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Abstract
Prior works in privacy-preserving biometric authentication
mostly focus on the following setting. An organization col-
lects users’ biometric data during registration and later au-
thorized access to the organization services after successful
authentication. Each organization has to maintain its own bio-
metric database. Similarly each user has to release her biomet-
ric information to multiple organizations; Independently, gov-
ernment authorities are making their extensive, nation-wide
biometric database available to agencies and organizations,
for countries that allow such access. This will enable organiza-
tions to provide authentication without maintaining biometric
databases, while users only need to register once. However
privacy remains a concern. We propose a privacy-preserving
system, PBio, for this new setting. The core component of
PBio is a new protocol comprising distance recoverable en-
cryption and secure distance computation. We introduce an
encrypt-then-split mechanism such that each of the organiza-
tions holds only an encrypted partial biometric database. This
minimizes the risk of template reconstruction in the event that
the encrypted partial database is recovered due to leak of the
encryption key. PBio is also secure even when the organiza-
tions collude. A by-product benefit is that the use of encrypted
partial templates allows quicker rejection for non-matching in-
stances. We implemented a cloud-based prototype with desk-
top and Android applications. Our experiment results based
on real remote users show that PBio is highly efficient. A
round-trip authentication takes approximately 74ms (desktop)
and 626ms (Android). The computation and communication
overhead introduced by our new cryptographic protocol is
only about 10ms (desktop) and 54ms (Android).

1 Introduction

The use of biometric information, such as fingerprint, face
and iris, for authentication purposes has proliferated in recent
years. Allowing various organizations, such as banks and gov-
ernment agencies, access to biometric templates hosted by

a central and trusted entity will be advantageous in multiple
aspects. First it allows organizations that currently have no
access to have direct access to a readily available database.
Second, these organizations do not need to invest in the infras-
tructure required to enroll new users and store raw biometric
databases of their own. This also reduces the risk of potential
data breaches. Third, a user only needs to register once with
the trusted entity to access to services provided by various
organizations. Singapore’s SingPass face verification [16] and
India’s Aadhaar project [59] are two recent examples, where
organizations subscribe to the national biometric databases to
enable authentication services to their client.

However, allowing organizations direct access to a central
biometric database still needs to be handled with extra care.
BioStar 2, a biometric security platform that provides bio-
metric database hosting service, experienced a data breach
incident resulting in the leakage of users’ biometric informa-
tion [22]. Also, there are biometric practitioners that regard
the use of biometric templates without any further protection
as adequate as far as security and privacy is concerned. That
is, a template should not contain sufficient information for re-
construction of the corresponding original biometric data [26].
On the contrary, significant progress has been made lately in
the domain of biometric template reconstruction, see for ex-
ample [9,10,23,25,47]. This is a major privacy concern since
the reconstructed biometric templates can be used to identify
or impersonate an individual. A more viable approach is to
share a subset of the original database in a privacy-preserving
manner. This way, the raw biometric templates remain with
only the trusted entity and are isolated from the other organi-
zations. It enables other organizations to authenticate the said
individuals, but in such a way that the organizations cannot
learn any biometric information from the shared database.
Use Case. We envision a biometric authentication service
that allows an individual to simply scan her face at a kiosk, or
capture her facial image through a mobile application (which
will enable access even when the individual is abroad) to
initiate a transaction with a bank or a government agency.
The captured facial features will be matched against a shared
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encrypted biometric database that is derived from a national
biometric database. The use of biometrics as an alternative
to conventional text-based passwords is of high interest to
various smart nation initiatives worldwide, for example [74].
Specifically, a face verification application was recently pro-
posed in collaboration between a Singapore-based bank, DBS,
and a Singapore government agency, GovTech, to pilot face
verification for easier digital banking sign-ups and to secure
higher value transactions [16]. In the case of hotel check-
in services, the physical presence of a reception staff is not
required to perform this role. Instead, self check-in can be
completed either through an on-site kiosk located within the
premise or via mobile authentication [61, 86].
Existing Approaches. Current privacy-preserving biometric
authentication schemes, see for example [5, 7, 21, 45, 67, 89],
performed authentication directly between a user and a service
provider (e.g. bank). There are also proposals that enable
an organization to outsource the resources required, both
computation and storage, for biometric authentication to a
cloud service [13, 27, 29, 75, 78, 81, 87, 88]. In both settings, a
user provides her biometric data to her service provider during
registration. Thus, multiple registrations are required if the
user intends to register with several service providers. This
also means each organization collects and maintains its own
set of biometric templates.
Our Approach. In our proposed system, PBio, a user only
needs to register once with the entity responsible for a
national-level biometric database to have access to a range
of services provided through multiple service providers and
agencies. There are a couple of key technical challenges in
the design of PBio. First, users’ biometric information must
be disseminated to the respective service providers in a secure
and privacy-preserving manner. Second, the time required
to complete an authentication check should be fast and com-
parable to that of existing biometric authentication systems.
Third, the risk of reconstruction of biometric features should
be minimal even in the event that the biometric database used
by a service provider is leaked.
Our Contributions. To the best of our knowledge, PBio is
the first system that allows cross-organizational and privacy-
preserving biometric data sharing and authentication. Our
contributions are as follows:

• We propose a provably secure protocol using lightweight
distance recoverable encryption with orthogonal matrix
and secure two-party computation scheme, GSHADE.
This allows us to outsource the encrypted templates and
securely authenticate users from different organizations
without decryption.

• Our protocol makes use of a new encrypt-then-split con-
struct. Encrypted biometric templates are split into two
(or more) parts, where one part is given to a cloud service
provider and the other parts to organizations that provide
authentication services. A biometric feature set captured

in real time can be tested against the encrypted partial
biometric templates stored by an organization. The ad-
vantages of splitting the biometric template is two-fold.
First, each split portion of a biometric template has a
smaller dimension compared to its entirety. As such, this
enables early rejection of a non-matching biometrics
during the authentication phase. Second, no single entity
has in possession of the full biometric template of any
user except the data owner. The partial biometric tem-
plates are encrypted to alleviate the risk of leakage of a
user’s biometric information.

• Our protocol is secure against collusion between two
or more organizations. Collusion of organizations and
cloud provider can never recover the full biometric tem-
plate of any user without the secret encryption keys that
are known only by the trusted entity hosting the national
database.

• We implemented PBio as a desktop and an Android ap-
plications. Both applications connect to an AWS cloud
service, which stores encrypted biometric databases and
supports our authentication protocol. We invited 20 vol-
unteers to validate the feasibility and usability of PBio.
Our results show that a round-trip authentication pro-
cess on average takes 74.49ms (desktop) and 626.53ms
(Android). These times cover face capture, feature extrac-
tion, and execution of all cryptographic operations; out
of which our protocol on average takes just 10.06ms and
54.11ms. We also compared our system against recent
works [13,29,31,89]. The performance of PBio is compa-
rable, although our overhead is marginally higher at the
cryptographic protocol level. This is understandable as
our protocol is designed to support cross-organizational
authentication, while the prior works consider a direct
user-to-organization authentication setting.

