
Practical and Secure Circular Range Search on
Private Spatial Data

Zhihao Zheng ∗, Zhenfu Cao∗†, Jiachen Shen∗
∗Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

†Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen and
Shanghai Institute of Intelligent Science and Technology, Tongji University, China

Email: 51184501091@stu.ecnu.edu.cn, {zfcao, jcshen}@sei.ecnu.edu.cn

Abstract—With the location-based services (LBS) booming, the
volume of spatial data inevitably explodes. In order to reduce
local storage and computational overhead, users tend to outsource
data and initiate queries to the cloud. However, sensitive data or
queries may be compromised if cloud server has access to raw
data and plaintext token. To cope with this problem, searchable
encryption for geometric range is applied. Geometric range
search has wide applications in many scenarios, especially the
circular range search.

In this paper, we propose a practical and secure circular
range search scheme (PSCS) to support searching for spatial
data in a circular range. With our scheme, a semi-honest cloud
server will return the data for a given circular range correctly
without revealing index privacy or query privacy. We propose
a polynomial split algorithm which can decompose the inner
product calculation neatly. Then, we formally define the security
of our scheme and theoretically prove that it is secure under
same-closeness-pattern chosen-plaintext attacks (CLS-CPA). In
addition, we demonstrate the efficiency and accuracy through
analysis and experiments compared with existing schemes.

Index Terms—spatial data, cloud server, circular range search,
index privacy, query privacy

I. INTRODUCTION

Geometric range search is an indispensable function in most
SQL and NoSQL databases, which has received increasing
attention due to its wide applications, such as in geographic
information systems and computational geometry [1]. In a spa-
tial database, spatial data are usually represented by coordinate
points in a Euclidean space and a geometric range query is
represented by a geometric shape. Finally, database returns all
spatial data that fall in the query range to user. In particular,
circular range search (as shown in Fig. 1) is the most frequent
of all geometric range search. Most applications on mobile
devices provide location-based services about circular range
search. For example, Yelp can help us find supermarkets within
one mile, and FourSquare can help us find friends nearby.

It is exactly because of rapid developments of these appli-
cation services that the volume of spatial data is increasing in
an unstoppable manner, causing some companies to outsource
data to cloud service providers (e.g., Amazon EC2) to reduce
local storage and computational overhead. However, a realistic
problem is that we consider cloud servers are semi-honest,
which means if we do not encrypt original spatial data and
queries, then cloud servers can easily obtain private data
and interests of users. Therefore, it is necessary to design a

Fig. 1. Circular range search.

protocol to prevent privacy leakage. One of the most naive
methods is to directly encrypt spatial data with traditional
encryption like AES. Unfortunately, it requires huge computa-
tional overhead to perform matching operations on ciphertext
and inevitably cause search functionality concerns. Under such
requirements, searchable encryption [2] was proposed.

However, most existing searchable encryption schemes [3]-
[5], [30] are designed for regular SQL queries, such as
equivalent query and keyword query. Although some previous
schemes use order-preserving encryption (OPE) [6], [7] to
support axis-parallel rectangular range search on encrypted
data, but these solutions cannot be deployed in real scenarios
due to the security issues of order-preserving encryption and
incompatibility with circular range search. Recently, Wang et
al. proposed a novel scheme [8] to support circular range
search over encrypted data, its main idea is to generate a
set of concentric circles to represent a circular range query.
Considering the diversity of queries, Wang et al. proposed
the first solution [9] to support arbitrary geometric range
search. Scheme in [10] proposes a two-level search as a novel
structure for encrypted spatial data, which improves the search
efficiency of [9]. The state-of-the-art work [11], [12] replace
different types of geometric ranges with their circumscribed
polygons and fitted curves, respectively.

A considerable part of searchable encryption schemes men-
tioned above return search results according to computation
of encrypted data (mostly index) and encrypted query (i.e.,
a search token). This means if a polynomial contains the



relationship between data and query is known, we can separate
the data from the query with our proposed split algorithm.
However, the existing solutions for circular range search still
suffer low accuracy and efficiency.

In this paper, we propose a circular range searchable en-
cryption (CRSE) scheme named practical and secure circular
range search (PSCS), which can efficiently and accurately
retrieve points inside a circle range without revealing sensitive
data points or private circular range queries to a semi-honest
server. In PSCS, we use secure kNN computation [13] and
order-preserving encryption as building blocks to protect index
privacy and query privacy, R-Tree is utilized to achieve faster-
than-linear search efficiency. In general, our contributions can
be summarized as the following three aspects:
• We propose a highly efficient, secure and accurate circu-

lar range search scheme over encrypted cloud data, where
the computation of inner product is skillfully exploited to
create search token, which significantly reduce the local
storage and computational overhead in the process of
index and search token generation.

• We propose a polynomial split algorithm, and leverage it
to decompose inner product, which is a stepping stone
for our later design in circular range search scheme.

