λ).

2. The challenger samples sk = skZ ← Shift(msk, Z) and sends sk to A.

3. A(sk) outputs x = (x1, . . . , xt).

4. A wins if (i) the inputs xi are distinct, and (ii) for yi = Fsk(xi)− f(xi), the relation Rout(y)
holds.

Then, A also wins each of the following modified security games with non-negligible probability.
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• Hybrid Hyb1: same as the honest security game, except that in step (2), we sample

skf ← Shift(msk, f)

This is indistinguishable from the original security game by the shift-hiding of SHSF.

• Hybrid Hyb2: same as Hyb1, except that in step (4), we change the win condition (ii) so that
A wins if for yi = Fmsk(xi), the relation Rout(y) holds.

This is indistinguishable from Hyb1 by the computational correctness of SHSF.

Finally, we show that A’s success in Hyb2 leads to an attack A′ on the Rout-output intractability
of Hplain. The attack works as follows:

1. The challenger samples msk← Gen(1λ) and sends msk to A′.

2. A′(msk) samples sk = skf ← Shift(msk, f).

3. A′ then calls A(skf ) and outputs x = (x1, . . . , x`).

4. By definition, A′ wins if (i) the xi are distinct, and (ii) for yi = Fmsk(xi), the relation Rout(y)
holds.

By construction, A′ above wins with the same probability that A wins in Hyb2, contradicting the
Rout-output intractability of Hplain.

The same argument as above applies to NAE-CI, with the condition (i) replaced by “the inputs
xi are not all equal.” This completes the proof of Theorem 3.1.

4 Construction of (Weighted) Sum-Resistant SHSF

We show the (weighted) sum-resistance of a variant of the Peikert-Shiehian construction of shift-
hiding shiftable functions [PS18]. We start by describing the ingredients that we use in the construc-
tion. The construction itself is described in Section 4.2, the proof of shift-hiding in Section 4.3, the
proof of computational correctness in Section 4.4, and the proof of sum-resistance is in Section 4.5.

4.1 The Ingredients

The Gadget Matrix. An important ingredient in many lattice-based constructions is the gadget
matrix G and the operator G−1 associated to it. Let

g = [1, 2, 4, . . . , 2dlog qe−1] ∈ Z1×dlog qe
q

The gadget matrix G = In⊗g is a block diagonal matrix with copies of g on the diagonal. In fact,
we will extend G to m columns for any m ≥ ndlog qe by appending zero columns.

An important property of G ∈ Zn×mq is that for every vector v ∈ Znq , there is a 0-1 vector
v′ ∈ {0, 1}m such that Gv′ = v (mod q). This leads us to define the operator G−1 : Znq → {0, 1}m
which has the property that
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1. G−1(v) ∈ {0, 1}m for every vector v ∈ Znq ; and

2. G ·G−1(v) = v (mod q).

We will extend G−1 to matrices V by acting on each column of the matrix separately.
We caution the reader that G−1 refers to a (non-linear) operator, and has little to do with matrix
inverses.

Gadget Homomorphisms. The key idea in the SHSF construction is the notion of gadget
homomorphisms originating from [BGG+14]. For LWE matrices A1,A2 ∈ Zn×mq , define the sum
and product matrices

A+ = A1 + A2 and A× = −A1G
−1(A2) (1)

where G is the gadget matrix and G−1 is the bit decomposition operator defined above. The gadget
homomorphisms allow us to start from LWE encodings c1 = s(A1 + x1G) and c2 = s(A2 + x2G)
w.r.t. an LWE secret s ∈ Znq (where we suppress the LWE errors for clarity) and compute

c+ = s(A+ + (x1 + x2)G) and c× = s(A× + x1x2G) (2)

In particular, this is accomplished by setting

c+ = c1 + c2 = s(A1 + A2 + (x1 + x2)G) = s(A+ + (x1 + x2)G)

and

c× = −c1G
−1(A2) + x1c2

= −s(A1 + x1G) ·G−1(A2) + s(A2 + x2G) · x1
= s(−A1G

−1(A2) + x1x2G)

= s(A× + x1x2G)

Crucially, this computation does not require the knowledge of either x1 or x2 to compute the
sum. It does require the knowledge of x1 (but not x2) to compute the product. This asymmetry
will prove invaluable to us down the line.

More generally, we define the following two algorithms.

• Gadget.MEval(g,A1, . . . ,Aν), the matrix homomorphism, takes as input a function g : {0, 1}` →
{0, 1} and ν matrices A1, . . . ,Aν and outputs the matrix Ag obtained by composing together
the addition and multiplication operations in Equation 1.

• Gadget.VEval(g, x, c1, . . . , cν), the vector homomorphism, takes as input a function g : {0, 1}ν →
{0, 1}, an input x = x1x2 . . . xν and LWE encodings

c1 = s(A1 + x1G) + e1, . . . , cν = s(Aν + xνG) + eν

of x w.r.t. A1, . . . ,Aν , and outputs a vector cg obtained by composing together the addition
and multiplication operations in Equation 2.
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Correctness tells us that

cg ≈ s(Ag + g(x)G) (3)

where the difference is an LWE error whose magnitude is O((n log q)O(dg)) where λ is a security
parameter and dg is the depth of the circuit g.

Looking ahead, we make two important observations on these algorithms:

1. First, if the function g is of a special form, namely g(x1, x2) = 〈x1, f(x2)〉 for some x = x1||x2,
then Gadget.VEval does not require the knowledge of x1, rather only x2. This observation is
due to [AFV11,GVW15] where it was used construct a predicate encryption scheme.