2 Overview

PBio consists of four parties: (1) data owner, a fully-trusted
entity, who owns the raw biometric templates, shares the en-
crypted biometric database with a cloud provider and data
subscribers, and distributes the user secret keys; (2) cloud
provider, a honest-but-curious entity, who receives and stores,
from the data owner, a first database of encrypted partial
biometric templates, and helps to verify a user without de-
crypting the encrypted templates; (3) data subscribers, honest-
but-curious entities, such as organizations or service providers
(e.g. banks), who wish to authenticate their clients. They re-
ceive and store, from the data owner, a second database of
encrypted partial biometric templates, and uses the database
to authenticate a user without decrypting the encrypted tem-
plates; and (4) users, (e.g. clients of a bank), whom can be
dishonest but must be physically present when register with
the national biometric database, submit their biometric in-
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Figure 1: PBio Setup and Registration Phase. (1) Data owner generates a master key. The key is used to derive a user secret key for every
user. The user secret key is used to derive a subscriber key for every data subscriber, and the subscriber key is also used to derive a verification
key; (2) Data owner encrypt-then-split each user’s raw biometric template into two encrypted partial templates using the user secret key. One
set of encrypted partial templates is passed to the cloud provider; (3) Data owner uses the subscriber keys to encrypt each user’s encrypted
partial template in another set of encrypted partial templates. The resulting set of re-encrypted partial templates, namely subscriber encrypted
template, is given to the subscribers; (4) Data owner delivers user secret keys to the users’ registered devices.

formation for authentication using registered tamper-proof
devices.

2.1 System Flow

PBio consists of three phases, namely Setup Phase, Registra-
tion Phase (Figure 1), and Authentication Phase (Figure 2).
Setup Phase. Data owner initializes the system and generates
user secret keys to encrypt every user biometric templates. The
encrypted templates are split into two parts and distributed to
the cloud provider and the data subscriber i respectively.
Registration Phase. For every registered data subscriber i,
the data owner generates subscriber i encrypted templates and
passes it to the subscriber i. For every registered user, the data
owner delivers the user secret key to the registered device.
Authentication Phase. The users submit the biometrics
through a tamper-proof device, which extracts and encrypts
using the stored user secret keys. The device then runs the au-
thentication protocol with the data subscriber i and the cloud
provider respectively.

2.2 System Goals

PBio’s main goal is to perform cross-organizational biometric
authentication without revealing the biometric information:

1. The data subscriber is able to authenticate a user without
decryption.

2. The encrypted biometric templates stored by the cloud
and data subscribers should leak no information about
the users’ biometrics.

3. The freshly submitted biometric features during the au-
thentication phase should remain secret.

2.3 Threat Model
We define the following attackers:

• The attacker that resides in the cloud provider or the
data subscribers. We assume the cloud provider and
data subscribers to be honest-but-curious. Both follow
the protocol honestly but will try to learn the users’ bio-
metric information from the shared encrypted database
and during the authentication process.

• The attacker that holds users’ tamper-proof devices.
We assume users are authenticated and the keys are dis-
tributed by the data owner in the registration phase. We
note that the users’ tamper-proof devices are fully trusted,
which store the user secret keys and honestly run the
proposed protocol. Such devices have been deployed
in India’s Aadhaar biometrics authentication [58, 59]
using Trusted Execution Environment [20]. Each regis-
tered device acts as an oracle to extract and encrypt a
user’s biometrics, and proceed with authentication proto-
col. Hence, the attacker, who holds the victim’s device,
may try to manipulate the communication in order to
masquerade a victim user and be accepted by the authen-
tication protocol under the victim’s name. An attacker
may also collude with cloud provider or subscribers in
breaking the stored encrypted biometric templates.
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Figure 2: PBio Authentication Phase. (1) User’s device encrypt-then-split freshly submitted biometric features; (2) User’s device generates
the subscriber’s encrypted partial feature; (3) Data subscriber verifies the received subscriber’s encrypted features; (4) Authentication fails,
which skips to (7) if verification returns non-match in (3); (5) Else cloud provider verifies the received encrypted partial features; (6) User’s
device receives and combines the results from (3) and (5) and outputs the final authentication result; (7) Data subscriber decrypts and receives
the authentication result using the verification key.

2.4 Definition
PBio consists of the following algorithms and protocols:

• msk ← MKGen(1k): On input security parameter 1k, it
generates a master secret key msk.

• skID← KGen(msk,ID): On input msk and the user unique
identity ID, it generates a user secret key skID.

• ~cID← Enc(skID,~xID): On input skID and a user biometric
template as a vector~xID = (x1, · · · ,xn), it computes an
encrypted vector ~cxID.

• ~c′xID,i,vkID,i ← ReEnc(skID,~cxID,i): On input skID, ~cID
and subscriber identity i, it derives a subscriber key and
computes a subscriber encrypted vector ~c′xID,i. A veri-
fication key vkID,i is also derived from the subscriber
key.

• tID,i← tEnc(skID,i): On input skID, subscriber identity i,
and a threshold t that serves to authentication a person,
it computes an encrypted threshold tID,i.

• {d0,θ}← SubAuth(vkID,i, (~c′xID,i,
~c′yID,i), tID,i): On input

a verification key skID, a tuple of subscriber encrypted
vectors (~c′xID,i,

~c′yID,i) and authenticated threshold value
tID,i, it computes their distance d0. The output is either
d0 if the authentication succeeds, or an encrypted authen-
tication result θ otherwise.

• d1← CloudAuth(skID, i, (~cxID,~cyID)): On input skID, i
and (~cxID,~cyID), it computes and outputs their distance
d1.

• θ← Combine(vkID,i, d0, d1, tID,i): On input vkID,i, d0, d1,
tID,i and i, it combines a full distance d = d0 + d1 and

computes an encrypted authentication result θ.

• {accept,reject} ← Verify(vkID,i, θ): On input vkID,i
and θ, it decrypts and outputs the authentication result
{accept,reject}.

3 Building blocks

PBio requires three main building blocks: (1) a biometric
recognition scheme to extract features and construct templates
from the raw biometric information (e.g. fingerprint, face,
iris); (2) A distance recoverable encryption scheme that we
proposed to encrypt these templates; (3) a secure distance
computation mechanism that we utilized for authentication.

3.1 Biometric Recognition Scheme
A biometric recognition scheme enables recognition of an
individual based on the individual’s biometric (e.g. face) pre-
sented to the scheme. We define such a scheme as consisting
of the following functions:

• ~x← Ext(img): On input a raw biometric image img, it
outputs a feature vector~x ∈ Rn.

• d← Dist(~x,~y): On input two feature vectors~x and~y, it
outputs a distance d.

• {accept,reject} ← Match(t,d): On input a threshold t
and a distance d, it outputs accept if d ≤ t2 and reject
otherwise.

Given two feature vectors ~x = (x1, · · · ,xn) and ~y =
(y1, · · · ,yn), one of the common metrics for matching, which
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we use in our protocol, is the squared Euclidean distance 1.
Hence we define the distance function as: Dist(~x,~y) =

∑
n
i=1(xi−yi)

2 = ∑
n
i=1 x2

i −2xiyi+y2
i = ∑

n
i=1 x2

i −2∑
n
i=1 xiyi+

∑
n
i=1 y2

i = ‖~x−~y‖2
2 = d. The authentication result is thus

based on the squared Euclidean distance d in relation to a
defined threshold t. In particular,~x and~y belong to the same
person if and only if Dist(~x,~y)≤ t2. Note that lower value of
t means the system requires higher similarity to pass authenti-
cation. We remark that our protocol deploys the scheme solely
to capture facial biometric and output a feature vector. Any
biometric recognition scheme based on Euclidean distance
can be applied.

3.2 Distance Recoverable Encryption
A distance recoverable encryption (DRE) scheme [29, 78, 80,
87, 89] allows one to calculate the distance between two en-
crypted feature vectors such that the distance Dist between
two plain feature vectors (~x,~y) is equal to the distance between
the corresponding two encrypted feature vectors (E(~x),E(~y)),
i.e. Dist(~x,~y) = Dist(E(~x),E(~y)). We propose a distance
recoverable encryption scheme, DRE, to secure the feature
vectors yet enable computation of the distance between two
feature vectors in our protocol. The scheme is based on or-
thogonal matrix, which we define in the followings.
Orthogonal Matrix. An orthogonal matrix M is a n×n square
matrix such that its inverse and transpose are equal, i.e. M−1 =
M>. M satisfies the following properties:

• Identity transformation: M and M> commute such that
M>M = MM> = I, where I is the identity matrix.

