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Abstract. A multi-identity pure fully homomorphic encryption (MIFHE)
enables a server to perform arbitrary computation on the ciphertexts that
are encrypted under different identities. In case of multi-attribute pure
FHE (MAFHE), the ciphertexts are associated with different attributes.
Clear and McGoldrick (CANS 2014) gave the first chosen-plaintext at-
tack secure MIFHE and MAFHE based on indistinguishability obfusca-
tion. In this study, we focus on building MIFHE and MAFHE which are se-
cure under type 1 of chosen-ciphertext attack (CCA1) security model. In
particular, using witness pseudorandom functions (Zhandry, TCC 2016)
and multi-key pure FHE or MFHE (Mukherjee and Wichs, EUROCRYPT
2016) we propose the following constructions:
– CCA secure identity-based encryption (IBE) that enjoys an optimal

size ciphertexts, which we extend to a CCA1 secure MIFHE scheme.
– CCA secure attribute-based encryption (ABE) having an optimal size

ciphertexts, which we transform into a CCA1 secure MAFHE scheme.
By optimal size, we mean that the bit-length of a ciphertext is the bit-
length of the message plus a security parameter multiplied with a con-
stant. Known constructions of multi-identity(attribute) FHEs are either
leveled, that is, support only bounded depth circuit evaluations or secure
in a weaker CPA security model. With our new approach, we achieve
both CCA1 security and evaluation on arbitrary depth circuits for multi-
identity(attribute) FHE schemes.

Keywords: witness pseudorandom function, identity-based encryption, attribute-
based encryption, fully homomorphic encryption.

1 Introduction

Gentry settled the open problem of computing on encrypted data by propos-
ing the first fully homomorphic encryption (FHE) [17] scheme based on ideal
lattices. Afterwards, many researchers developed improved variants of Gentry’s
FHE [31,6,7]. These are all leveled FHE where a bounded depth circuit can be
evaluated on encrypted data. While the error in an evaluated ciphertext may
blow up with increasing depth, Gentry’s bootstrapping technique [17] can be ap-
plied to convert any leveled FHE into a pure FHE which handles arbitrary depth



circuits. The bootstrapping relies on circular security means that the scheme is
secure even when the adversary is given an encryption of the secret-key.

Identity-based encryption (IBE) [3] gives us the freedom to encrypt data
using any arbitrary string (treated as identity) instead of a specified public-key.
Constructing identity-based FHE (IBFHE) remained difficult due to the presence
of evaluation key until Gentry, Sahai and Waters [18] built a leveled FHE based
on learning with errors (LWE) where the public parameters serve the role of
the evaluation key. Compiling existing LWE-based identity-based encryption or
LWE-based attribute-based encryption (ABE) with their FHE, [18] came up with
efficient IBFHE and attribute-based FHE (ABFHE). Clear et al. [12] extends the
IBFHE of [18] to multi-identity setting where evaluation can be performed with
multiple users data and decryption requires a collaboration of their secret-keys.
However, Gentry’s bootstrapping theorem can not be applied to convert a leveled
IBFHE (or ABFHE) into a pure IBFHE (or pure ABFHE). Since evaluation requires
encryption of the secret-keys under the respective identities, the transformed
IBFHE becomes interactive which is noted as weak [7].

To build a pure IBFHE, Clear and McGoldrick [11] used indistinguishabil-
ity obfuscation (iO) [30] and a pure FHE scheme. Specifically, they utilized the
punctured technique of [30] to create a unique public-secret FHE key pair cor-
responding to an identity. The IBFHE can be extended to multi-identity pure
FHE (MIFHE) when we use a multi-key pure FHE (MFHE) [27] in place of the
normal FHE. The work [11] also described a multi-attribute pure FHE (MAFHE)
using iO. MAFHE enables us to encrypt messages under different attributes in-
stead of users identities. A generic construction of (almost pure) MAFHE with
a bounded number of parties was given in [10] which employs a MFHE and a
leveled multi-attribute FHE.

All existing constructions of MIFHE or MAFHE [11,8] are either CPA secure
or based on a powerful primitive iO. In case of leveled variants of those prim-
itives [18,12,5], known constructions have started from LWE-based IBE or ABE
which mostly provide security in CPA model, hence the corresponding FHEs are
inherently CPA secure. It is trivial to observe that CCA security can not be re-
alized for FHE like primitives as evaluation is a public algorithm. But, we can
still consider CCA1 security where the adversary is given access to the decryp-
tion oracle up-until it receives the challenge ciphertext. Canetti et al. [8] gave
a generic construction of CCA1 secure MFHE from a CPA secure MIFHE and
instantiated their (pure) MIFHE based on sub-exponential iO. So we ask: Can
we build CCA1 secure MIFHE or MAFHE? Can we construct these primitives
without using obfuscation?

In this paper, we find out affirmative answers to those questions. Recently,
Zhandry introduced a different type of pseudorandom function (PRF), called wit-
ness PRF (WPRF) [33], which can produce a pseudorandom value y = F(fk, x)
corresponding to an NP statement x using a secret function key fk and any-
one holding a valid witness of x can recompute y using a public evaluation key
ek. If a statement x does not belong to the NP language then y becomes in-
distinguishable from random. The primitive finds many applications in building
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cryptographic tools such as non-interactive multiparty key exchange, witness en-
cryption (WE), poly-many hardcore bits for one-way functions (OWFs) [33] that
are previously possible only from iO. We aim to construct CCA1 secure MIFHE
and MAFHE schemes using WPRF.

Zhandry [33] built WPRF from multilinear subset-sum Diffie-Hellman as-
sumption which is a target-group assumption and hence most of the existing
(source-group based) attacks on multilinear maps may not be a threat to the
WPRF. On the other side, WPRF construction of [28] based on sublinear com-
pact randomized encoding and puncturable PRF indicates that it belongs to
obfustopia. However, WPRF is not known to imply iO and seems to be a much
weaker assumption than iO [33]. Few primitives like smooth projective hash func-
tions [13], functional PRFs [4] and publicly evaluable PRFs [9] that are close to
the notion of WPRF have already been realized from standard assumptions.
Therefore, it is more likely to realize WPRF from standard assumptions much
before the community arrive at a practical construction of iO.

Contribution. This work investigates applications of WPRF in identity-based
and attribute-based cryptography.

1. Multi-Identity Pure FHE : In the era of cloud computing, it is highly desirable
to run arbitrarily complex programs over any type of encrypted data. To com-
pute on the ciphertexts of an IBE scheme, we build the first CCA1 secure MIFHE
using WPRF and MFHE. The stepping-stone of our MIFHE is a CCA secure IBE
that we construct from WPRF and a special signature scheme.

Our goal is to use OWFs along with WPRF to get a CCA secure IBE with
short secret-keys and optimal size ciphertexts. In particular, we take a pseu-
dorandom generator (PRG) and a secure signature scheme both of which can
be efficiently realized from OWFs [29]. First we generate a pair of WPRF keys
(fk, ek) for an NP language L = {(id, v, vk) : (∃u such that PRG(id ⊕ u) =
v) or (∃σ such that Vrfy(vk, id, σ) = 1)} with a relation R where id is an identity
and vk is a verification key of the signature scheme. The public-key of the IBE
is a tuple (ek, vk) and the master secret-key is the signing key sk. A secret-key
for an identity id is as short as a signature σ of id. At the time of encryption,
we use ek to generate a pseudorandom value y corresponding to a statement
(id, v, vk) with a witness u such that PRG(id⊕u) = v. The ciphertext is a tuple
(cs, v) where cs is a symmetric-key encryption (SKE) of a message m using y.
Interestingly, the size of the ciphertext becomes optimal, that is |m|+ cλ where
λ is a security parameter and c is a constant.

We need extractibility property of WPRF [33] to prove the security of IBE.
However, we show (in Sec. 3) that the strong extractibility assumption can be
avoided by replacing the normal signature scheme with a primitive called all-
but-one signature (ABOS) [20]. We note that ABOS can be constructed from
a verifiable random function (VRF) [26] and a perfectly-binding commitment
scheme. Existing constructions [16,25] of CCA secure IBE achieve (almost) op-
timal ciphertexts based on bilinear maps. Our result shows that assuming VRF
and a normal WPRF we can achieve a CCA secure IBE with optimal size cipher-
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texts. However, optimal ciphertext for IBE is not a primary contribution of this
paper, rather we utilize our IBE to achieve more advanced primitive.