2. Secondly, if the first coordinate of s is 1 (which we can set without loss of security) then we
have

cg ≈ sag + g(x) (4)

where cg is the first coordinate of cg and ag is the first column of Ag. This is because the
first column of G is the unit vector with 1 in the first coordinate and 0 everywhere else.

FHE with Almost Linear Decryption. We require the existence of a (secret-key) FHE scheme
where the secret key fsk is a vector s ∈ Zn̂q , ciphertexts fct of messages m ∈ Zp are vectors c ∈ Zn̂q
and decryption proceeds by first doing a linear operation which gives

〈fsk, fct〉 = m ·
⌊
q

p

⌉
+ e (mod q) (5)

where e is a small error. We will let FHE.Enc denote the encryption algorithm and FHE.Eval denote
the evaluation algorithm.

4.2 The Shift-Hiding Shiftable Function

Let the family of functions F consist of functions f : {0, 1}ν → Zµp computable by circuits of size
at most s = s(λ). We require that p = p(λ) is a sufficiently large polynomial (in n).

• Gen(1λ): picks LWE parameters n = n(λ), m = m(λ) and q = q(λ). Generate the public
parameters

pp = (A1, . . . ,A`,u)← (Zn×mq )k × Z1×m
q

for a certain ` = `(s, λ) that will be specified in due course.

Choose a uniformly random vector s← Znq whose first coordinate s[1] = 1. Let msk = s.

• Eval(msk, x): Let FHE be a (leveled) fully homomorphic encryption scheme with almost linear
decryption (as defined above in Equation 5) with plaintext space Zp. Construct the functions

g
(i)
x that, on input a pair (fsk, fct), output

g(i)x (fsk, fct) =

〈
fsk,FHE.Eval(fct,U (i)

x )

〉
(mod q)
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where U (i)
x is a universal circuit that takes as input the description of a circuit f and outputs

the ith bit of f(x).

Define
A(i)
x = Gadget.MEval(g(i)x ,A1, . . . ,A`) ∈ Znq ,

let a
(i)
x denote the first column of A

(i)
x and let

Ax := [a(1)x ||a(2)x || . . . ||a(µ)x ] ∈ Zn×µq

denote the concatenation of a
(i)
x . The output is

bsAx + uG−1(Ax)ep :=

⌊
p

q
· (sAx + uG−1(Ax))

⌉
∈ Z1×µ

p

• Shift(msk, f): Choose an FHE secret key fsk ∈ Zn̂q , encrypt the description of f into an FHE
ciphertext fct, let φ := fct||fsk, and let

Af := [A1 + φ1G|| . . . ||A` + φ`G]

Output as the shift key
skf := (fct, sAf + e)

where e is drawn from the LWE noise distribution.

Note that ` is the bit-length of fsk||fct and is poly(s, λ).

• SEval(skf , x): Let the circuits g
(i)
x be as in the definition of Eval.

c(i)x = Gadget.VEval(g(i)x , fct, c1, . . . , c`) ∈ Znq

where ci = s[Ai + φiG]. Note that crucially, Gadget.VEval does not require fsk as input

because, by observation (1) above, g
(i)
x only linearly depends on it. Let c

(i)
x denote the first

element of c
(i)
x and let cx be the concatenation of all c

(i)
x .

Output
bcx + uG−1(Ax)ep

as the shifted evaluation.

Basic Correctness. We first (informally) show correctness of SEval for any fixed x. By the
correctness of the gadget homomorphisms (equation 4), we know that

c(i)x ≈ sa(i)x + g(i)x (fsk, fct)

= sa(i)x + 〈fsk,FHE.Eval(fct,U (i)
x )〉

≈ sa(i)x + U (i)
x ·

⌊
q

p

⌉
= sa(i)x + f (i)(x) ·

⌊
q

p

⌉
(6)
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where the second equation is by the definition of g
(i)
x , the third (approximate) equation is by the

correctness of FHE decryption (equation 5), and the fourth equation is by the definition of the
universal circuit U . The approximation error is proportional to the SHSF evaluation error plus the
FHE decryption error which is

O((n̂ log q)O(d) + (n log q)O(d′)) = O(λpoly(d,log λ))

where d is the depth of the circuit U (i)
x and d′ = O(d · log(n log q)) is the depth of the circuit g

(i)
x

that homomorphically evaluates U (i)
x and decrypts.

Now, as long as c
(i)
x does not fall too close to the boundaries of multiples of q/p, we have

SEval(skf ,x) = bcx + uG−1(Ax)ep
= bsAx + uG−1(Ax)ep + f(x) = Eval(msk, x) + f(x) (mod p) (7)

It turns out that for any fixed x, the boundary event happens with a negligible probability. In
fact, we will show a morally stronger statement below: adapting arguments from [BV15,PS18], we
will show in Section 4.4 that it is computationally hard to find an x for which correctness (that is,
equation 7) fails. (This is stronger in that it holds for any adaptively chosen x, and weaker because
the guarantee is computational, but necessarily so.)

4.3 Proof of Shift-Hiding

We wish to show that for any two functions f0, f1 ∈ F ,

(Shift(msk, f0), pp) ≈c (Shift(msk, f1), pp)

where (pp,msk)← Setup(1λ). Shift-hiding follows by the following sequence of hybrids.