• Product transformation: Given M =M0M1, if M0 and M1
are orthogonal matrices, M is also an orthogonal matrix.

• Preservation of length: Given two pairs of vectors (~x,~y)
and (~xM,~yM), their respective Euclidean distances Dist
are equal as given by Dist(~x,~y) = Dist(~xM,~yM) =
‖~xM−~yM‖2

2 = ‖~x−~y‖2
2.

The DRE scheme utilizes a pseudorandom function
PRFM(.)→M ∈ Rn×n that generates pseudorandom orthogo-
nal matrices, a pseudorandom function PRFV (.)→~v∈Rn that
generates pseudorandom vectors, a pseudorandom function
PRFW (.)→ w ∈ [1.0,2.0] that generates a scale factor, and a
pseudorandom permutation PRP(.,~s)→ π(~s). The encryption
function E is defined as follows:

• ~cx← E(sk,~x): Given as input a secret key sk and a fea-
ture vector~x = (x1, · · · , xn), the algorithm generates a
pseudorandom orthogonal matrix m from PRFM(sk), a
pseudorandom vector~v from PRFV (sk) and a scale factor
w from PRFW (sk). It then runs PRP(sk,~x) to permute~x,
resulting in π(~x). An encrypted vector is generated as
~cx = w(π(~x)+~v)M.

1So we can save computation of square root every time.

Distance: The distance Dist between two encrypted
vectors (E(~x,sk),E(~y,sk)) is computed as follows.
Dist(E(~x,sk),E(~y,sk)) = ‖(w · (π(~x) + ~v) ·M) − (w · (π(~y)
+~v) ·M) ‖2

2 = w2‖π(~x) − π(~y)‖2
2 = w2 ·d

Proposition 1 E is collision-free under the same secret key.

Proof 1 Suppose E(~x,sk) = E(~y,sk) for some~x,~y. Then

w ·(π(~x)+~v) ·M = w ·(π(~y)+~v) ·M =⇒ π(~x)+~v = π(~y)+~v

since det(M) 6= 0. It follows that π(~x) = π(~y).

We provide security analysis of our DRE scheme in Sec-
tion 5.2.

3.3 Secure Distance Computation
Bringer et al. proposed a secure distance computation pro-
tocol called GSHADE [7]. It allows two parties, a sender S
and a verifier V , to securely compute the distance of two bio-
metric features. It guarantees one party does not get more
information about the other party’s inputs than what can be
deduced from its own inputs and outputs. A central build-
ing block of GSHADE is oblivious transfer (OT). OT is an
interactive protocol whereby the sender has a number of mes-
sages, and the receiver wishes to obtain a specific message,
without the sender knowing which it is, while also ensuring
that the receiver gets no information about the other mes-
sages which the sender holds. In brief, let ~x = (x1, · · · ,xk)
with xi = (xk(i−1)+1, · · · ,xk(i−1)+`) and~y = (y1, · · · ,yk) with
yi = (yk(i−1)+1, · · · ,yk(i−1)+`) are n= k×`-bit integer vectors.
Three functions are defined where fx(~x) = ∑

k
i=1 x2

i , fy(~y) =
∑

k
i=1 y2

i , and fk(i−1)+ j(xn(i−1)+ j,~y) = −2 j · xk(i−1)+ j · yi for
i = 1, · · · ,k and j = 1, · · · , `. Both S, on input ~y, and V , on
input~x, run the protocol as follows:

1. S chooses n random values r1, · · · ,rn ∈R Zm

2. For each i = 1, · · · ,n, S and V run OT log2(m) where

• V ’s selection bit is xi

• S’s input is (ri + fi(0,~y),ri + fi(1,~y))
• The output obtained by V is ti = ri + fi(xi,~y)

3. V computes and outputs T = ∑
n
i=1 ti + fx(~x)

4. S computes and outputs R = ∑
n
i=1 ri− fy(~y)

5. At the end, either S or V learns the distance by computing
Dist(~x,~y) = T −R = d

Theorem 1 ( [7]) Security is proven by simulation in the OT-
hybrid setting, where OTs are simulated by a trusted oracle.
We recall that each simulator is provided with the input and
output of the corrupted party. Case 1 - V is corrupted. Since
V receives no messages beyond those in OT, its view can be
perfectly simulated. Case 2 - S is corrupted. Given S’s output
T and input X, S’s view can be perfectly simulated by sending
random values t1, ..., tn−1 ∈R Zm and t ′n = T −∑

n−1
i=1 t ′i − fx(~x)

to S in the OTs.
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4 PBio

PBio consists of several components: First, we encrypt biomet-
ric templates using DRE. Second, we employ GSHADE to allow
two parties with two private vector inputs~x and~y, respectively,
to securely decide if the Euclidean distance between~x and~y
is smaller than a given threshold without leaking extra infor-
mation. Third, we perform periodical update to refresh the
encrypted partial biometric templates that are accessible by or-
ganizations. We discuss several ways to go about performing
such update in Section 7.

4.1 Construction

Let BR = (Ext, Dist, Match) to be any biometric recogni-
tion scheme based on Euclidean distance, DRE be the distance
recoverable encryption scheme, and GSHADE the secure dis-
tance computation protocol. We define a keyed-hash message
authentication code function HMAC(·) and a symmetric encryp-
tion function for encryption AESE(·) and decryption AESD(·).
The proposed scheme consists of a tuple (Setup, MKGen,
KGen, Enc, ReEnc, tEnc, SubAuth, CloudAuth, Combine,
Verify). We assume the input message is a feature vec-
tor~x, extracted from a user ID biometric image, e.g.~xID←
BR.Ext(imgID).

• msk← MKGen(1k): The algorithm generates a random
string as the master key msk ∈ Z∗p.

• skID ← KGen(msk, ID): The algorithm runs
HMAC(msk,ID,time) with the input of msk, user
unique identity ID, and a timestamp time to generate a
user secret key skID.

• ~cxID ← Enc(skID,~xID): The algorithm generates a en-
crypted vector by running ~cxID← DRE.E(skID,~xID).

• ~c′xID,i,vkID,i← ReEnc(skID, ~cxID, i): The algorithm runs
HMAC(skID,ID, i, time) to generate a new subscriber i
key skID,i and HMAC(skID,i) to generate a new verifica-
tion key vkID,i. The rest is similar to Enc, which gener-
ates a subscriber encrypted vector by running ~c′xID,i←
DRE.E(skID,i,~cxID).

• tID,i ← tEnc(skID,i,t): The algorithm runs PRFW(skID)
→ wID and PRFW(skID, i) → wID,i. It then encrypts a
threshold tID,i = wID ·wID,i · t.

• {d0,θ}← SubAuth(vkID,i,(~c′xID,i,
~c′yID,i), tID,i): An inter-

active protocol that runs GSHADE between a device and
subscriber i where the device input is a tuple (~c′xID,i, tID,i)
and subscriber i input is ~c′yID,i. At the end of the protocol,

the device receives a distance d0 = Dist(~c′xID,i,
~c′yID,i)

and runs b← BR.Match(tID,i, d0). The device returns
encrypted authentication result θ← AESE(vkID,i,reject)
to the subscriber if b = reject, which indicates an early

rejection to the authentication. Otherwise, the user pro-
ceeds to CloudAuth.

• d1 ← CloudAuth(skID, i, (~cxID,~cyID)): An interactive
protocol that runs GSHADE between a device and a
cloud provider where the device input is a tuple (skID,
i, ~cxID) and the cloud input is ~cyID. At the end of the
protocol, the device receives and computes a distance
d1 = Dist(~c′xID,i,

~c′yID,i) · PRFW(skID,i). The cloud re-
ceives nothing and the device receives d1.