To convert the IBE into a MIFHE scheme (Sec. 3.1), we replace the SKE by
a multi-key pure FHE which has been constructed using LWE assumption along
with circular security [27]. In the pure MIFHE of [11] (based on obfuscation), the
public-key of the underlying MFHE is unique for each identity, whereas there
may be exponentially many MFHE public-keys associated to a single identity in
our MIFHE and we have to include the MFHE public-key into a ciphertext so
that evaluation runs smoothly. Therefore, MFHE is necessary for our construc-
tion even when messages are encrypted under the same identity.

2. Multi-Attribute Pure FHE : To achieve a CCA1 secure MAFHE, we first re-
alize a CCA secure attribute-based encryption (ABE) [32] using WPRF. Re-
call that a (key-policy) ABE enables us to encrypt messages under a set of
attributes mapped to a bit-string x and a receiver holding a secret-key skf cor-
responding to a boolean function f should succeed in decrypting the ciphertext
when x satisfies f . If we consider a WPRF for the language L = {(x, v, vk) :
(∃u such that PRG(x⊕ u) = v) or (∃σ such that Vrfy(vk, f, σ) = 1 ∧ f(x) = 1)}
similar to our basic IBE construction, then we can achieve a CCA secure ABE from
OWFs. Here also we need to rely on extractability property of WPRF. To avoid
this strong assumption, we start with the WE-based ABE of Garg et al. [15].
Specifically, the signature scheme is replaced with a witness-indistinguishable
non-interactive zap [22]. The main difference from [15] is that to embed an at-
tribute into a ciphertext we imitate the technique of embedding an identity from
our IBE construction.

Goyal et al. [21] gave the first CCA secure ABE using bilinear maps. They
used the generic technique of [2] to establish a bridge from CPA to CCA security
for ABE. However, their transformation works in an environment where the CPA
secure ABE has to support delegatability [21]. Another generic transformation
was proposed in [32] which needs verifiability of a ciphertext encrypted under
two different attributes. Our approach (in Sec. 4) defines a way to achieve a CCA
secure ABE which is the first to enjoy an optimal ciphertext size (to the best of
our knowledge).

We transform our ABE to a CCA1 secure MAFHE scheme (in Sec. 4.1) fol-
lowing the similar technique employed in the conversion of our MIFHE from the
IBE. The MIFHEs and MAFHEs of [11,10] are secure under the chosen-plaintext
model which is often insufficient in many practical scenarios. Our approach leads
to the first CCA1 secure MIFHE and CCA1 secure MAFHE without assuming iO.

Other Related Works. Garg et al. [15] proposed constructions of IBE and ABE
from witness encryption (WE) (introduced in the same work). Their selectively
secure IBE is based on a dual encryption methodology and unique signature
scheme. Replacing WE by WPRF does not immediately produce an optimal size
ciphertext for the IBE. Using non-interactive zap and commitment schemes they
built adaptively secure IBE and selectively secure ABE schemes. However, secu-
rity holds in the CPA model and extension to MIFHE or MAFHE may require
additional primitive like obfuscation. Goldwasser et al. [19] built an ABE for
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Turing machines from WE and succinct argument of knowledge. But, their ABE
is only CPA secure and based on strong extractibility assumptions.

2 Preliminaries

Notations. For any set S, the notation x← S denotes the process of sampling
x uniformly at random from S. Let E be a probabilistic polynomial time (PPT)
algorithm. Then y ← E(x) denotes the execution of E with an input x using fresh
randomness and assign the output to y. If the randomness, say r, is provided
externally then we denote this execution by y ← E(x; r). If x ∈ {0, 1}∗ then we
denote by |x| the size of x. We say f : N→ R is a negligible function of n if it is
O(n−c) for all c > 0, and we use negl(n) to denote a negligible function of n.

2.1 Pseudorandom Generator [1]

Definition 1 A pseudorandom generator (PRG) is a deterministic polynomial
time algorithm PRG that on input a seed s ∈ {0, 1}λ outputs a string of length
`(λ) such that the following holds:
– expansion: For every λ it holds that `(λ) > λ.
– pseudorandomness: For all PPT adversary A and s← {0, 1}λ, r ← {0, 1}`(λ),

there exists a negligible function negl such that

AdvPRGA (λ) = |Pr[A(1λ,PRG(s)) = 1] − Pr[A(1λ, r) = 1] | < negl(λ).

2.2 Symmetric Key Encryption [23,24]

Definition 2 A symmetric key encryption (SKE) scheme is a tuple of PPT
algorithms (Gen, Enc, Dec) defined as follows:
• K← Gen(1λ) : on input a security parameter λ, returns a key K.
• c ← Enc(K,m) : a randomized algorithm that returns c, an encryption of

the message m ∈M.
• Dec(K, c) ∈M∪ {⊥} : a deterministic algorithm that decrypts the cipher-

text c and returns a message m ∈M, or ⊥ if it fails.

The SKE is said to be correct if the following holds:
– correctness: For all m ∈M and K← Gen(1λ), we require that

Pr[Dec(K,Enc(K,m)) = m] = 1

We consider chosen ciphertext attack (CCA) security for SKE and define an
experiment ExptSKEA,CCA(1λ) in Fig. 1.

Definition 3 A symmetric key encryption SKE is said to satisfy chosen cipher-
text attack (CCA) security if, for all PPT adversary A, there exists a negligible
function negl such that

AdvSKEA,CCA(λ) = |Pr[ExptSKEA,CCA(1λ) = 1] − 1
2 | < negl(λ)
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K← Gen(1λ)

(m0,m1)← AEnc(K,·),Dec(K,·)(1λ)
b← {0, 1}
c← Enc(K,mb)

b′ ← AEnc(K,·),Dec(K,·)(c)
if (b′ = b) ∧ (c 6∈ QK)

return 1
QK = set of all Dec(K, ·) queries

Fig. 1: ExptSKEA,CCA(1λ)

m∗ ← A(1λ)

(sk0, vk0)← Setup(1λ)

(sk1, vk1)← PuncSetup(1λ,m∗)
b← {0, 1}
b′ ← ASig(skb,·)(vkb)
if (b = b′) ∧ (m∗ 6∈ Qsk)

return 1
Qsk = set of all Sig(skb, ·) queries

Fig. 2: ExptABOS
A (1λ)

x∗ ← A(1λ)

(fk, ek)← Gen(1λ, R)
y0 ← F(fk, x∗), y1 ← Y
b← {0, 1}
b′ ← AF(fk,·)(ek, yb)
if (b′ = b) ∧ (x∗ 6∈ L ∪Qfk)

return 1
Qfk = set of all F(fk, ·) queries

Fig. 3: ExptWPRF,R
A (1λ)

Remark 1 We take a length preserving SKE means |Enc(K,m)| = |m|. In such a
scheme, A is not allowed to query m0 and m1 to the encryption oracle. The CMC
mode [23] and ECM mode [24], proposed by Halevi and Rogaway, is length pre-
serving and CCA secure if the underlying block cipher is a strong pseudorandom
permutation such as AES [14]. In fact, we need much weaker notion of CCA se-
curity where A is not given the access of Enc(K, ·). We term this notion as length
preserving CCA (LP-CCA) secure SKE which is sufficient for our applications.

2.3 All-but-one Signature Scheme [20]

Definition 4 An all-but-one signature (ABOS) scheme is a tuple of PPT algo-
rithms (Setup, PuncSetup, Sig, Vrfy) defined as follows:

• (sk, vk) ← Setup(1λ) : on input a security parameter λ, outputs a signing
key sk and a verification key vk.

• (sk, vk) ← PuncSetup(1λ,m∗) : on input a security parameter λ and a
message m∗ ∈M, outputs a signing key sk and a verification key vk.

• σ ← Sig(sk,m) : returns σ ∈ Σ, a signature of the message m ∈M.
• Vrfy(vk,m, σ) ∈ {0, 1} : a deterministic algorithm that on input a verifica-

tion key vk, a message m and a signature σ, and outputs either 0 or 1.

The signature scheme ABOS is said to be correct if the following holds:

– correctness of Setup: For all m ∈M and (sk, vk)← Setup(1λ), we require

Pr[Vrfy(vk,m,Sig(sk,m)) = 1] = 1

– correctness of PuncSetup: For any m∗ ∈ M, (sk, vk) ← PuncSetup(1λ,m∗)
and any σ ∈ Σ, we have Vrfy(vk,m∗, σ) = 0.

We consider VK indistinguishability experiment ExptABOS
A (1λ) in Fig. 2.