Hybrid 0. This is the distribution generated by picking (pp,msk)← Setup(1λ) and outputting pp
together with

skf0 ← Shift(msk, f0)

That is,
skf0 := (fct, sAf0 + e)

where fct is an FHE encryption of f0 under an FHE secret key fsk, and

Af0 = [A1 + φ1G|| . . . ||A` + φ`G]

where φ = fsk||fct and the matrices Ai live in the public parameters.

Hybrid 1. Generate fct = FHE.Enc(fsk, f0) as above, and let φ = fsk||fct. Choose

Af0 = [A′1|| . . . ||A′`]

to be a truly random LWE matrix of the appropriate dimensions, and program Ai in the public
parameters to be A′i − φiG. Hybrid 1 is distributed identically to that in Hybrid 0.

Hybrid 2. Replace sAf0 +e in Hybrid 1 with a uniformly random vector. This is computationally
indistinguishable from Hybrid 1 by an application of LWE w.r.t. the uniformly random matrix Af .
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Hybrid 3. Replace the public parameters by uniformly random matrices Ai. This hybrid is
distributed identically to Hybrid 2. Note that the distribution in this hybrid is independent of the
FHE secret key fsk.

Hybrid 4. Replace fct in Hybrid 3 with an encryption of f1 instead of f0. This is computationally
indistinguishable from Hybrid 3 by an application of FHE semantic security.

The remaining hybrids backtrack through hybrids 2 back to 0 using f1 instead of f0.

Hybrid 5–7. This is identical to Hybrid 2–0, except that fct is an encryption of f1.

Putting together, we have that given the public parameters pp, the shift keys for f0 and f1 are
computationally indistinguishable.

4.4 Proof of Computational Correctness

Computational correctness follows from an essentially identical argument in [PS18]. We sketch it
here for completeness.

By the calculation in equation 6, we know that for each i ∈ [µ],

c(i)x = sa(i)x + f (i)(x) ·
⌊
q

p

⌉
+ ei

where |ei| ≤ B = O(λpoly(d,log λ)).
Assume that there is an adversary that, given the shift key skf ← Shift(msk, f) for some f of

his choice, produces an x such that

SEval(skf , x) 6= Eval(msk, x)

meaning that they differ in some coordinate, say i.
Then, by the expressions for SEval and Eval, we have

SEval(skf , x)|i =

⌊
p

q
c(i)x

⌉
=

⌊
p

q
· (sa(i)x + f (i)(x) ·

⌊
q

p

⌉
+ ei)

⌉
=

⌊
p

q
· (sa(i)x + f (i)(x) · q

p
+ e′i)

⌉
6=
⌊
p

q
· (sa(i)x + f (i)(x) · q

p
)

⌉
=

⌊
p

q
· sa(i)x

⌉
+ +f (i)(x) = Eval(msk, x)|i

This can only happen when

c(i)x ∈
q

p
Z + [−(B + p), B + p]

where B comes from the magnitude of ei and the additional p comes from the difference between
bq/pe and q/p.

Now, observe that
c(i)x = [c1|| . . . ||c`] · h(i)

for some vector h(i) of low norm B = O(λpoly(d,log λ)). Since ci are pseudorandom, this gives us a
solution to the 1D-SIS`,p,q,≈B problem.
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4.5 Proof of Sum-Resistance

Assume that an adversaryA, given msk and pp, comes up with weights w1, . . . , wt ∈ {−1, 0, 1}t\{0t}
and not-all-equal inputs x1, . . . , xt such that

t∑
i=1

wi · Eval(msk, xi) = 0 (mod p)

That is,
t∑
i=1

wi · bsAxi + uG−1(Axi)ep = 0 (mod p)

Rewriting this, we have

t∑
i=1

wi · b(sG + u)G−1(Axi)ep =
t∑
i=1

wi ·
⌊
p

q
· (sG + u)G−1(Axi)

⌉
= 0 (mod p)

Writing v for sG + u, and isolating the rounding errors εi, we have

p

q
· v ·

t∑
i=1

wi ·G−1(Axi) =

t∑
i=1

wiεi (mod p)

Note that ||
∑k

i=1wiεi|| ≤ t. Multiplying both sides by q/p,

v ·
t∑
i=1

wi ·G−1(Axi) =
q

p
·

t∑
i=1

wiεi := ε (mod q)

where ||ε||∞ ≤ qt/p. Now, we have two possibilities:

Case 1.
∑t

i=1wi ·G−1(Axi) 6= 0 (mod q). In this case, it forms a SIS solution w.r.t. v. (Tech-
nically, this is a one-dimensional version of SIS that is at least as hard as “short vector” problems
on lattices [Ajt96,MR04]).

Case 2.
∑t

i=1wi ·G−1(Axi) = 0 (mod q). In this case, we know that

G ·
t∑
i=1

wi ·G−1(Axi) =

t∑
i=1

wiAxi = 0 (mod q)

We now show how to use this to break SIS.
Let h = h1 . . . h` be the description of a random function chosen from a t-wise independent hash

family. Moreover, let x1, . . . xt denote the inputs returned by any fixed execution of A. Then, let

y =

t∑
i=1

wih(xi) (mod q).