• θ← Combine(vkID,i, d0, d1, tID,i): On input vkID,i, d0, d1,
tID,i and i, the algorithm generates a full distance d =
d0 +d1 and runs b← BR.Match(tID,i, d). The output is
the encrypted authentication result θ← AESE(vkID,i,b).

• {accept,reject} ← Verify(vkID,i, θ): On input vkID,i
and θ, it decrypts and outptus the authentication result
{accept,reject}← AESD(vkID,i, θ).

Correctness. Given the elements (~cxID, ~cyID, ~c′xID,i, ~c′yID,i,
tID,i) generated by the defined algorithms above, the follow-
ing equations always hold. If BR.Dist(~xID,~yID)≤ t2, then
d0 ← SubAuth((~c′xID,i,

~c′yID,i),tID,i), d1 ← CloudAuth(skID,
i, (~cxID,~cyID)), θ ← Combine(d0, d1, tID,i), and accept ←
Verify(vkID,i, θ); Else if BR.Dist(~xID,~yID)> t2 and early re-
jection occurs, then θ← SubAuth(vkID,i,(~c′xID,i,

~c′yID,i),tID,i)
and reject ← Verify(vkID,i, θ); Else if BR.Dist(~xID,~yID)>
t2, then d0 ← SubAuth(vkID,i,(~c′xID,i,

~c′yID,i),tID,i), d1 ←
CloudAuth(skID, i, (~cxID,~cyID)), θ← Combine(d0, d1, tID,i),
and reject← Verify(vkID,i, θ).

4.2 PBio System
We now present the three phases of PBio, utilizing the con-
struction previously described.
Setup Phase. The data owner possesses a set of biometric
templates, which is pre-collected from all the users. Each
record of a user contains the user’s identity information ID and
the biometric image img. The data owner generates a master
key and then derives the user secret key for every user. The
data owner encrypts then splits the biometric templates into
two parts. The encrypt-then-split approach allows the data
owner to provide a partial copy of the encrypted templates to
the cloud provider, and the another partial copy to be prepared
for the data subscriber i. The details of the setup protocol is
described in Figure 3.
Registration Phase. The registration phase enables a sub-
scriber or a user to register to the data owner respectively.
In other words, a new subscriber registers and receives the
encrypted templates, and a user registers a device to install
the user secret key. Thus it consists of two sub-phases: (a)
subscriber registration and (b) user registration. The details
of the registration protocol is described in Figure 4. We also
elaborate how the key distribution works in Section 7.3.
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The setup protocol

Input:

• Data Owner: User’s raw biometric image, user’s identity in-
formation and proof of identity.

Output:

• Data owner: Encrypted database ( ~cx0 || ~cx1) = ~cx and the user
table TableU .

• Cloud provider: Encrypted partial database ~cx1ID.

Protocol:

1. The data owner executes the master key generation algorithm
to generate a master secret key msk← MKGen(1k).

2. The data owner then runs a biometric recognition scheme
BR to extract the biometric feature and stores the biometric
template~x← BR.Ext(img).

3. For every user with unique identity ID, the data owner runs the
key generation algorithm to generate user secret key skID←
KGen(msk,ID). The data owner stores (skID, ID, time) in a user
table TableU .

4. For every user biometric template ~X = {~x1, · · · ,~xm} where m
is the total number of users, data owner generates the encrypted
database by running ~cxID← Enc(skID,~xID).

5. Data owner splits by half the encrypted database into two parts
e.g. ( ~cx0 || ~cx1) = ~cx. The first part ~cx0 will be applied during
the registration phase and the second part ~cx1 is outsourced to
a cloud provider.

Figure 3: Setup phase

Authentication Phase. The user submits to the device the
freshly captured biometric feature and the device encrypts
this feature using the proposed encryption scheme. The de-
vice then verifies the encrypted feature with the subscriber i
and the cloud provider. We demonstrate through experiment
that it is possible to first perform matching to authenticate a
user based on the partial biometric templates hosted by the
data subscriber i. This reduces the computation and commu-
nication cost during the authentication phase in the event
of an early rejection. PBio utilizes the protocol construction
described in 4.1 to perform the authentication in a secure man-
ner. Although the authentication protocol is computed within
a tamper-proof device, we notice a possible attack in which an
adversary can skip all the authentication steps and forward a
successful authentication result to the data subscriber. Hence,
we propose a shared verification key, which is derived by the
subscriber key from the respective user, to encrypt the au-
thentication result using any symmetric encryption function,
e.g. AESE (·). This ensures that the authentication process is
completed by the tamper-proof device. The data subscriber
can decrypt the encrypted result using decryption function
AESD(·) with the verification key. The details of the authenti-
cation protocol is described in Figure 5.

The registration protocol

Input:

• Data owner: Encrypted partial database ~cx0ID and the user
table TableU .

• Subscriber i: Unique identity i along with the proof of identity.
• User: Unique identity ID along with the proof of identity.

Output:

• Subscriber i: Subscriber encrypted templates ~c′ID,i and verifi-
cation keys vkID,i.

• User: User secret key skID.

Protocol:

1. The protocol is initialized in a secure manner by (a) the sub-
scriber or (b) the user:

(a) The subscriber i submits the proof of identity and regis-
ters to the data owner to request for a copy of subscriber
encrypted templates.

(b) User submits the proof of identity with the registered
device and requests for a user secret key skID.

2. Data owner performs the following steps:

(a) Verifies the provided registration information and gener-
ates the subscriber encrypted template and verification
key pair (~c′ID,i, vkID,i) by running ReEnc(skID, ~cx0ID,i)
using every user secret key and encrypted partial tem-
plate (skID, ~cx0ID).

(b) Verifies the user identity and embeds skID to the user
registered device.

Figure 4: Registration phase

5 Security of PBio

5.1 Security Models

We follow the security formulation in [17] for an authenti-
cation scheme, which includes correctness, soundness, and
zero-knowledge. We remark that the correctness definition for
biometric authentication is slightly different from transitional
definition (as in [17]), since a legitimate user might be re-
jected with a small probability—that’s the definition of false
rejection rate or false negative rate, due to the noise in mea-
surements of biometric feature. In the real world scenarios,
the user may re-try after some adjustment (e.g. adjust face
angle).

In this work, every secret key used to encrypt the biometric
templates for every user is derived from a master secret key
owned by the data owner. The encrypted biometric templates
are stored by the cloud provider and the data subscribers
respectively. We allow collusion between the cloud and the
data subscribers. The goal of the adversary is to masquerade
a victim user and be accepted by the authentication solution
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The authentication protocol

Input:

• User: Freshly captured biometric image imgID along with his
or her ID and secret key skID.

• Subscriber i: Encrypted template and verification key pair
(~c′xID,i, vkID,i) that belongs to the user ID.

• Cloud: Encrypted partial template ~cx1ID that belongs to user
ID.

Output:

• Both the user and subscriber i obtain the authentication result.

Protocol:

1. The user scans his biometric image imgID with a tamper-proof
device. The device then runs~yID← BR.Ext(imgID) to extract
the feature vector and runs ~cyID← Enc(skID,~yID) to generate
an encrypted biometric feature vector. Additionally, the device
splits by half the encrypted biometric features into two parts,
where ( ~cy0ID|| ~cy1ID) = ~cyID. The device re-encrypts ~cy0ID by
running ~c′ID,i,vkID,i← ReEnc(skID, ~cy0ID,i).

2. The device then runs {d0,θ} ← SubAuth(vkID,i,(~c′xID,i,

~c′yID,i), tID,i) with subscriber i to compute the first partial dis-

tance, where the device has input (vkID,i,~c′yID,i,tID,i) and sub-

scriber i has input ~c′xID,i. The device verifies the first part of the
authentication process and proceeds if and only if d0 ≤ t2

ID,i
where tID,i ← tEnc(skID,i,t). Otherwise, the process stops
and the device returns the encrypted authentication result as
θ← AESE(vkID,i,reject) to subscriber i, which indicates an
early rejection.