Definition 5 An all-but-one signature ABOS scheme is said to satisfy VK in-
distinguishability (VK-IND) security if for all PPT adversary A, there exists a
negligible function negl such that

AdvABOS
A (λ) = |Pr[ExptABOS

A (1λ) = 1] − 1
2 | < negl(λ)
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1. id∗ ← A(1λ)

2. (pp,msk)← Setup(1λ)

3. (m0,m1)← AOsk(·),OD(·)(pp)
4. b← {0, 1}
5. c∗ ← Enc(pp, id∗,mb)

6. b′ ← AOsk(·),OD(·)(c∗)
7. return 1 if (b′ = b) ∧ (|m0| = |m1|)

Osk(·):
1. input: id ∈ ID
2. compute skid ← KeyGen(msk, id)
3. return skid if id 6= id∗, else ⊥

OD(·):
1. input: (id ∈ ID, c)
2. compute skid ← KeyGen(msk, id)
3. return Dec(pp, skid, c)

if (id, c) 6= (id∗, c∗), else ⊥

Fig. 4: ExptIBEA,CCA(1λ)

2.4 Witness Pseudorandom Function [33]

Definition 6 A witness pseudorandom function (WPRF) for an NP language L
with a relation R is a tuple of PPT algorithms (Gen, F, Eval) defined as follows:
• (fk, ek) ← Gen(1λ, R) : on input a security parameter λ and a relation

circuit R : X × W → {0, 1}, returns a secret function key fk and a public
evaluation key ek.

• y ← F(fk, x) : returns a pseudorandom value y ∈ Y for x ∈ X .
• Eval(ek, x, w) ∈ Y ∪{⊥} : on input an evaluation key ek, an element x ∈ X

and a witness w ∈ W, returns an element y ∈ Y, or ⊥ if it fails.

We note that, each of the above algorithms except Gen is a deterministic algo-
rithm. The WPRF is said to be correct if the following holds:
– correctness of Eval: For all x ∈ X , w ∈ W and (fk, ek) ← Gen(1λ, R), we

require that

Eval(ek, x, w) =

{
F(fk, x) if R(x,w) = 1
⊥ if R(x,w) = 0

The security experiment ExptWPRF,R
A (1λ) for the WPRF is defined in Fig. 3.

We consider a selective model which is sufficient for our applications.

Definition 7 A witness pseudorandom function WPRF for an NP language L
with a relation R is said to be selectively secure if, for all PPT adversary A,
there exists a negligible function negl such that

AdvWPRF,R
A (λ) = |Pr[ExptWPRF,R

A (1λ) = 1] − 1
2 | < negl(λ)

3 CCA1 Secure MIFHE from WPRF and MFHE

The main building block of our MIFHE is a CCA secure IBE. Firstly, we use WPRF
and ABOS to achieve a CCA secure IBE having an optimal size ciphertext. Then
we extend it to a CCA1 secure MIFHE with the help of existing MFHE schemes.
We begin with the definition of an IBE system.

Definition 8 [3] An identity-based encryption (IBE) scheme is a tuple of PPT
algorithms (Setup, KeyGen, Enc, Dec) defined as follows:
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• (pp,msk)← Setup(1λ) : on input a security parameter λ, produces a public
parameter pp and a master secret-key msk.

• skid ← KeyGen(msk, id) : returns a secret-key skid corresponding to the iden-
tity id ∈ ID using a master secret-key msk.

• c← Enc(pp, id,m) : returns c, an encryption of a message m ∈ M under an
identity id.

• Dec(pp, skid, c) ∈ M ∪ {⊥} : a deterministic algorithm that decrypts a ci-
phertext c using a secret-key skid and outputs either a message m ∈ M or
⊥ if it fails.

The IBE is said to be correct if the following holds:
– correctness: For all id ∈ ID, m ∈ M, (pp,msk) ← Setup(1λ) and skid ←

KeyGen(msk, id), we require that

Pr[Dec(pp, skid,Enc(pp, id,m)) = m] = 1

For security of IBE, we consider CCA security with selective-identity experi-
ment ExptIBEA,CCA(1λ) described in Fig. 4.

Definition 9 An identity-based encryption IBE is said to be selective-identity
CCA secure if, for all PPT adversary A, there exists a negligible function negl
such that

AdvIBEA,CCA(λ) = |Pr[ExptIBEA,CCA(1λ) = 1] − 1
2 | < negl(λ)

Construction. We construct an identity-based encryption scheme IBE = (Setup,
KeyGen, Enc, Dec) for an identity space ID = {0, 1}λ. The following primitives
are utilized:
– A pseudorandom generator PRG : {0, 1}λ → {0, 1}2λ.
– A LP-CCA secure symmetric key encryption SKE = (Gen, Enc, Dec).
– A VK-IND secure all-but-one signature scheme ABOS = (Setup, PuncSetup,

Sig, Vrfy) with the message space as ID and signature space Σ.
– A WPRF = (Gen, F, Eval) for the NP language L = {(id, v, vk) : (∃u ∈
{0, 1}λ such that PRG(id ⊕ u) = v) or (∃σ such that ABOS.Vrfy(vk, id, σ) =
1)} with a relation R : X ×W → {0, 1}. So, R((id, v, vk), ω) = 1 if (PRG(id⊕
ω) = v)∨(Vrfy(vk, id, ω) = 1), 0 otherwise. Note that, we can always fix the
input size of R by adding some dummy bits.

We describe our IBE in Fig. 5. For correctness, we have to make sure that a
same pseudorandom value y is generated in both the algorithms Enc and Dec.
In Enc, we compute y using a witness u for PRG and in Dec, we compute y using
a witness which is now a signature σ for id. More importantly, the statement
(id, v, vk) remains unchanged in both cases. Thus, correctness of Eval ensures
y = WPRF.F(fk, (id, v, vk)) is the same in Enc and Dec. Finally, Dec returns the
message m using the decryption of SKE.

Efficiency : The ciphertext size of our IBE is compact in the sense that it has
only |cs|+ |v| many bits. Since cs is a ciphertext of a length preserving SKE, we
have |cs| = |m|, where |m| denotes the bit length of message. Therefore, the size
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Setup(1λ):

1. (sk, vk) ← ABOS.Setup(1λ)

2. (fk, ek) ← WPRF.Gen(1λ, R)
3. set pp = (ek, vk), msk = sk
4. return (pp,msk)

Enc(pp, id,m):

1. parse pp = (ek, vk)

2. u← {0, 1}λ, v ← PRG(id⊕ u)
3. y ← WPRF.Eval(ek, (id, v, vk), u)

4. K← SKE.Gen(1λ; y)
5. cs ← SKE.Enc(K,m)
6. return c = (cs, v)

KeyGen(msk, id):

1. parse msk = sk
2. σ ← ABOS.Sig(sk, id)
3. set skid = (σ, id)
4. return skid

Dec(pp, skid, c):

1. parse pp = (ek, vk)
2. parse skid = (σ, id), c = (cs, v)
3. y ← WPRF.Eval(ek, (id, v, vk), σ)

4. K← SKE.Gen(1λ; y)
5. return SKE.Dec(K, cs)

Fig. 5: Construction of IBE with optimal ciphertexts

of c is |m|+ 2λ which is optimal for any IBE scheme. The underlying relation R
is also simple as it either checks a PRG or verify a message-signature pair. This
means the size of public parameter is proportional to the size of PRG plus the
size of Vrfy, hence is some fixed polynomial in λ.

Theorem 1 The IBE = (Setup, KeyGen, Enc, Dec) described above is a selective-
identity CCA secure identity based encryption if PRG is a secure pseudorandom
generator, WPRF is a selectively secure witness pseudorandom function, ABOS
is a VK-IND secure all-but-one signature scheme and SKE is a LP-CCA secure
symmetric key encryption.

Proof. We prove the security of IBE using the following sequence of games. As
usual, we start with Game 0 which is the standard experiment ExptIBEA (λ) as
defined in Fig. 4. For Game i, let Gi be the event b = b′. We assume that A
submits two messages of equal length in each game.

Game 0: This is the standard experiment as described in Def. 9. In particular, A
begins by committing to a challenge identity id∗. The challenger computes
(pp, msk) ← Setup(1λ) and transfers pp to A. The adversary, given access
to the oracles Osk(·), OD(·), submits a pair of challenge messages (m0,m1).
Next, the challenger chooses a random bit b and sends the challenge cipher-
text as c∗ ← Enc(pp, id∗,mb). Finally, A, given access to the same oracles,
guesses the challenge bit b. Note that, A cannot make a query id∗ to Osk(·)
and a query (id∗, c∗) to OD(·).