We note that if x1, . . . , xt are not-all-equal, then with high probability over the choice of h we have
y 6= 0. This follows directly from the t-wise independence of h: if the xi are distinct, then indeed
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∑t
i=1wih(xi) always has min-entropy (since there exists a term

∑
i∈S wih(xi) corresponding to one

“super-variable” where
∑

i∈S wi 6= 0). Therefore, we conclude that with non-negligible probability

over the randomness of A,msk, h, A outputs x such that
∑t

i=1wiG
−1(Axi) = 0 and y 6= 0.

Now, imagine the experiment where Aj is picked as ARj + hjG. Here,

A =

[
a
A

]
where A is an SIS challenge matrix and a is uniformly random. This is statistically indistinguishable
from above, so the same claimed property holds. Now,

A(i)
x = Gadget.MEval(U (i)

x ,A1, . . . ,A`) = ARx,i + h(x)|iG

and
a(i)x = Arx,i + h(x)|iui

where ui is the first unit vector. (Technically, A
(i)
x is computed by doing a homomorphic evaluation

of h and then decrypting. However, this complication does not make a significant difference to our
argument below.)

We know that for each i ∈ [µ],

t∑
j=1

wja
(i)
xj = 0 (mod q)

In other words,

A ·
t∑

j=1

wjRxj︸ ︷︷ ︸
:=R

+

t∑
j=1

wjh(xj)︸ ︷︷ ︸
:=y

u1 = 0 (mod q)

Whenever y 6= 0 (mod q), it follows that R is not zero. Now, we have AR = 0 (mod q) and R 6= 0
giving us a SIS solution w.r.t. A. This finishes the proof of weighted t-sum-resistance.

4.6 Putting it Together: Weighted Sum-Resistant SHSFs

Combining the results of Section 4.3, Section 4.4, and Section 4.5, we obtain the following theorem.

Theorem 4.1. Assume that there is some ε > 0 for which it is hard to approximate short vector
problems in worst case n-dimensional lattices to within 2n

ε
factor. Let SHSF = (Gen, Shift,Eval) be

the SHSF family constructed above. Then, the hash function family Hplain that uses (pp,msk) ←
Gen(1λ) as a hash key, and computes the function

h((pp,msk), x) = Eval(pp,msk, x)

is t-weighted-sum-resistant for every t = poly(λ).

Combining Theorem 4.1 and Theorem 3.1 (the CI lifting theorem), we get a hash family that
is CI for shifted (weighted) sum relations.

Theorem 4.2. Under the same assumption as in Theorem 4.1, there is a hash function family
H that is (Rout, f)-correlation intractable (as in Definition 2.7), where Rout is the weighted sum
relation as in Definition 2.8 and f is any efficiently computable function. That is, H is correlation-
intractable for shifted (weighted) sum relations.
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5 Output-Intractable SHSFs from iO

In this section, we present constructions of Output-Intractable SHSFs from iO (Theorem 1.6 and
Theorem 1.5). For simplicity, we set the shift modulus p = 2 for SHSFs in the remainder of this
section.

5.1 IO-Related Preliminaries

5.1.1 Indistinguishability Obfuscation

An obfuscator for all circuits is a PPT algorithm O such that for every circuit C, O(C) is with
probability 1 a circuit C̃ with the same functionality as C.

Definition 5.1 (Indistinguishability Obfuscation [BGI+01]). O is a (s, δ)-secure indistinguishability
obfuscator (iO) if for all pairs of functionally equivalent circuits C0 and C1 of size |C0| = |C1| = λ,
and all circuits A of size s(λ), it holds that

Pr[A(O(C0)) = 1]− Pr[A(O(C1)) = 1] ≤ O(δ(λ)).

5.1.2 Puncturable PRFs

Definition 5.2 (Puncturable PRF [BW13,BGI14,KPTZ13,SW14]). A puncturable PRF family is
a family of functions

F =
{
Fλ,s : {0, 1}ν(λ) → {0, 1}µ(λ)

}
λ∈N,s∈{0,1}`(λ)

with associated (deterministic) polynomial-time algorithms (F .Eval,F .Puncture,F .PuncEval) satis-
fying

• For all x ∈ {0, 1}ν(λ) and all s ∈ {0, 1}`(λ), F .Eval(s, x) = Fλ,s(x).

• For all distinct x, x′ ∈ {0, 1}ν(λ) and all s ∈ {0, 1}`(λ),

F .PuncEval(F .Puncture(s, x), x′) = F .Eval(s, x′)

For ease of notation, we write Fs(x) and F .Eval(s, x) interchangeably, and we write s{x} to denote
F .Puncture(s, x).
F is said to be (s, δ)-secure if for every {x(λ) ∈ {0, 1}ν(λ)}λ∈N, the following two distribution

ensembles (indexed by λ) are δ(λ)-indistinguishable to circuits of size s(λ):

(S{x(λ)}, FS(x(λ))) where S ← {0, 1}`(λ)

and
(S{x(λ)}, U) where S ← {0, 1}`(λ), U ← {0, 1}µ(λ).

Theorem 5.3 ( [GGM84,KPTZ13,BW13,BGI14,SW14]). If {polynomially secure, subexponentially
secure} one-way functions exist, then for all functions µ : N → N (with 1µ(ν) polynomial-time
computable from 1ν), and all δ : N → [0, 1] with δ(ν) ≥ 2−poly(ν), there are polynomials `(λ), ν(λ)
and a {polynomially secure, ( 1

δ(ν(λ)) , δ(ν(λ)))-secure} puncturable PRF family

Fµ =
{
Fλ,s : {0, 1}ν(λ) → {0, 1}µ(ν(λ))}λ∈N,s∈{0,1}`(λ)

}
.
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5.1.3 Lossy Functions

Definition 5.4 (Lossy Functions [PW08]). A lossy function family LF = (LF.Gen, LF.Eval) consists
of two PPT algorithms:

• LF.Gen(1λ, injective/lossy) outputs an evaluation key ek either in “injective mode” or “lossy
mode.”