3. The second partial distance d1 ← CloudAuth(skID, i,
( ~cx1ID, ~cy1ID)) is run with the cloud provider where the de-
vice has input ~cy1ID and the cloud has input ~cx1ID.

4. The device combines and checks (d0,d1) to obtain the en-
crypted authentication result θ← Combine(d0, d1, tID,i). The
device returns θ to subscriber i.

5. Finally, subscriber i decrypts and obtains the authentication
result {accept,reject}← Verify(vkID,i, θ).

Figure 5: Authentication phase

under the victim’s name (i.e. breaking soundness property),
or to learn some secret information of victim’s raw biometric
feature via our authentication system (i.e. breaking the zero-
knowledge property).

We emphasize that an authentication scheme will suffer
from online brute-force attack, since it always leaks at least
1 bit information—accepting or rejecting a user, even if a
matching scheme contains some cryptography primitive (e.g.
[81]), which is semantic secure. In other words, semantic
secure building blocks in authentication scheme may be an
overkill. Indeed, some of our building block (i.e. distance
preserving encryption) is not semantic secure.

5.2 Security Analysis
The proposed protocol utilized by our PBio system applies
the distance recoverable encryption (DRE) scheme in Section
3.2 and secure distance computation protocol (GSHADE) in
Section 3.3. Hence, its security depends on the security of
these underlying schemes.
Security of DRE We note that the inherent limitation of our
DRE is that, it suffers from linear attack. Precisely, the adver-
sary can find the secret key by solving a large linear equation
system, if this adversary obtains sufficient pairs of plaintexts
and ciphertexts [48]. As shown in [80], such DRE scheme is
only secure against ciphertext-only attack. To overcome the
limitation of DRE in our system, we ensure that every user
uses different encryption key sk. Basically, we use DRE like
“One-Time Pad" from the view of potential adversaries. In
legitimate usage, the encryption key will never be re-used for
different objects. We remark that, the official authentication
client app in our solution is a trusted party, it holds the per-
user secret key, and can access multiple copies of ciphertexts
under that secret key.

Theorem 2 (Security of our DRE) Let~x and~y denote two
points in the plaintext domain, and~c is any valid ciphertext
generated using our DRE where the encryption key is ran-
domly chosen from its domain. We have Pr [~x|~c] = Pr [~y|~c],
which means a single ciphertext leaks no information of the
plaintext. Let real number t ∈ (0,1) be the threshold. Given a
ciphertext, there are at least 1/tn number of possible plain-
texts under distinct encryption keys, such that the distance
between every two plaintexts is at least 2t.

The proof of Theorem 2 is given in Appendix A.1.

Proposition 2 (Correctness) Our proposed protocol is cor-
rect, i.e. any legitimate user who follows the authentication
protocol exactly by submitting his or her biometric image, will
be authenticated successfully, except for a small probability
(i.e. the false negative rate of biometric feature).

The above proposition follows directly from the property
of DRE and correctness of GSHADE.

Theorem 3 (Zero-Knowledge) After interacting with a user
by executing our protocol for many times, both the cloud
provider and the subscriber i learn nothing about the user’s
biometric raw data, beyond the ciphertext.

The proof of Theorem 3 is given in Appendix A.2.

Theorem 4 (Soundness) Probabilistic polynomial time ad-
versary (even colluded with some subscribers and the cloud
provider), cannot pass our authentication with non-negligible
probability.

The proof of Theorem 4 is given in Appendix A.3.
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Table 1: Computation Overhead of Enc algorithm
No. of User Enc Time

64-n 128-n 320-n 640-n
1 0.58ms 1.14ms 4.52ms 20.79ms

1,000 0.6s 1.17s 4.51s 20.74s
10,000 5.93s 11.73s 44.82s 3m29s

100,000 58.83s 1m58s 7m35s 34m45s
1,000,000 9m49s 19m36s 1h15m 5h47m
2,000,000 19m25s 39m8s 2h31m 11h33m
5,000,000 49m7s 1h35m 6h17m 28h52m

10,000,000 1h37m 3h4m 12h30m 57h44m

6 Implementation and Evaluation

This section provides the efficiency assessment of our con-
struction (Section 4.1 and 4.2). We also compare our con-
struction with existing works to demonstrate practicality of
our proposal.

6.1 Evaluation of the Proposed Construction

The experiment focuses on the performance overhead intro-
duced by Enc, ReEnc, SubAuth, CloudAuth, Combine, and
Verify, as they are the core components. Our implementa-
tion uses a python face recognition library2 as the biometrics
recognition scheme. We remark that any biometric recogni-
tion scheme can be utilized as long as it is based on Euclidean
distance. We also use NumPy library3 to generate vectors and
matrices and perform the matrix operations. We conducted
the experiment on a desktop with Intel Core i7-8700 CPU
@3.20GHz with 8GB RAM and two cores.

Similar to [13, 29, 89], a set of random vectors was gen-
erated to represent the original biometric template database
because one can apply any biometric recognition scheme to
extract the feature vectors in practice. We randomly generated
m×n vectors. This means there are m number of user in the
database with n dimension of biometric feature vector. For
the remainder of this section, we denote 64-n, 128-n, 320-n,
640-n to represent dimensions of 64, 128, 320 and 640 re-
spectively. The experimental results in Table 1 shows the time
required by Enc for m×n biometric template database.
Enc performs the first layer encryption only. We require

to re-encrypt again by running ReEnc algorithm for every
subscriber for half of the dimension as the second layer en-
cryption. In PBio, we apply face recognition scheme that
consists of 128-n for a template. We then split 128-n into
half after the first layer encryption and we re-encrypt the sec-
ond layer encryption in 64-n. The first layer encryption time
took approximate 1.14ms per user and an additional 0.61ms
is required for the second layer encryption, which indicates
that PBio encryption requires 1.74ms in total. We summa-
rized the encryption time per user in Table 2. We notice that

2https://pypi.org/project/face-recognition/
3https://pypi.org/project/numpy/

Table 2: PBio Encryption Performance Per User in PBio
PBio Encryption Time 64-n 128-n 320-n 640-n

Enc Time 0.58ms 1.14ms 4.52ms 20.79ms
ReEnc Time 0.24ms 0.60ms 1.43ms 4.53ms

Total Encryption Time 0.82ms 1.74ms 5.95ms 25.32ms

Table 3: Size of Biometric Templates
No. of User Size of Template Database

64-n 128-n 320-n 640-n
1 512B 1024B 2560B 5120B

1,000 512KB 1.024MB 2.56MB 5.12MB
10,000 5.12MB 10.24MB 25.6MB 51.2MB
100,000 51.2MB 1024MB 256MB 512MB

1,000,000 512MB 1.02GB 2.56GB 5.12GB
2,000,000 1.024GB 2.04GB 5.12GB 10.24GB
5,000,000 2.56GB 5.1GB 12.8GB 25.6GB

10,000,000 5.12GB 10.2GB 25.6GB 51.2GB

the encryption time increases with the dimensional size of a
template.

We list the sizes of biometric template databases used in
our experiment in Table 3. We note that the size of a biometric
template relies on the size of dimension n. In our case the
size of the original database and the encrypted database are
the same because our encryption technique transforms an
original value into a random value of the same size. For our
experiment, the size of the biometric template in 128-n is
1024 bytes (B), its encrypted template in 128-n is also 1024B.