Game 1: It is same as Game 0 except that the challenger generates the random-
ness as y ←WPRF.F(fk, (id∗, v, vk)) instead of using Eval with the witness u.
Game 1 is described in Fig. 6. It can be observed by the correctness of Eval

WPRF.Eval(ek, (id∗, v, vk), u) = WPRF.F(fk, (id∗, v, vk))

as R((id∗, v, vk), u) = 1. Therefore, the ciphertext distributions in games 0
and 1 are identical. This implies Pr[G0] = Pr[G1].
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1. id∗ ← A(1λ)

2. (sk, vk) ← ABOS.Setup(1λ)

3. (fk, ek) ← WPRF.Gen(1λ, R)
4. set pp = (ek, vk), msk = sk

5. (m0,m1)← AOsk(·),OD(·)(pp)

6. u← {0, 1}λ, v ← PRG(id∗ ⊕ u)

7. y ← WPRF.F(fk, (id∗, v, vk))

8. K← SKE.Gen(1λ; y)
9. b← {0, 1}

10. c∗s ← SKE.Enc(K,mb)
11. set c∗ = (c∗s , v)

12. b′ ← AOsk(·),OD(·)(c∗)
13. return 1 if (b′ = b)

Fig. 6: Game 1

1. id∗ ← A(1λ)

2. (sk, vk) ← ABOS.Setup(1λ)

3. (fk, ek) ← WPRF.Gen(1λ, R)
4. set pp = (ek, vk), msk = sk

5. (m0,m1)← AOsk(·),OD(·)(pp)

6. v ← {0, 1}2λ

7. y ← WPRF.F(fk, (id∗, v, vk))

8. K← SKE.Gen(1λ; y)
9. b← {0, 1}

10. c∗s ← SKE.Enc(K,mb)
11. set c∗ = (c∗s , v)

12. b′ ← AOsk(·),OD(·)(c∗)
13. return 1 if (b′ = b)

Fig. 7: Game 2

Game 2: It is exactly same as Game 1 except that the challenger picks v uniformly
at random from {0, 1}2λ instead of computing v ← PRG(id∗ ⊕ u). Game 2 is
described in Fig. 7. Since u is chosen uniformly at random from {0, 1}λ, the
distribution of id∗⊕u is also uniform over {0, 1}λ. The security of PRG (Def.
1) ensures that A’s advantage in distinguishing between Game 1 and Game
2 is |Pr[G1] − Pr[G2]| = AdvPRGB1

(λ) = negl(λ) where B1 is a PRG-adversary.
Game 3: It is similar to Game 2 except that the challenger computes (sk∗, vk∗)←

ABOS.PuncSetup(1λ, id∗) in the setup and replaces the key generation and
decryption oracles with Osk∗(·) and OD,vk∗,K(·) respectively, defined in Fig. 8.
Therefore, A gets a public parameter of the form pp = (ek, vk∗). In Lemma
1, we show that Game 2 and Game 3 are indistinguishable from A’s view.

Game 4: It is identical to Game 3 except that the challenger selects y uniformly
at random from Y which is the co-domain of WPRF.F(fk, ·) and replaces the
decryption oracle OD,vk∗,K(·) by OD∗,vk∗,K(·), defined in Fig. 9. In Lemma 2,
we show that Game 3 and Game 4 are indistinguishable from A’s view.

Finally, we note that the encryption key in Game 4 is computed as K ←
SKE.Gen
(1λ; y) where y is a fresh randomness which is independent of the challenge
identity id∗. Hence, by the LP-CCA security of SKE (Remark 1) we have |Pr[G4]
− 1

2 | = AdvSKEB2,LP-CCA(λ) which is negligible in λ by our assumption. We are left
to prove the following lemmas to conclude the security of our IBE.

Lemma 1 Assuming ABOS is a VK-IND secure all-but-one signature scheme,
we have |Pr[G2] − Pr[G3]| = negl(λ).

Proof. We show that if A can distinguish between the games 2 and 3, then there
exists an adversary B3 which will break the VK-IND security of ABOS (Def. 5).
Let id∗ be the challenge message for B3 which simulates A as follows:
B3(1λ, id∗):

1. send id∗ to its challenger
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1. id∗ ← A(1λ)

2. (sk∗, vk∗)← ABOS.PuncSetup(1
λ
, id∗)

3. (fk, ek) ← WPRF.Gen(1λ, R)
4. set pp = (ek, vk∗) and msk = sk∗

5. v ← {0, 1}2λ
6. y∗ ← WPRF.F(fk, (id∗, v, vk∗))

7. K← SKE.Gen(1λ; y∗)

8. (m0,m1)← AOsk∗ (·),OD,vk∗,K(·)
(pp)

9. b← {0, 1}
10. c∗s ← SKE.Enc(K,mb)
11. return c∗ = (c∗s , v)

12. b′ ← AOsk∗ (·),OD,vk∗,K(·)
(c∗)

13. return 1 if (b′ = b)

Osk∗ (·):
1. input: id ∈ ID
2. compute σ ← ABOS.Sig(sk∗, id)
3. return skid = (id, σ) if id 6= id∗, else ⊥

OD,vk∗,K(·):
1. input: (id ∈ ID, c)
2. parse c = (c̄s, v̄)
3. if (id, c) = (id∗, c∗)
4. return ⊥
5. else if (id, v̄) = (id∗, v)
6. return SKE.Dec(K, c̄s)
7. else ȳ ← WPRF.F(fk, (id, v̄, vk∗))

8. K̄← SKE.Gen(1λ; ȳ)
9. return SKE.Dec(K̄, c̄s)

Fig. 8: Game 3

2. ABOS-challenger does the following:

(a) (sk0, vk0)← ABOS.Setup(1λ)
(b) (sk1, vk1)← ABOS.PuncSetup(1λ,m∗)
(c) b̃← {0, 1}
(d) return vkb̃ to B3

3. generate (fk, ek) ← WPRF.Gen(1λ, R)
4. pick v ← {0, 1}2λ
5. set y ←WPRF.F(fk, (id∗, v, vkb̃))
6. compute K← SKE.Gen(1λ; y)
7. set pp = (ek, vkb̃) and send it to A
8. A can ask the following queries for polynomial number of times:

(a) key query for id: B3 uses it’s signing oracle ABOS.Sig(skb̃, ·) to get a
signature σ of id and return skid = (id, σ) if id 6= id∗, else return ⊥

(b) ciphertext query for (id, c): B3 uses the function OD,vkb̃,K
(·) defined in

Fig. 8 for ciphertext query of A
9. A submits the challenge messages (m0,m1)

10. pick b← {0, 1} and computes c∗s ← SKE.Enc(K,mb)
11. set c∗ = (c∗s, v) and send it to A
12. A may repeat the step 8 and returns a guess b′ for b
13. return 1 if b = b′ and |m0| = |m1|

It is easy to see that if b̃ = 0 then B3 simulates the KeyGen oracle Osk(·) of
Game 2 and if b̃ = 1 then B3 simulates the KeyGen oracle Osk∗(·) of Game 3.
Next, we show that OD,vk0,K(·) works like the oracle OD(·) as in Game 2. For any
arbitrary query (id, c = (c̄s, v̄)), let us consider the following cases
Case 1 (id, c) = (id∗, c∗): Both the oracles return ⊥ as it is not a valid query.

Case 2 (id, v̄) = (id∗, v) ∧ (c̄s 6= c∗s): Let, z0 = (id∗, v, vk0). The oracle OD(·) gen-

erates a signature σ ← ABOS.Sign(sk0, id
∗) (where (sk0, vk0)← ABOS.Setup(1λ)

as in Game 2, Fig. 7) and uses y ←WPRF.Eval(ek, z0, σ) to generate the decryp-
tion key. On the other hand, OD,vk0,K(·) uses y∗ ← WPRF.F(fk, z0) to generate
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the decryption key. By the correctness of Eval, y∗ = y as R(z0, σ) = 1.

Case 3 (id, v̄) 6= (id∗, v): Let z = (id, v̄, vk0). The oracle OD(·) generates a sig-
nature σ ← ABOS.Sig(sk0, id) (as in Game 2) and uses y ← WPRF.Eval(ek, z, σ)
to generate the decryption key. OD,vk0,K(·) uses y ← WPRF.F(fk, z) to generate
the decryption key. By the similar argument as in case 2, we conclude that both
the oracles compute the same decryption key.

Thus, B3 perfectly simulates Game 2 when b̃ = 0. On the other hand, when the
ABOS challenger picks b̃ = 1, it perfectly simulates Game 3. Therefore, the ad-
vantage of A in distinguishing between the games 2 and 3 is the same as wining
advantage of B3 in VK-IND security experiment and we write it as |Pr[G2] −
Pr[G3]| = AdvABOS

B3
(λ) which is negligible in λ by our assumption.