• LF.Eval(ek, x) takes an evaluation key ek as well as an input x ∈ {0, 1}ν(λ). It returns a
deterministic output y ∈ {0, 1}N(λ).

We require that LF satisfies three properties:

• Injectivity: With probability 1− negl(λ) over the randomness of ek← LF.Gen(1λ, injective),
the function LF.Eval(ek, ·) is injective.

• Lossiness (with parameter `(λ)): With probability 1− negl(λ) over the randomness of ek←
LF.Gen(1λ, lossy), the range of the function LF.Eval(ek, ·) has size at most 2`(λ).

• Key Indistinguishability: randomly sampled injective and lossy keys are computationally
indistinguishable.

5.2 Output-Intractable SHSFs from iO + Output-Intractable Puncturable PRFs

In this section, we note that the natural construction of SHSFs from (subexponential) iO and
puncturable PRFs (following the [BLW17] construction of private constrained PRFs from iO) also
yields output-intractable SHSFs from iO along with output-intractable puncturable PRFs. This
fact will be used in all of our iO-based constructions.

Construction 5.5 (SHSF from IO). Let PRF = {Fs : {0, 1}ν(λ) → {0, 1}µ(λ)} denote a (punc-
turable) PRF family and let O denote an indistinguishability obfuscator. Then, PRF can be aug-
mented with the algorithm Shift, defined as follows:

Shift(s, f) = O
(
x 7→ PRFs(x) + f(x)

)
.

Moreover, a shifted key skf ← Shift(s, f) can be evaluated on an input x simply by interpreting
skf as a program and evaluating skf (x).

Lemma 5.6. Suppose that PRF is a 2−ν(λ) · negl(λ)-secure puncturable PRF (Theorem 5.2, and O
is a 2−ν(λ) · negl(λ) secure indistinguishability obfuscator (Theorem 5.1).

Then, (PRF,Shift) is a SHSF for bounded-size shift functions. Moreover, if the hash family
Hplain(msk, x) = PRFmsk(x) is output-intractable (or NAE-output-intractable) for a relation Rout,
then the same is true for SHSF.

Proof. For the first claim, it suffices to show that (PRF, Shift) satisfies correctness and shift-hiding.
Correctness follows immediately from the correctness of O.

To see that (PRF, Shift) is shift-hiding – namely, that skf ≈c skg for any pair of (bounded-size)
circuits (f, g), we closely follows the CHCPRF security proof in [BLW17]. Namely, we appeal to a
hybrid argument with 2ν + 2 hybrid distributions on keys sk, defined as follows:
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• Hyb−1: sk = skf ← Shift(s, f) = O (x 7→ PRFs(x) + f(x)).

• For every 0 ≤ x∗ ≤ 2ν − 1 (interpreting x∗ as both an integer and a string Hybx∗ = sk ←
O (x 7→ PRFs(x) + g(x) if x < x∗, x 7→ PRFs(x) + f(x) if x ≥ x∗)

• Hyb2ν : sk = skg ← Shift(s, g) = O (x 7→ PRFs(x) + g(x)).

We note that Hyb−1 ≈c,2−νnegl(λ) Hyb0 and Hyb2ν−1 ≈c,2−νnegl(λ) Hyb2ν by the 2−ν · negl(λ)-
security of O. Additionally, we note that Hybx∗ ≈c,O(2−ν ·negl(λ)) Hybx∗+1 for every 0 ≤ x∗ ≤ 2ν − 2
by a standard puncturing argument. This relies on the 2−ν ·negl(λ)-security of both the obfuscator
and the puncturable PRF. This completes the proof of shift-hiding.

Finally, since the honest evaluation of the SHSF in Theorem 5.5 is identical to a puncturable
PRF evaluation (with the same secret key), we note that the SHSF SHSF is (NAE) output-
intractable for a relation Rout if and only if PRF is (NAE) output-intractable for the same relation
Rout. Thus, by Theorem 3.1, in order to obtain correlation-intractable hash functions based on IO,
we have reduced the problem to constructing output-intractable 2−ν-secure puncturable PRFs.

We now present two constructions of 2−ν-secure puncturable PRFs, based on different assump-
tions.

5.3 Construction 1: Postcomposition with an Output-Intractable Hash

Construction 5.7. Let PRF denote a puncturable PRF family mapping {0, 1}ν(λ) → {0, 1}N(λ).
Let H denote an Rout-output intractable hash family mapping {0, 1}N(λ) → {0, 1}µ(λ). Then, we
define the PRF family PRFH = H ◦ PRF as follows:

• A secret key for PRFH is a pair (k, sk) with k ← H.Gen(1λ) and sk← PRF.Gen(1λ).

• Evaluation is defined to be

PRFH(k, sk, x) = h(k,PRFsk(x)).

Lemma 5.8. Suppose that PRF is a 2−ν · negl(λ)-secure puncturable PRF family that is injective
with high probability, H is Rout-output intractable (or NAE-Rout-output intractable), and H has a
nearly uniform output distribution, meaning that{

k ← H.Gen(1λ), x← {0, 1}N(λ) : (k, h(x))
}

≈c,2−ν ·negl(λ)
{
k ← H.Gen(1λ), y ← {0, 1}µ(λ) : (k, y)

}
.