We then analyze the performance of PBio authentication
protocol in Table 4. This experiment is categorized into two
parts, namely Part I and Part II. In Part I, the freshly submit-
ted biometric features with 128-n was first encrypted into
a subscriber encrypted features, which run Enc and ReEnc

on inputs 128-n and 64-n respectively, and then we applied
SubAuth for the first partial authentication. We then run
CloudAuth and Combine as the second partial authentica-
tion steps in Part II. If output of SubAuth is reject, then early
rejection occurs and Part II will not be executed. Finally, we
run Verify to receive the authentication result. Overall, PBio
took approximate 2.776ms + 2` in total for the authentication
where ` is the network latency for GSHADE. We noticed that
` is very much affected by the network itself. In our environ-
ment, we first tested in our local machine, which achieved the
result in Table 4.

The goal of the partial authentication is to achieve early
rejection. For example, in the scenario where in Part I au-
thentication is rejected, the process can be terminated without
proceeding to Part II. This reduce cost of the communication
and network latency `. Later, we connected the machines over
the internet for our second experiment in Section 6.3. The
estimated value for ` is around 3.5ms. The communication
overhead is only around 2.83KB for a full authentication and
1.42KB in the case of early rejection.
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Table 4: Computation and Communication Overhead of PBio
Authentication Protocol.

PBio
Authentication Protocol

Algorithms
and Protocols Time Com.*

Part I
Enc 1.14ms -
ReEnc 0.60ms -

SubAuth 0.471ms + ` 1.41KB

Part II CloudAuth 0.469ms + ` 1.41KB
Combine 0.013ms -
Verify 0.083ms 0.01KB

Total Time Com. Overhead 2.776ms + 2` 2.83KB
*The amount of transmitted data in bytes (B)
- denotes no transmission needed
` denotes the network latency.

6.2 Accuracy

We also tested the accuracy of our construction. A LFW
dataset [30] with the provided test case was extracted, which
consists of 409 true positive pairs and 444 true negative pairs.
We follow the default threshold t = 0.6. The matched result
is 402 out of 409, which shows 98.29% of them is true posi-
tive, and non-matched result is 442 out of 444, which shows
99.55% is true negative. The proposed construction achieved
the same accuracy in both the true positive and true negative
results, while the early rejection is 190 out of 442, which is
42.99% in the non-matched results.

6.3 Performance Evaluation of PBio System

We simulated the application environment of PBio system
through an Android application and AWS cloud. Readers may
refer back to Fig 1 and Fig 2 for the PBio system architecture.
The experiment was conducted in a real usage setting, where
we recruited 20 volunteers, collected their face images as the
experiment dataset, and for them to test the Android appli-
cation and connecting to the AWS cloud using their mobile
devices. We subscribed to Amazon Elastic Compute Cloud
(EC2) to serve as the cloud provider and a subscriber. Both
of the EC2 machines are running in Intel(R) Xeon(R) CPU
E5-2676 v3 @ 2.40GHz, single core and 1GB RAM. The
source code of PBio System can be found in [4].

During the setup phase, a 256-bits master secret key msk
was randomly selected. We then created a biometric template
database from each of the volunteer’s face image. Again, we
use the same face recognition scheme that consists of 128-n
dimension for a template. The template database was then
encrypted following the proposed PBio system. We generated
a set of encrypted database ~cx = { ~cx0|| ~cx1}, and ~cx1 was stored
by the cloud provider. We used ~cx0 to generate subscriber i
encrypted template ~c′xID,i and passed it to subscriber i.

Fig. 6 shows the screenshots of PBio Android application
used in the experiment. Fig. 6(a) shows a screenshot when
user setups the device to retrieve the user secret key. Fig. 6(b)
shows a list of services offered by the PBio’s subscriber. Fig.
5(c) shows a screenshot when the person succeeded in authen-

tication. Fig. 6(d) shows a screenshot when a person failed in
authentication.

As in our use case where individuals first register their
biometric information coupled with their identity proof with
an organization, we assume that user will always provide an
identity information that would allow us to verify before the
user secret key skID is forwarded to the respective user device.
We note that the volunteers were using their own Android
devices. During the authentication protocol, a device captured
a user face image imgID and run the face recognition scheme
to generate the feature vector~yID. To verify with subscriber
i, the device runs the proposed encryption scheme to gener-
ated both encrypted vector ~cyID and re-encrypted vector ~c′yID,i
respectively. The device then verifies with subscriber i and
proceeds to verify with the cloud if and only if the first part
authentication succeeded. The final authentication result re-
turns accept if the similarity is within the threshold. We asked
the volunteers to repeat the authentication process for more
than 10 times to find the average.

Table 5 shows the summary of execution time for both the
desktop and the Android platform setting. The implementa-
tion and experiment of the desktop version was discussed in
Section 6.1. It represents a kiosk based client device. The
experiment result shows the total authentication time required
by executing the biometric recognition scheme (i.e. Extrac-
tion) and the authentication protocol. The experiment was
conducted in a practical daily usage scenario, where the volun-
teers perform face authentication using their mobile devices.

In summary, a round-trip authentication process takes
74.49ms and 626.53ms in desktop platform and Android plat-
form respectively, which includes the total transmission time.
The communication overhead can be found in Table 4. We
note that any biometric recognition scheme can be deployed
as long as it is based on Euclidean distance, which means that
one can replace it with a more efficient scheme.

Figure 6: Screenshots of PBio Android Application
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Table 5: Performance of PBio System

Platforms Extraction
Time

PBio Authentication Protocol Total Time
(round trip)Part I Part II

Verify
Authentication

TimeEnc ReEnc SubAuth CloudAuth Combine

Desktop
(Kiosk based) 64.43ms 1.14ms 0.60ms 4.22ms 4.01ms 0.01ms 0.08ms 10.06ms 74.49ms

Android 572.56ms 9.54ms 4.82ms 20.33ms 19.33ms 0.01ms 0.08ms 54.11ms 626.53ms
* Note: The experiment conducted in 128-n

6.4 Comparison with Existing Methods

In this section, we compare the execution performance of
PBio with works in [13, 29, 31, 89]. We compare the encryp-
tion and verification performance for 128-n. We note that [13]
was implemented using the Paillier encryption scheme [60]
with 1024-bit modulus, and [29, 89] use the similar technique
as ours. For the most recent work in [31], we compare our
performance with the experiment available in [31], which was
implemented in Android platform using the linear homomor-
phic encryption (LHE) scheme [35]. As shown in Table 6,
we noticed that our encryption scheme is slower by a factor
of 2.4× compared to [89] and the verification time needed
is slower by a factor of 5.58× and 13.49× compared to [29]
and [89] respectively. This is due to [29] and [89] enable
one to find the verification result without secure multiparty
computation (SMC).

We would like to emphasize that these existing works focus
on the direct user-to-organization setting, and do not provide
cross-organizational authentication as in PBio. However, our
goal is similar such that to prevent leaking the stored, en-
crypted templates to be decryptable by any party, and protect
the input biometric features from leaking. As shown pre-
viously, our distance-preserving encryption also allows one
to find the distance without decryption, but we found the
insecurity, so we applied GSHADE to overcome the weak-
ness. Besides, it is obvious that [13] and [31], who applied
homomorphic encryption (HE), require higher computation
overheads. Table 7 shows the comparison of the encrypted
database size. We notice PBio ciphertext size is smaller than
all the previous works as we neither extend vector dimensions
nor introduce additional elements.