Lemma 2 Assuming WPRF is a selectively secure witness pseudorandom func-
tion, we have |Pr[G3] − Pr[G4]| = negl(λ).

Proof. We show that if A can distinguish between the games 3 and 4, then
there exists an adversary B4 which will break the selective security of WPRF
(Def. 7). The challenge statement for B4 is z∗ = (id∗, v, vk∗) where v ← {0, 1}2λ
and (sk∗, vk∗)← ABOS.PuncSetup(1λ, id∗). Note that, v ← {0, 1}2λ implies that
there exits u ∈ {0, 1}λ satisfying PRG(id∗ ⊕ u) = v holds with a negligible
probability of (at most) 2−λ. Furthermore, by the correctness of PuncSetup (Def.
4), we have ABOS.Vrfy(vk∗, id∗, σ) = 0 for all σ ∈ Σ. Hence, R(z∗, w) = 0
holds with overwhelming probability for any w ∈ W and z∗ is a valid challenge
statement for B4. Below we describe how B4 simulates A using z∗.
B4(1λ, z∗):

1. send z∗ to its challenger
2. WPRF-challenger does the following:

(a) generate (fk, ek) ← WPRF.Gen(1λ, R)
(b) set y0 ←WPRF.F(fk, z∗) and y1 ← Y
(c) pick b̃← {0, 1}
(d) return (ek, yb̃) to B4

3. compute K← SKE.Gen(1λ; yb̃)
4. set pp = (ek, vk∗) and send it to A
5. A can query the following oracles for polynomial number of times:

(a) key query for id: B4 uses the oracle Osk∗(·) as described in Fig. 9 to
compute the secret-key for id

(b) ciphertext query for (id, c): B4 uses the decryption oracle OD∗,vk∗,K(·) as
defined in Fig. 9 to compute the message for the query (id, c)

6. A submits the challenge messages (m0,m1)
7. pick b← {0, 1} and computes c∗s ← SKE.Enc(K,mb)
8. set c∗ = (c∗s, v) and send it to A
9. A may repeat the step 5 and returns a guess b′ for b

10. return 1 if b = b′ and |m0| = |m1|
First, we note that the oracle Osk∗(·) remains the same as in Game 3. Next,
we observe that if b̃ = 0 then the decryption oracles OD,vk∗,K(·) of Game 3 and
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1. id∗ ← A(1λ)

2. (sk∗, vk∗)← ABOS.PuncSetup(1λ, id∗)

3. (fk, ek) ← WPRF.Gen(1λ, R)
4. set pp = (ek, vk∗) and msk = sk∗

5. v ← {0, 1}2λ
6. set z∗ = (id∗, v, vk∗)

7. y ← Y

8. K← SKE.Gen(1λ; y)

9. (m0,m1)← AOsk∗ (·),OD∗,vk∗,K(·)
(pp)

10. b← {0, 1}
11. c∗s ← SKE.Enc(K,mb)
12. return c∗ = (c∗s , v)

13. b′ ← AOsk∗ (·),OD∗,vk∗,K(·)
(c∗)

14. return 1 if (b′ = b)

Osk∗ (·):
1. input: id ∈ ID
2. compute σ ← ABOS.Sig(sk∗, id)
3. return skid = (id, σ) if id 6= id∗, else ⊥

OD∗,vk∗,K(·):
1. input: (id ∈ ID, c)
2. parse c = (c̄s, v̄)
3. if (id, c) = (id∗, c∗)
4. return ⊥
5. else if (id, v̄) = (id∗, v)
6. return SKE.Dec(K, c̄s)
7. else ȳ ← Ofk((id, v̄, vk

∗))

8. K̄← SKE.Gen(1λ; ȳ)
9. return SKE.Dec(K̄, c̄s)

Here Ofk(z) = WPRF.F(fk, z) if z 6= z∗, else ⊥

Fig. 9: Game 4

OD∗,vk∗,K(·) of Game 4 are functionally equivalent. More precisely, for any arbi-
trary query (id, c = (c̄s, v̄)) we consider the following cases
Case 1 (id, c) = (id∗, c∗): Both the oracles return ⊥ as it is not a valid query.

Case 2 (id, v̄) = (id∗, v) ∧ (c̄s 6= c∗s): Both the oracles OD,vk∗,K(·) and OD∗,vk∗,K(·)
utilize y0 ←WPRF.F(fk, z∗) to generate the decryption key.

Case 3 (id, v̄) 6= (id∗, v): Let z = (id, v̄, vk∗) 6= z∗. Then, OD,vk∗,K(·) computes
y ←WPRF.F(fk, z) to generate the decryption key. On the other hand, OD∗,vk∗,K(·)
uses y ← Ofk(z) to generate the decryption key. Note that Ofk(z) = WPRF.F(fk, z)
as z 6= z∗. Hence, both oracles compute the same decryption key.

Therefore, if the WPRF challenger picks the bit b̃ = 0, then yb̃ = WPRF.F(fk,

(id∗, v, vk∗)) and hence B4 simulates Game 3. If b̃ = 1 then y is chosen uni-
formly at random from Y and hence B4 simulates Game 4. This implies that
the advantage of A in distinguishing between the games 3 and 4 is the same
as the advantage of B4 in the WPRF security experiment. Therefore, |Pr[G3] −
Pr[G4]| = AdvWPRF,R

B4
(λ) which is negligible in λ by our assumption.

3.1 From IBE to CCA1 secure MIFHE

In this section, we describe our transformation from the above IBE to MIFHE.
At first, we recall the definition of MFHE given by Mukherjee and Wichs [27]
where they built a (pure) MFHE based on LWE along with circular security.

Definition 10 [27] A multi-key (pure) fully homomorphic encryption (MFHE)
scheme is a tuple of PPT algorithms (Setup, KeyGen, Enc, Expand, Eval, Dec)
defined as follows:

• params ← Setup(1λ) : on input a security parameter λ, produces a system
parameter params (which implicitly available to all other algorithms).
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• (pk, sk) ← KeyGen(params) : on input a system parameter params, outputs
a secret-key sk and a public-key pk.

• c← Enc(pk,m) : returns c, a fresh ciphertext for a message m ∈ {0, 1}.
• ĉ← Expand((pk1, . . . , pkN ), i, c) : a deterministic algorithm that on input a

sequence of N public-keys (pk1, . . . , pkN ) and a fresh ciphertext c encrypted
under the ith key pki, returns an expanded ciphertext ĉ.

• ĉ← Eval(params,C , (ĉ1, . . . , ĉ`)) : a deterministic algorithm that on input a
polynomial-size boolean circuit C and a sequence of ` expanded ciphertexts
(ĉ1, . . . , ĉ`), outputs an evaluated ciphertext ĉ.

• Dec(params, (sk1, . . . , skN ), c) ∈ {0, 1} ∪ {⊥} : a deterministic algorithm
that on input N secret-keys sk1, . . . , skN and a ciphertext c, returns either a
message m ∈ {0, 1} or ⊥ if it fails.

The MFHE is said to be correct and compact if the following holds:

For params ← Setup(1λ), {(pki, ski) ← KeyGen(params)}i∈[N ] and any `-tuple

message (m1, . . . ,m`) ∈ {0, 1}`, any sequence of indices (I1, . . . , I`) ∈ [N ]`, {ci ←
Enc(pkIi ,mi)}i∈[`], {ĉi ← Expand((pk1, . . . , pkN ), Ii, ci)}i∈[`] and a polynomial-
size boolean circuit C , we have
– correctness of Expand: Dec(params, (sk1, . . . , skN ), ĉi) = mi for all i ∈ [`].
– correctness of Eval: Dec(params, (sk1, . . . , skN ), ĉ) = C (m1, . . . ,m`) where
ĉ← Eval(params,C , (ĉ1, . . . , ĉ`)).

– compactness: The size of an evaluated ciphertext |ĉ| is bounded by a fixed
polynomial p(λ,N) independent of the circuit C .