Then, PRFH is a 2−ν · negl(λ)-secure puncturable PRF family that is also Rout-output intractable
(or NAE-Rout-output intractable).

Proof. We first show output intractability. If an adversary A(k, sk) finds distinct (respectively,
not-all-equal) inputs (x1, . . . , xt) such that (hk(PRFsk(x1), . . . , hk(PRFsk(xt))) ∈ Rout with non-
negligible probability, then we claim that this violates the Rout-output intractability of H. This
holds because with all but negligible probability, PRFsk is an injective function, in which case the
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inputs PRFsk(x1), . . . ,PRFsk(xt) to hk are distinct (respectively, not-all-equal) as long as x1, . . . , xt
are distinct (respectively, not-all-equal). This gives an attack on the Rout-output intractability
of H: given a key k, an adversary A′ can sample sk, call (x1, . . . , xt) ← A(k, sk), and output
(PRFsk(x1), . . . ,PRFsk(xt)).

Next, we show that PRFH is a 2−νnegl(λ)-secure puncturable PRF family. To do so, we define
a puncturing algorithm:

PRFH.Puncture(k, sk, x
∗) = (k, sk{x∗}).

One can then verify that for x 6= x∗

PuncEval((k, sk){x∗}, x) = PRFH(k, sk, x).

Finally, 2−ν · negl(λ)-pseudorandomness at punctured points follows from the analogous property
for PRF along with the fact that H has a nearly uniform output distribution.

5.4 Construction 2: Precomposition with a Lossy Function

Construction 5.9. Let PRF denote a puncturable PRF family mapping {0, 1}N(λ) → {0, 1}µ(λ).
Let LF = (LF.Gen, LF.Eval) denote a lossy function family mapping {0, 1}ν(λ) → {0, 1}N(λ) and
lossiness parameter `(λ). Then, we define the PRF family PRFLF = PRF ◦ LF as follows:

• A secret key for PRFLF is a pair (sk, ek) with ek← LF.Gen(1λ, injective) and sk← PRF.Gen(1λ).

• Evaluation is defined to be

PRFLF(sk, ek, x) = PRF(sk, LF.Eval(ek, x)).

Lemma 5.10. Suppose that PRF is a
(
2N(λ)+`(λ)t(λ), 2−ν(λ) · negl(λ)

)
-secure puncturable PRF fam-

ily, and suppose that LF is a lossy function family with lossiness parameter τ(λ).
Then, for any relation Rout with sparsity at most 2−t(λ)`(λ) ·negl(λ), PRFLF is a 2−ν ·negl(λ)-secure
puncturable PRF family that is also Rout-output intractable.

Moreover, if Rout is also sparse whenever the inputs x1, . . . , xt are not-all-equal, then the PRF
family satisfies NAE-Rout-output intractability.

Proof. We first show puncturing-pseudorandomness. To do so, we define a puncturing algorithm

PRFH.Puncture(sk, ek, x
∗) = (k, sk{LF.Eval(x∗)}).

Punctured evaluation correctness (with all but negligible probability over the sampling of
(sk, ek)) follows from the fact that ek is sampled in injective mode. Pseudorandomness follows
directly from the pseudorandomness of PRF.

We next show output intractability. If an adversary A(sk, ek) finds distinct (respectively, not-
all-equal) inputs (x1, . . . , xt) such that

(PRFsk(LF.Eval(ek, x1)), . . . ,PRFsk(LF.Eval(ek, xt))) ∈ Rout

with non-negligible probability ε, then since ek is sampled in injective mode, the same claim holds
where (LF.Eval(ek, x1), . . . , LF.Eval(ek, xt)) are distinct (respectively, not-all-equal).
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Then, by the security of LF, we also know that when ek ← LF.Gen(1λ, lossy) is sampled from
the lossy distribution, we have that

(x1, . . . , xt)← A(sk, ek) : (LF.Eval(ek, x1), . . . , LF.Eval(ek, xt)) are distinct

and (PRFLF(sk, ek, x1), . . . ,PRFLF(sk, ek, xt)) ∈ Rout ≥ ε− negl(λ).

Finally, we claim that in reality, with high probability over (sk, ek), there do not exist such
input tuples. This follows from the pseudorandomness of PRF: for any fixed set S of size 2`(λ), the
probability that a random function F has an t-tuple of distinct (respectively, not-all-equal) inputs
z1, . . . , zt from S such that (F (z1), . . . , F (zt)) ∈ Rout is at most |S|t ·β if Rout has sparsity β, which
is negligible under our hypotheses. Picking S = Im(LF(ek, ·)), we conclude that the same holds for
the PRF family PRFsk, as this condition can be tested in time 2N(λ)+`(λ)t(λ) by enumeration. Thus,
we obtain a contradiction, completing the proof of Theorem 5.10.

5.5 Putting it Together

Combining Theorem 3.1 and Theorem 5.6 with Theorem 5.8 and Theorem 5.10, respectively, we
obtain our final constructions of correlation intractable hash families based on obfuscation. We
restate the results (Theorem 1.6 and Theorem 1.5) from the introduction for completeness.