7 Discussion

We may adopt a number of additional measures in our bio-
metric system to further enhance its security. Firstly upon
registration, the data owner assigns a unique key to each user.
This ensures that the resulting encryption applied to each
raw biometric template will be distinct for different users.
Secondly, our biometric system is enabled to refresh the par-
tial encrypted database held by the data subscriber and the
cloud provider either periodically or when is it necessary. For
instance, in the event a user’s device is lost and requires a
replacement. For the remainder of this section, we provide a

Table 6: Comparison of Execution Performance

Platforms Schemes Tools Encryption
Time

Authentication
Time

Desktop

[13] HE+SMC 1.31s 5.84s
[29] T 0.88ms 1.79ms
[89] T 0.73ms 0.74ms

PBio T+SMC 1.74ms
10.06ms

(5.83ms*)

Android [31] HE 45.63ms 1.07s

PBio T+SMC 13.31ms
54.11ms

(33.77ms*)
The experiment conducted in 128-n; HE: Homomorphic Encryption;
SMC: Secure Multiparty Computation; T: Transformation.
* with of early rejection

Table 7: Comparison of Encrypted Database Size
Size of

Database
Size of Encrypted Database

[13] [29] [89] [31] PBio
1KB 32.77KB 270.4KB 141.51KB 12.45KB 1KB

1.02GB 32.77GB 269.34GB 140.96GB 12.45GB 1.02GB
5.1GB 163.84GB 1346.72GB 707.56GB 62.25GB 5.1GB

comparison between two feasible mechanisms for template
encryption as well as a detailed discussion on the key update
process. We also elaborate the key distribution in practice and
leave it as an open problem.

7.1 encrypt-then-split vs split-then-encrypt

We further consider two different approaches to perform
authentication: encrypt-then-split and split-then-encrypt as
shown in Table 8. The encrypt-then-split approach first en-
crypts the raw biometric template and split them into two. For
the latter approach, the raw biometric template is first split
and each individual split portion is subsequently encrypted.
Recall that PBio first checks the Part I and proceeds with the
rest if and only if Part I is successfully passed. Since split-
then-encrypt approach performs encryption in half of the n-
dimension, we see that split-then-encrypt approach achieves
faster early rejection as the encryption time needed for Part I
and II can be done separately. However, the split-then-encrypt
approach reduces half of the n-dimension, which may weaken
the security guarantee. In general, a higher dimension corre-
sponds to a larger security parameter. As such, we decide to
adopt the encrypt-then-split mechanism in our experiments
of PBio and leave this security analysis as future work.
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Table 8: Comparison of Authentication Performance under
encrypt-then-split and split-then-encrypt.

Authentication Time
encrypt-then-split split-then-Encrypt

Part I 2.21ms + ` 1.05ms + `
Part II 0.48ms + ` 1.06ms + `

Total Time 2.69ms+ 2` 2.11ms+ 2`
` denotes the network latency

7.2 Key Update

Periodic key updates of existing database help to safeguard
against potential keys leakage or exposure. In addition, should
a group of users’ keys be compromised, a timely key update
process ensure that their biometric templates are still pro-
tected. We discuss several methods which enables efficient
key updates.
Method 1: When the key update for a user with identity
information ID is initialized, the device receives ~cx1ID and
~c′ID,i from the cloud provider and the relevant data sub-
scribers respectively. The device updates the encrypted
template of the user by performing Enc(sknew, ~cx1ID) and
ReEnc(sknew,~c′ID,i) which are subsequently transmitted to the
cloud and corresponding data subscribers respectively. Conse-
quently, Enc(sknew, ~cx1ID) is the updated encrypted template
held by the cloud while ReEnc(sknew,~c′ID,i) is the updated
encrypted template of held by the data subscribers. A poten-
tial limitation of this method is that the device is required to
fetch encrypted templates of the associated users from the
data subscribers and cloud provider whenever a key update
process is called upon.
Method 2: One other feasible way is for the data owner to
be involved in the key update process. In this way, whenever
a key update process is called upon for a group of users,
the data owner can simply generate new keys and send the
corresponding new encrypted templates of these users to the
cloud and data subscribers. The device will also be notified
of the generation and values of these new keys. However, this
requires the data owner to be online during every key update
process.
Method 3: To overcome the above issues and limitations, we
introduce a trusted key management server to be involved in
the key update process. This key server which can be contin-
uously online is hosted by the data owner. The main role of
this key server is to issue new keys whenever a key update
process is initiated. When the key update for the user is initial-
ized, the key server fetches ~cx1ID and~c′ID,i from the cloud and
data subscribers respectively. The key server decrypts these
encrypted templates to obtain ~xID. New keys are generated
to perform a re-encryption of~xID as similar to the setup and
registration protocols. The new keys are sent to the trusted
device while the newly updated encrypted templates are sent
to the cloud and data subscribers.

7.3 Key Distribution

PBio system adopted the key distribution technique following
India’s Aadhaar technical report [58]. Once a user provides a
sufficient proof of identity via PBio Android application, the
device generates a public and private key pair using Android
built-in trustzone. The data owner enrolls the device public
key and encrypts the user key before returning to the device.
For now, the device stores the ciphertext, which can only be
decryptable by its private key and used for PBio authentication
phase within the trustzone. Since PBio offers solution to
secure biometrics templates and authenticate a person without
decryption. We, therefore, leave the secure key distribution as
a future work.

8 Related Work

Insecurity of Biometric Templates. There are numerous
methods enabling the reconstruction of biometric images
from certain types of raw biometric templates. In gen-
eral, the security considerations relating to biometric tem-
plates can be classified into two: (1) template inversion
[9, 10, 23, 25, 28, 47, 49, 62, 65, 73], which adversary tries
to reconstruct a biometric template into a raw image; (2)
hill climbing [2, 24, 50–52, 76, 83], which adversary tries to
construct symthetic biometric templates that can pass the au-
thentication. This highlights that storing a biometric template
in the clear is not sufficient to protect its underlying biometric
information.
Techniques to Secure Biometric Templates. There are two
generic solutions to protect biometrics [27], namely im-
age processing [42, 57, 72] and cryptographic techniques
[14, 27, 63, 66, 81]. Image-based techniques are computation-
ally efficient but as stated in [82], most of the image pro-
cessing techniques result in decreasing accuracy due to the
distortion applied on the original image. Biohashing [8, 38]
was proposed to transform an individual biometric feature
into a unique value that is used to perform exact match dur-
ing authentication. Cancellable biometrics [3, 33, 64] applies
similar techniques like biohashing, but it allows revocation if
the stored value is compromised. There are, however, suc-
cessful attacks on cancellable biometrics and biohashing
[12, 41, 44, 46]. Fuzzy commitment and secure sketch ensure
the privacy of biometrics by providing information-theoretic
guarantees using error correcting codes [19, 36, 37, 71, 84]
or signal embeddings [15, 54, 55, 70, 77]. Chun et al. [14]
proposed a fuzzy extraction technique to create a metadata
during enrollment, and a secret token is recovered from the
metadata to complete the authentication. However, these tech-
niques face security issues when it is used multiple times and
it assumes certain conditions on the distribution of biometrics,
as stated in [37]. Chatterjee et al. [11] proposed a scheme
that protect biometric templates based on secure sketches. It
prevents an attacker from learning the owner of biometric
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templates by collecting and randomly permuting multiple
fingerprints of the users.