Definition 11 A MFHE scheme is said to be semantically secure if, for all PPT
adversary A and params ← Setup(1λ), (pk, sk) ← KeyGen(params), any pair of
messages (m0,m1) ∈ {0, 1}2, there exists a negligible function negl such that

AdvMFHE
A (λ) = |Pr[A(params, pk,Enc(pk,m0)) = 1] −

Pr[A(params, pk,Enc(pk,m1)) = 1] | < negl(λ)

Definition 12 [8] A multi-identity (pure) fully homomorphic encryption (MIFHE)
scheme is a tuple of PPT algorithms (Setup, KeyGen, Enc, Eval, Dec) where Setup,
KeyGen and Enc are the same as in a normal IBE scheme (Def. 8) and the re-
maining two algorithms work as follows:
• ĉ ← Eval(pp,C , (c1, . . . , c`)) : a deterministic algorithm that on input a

public parameter pp, a polynomial-size boolean circuit C and ciphertexts
c1, . . . , c` (each of which encrypts a bit using Enc), outputs an evaluated
ciphertext ĉ.
• Dec(pp, (skid1 , . . . , skid`), c) ∈ {0, 1} ∪ {⊥} : a deterministic algorithm that

on input a public parameter pp, ` secret-keys skid1 , . . . , skid` corresponding
to the identities id1, . . . , id` and a ciphertext c encrypted under the identities
id1, . . . , id`, outputs either a message m ∈ {0, 1} or ⊥ if it fails.

The MIFHE is said to be correct and compact if the following hold:
– correctness: For (pp,msk) ← Setup(1λ), {skidi ← KeyGen(msk, idi)}i∈[`] and

any `-tuple message (m1, . . . ,m`) ∈ {0, 1}` such that {ci ← Enc(pp, idi,mi)}i∈[`]

and a polynomial-size boolean circuit C , we have
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Setup(1λ):

1. (sk, vk) ← ABOS.Setup(1λ)

2. (fk, ek) ← WPRF.Gen(1λ, R)

3. params ← MFHE.Setup(1λ)
4. set pp = (ek, vk, params), msk = sk
5. return (pp,msk)

KeyGen(msk, id):

1. parse msk = sk
2. σ ← ABOS.Sig(sk, id)
3. set skid = (σ, id)
4. return skid

Eval(pp,C , (ct1, . . . , ct`)):

1. parse pp = (ek, vk, params)
2. parse cti = (cvi , vi, pkvi ), ∀i ∈ [`]

3. for i = 1 to `
4. ĉi ← MFHE.Expand((pkv1 , . . . , pkv`

), i, cvi )

5. ĉ← MFHE.Eval(params,C , (ĉ1, . . . , ĉ`))
6. return ĉt = (ĉ, {vi, pkvi}i∈[`])

Enc(pp, id,m):

1. parse pp = (ek, vk, params)

2. u← {0, 1}λ, v ← PRG(id⊕ u)
3. yv ← WPRF.Eval(ek, (id, v, vk), u)
4. (pkv, skv)← MFHE.KeyGen(params; yv)
5. cv ← MFHE.Enc(pkv,m)
6. return ct = (cv, v, pkv)

Dec(pp, (skid1 , . . . , skid` ), ĉt):

1. parse pp = (ek, vk, params)
2. parse skidi = (σi, idi), ∀i ∈ [`]

3. parse ĉt = (ĉ, {vi, pkvi}i∈[`])
4. for i = 1 to `
5. yi ← WPRF.Eval(ek, (idi, vi, vk), σi)
6. (pki, ski)← MFHE.KeyGen(params; yi)
7. if pki 6= pkvi
8. return ⊥
9. return MFHE.Dec(params, (sk1, . . . , sk`), ĉ)

Fig. 10: Construction of multi-identity pure FHE

Pr[Dec(pp, (skid1 , . . . , skid`),Eval(pp,C , (c1, . . . , c`))) = C (m1, . . . ,m`)] = 1

– compactness: The size of an evaluated ciphertext |ĉ| is bounded by a fixed
polynomial p(λ,N) independent of the circuit C .

We consider CCA1 security for MIFHE where the adversary has an access to the
decryption oracle before it receives the challenge ciphertext. We skip the formal
description of the security as it is almost similar to Def. 9.

Construction. We construct a multi-identity pure FHE scheme MIFHE = (Setup,
KeyGen, Enc, Eval, Dec) for an identity space ID = {0, 1}λ, a message space
{0, 1} and a class of polynomial sized circuits {Cλ}. We consider the same set of
primitives that are employed in the basic IBE of Sec. 3 except SKE is replaced
by a pure MFHE scheme. Our MIFHE is described in Fig. 10. The correctness is
followed by a similar argument as in our IBE scheme and using the correctness
of MFHE scheme. We state the security in the following theorem.

Theorem 2 The MIFHE = (Setup, KeyGen, Enc, Eval, Dec) described in Figure
10 is a selective-identity CCA1 secure multi-identity pure fully homomorphic
encryption if PRG is a secure pseudorandom generator, WPRF is a selectively
secure puncturable witness pseudorandom function, ABOS is a VK-IND secure
all-but-one signature scheme and MFHE is a semantically secure multi-key pure
fully homomorphic encryption.

Proof. The proof is similar to the Th. 1 with few changes. Firstly, we replace SKE
with MFHE. Secondly, observe that the semantic security of MFHE is sufficient
as we consider CCA1 security for which A is not allowed to query the decryption
oracle after the challenge query. More specifically, the secret-key skv, associ-
ated with the public-key pkv which encrypts the challenge message, is no longer
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needed for any decryption oracle used in the proof. This is due to the fact that af-
ter Game 2 the component v of the challenge ciphertext (cv, v, pkv) is chosen uni-
formly from {0, 1}2λ and hence for all the decryption queries {(id, (c̄v, v̄, p̄kv))}
of A we have v 6= v̄ with overwhelming probability. Thus, we omit the lines 5
and 6 from both the oracles OD,vk∗,K and OD∗,vk∗,K, and rename them by OD,vk∗

and OD∗,vk∗ respectively. Finally, at the end of Game 4 we generate the key
pair (pkv, skv) ← MFHE.KeyGen(params; yv) using a fresh randomness yv which
is independent of the challenge identity id∗. Therefore, the semantic security
of MFHE guarantees that (MFHE.Enc(pkv, 0), v, pkv) is indistinguishable from
(MFHE.Enc(pkv, 1), v, pkv) which completes the proof.

4 CCA1 Secure MAFHE from WPRF and MFHE

In this section, we present a construction of a CCA1 secure multi-attribute pure
FHE (MAFHE) using WPRF and MFHE. The heart of our MAFHE is a CCA secure
(key-policy) ABE. We start with the definition of ABE.

Definition 13 [32] An attribute-based encryption (ABE) scheme for a class of
functions {Fλ} is a tuple of PPT algorithms (Setup, KeyGen, Enc, Dec) defined
as follows:
• (pp,msk)← Setup(1λ) : on input a security parameter λ, produces a public

parameter pp and a master secret-key msk.
• skf ← KeyGen(pp,msk, f) : returns a secret-key skf corresponding to the

function f ∈ Fλ.
• c← Enc(pp, x,m) : returns c, an encryption of a message m ∈M under an

attribute x ∈ X .
• Dec(pp, skf , c) ∈ M ∪ {⊥} : a deterministic algorithm that decrypts a

ciphertext c using skf and outputs either a message m ∈M or ⊥ if it fails.

The ABE is said to be correct if the following holds:
– correctness: For all f ∈ Fλ, x ∈ X , m ∈ M, (pp,msk) ← Setup(1λ) and

skf ← KeyGen(msk, id), we require that

Pr[Dec(pp, skf ,Enc(pp, x,m) = m : f(x) = 1] = 1

We consider selective-attribute CCA security for ABE and define the security
experiment ExptABEA,CCA(1λ) in Fig. 11.

Definition 14 An attribute-based encryption ABE is said to be selective-attribute
CCA secure if, for all PPT adversary A, there exists a negligible function negl
such that

AdvABEA,CCA(λ) = |Pr[ExptABEA,CCA(1λ) = 1] − 1
2 | < negl(λ)

Construction. We construct a selective-attribute CCA secure ABE based on the
ABE of [15] which was built using witness encryption. The following ingredients
are utilized:
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1. x∗ ← A(1λ)

2. (pp,msk)← Setup(1λ)

3. (m0,m1)← AOsk(·),OD(·)(pp)
4. b← {0, 1}
5. c∗ ← Enc(pp, x∗,mb)

6. b′ ← AOsk(·),OD(·)(c∗)
7. return 1 if (b′ = b) ∧ (|m0| = |m1|)

Osk(·):
1. input: f ∈ Fλ
2. compute skf ← KeyGen(msk, f)
3. return skf if f(x∗) = 0, else ⊥

OD(·):
1. input: (f ∈ Fλ, c)
2. compute skf ← KeyGen(msk, f)
3. return Dec(pp, skf , c)

unless (f, c) = (f, c∗) ∧ f(x∗) = 1, else ⊥

Fig. 11: ExptABEA,CCA(1λ)

– A pseudorandom generator PRG : {0, 1}λ → {0, 1}2λ.
– A LP-CCA secure symmetric key encryption SKE = (Gen, Enc, Dec).
– A perfectly binding and computationally hiding commitment scheme Com(·).
– A non-interactive zap = (Prv, Vrfy) for the NP language L′ = {(η1, η2,
f) : (∃w1 such that η1 = Com(0;w1)) or (∃(w2, x) such that η2 = Com(0n;
w2) ∧ f(x) = 0)} (see the Def. 16 of App. A).