Theorem 5.11 (Theorem 1.6, restated). Assume the existence of

1. Subexponentially secure indistinguishability obfuscation,

2. Subexponentially secure one-way functions, and

3. A hash family H such that (i) H is Rout-output intractable, and (ii) for a random input X,
hk(X) is 2−ν · negl(λ)-indistinguishable from uniform (even given k).

Then, there exists a hash family that is CI for shifted Rout-relations.

This follows by combining Theorem 3.1, Theorem 5.6, and Theorem 5.8.

Theorem 5.12 (Theorem 1.5, restated). Assume the existence of

1. Subexponential IO,

2. Subexponential OWFs, and

3. Lossy functions with input domain {0, 1}ν with a range of size ≤ 2` in lossy mode.

Then, there exists a hash family H that is CI for all (efficiently decidable) shifted t-ary output
relations with sparsity at most 2−t`.

This follows by combining Theorem 3.1, Theorem 5.6, and Theorem 5.10.
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[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and
pairings are not necessary for io: Circular-secure lwe suffices. IACR Cryptology ePrint
Archive, 2020:1024, 2020.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EURO-
CRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages 533–556,
Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg, Germany.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 1–18, Santa Barbara, CA, USA, August 19–23, 2001. Springer,
Heidelberg, Germany.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In Hugo Krawczyk, editor, PKC 2014: 17th International Conference
on Theory and Practice of Public Key Cryptography, volume 8383 of Lecture Notes
in Computer Science, pages 501–519, Buenos Aires, Argentina, March 26–28, 2014.
Springer, Heidelberg, Germany.

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from LPN and trapdoor
hash via correlation intractability for approximable relations. In Daniele Micciancio
and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, Part III,

28



volume 12172 of Lecture Notes in Computer Science, pages 738–767, Santa Barbara,
CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany.

[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions
privately. In Serge Fehr, editor, PKC 2017: 20th International Conference on Theory
and Practice of Public Key Cryptography, Part II, volume 10175 of Lecture Notes in
Computer Science, pages 494–524, Amsterdam, The Netherlands, March 28–31, 2017.
Springer, Heidelberg, Germany.

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos
- trapdoor permutations from indistinguishability obfuscation. In Eyal Kushilevitz and
Tal Malkin, editors, TCC 2016-A: 13th Theory of Cryptography Conference, Part I,
volume 9562 of Lecture Notes in Computer Science, pages 474–502, Tel Aviv, Israel,
January 10–13, 2016. Springer, Heidelberg, Germany.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Dou-
glas R. Stinson, editor, Advances in Cryptology – CRYPTO’93, volume 773 of Lecture
Notes in Computer Science, pages 232–249, Santa Barbara, CA, USA, August 22–26,
1994. Springer, Heidelberg, Germany.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs from
standard lattice assumptions - or: How to secretly embed a circuit in your PRF. In
Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory of Cryptog-
raphy Conference, Part II, volume 9015 of Lecture Notes in Computer Science, pages
1–30, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their appli-
cations. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology – ASI-
ACRYPT 2013, Part II, volume 8270 of Lecture Notes in Computer Science, pages
280–300, Bengalore, India, December 1–5, 2013. Springer, Heidelberg, Germany.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, 51st Annual ACM Symposium on Theory of Computing,
pages 1082–1090, Phoenix, AZ, USA, June 23–26, 2019. ACM Press.

[CCR16] Ran Canetti, Yilei Chen, and Leonid Reyzin. On the correlation intractability of obfus-
cated pseudorandom functions. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-
A: 13th Theory of Cryptography Conference, Part I, volume 9562 of Lecture Notes in
Computer Science, pages 389–415, Tel Aviv, Israel, January 10–13, 2016. Springer,
Heidelberg, Germany.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir and
correlation intractability from strong KDM-secure encryption. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part I,
volume 10820 of Lecture Notes in Computer Science, pages 91–122, Tel Aviv, Israel,
April 29 – May 3, 2018. Springer, Heidelberg, Germany.

29



[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revis-
ited (preliminary version). In 30th Annual ACM Symposium on Theory of Computing,
pages 209–218, Dallas, TX, USA, May 23–26, 1998. ACM Press.

[CMR98] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-way probabilistic
hash functions (preliminary version). In 30th Annual ACM Symposium on Theory of
Computing, pages 131–140, Dallas, TX, USA, May 23–26, 1998. ACM Press.

[DNRS99] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic functions.
In 40th Annual Symposium on Foundations of Computer Science, pages 523–534, New
York, NY, USA, October 17–19, 1999. IEEE Computer Society Press.

[DVW20] Yevgeniy Dodis, Vinod Vaikuntanathan, and Daniel Wichs. Extracting randomness
from extractor-dependent sources. In Anne Canteaut and Yuval Ishai, editors, Ad-
vances in Cryptology – EUROCRYPT 2020, Part I, volume 12105 of Lecture Notes in
Computer Science, pages 313–342, Zagreb, Croatia, May 10–14, 2020. Springer, Hei-
delberg, Germany.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology –
CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages 186–194, Santa
Barbara, CA, USA, August 1987. Springer, Heidelberg, Germany.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions (extended abstract). In 25th Annual Symposium on Foundations of Computer
Science, pages 464–479, Singer Island, Florida, October 24–26, 1984. IEEE Computer
Society Press.

[GP20] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular secu-
rity. Cryptology ePrint Archive, Report 2020/1010, 2020. https://eprint.iacr.

org/2020/1010.