Cryptographic techniques commonly known as secure com-
putation, on the other hand, preserve accuracy comparable
to that of the ordinary recognition schemes but incur higher
performance overhead. Secure computation can be achieved
by applying various cryptography tools such as Homomor-
phic Encryption (HE) [53, 60, 69], Predicate Encryption (PE)
[39, 68, 89], Inner Product Encryption (IPE) [1, 18, 40], Obliv-
ious Transfer (OT) [32, 56], and Garbled Circuit Evaluation
(GCE) [85]. These tools allow the verification to be done
securely via calculating the distance between the enrolled and
probed biometric templates in the encrypted domain [5,6,79],
but it is also known that most of the cryptography-based tech-
niques are computation intensive. Barni et al. [5] applied
Paillier’s HE [60] which allows user to verify whether the
submitted biometric feature is in the server database.
Privacy-Preserving Biometric Authentication. Numbers
of privacy-preserving biometric authentication (and identi-
fication) systems were proposed which can be categorized
into two settings. The first is a direct user-to-organization
setting as can be seen from the system proposed by Šeděnka
et al. [67]. The system allows every user, with a trusted device
that holds a secret key, to enroll his encrypted biometric tem-
plates using homomorphic encryption (HE). During authenti-
cation, garbled circuit evaluation (GCE) is applied to decrypt
and compare the similarity among the encrypted template
and the submitted feature. It represents a common setting
whereby the organization (data owner) hosts the (encrypted)
biometric templates. Similar to [67], the biometrics systems
by Zhou and Ren [89], PassBio, and Lee et al. [45] also require
a trusted device that encrypts the biometric features during
enrollment and authentication by using predictable encryp-
tion (PE) and inner production encryption (IPE) respectively.
The merit of [45, 89] is that decryption is not required during
authentication as PE and IPE allows one to find the similarity
given two encrypted templates.

The second is an outsourced setting where the data owner
securely outsources the authentication (and identification) pro-
cesses to a cloud [34, 43] in order to reduce the computation
and operational costs. Chun et al. [13] proposed a system that
uses HE to encrypt the biometric templates. The encrypted
templates and secret key are distributed to two clouds respec-
tively with the assumption that no collusion happens. During
authentication, the fresh encrypted biometric features are sub-
mitted to the two clouds to find the similarity using HE and
GCE so that the cloud can neither learn the plain biomet-
ric templates nor the features. Xiang et al. [81] proposed a
scheme which relies on a hybrid encryption scheme, which is
a variant of fully homomorphic encryption scheme. However,
it results in higher communication overheads as compared
to the previous schemes. Tian et al. [75] introduced remote
user authentication that is similar to [45, 67, 89] where user
biometric templates are stored in the encrypted format and

the authentication is done in an anonymous and unlinkable
manner with a cloud. A matrix based technique was proposed
by Yuan and Yu [87] that allows the cloud to verify an indi-
vidual without decryption. However, [87] was found to be in-
secure and enhanced by [78], CloudBI. Further enhancement
was proposed in [29], which also stated that such the matrix
based technique is weakly secure. Guo et al. [27] applied
randomization technique which allows feature extraction and
authentication to be done in the encrypted domain. However,
it supports only face recognition and the security is not guar-
anteed as only completeness analysis was provided. Recently,
Im et al. [31] applied linear HE to construct a scheme under
the outsourced setting, yet it requires around 1 second for
authentication.

9 Conclusions

We proposed a new privacy-preserving biometric authentica-
tion system, PBio, which allows an owner of a raw biometric
database to share a derived database to other organizations to
authenticate users in a privacy-preserving manner. By doing
so the organizations provide authentication services without
needing to collect biometrics or invest in securing raw biomet-
ric databases. Furthermore, a user needs to register only once,
that is, with the data owner to access to services provided by
different organizations. The proposed system supports biomet-
ric recognition schemes that is based on euclidean distance.
The accuracy is preserved even in the encrypted domain. Be-
sides, we introduced an encrypt-then-split construction, which
allows the data owner to split the encrypted biometric tem-
plates into two or more copies. One copy is then given to a
cloud provider and the other copies to other subscribed organi-
zations. With this property, the proposed system allows user to
authenticate a partial encrypted biometric feature with the par-
tial encrypted biometric template stored by the organization,
which computes a partial result that allows the organization to
make early rejection. In the case if the final result is necessary,
the cloud provider is required to be involved in ascertaining
the final result. Assuming data breach happens in either the
cloud or the organization, the attacker will only obtain partial
information of the templates. We developed a prototype for
the proposed system. The experiment shows that our proposed
system is practical.
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A Proof sketch

A.1 Proof of Theorem 2
Part I. Recall that our DRE is

Enc(sk,~x) = w · (~x+~v) ·M (1)

where sk = (w,~v,M). Let encryption key sk = (w,~v,M) and
ciphertext~c = Enc(sk,~x) = w · (~x+~v) ·M, we have

~v = f (w,M,c,~x) = w−1 ·~c ·M−1−~x (2)

Therefore, we show that the conditional probability Pr [~x|~c] is
independent on~x:

Pr [~x|~c] = Pr [sk = (w,~v,M) where~v = f (w,M,c,~x)] (3)

= ∑
w,M

Pr [sk = (w,~v = f (w,M,c,~x),M)] (4)

=
#w×#M

#sk
, (5)

where #w denotes total number of possible scaling factor,
#M denotes total number of possible orthogonal matrix of
dimension as indicated in our DRE scheme, and #sk denotes
the total number of possible encryption keys in our scheme.
As a result, for any two distinct plaintexts~x and~y, we have

Pr [~x|~c] = Pr [~y|~c] (6)

Part II. Let t be the threshold. We request the distance be-
tween the two points ~x and ~y to be larger than 2t, so they
cannot represent the same bio-object. Then we count how
many such distinct points with pairwise distance≥ 2t. Within
the n-dimension cube [−1.0,1.0]n, each person’s biometric
measurement could be treated as a n-dimension sphere with
center u and radius t, where u is the measurement of the di-
mension during the registration phases. So the total number
N of such n-dimension sphere is

N ≥ 2.0n

(2t)n = (1/t)n. (7)

For example, in our experiment, t = 0.6.

A.2 Proof of Theorem 3
Our authentication protocol is a nested application of two
schemes whose keys are chosen independently: (1) Our dis-
tance recoverable encryption DRE; (2) The GSHADE secure

two party computation scheme. Recall that the GSHADE
scheme allows two parties with private vector inputs~x and~y
respectively, to compute the Euclidean distance between~x and
~y, without leaking extra partial information. In the application
of GSHADE in our proposed scheme, the private input (~x or~y)
is the ciphertext of a raw biometric feature vector, generated
from our DRE. At the end of GSHADE, the user (the authen-
tication client software) will obtain the distance between ~x
and~y as output, and the Cloud (or Subscriber) will obtain a
single bit (i.e. acceptance or rejection) as output. Due to the
zero-knowledge feature of GSHADE scheme (Theorem 1),
the execution of GSHADE as a subroutine of our protocol,
will not leak any more information about private inputs~x,~y
beyond the corresponding outputs. Since we assume the user
is running in a trusted environment, the user checks the thresh-
old and returns the authentication result 1 or 0, which is a
single bit: if Dist(~x,~y)≤ t2 holds, to the other party (Cloud
or Subscriber).

According to our Theorem 2, the ciphertext~y possess by
the subscriber i or cloud provider (who may collude with an
adversary) leaks no information about the plaintext, which is
the underlying raw biometric feature vector. Therefore, our
nested application of GSAHDE and DRE ensures that no
extra information leaks during the protocol, except the final
computation result, which is a single bit.

A.3 Proof of Theorem 4

First of all, we remark that, the authentication client software
in user’s device is trusted, and is verified by the authentica-
tion server every time, before user starts to authenticate to the
server. Thus, our official authentication client software is the
only way to authenticate to the server, and third party authen-
tication client software can be easily detected and rejected by
authentication server.

The adversary may collude with both the cloud provider
and subscriber i, and thus is able to find the DRE ciphertext
ct of user’s bio template vector~x, and observe any network
communications of GSHADE. Note that in our invocation
of GSHADE protocol between authentication client software
and cloud (or subscriber), the authentication server learns
only one bit information—accepting or rejecting this user.
Furthermore, due to Theorem 2, a single ciphertext does not
leak any information of plaintext, i.e. the user’s bio template
vector ~x. Consequently, the adversary is unable to find an
estimation~x′ such that Dist(~x,~x′) is smaller than the given
threshold, and thus cannot pass our authentication scheme.
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