– A WPRF = (Gen, F, Eval) for the NP language L = {(x, v) : (∃ u ∈ {0, 1}λ
such that PRG(x⊕ u) = v) or (∃(η1, η2, f, π) such that Vrfy((η1, η2, f), π) =
1 ∧ f(x) = 1)} with a relation R : X ×W → {0, 1}.
We describe our construction in Fig. 12. For correctness, we notice that when-

ever f(x) = 1 holds (η1, η2, f, π) becomes a valid witness of the statement (x, v)
corresponding to the relation R of WPRF where π ← zap.Prv((η1, η2, f), r). In
other words, zap.Vrfy((η1, η2, f), π) = 1 and we have

WPRF.F(fk, (x, v)) = WPRF.Eval(ek, (x, v), (η1, η2, f, π)) [Decyption]

= WPRF.Eval(ek, (x, v), u) [Encryption]

Therefore, the same randomness is used to obtain the SKE key during encryption
and decryption if f(x) = 1 and the original message can be recovered from ĉ.
The key efficiency factor is that the size of ciphertext (excluding the size of the
attribute) is |c| = |cx| + |v| = |m| + 2λ which is optimal for any ABE scheme.
Note that, plaintext and ciphertext sizes are the same for the SKE encryption.

Theorem 3 The ABE = (Setup, KeyGen, Enc, Dec) described in Figure 12 is
a selective-attribute CCA secure attribute-based encryption if PRG is a secure
pseudorandom generator, Com is a perfectly binding and computationally hid-
ing commitment scheme, zap is a non-interactive zap, WPRF is a selectively
secure puncturable witness pseudorandom function and SKE is a LP-CCA secure
symmetric key encryption. (The proof is shifted to App. A.1)

4.1 From ABE to CCA1 Secure MAFHE

This section is devoted to present a CCA1 secure multi-attribute pure FHE
(MAFHE) using the technique involved in our ABE and a multi-key pure FHE.
At first, we state a formal definition of MAFHE.
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Setup(1λ):

1. (fk, ek) ← WPRF.Gen(1λ, R)

2. η1 = Com(0; r), η2 = Com(0λ; s)
3. set pp = (ek, η1, η2), msk = r
4. return (pp,msk)

Enc(pp, x,m):

1. parse pp = (ek, η1, η2)

2. u← {0, 1}λ, v ← PRG(x⊕ u)
3. y ← WPRF.Eval(ek, (x, v), u)

4. K← SKE.Gen(1λ; y)
5. cx ← SKE.Enc(K,m)
6. return c = (x, cx, v)

KeyGen(pp,msk, id):

1. parse pp = (ek, η1, η2),msk = r
2. πf ← zap.Prv((η1, η2, f), r)
3. set skf = (f, πf )
4. return skf

Dec(pp, skf , c):

1. parse pp = (ek, η1, η2)
2. parse skf = (f, π), c = (x, ĉ, v)
3. y ← WPRF.Eval(ek, (x, v), (η1, η2, f, π))

4. K← SKE.Gen(1λ; y)
5. return SKE.Dec(K, ĉ)

Fig. 12: Construction of ABE with optimal ciphertexts

Definition 15 A multi-attribute (pure) fully homomorphic encryption (MAFHE)
scheme for a function class {Fλ} and an attribute space X is a tuple of PPT
algorithms (Setup, KeyGen, Enc, Eval, Dec) where Setup, KeyGen and Enc are the
same as in a normal ABE scheme (Def. 13). The remaining two algorithms work
as follows:

• ĉ ← Eval(pp,C , (c1, . . . , c`)) : a deterministic algorithm that on input a
public parameter pp, a boolean circuit C of polynomial size and ciphertexts
c1, . . . , c` (each of which encrypts a bit using Enc), outputs an evaluated
ciphertext ĉ.
• Dec(pp, (skf1 , . . . , skf`), c) ∈ {0, 1} ∪ {⊥} : a deterministic algorithm that

on input a public parameter pp, a sequence of secret-keys (skf1 , . . . , skf`)
corresponding to the functions f1, . . . , f` ∈ Fλ and a ciphertext c encrypted
under the attributes x1, . . . , x` ∈ X , outputs either a message m ∈ {0, 1} or
⊥ if it fails.

The MAFHE is said to be correct and compact if the following hold:

– correctness: For (pp,msk) ← Setup(1λ), {skfi ← KeyGen(pp,msk, fi)}i∈[`]

and any `-tuple messages (m1, . . . ,m`) ∈ {0, 1}` such that {ci ← Enc(pp, xi,
mi)}i∈[`] satisfying fi(xi) = 1 ∀i ∈ [`] and a boolean circuit C of polynomial
size, we have

Pr[Dec(pp, (skf1 , . . . , skf`),Eval(pp,C , (c1, . . . , c`))) = C (m1, . . . ,m`)] = 1

– compactness: There exists a fixed polynomial p(·) such that the size of an
evaluated ciphertext is bounded by p(λ). This means |ĉ| does not depend on
the circuit C .

We consider CCA1 security for MAFHE where the adversary is given access to the
decryption oracle until it receives the challenge ciphertext. We skip the formal
description of the security as it is almost similar to Def. 14 where the decryption
oracle is not provided after generating the challenge ciphertext.
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Setup(1λ):

1. (fk, ek) ← WPRF.Gen(1λ, R)

2. η1 = Com(0; r), η2 = Com(0λ; s)

3. params ← MFHE.Setup(1λ)
4. set pp = (ek, η1, η2, params), msk = r
5. return (pp,msk)

KeyGen(pp,msk, f):

1. parse pp = (ek, η1, η2, params),msk = r
2. πf ← zap.Prv((η1, η2, f), r)
3. set skf = (f, πf )
4. return skf

Eval(pp,C , (ct1, . . . , ct`)):

1. parse pp = (ek, η1, η2, params)
2. parse cti = (cvi , xi, vi, pkvi ), ∀i ∈ [`]

3. for i = 1 to `
4. ĉi ← MFHE.Expand((pkv1 , . . . , pkv`

), i, cvi )

5. ĉ← MFHE.Eval(params,C , (ĉ1, . . . , ĉ`))
6. return ĉt = (ĉ, {xi, vi, pkvi}i∈[`])

Enc(pp, x,m):

1. parse pp = (ek, η1, η2, params)

2. u← {0, 1}λ, v ← PRG(x⊕ u)
3. yv ← WPRF.Eval(ek, (x, v), u)
4. (pkv, skv)← MFHE.KeyGen(params; yv)
5. cv ← MFHE.Enc(pkv,m)
6. return ct = (cv, x, v, pkv)

Dec(pp, (skf1 , . . . , skf` ), ĉt):

1. parse pp = (ek, η1, η2, params)
2. parse skfi = (fi, πi), ∀i ∈ [`]

3. parse ĉt = (ĉ, {xi, vi, pkvi}i∈[`])
4. for i = 1 to `
5. yi ← WPRF.Eval(ek, (xi, vi), (η1, η2, fi, πi))
6. (pki, ski)← MFHE.KeyGen(params; yi)
7. if pki 6= pkvi
8. return ⊥
9. return MFHE.Dec(params, (sk1, . . . , sk`), ĉ)

Fig. 13: Construction of multi-attribute pure FHE

Construction. We are all set to describe a MAFHE scheme based on our ABE.
The idea is similar to how we built the MIFHE from our IBE. Consequently, we
need the same set of primitives as required in the ABE of Sec. 4 except the SKE
is replaced by a semantically secure pure MFHE. The MAFHE for a function
class {Fλ} and message space {0, 1} is described in Fig. 13. Note that, the setup
algorithm does not take into account any predefined depth of supported circuits
as we assume circular security of the underlying MFHE. The correctness can be
similarly argued as in our ABE scheme along with the correctness of MFHE. The
CCA1 security of our MAFHE is followed from the proof of Th. 3.