[GR13] Oded Goldreich and Ron D. Rothblum. Enhancements of trapdoor permutations. Jour-
nal of Cryptology, 26(3):484–512, July 2013.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I,
volume 8042 of Lecture Notes in Computer Science, pages 75–92, Santa Barbara, CA,
USA, August 18–22, 2013. Springer, Heidelberg, Germany.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
Advances in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 503–523, Santa Barbara, CA, USA, August 16–20, 2015.
Springer, Heidelberg, Germany.

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way
functions (or: One-way product functions and their applications). In Mikkel Thorup,

30

https://eprint.iacr.org/2020/1010
https://eprint.iacr.org/2020/1010


editor, 59th Annual Symposium on Foundations of Computer Science, pages 850–858,
Paris, France, October 7–9, 2018. IEEE Computer Society Press.

[HU19] Dennis Hofheinz and Bogdan Ursu. Dual-mode NIZKs from obfuscation. In Steven D.
Galbraith and Shiho Moriai, editors, Advances in Cryptology – ASIACRYPT 2019,
Part I, volume 11921 of Lecture Notes in Computer Science, pages 311–341, Kobe,
Japan, December 8–12, 2019. Springer, Heidelberg, Germany.

[JLS20] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. Cryptology ePrint Archive, Report 2020/1003, 2020. https:

//eprint.iacr.org/2020/1003.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, ACM CCS 2013: 20th Conference on Computer
and Communications Security, pages 669–684, Berlin, Germany, November 4–8, 2013.
ACM Press.

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to
the security of Fiat-Shamir for proofs. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology – CRYPTO 2017, Part II, volume 10402 of Lecture Notes
in Computer Science, pages 224–251, Santa Barbara, CA, USA, August 20–24, 2017.
Springer, Heidelberg, Germany.

[LV20] Alex Lombardi and Vinod Vaikuntanathan. Fiat-shamir for repeated squaring with ap-
plications to PPAD-hardness and VDFs. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology – CRYPTO 2020, Part III, volume 12172 of Lecture
Notes in Computer Science, pages 632–651, Santa Barbara, CA, USA, August 17–21,
2020. Springer, Heidelberg, Germany.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
Gaussian measures. In 45th Annual Symposium on Foundations of Computer Science,
pages 372–381, Rome, Italy, October 17–19, 2004. IEEE Computer Society Press.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report,
Manubot, 2008. https://git.dhimmel.com/bitcoin-whitepaper/.

[Pei16] Chris Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical
Computer Science, 10(4):283–424, 2016.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In
Ueli M. Maurer, editor, Advances in Cryptology – EUROCRYPT’96, volume 1070 of
Lecture Notes in Computer Science, pages 387–398, Saragossa, Spain, May 12–16, 1996.
Springer, Heidelberg, Germany.

[PS18] Chris Peikert and Sina Shiehian. Privately constraining and programming PRFs, the
LWE way. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018: 21st Interna-
tional Conference on Theory and Practice of Public Key Cryptography, Part II, volume
10770 of Lecture Notes in Computer Science, pages 675–701, Rio de Janeiro, Brazil,
March 25–29, 2018. Springer, Heidelberg, Germany.

31

https://eprint.iacr.org/2020/1003
https://eprint.iacr.org/2020/1003
https://git.dhimmel.com/bitcoin-whitepaper/


[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances
in Cryptology – CRYPTO 2019, Part I, volume 11692 of Lecture Notes in Computer
Science, pages 89–114, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Hei-
delberg, Germany.

[PS20] Chris Peikert and Sina Shiehian. Constraining and watermarking PRFs from milder
assumptions. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis
Zikas, editors, PKC 2020: 23rd International Conference on Theory and Practice of
Public Key Cryptography, Part I, volume 12110 of Lecture Notes in Computer Science,
pages 431–461, Edinburgh, UK, May 4–7, 2020. Springer, Heidelberg, Germany.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
Richard E. Ladner and Cynthia Dwork, editors, 40th Annual ACM Symposium on
Theory of Computing, pages 187–196, Victoria, BC, Canada, May 17–20, 2008. ACM
Press.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th Annual ACM Symposium on
Theory of Computing, pages 475–484, New York, NY, USA, May 31 – June 3, 2014.
ACM Press.

[Zha16] Mark Zhandry. The magic of ELFs. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology – CRYPTO 2016, Part I, volume 9814 of Lecture Notes in
Computer Science, pages 479–508, Santa Barbara, CA, USA, August 14–18, 2016.
Springer, Heidelberg, Germany.

32


	Introduction
	Our Results and Techniques
	Related Work

	Preliminaries
	Hash Functions and Correlation Intractability
	Shift-Hiding Shiftable Functions
	One-Dimensional Short Integer Solution (1D-SIS)

	Correlation Intractability from Shift-Hiding Shiftable Functions
	Construction of (Weighted) Sum-Resistant SHSF
	The Ingredients
	The Shift-Hiding Shiftable Function
	Proof of Shift-Hiding
	Proof of Computational Correctness
	Proof of Sum-Resistance
	Putting it Together: Weighted Sum-Resistant SHSFs

	Output-Intractable SHSFs from iO
	IO-Related Preliminaries
	Output-Intractable SHSFs from iO + Output-Intractable Puncturable PRFs
	Construction 1: Postcomposition with an Output-Intractable Hash
	Construction 2: Precomposition with a Lossy Function
	Putting it Together