Theorem 4 The MAFHE = (Setup, KeyGen, Enc, Eval, Dec) described in Figure
13 is a selective-attribute CCA1 secure multi-attribute pure fully homomorphic
encryption if PRG is a secure pseudorandom generator, Com is a perfectly bind-
ing and computationally hiding commitment scheme, zap is a non-interactive
zap, WPRF is a selectively secure puncturable witness pseudorandom function
and MFHE is a semantically secure multi-key pure fully homomorphic encryp-
tion. (The proof is discussed in App. A.2)

5 Conclusion

We propose two generic approaches to construct IBE and ABE from WPRF, both
of which are CCA secure and achieve a ciphertext of size |m| + 2λ. Existing
schemes do not satisfy such optimal ciphertext size along with CCA security.
Additionally, with the help of a pure MFHE, we convert our IBE and ABE into
CCA1 secure MIFHE and MAFHE schemes respectively. Existing MIFHE and
MAFHE [11] are CPA secure and rely on (possibly stronger assumption of) iO.
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A CCA Security of Our ABE and MAFHE

In this section, we proof the selective-attribute CCA security of our ABE de-
scribed in Sec. 4. The adversary A will submit the challenge attribute before
setup. A has two oracles. A secret-key oracle Osk that on input a function
f ∈ Fλ outputs skf ← KeyGen(pp, msk, f). The other one is a decryption oracle
OD that on input (f, c) first computes skf ← KeyGen(pp, msk, f) and outputs
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Dec(pp, skf , c). Note that, A can not query the challenge ciphertext c∗ with a
function f such that f(x∗) = 1 and all secret-key queries {fi} must satisfy
fi(x

∗) = 0. We begin with the definition of a non-interactive zap.

Definition 16 [22] A non-interactive zap (or simply zap) for an NP language
L with a relation R is a tuple of PPT algorithms (Prv, Vrfy) where Prv is an
efficient prover that takes as input a statement x, a witness w and outputs a
proof π and Vrfy is a verification algorithm which takes as input a statement-
proof pair (x, π) and outputs 1 if π is a valid proof showing x ∈ L, otherwise 0.
The algorithms also satisfy the following properties:
– perfect completeness: For any PPT adversary A, it holds that

Pr[(x,w)← A(1λ);π ← Prv(1λ, x, w) : Vrfy(x, π) = 1 if R(x,w) = 1] = 1

– perfect soundness: For all x 6∈ L and for all PPT adversary A we have

Pr[π ← A(1λ, x) : Vrfy(x, π) = 1] = 0

– witness-indistinguishability : For all non-uniform PPT (interactive) adversary
A the difference between the following two probabilities is negligible

Pr

[
(x,w0, w1)← A(1λ);π ← Prv(1λ, x, w0) : A(π) = 1 ∧ R(x,wb) = 1 for b ∈ {0, 1}

]

and Pr

[
(x,w0, w1)← A(1λ);π ← Prv(1λ, x, w1) : A(π) = 1 ∧ R(x,wb) = 1 for b ∈ {0, 1}

]

A.1 Proof of Th. 3

Proof. Let us consider the following hybrid games. In each game we assume that
the size of challenge messages are equal.

Game 0: It is the standard experiment denoted as ExptABEA,CCA(1λ). Let x∗ be the
challenge attribute and c∗ = (x∗, cx∗ , v

∗) be the challenge ciphertext.
Game 1: It is the same experiment as Game 0 except that we now compute yx∗ ←

pWPRF.F(fk, (x∗, v∗)) instead of using pWPRF.Eval. By the correctness of
Eval, the ciphertext distributions are the same in both games.

Game 2: It is same as Game 1 except that we pick v∗ uniformly at random from
{0, 1}2λ instead of computing v∗ ← PRG(x∗⊕u). Since u is chosen uniformly
at random from {0, 1}λ, the distribution of x∗⊕u is uniform over {0, 1}λ. The
security of PRG (Def. 1) implies that the games 1 and 2 are indistinguishable.

Game 3: It is exactly same as Game 1 except that we set η2 = Com(x∗; s) instead
of committing to 0λ in the setup. The computationally hiding property of
Com ensures that Game 2 and Game 3 are indistinguishable.

Game 4: It is identical to Game 3 except we change the key generation oracle
Osk(·). Instead of using r to prove the statement (η1, η2, f), we use (s, x∗)
as the witness where s is the randomness used to generate η2. If f(x∗) = 0
then Osk(f) returns (f, πf ) where πf ← zap.Prv((η1, η2, f), (x∗, s)) (however,
OD(·) still uses r to generate secret-keys). Note that, an adversary is only
allowed to query such a function f that satisfies f(x∗) = 0. Since the state-
ment remains the same, witness-indistinguishability property of zap ensures
that the games 3 and 4 are indistinguishable.
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Game 5: It is same as Game 4 except that we change OD(·) as follows where K
← SKE.Gen(1λ; y∗) is the SKE key used to encrypt mb:
OD,K(·):
1. input: (f ∈ Fλ, c)
2. parse c = (x, ĉ, v)
3. if (ĉ = c∗ ∧ f(x) = 1) ∨ (ĉ 6= c∗ ∧ f(x) = 0)
4. return ⊥
5. else if (x, v) = (x∗, v∗) ∧ f(x) = 1
6. return SKE.Dec(K, ĉ)
7. else if f(x) = 1
8. y ←WPRF.F(fk, (x, v))
9. K̄← SKE.Gen(1λ; y)

10. return SKE.Dec(K̄, ĉ)
To avoid secret-key generation, we use the secret function key fk to generate
the decryption key of SKE. One can observe that the oracles OD and OD,K

are functionally equivalent. Hence, the two games are indistinguishable.
Game 6: It is same Game 5 except the fact that we change η1 to be a commitment

of 1, instead of committing to 0. By the computationally hiding property of
Com, Game 5 and Game 6 are indistinguishable.

Game 7: It is same as Game 6 except we chose y∗ uniformly from Y (range
of WPRF.F(fk, ·)) instead of setting it as y∗ ← WPRF.F(fk, (x∗, v∗)). Also,
we slightly modify the decryption oracle from OD,K to OD∗,K which now
uses a function Ofk(·) that on input z outputs WPRF.F(fk, z) if z 6= (x∗, v∗),
otherwise returns ⊥. That is, the change is in the line 8 of OD,K. We compute
y ← Ofk((x, v)) in the line 8 of OD∗,K. Again, we observe that these two
decryption oracles are functionally equivalent by the definition of Ofk(·).
In this game, we claim that the statement (x∗, v∗) does not have any wit-
ness corresponding to the relation R. Since v∗ is uniformly chosen from
{0, 1}2λ, it is very unlikely to get u such that PRG(x∗ ⊕ u) = v∗. There-
fore, R((x∗, v∗), (η1, η2, f, π, u)) = 1 means there exists a valid proof π ←
zap.Prv((η1, η2, f), w) and f(x∗) = 1. Thus we should have either η1 =
Com(0;w) or w = (x,w′) satisfying η2 = Com(0λ;w′) and f(x) = 0. Note
that, η1 is a commitment of 1 and η2 is a commitment of x∗. Thus, by the
statistical binding property of Com, there cannot exist a valid witness for
(η1, η2, f). In other words, zap.Vrfy((η1, η2, f), π) = 0 for all possible π. This
ensures that (x∗, v∗) 6∈ L. By the similar argument as in Lemma 2 (of Sec.
3), one can show that Game 6 and Game 7 are indistinguishable due to the
selective security of WPRF.

In Game 7, the encryption key K becomes independent of the challenge attribute.
Therefore, SKE.Enc(K, m0) is indistinguishable from SKE.Enc(K, m1) by the LP-
CCA security of SKE (Remark 1). This completes the proof.

A.2 Proof of Th. 4

Proof. The proof is similar to that of Th. 3 with few changes. Firstly, we replace
the SKE by the semantically secure MFHE throughout the proof of Th. 3. Sec-
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ondly, observe that the semantic security of MFHE is sufficient as we consider
CCA1 security for which A is not allowed to query the decryption oracle after the
challenge query. More specifically, the secret-key skv∗ , associated with the chal-
lenge ciphertext, is not needed for any decryption oracle used in the proof. We
omit the lines 5 and 6 from both the oracles OD,K and OD∗,K, and rename them
by OD̃ and O

D̃∗
respectively. Finally, in Game 7 we select y∗ uniformly at ran-

dom instead of setting it as y∗ ←WPRF.Eval(fk, (x∗, v∗)). Thus, the MFHE key
pair (pkv∗ , skv∗)← MFHE.KeyGen(params; y∗) is independent of the challenge at-
tribute. Hence, the semantic security of MFHE ensures that the ciphertext distri-
butions (x∗,MFHE.Enc(pkv∗ , 0), v∗, pkv∗) and (x∗,MFHE.Enc(pkv∗ , 1), v∗, pkv∗)
are indistinguishable which completes the proof.
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