• We theoretically prove PSCS is secure under same-
closeness-pattern chosen-plaintext attacks (CLS-CPA) in
terms of index privacy and query privacy. In addition,
extensive experiments deployed in real cloud platform
(Amazon EC2) demonstrate the practicality and efficiency
of our scheme compared with existing schemes.

II. RELATED WORK

A. Circular Range Search

Recently, Wang et al. proposed a novel scheme [8] to
support circular range search over encrypted data, its main
idea is to split a circular range into a set of concentric circles
and uses a heavy building block named Shen-Shi-Waters
encryption [14] to determine whether an encrypted data point
fall on the border of these concentric circles. Besides, spatial
data in their scheme are supposed to be integers. Zhu et al.
proposed a circular range search scheme [15] over encrypted
data which combines with bilinear-pairing, thus requires too
much computational overhead during the search process.

B. Rectangular Range Search

Some research works have solved rectangular range search
on encrypted spatial data. Specifically, Boneh et al. [16]
designed a public-key scheme by leveraging Hidden Vector
Encryption (HVE) in a novel way, which can test whether
a point is inside a hyper-rectangle over encrypted data. For
the purpose of achieving high efficiency, tree structures are
utilized in several schemes [17], [18]. In addition, using order-
preserving encryption can meet the requirement of ciphertexts
comparison operation. Unfortunately, all of these works can
only be applied to rectangular range search, but not for circular
range search.

Fig. 2. System model with a cloud server, a data owner and a data user.
Saptial data and circular range queries are examples in 2-dimensional space.

C. Range Search for Arbitrary Geometry

Wang et al. proposed the first protocol [9] about generalized
geometric range search over encrypted spatial data. Its main
idea is to transform arbitrary geometric queries into a same
form by enumerating all the integer points fall in the geometric
range, then create data index and search token utilizing Bloom
filter [19] and predicate encryption [14]. After that, Wang
et al. embed a hash table and a set of link lists in their
two-level search [10] as a novel structure for spatial data
which achieve sublinear search efficiency. However, these
schemes are not practical for large-size datasets because they
enumerate all spatial data in a geometric range query and
encrypt them as search token. Besides, predicate encryption in
these schemes contains expensive bilinear-pairing operations.
Xu et al. propose an efficient geometric range query scheme
(EGRQ) [11] supporting searching and access control over
encrypted spatial data which uses secure kNN computation and
polynomial fitting technique as building blocks, it inevitably
introduces non-negligible false positives, where these false
positives indicate the data that inside the fitted curves are not
inside the original geometric range. The work [12] proposed
by Luo et al. replaced different types of geometric ranges
with their circumscribed polygons, since the query range
after conversion is not the original range, the search results
returned to users are not completely accurate, which can lead
to dissatisfaction with the service. Besides, Li et al. [31] point
out the insecurity of [12] and make up for that.

III. PROBLEM STATEMENT

A. System and Threat Model

In our scheme, the system model shown in Fig. 2 includes
three entities:

• Data Owner: Data owner encrypts all the collected user
spatial data, uploads the encrypted data and the index
attach to each data to cloud server to prevent data privacy
leakage. Besides, data owner sends the encrypted circular
range query back to data user once receives query in
plaintext.



• Data User: Data user takes one diameter of circle and
obtain the two intersections with the circle. After that,
user sends a plaintext to data owner and waits to obtain
a search token which will be forwarded to cloud server.

• Cloud Server: A large amount of spatial data is stored in
cloud server. Once cloud server receives a search token,
it performs according to the search algorithm and returns
corresponding encrypted search results to the user. While
cloud server neither knows what user is searching for nor
returned real data.

A cloud server is considered as a semi-honest (i.e., honest-
but-curious) entity, which assumes it provides reliable services,
while it will try to learn the private information from the
outsourced dataset and the circular range queries. In order to
prevent private information leakage, data owner only stores
the encrypted form of spatial dataset on cloud server, and data
user only submits the encrypted form of circular range query
(i.e., a search token) to the cloud server.

B. Definition of CRSE

Notations. We assume D and Q denote a spatial data point
and a circular range query, respectively. ΩMφ is used to denote
the data space, where φ is the number of dimensions and
M is the size of each dimension. A circular range query Q
is presented as Q = {PA, PB}, where PA and PB are two
intersections of a diameter with the circle.

Definition 1:(Symmetric-Key CRSE). A symmetric-key
CRSE is a tuple of four polynomial-time algorithms Π =
(GenKey, Enc, GenToken, Search) such that:
• SK←GenKey(1λ): is a probabilistic key generation algo-

rithm that is run by the data owner to setup the scheme.
It takes a security parameter λ as input, and outputs a
secret key SK.

• C←Enc(SK, D): is a probabilistic algorithm run by the
data owner to encrypt a data point. It takes a secret key
SK and a data record D as input, where D ∈ ΩMφ , and
outputs a ciphertext C.

• T←GenToken(SK, Q): is a probabilistic algorithm run
by the data owner to generate a search token for a
given circular range query. It takes a secret key SK and
a circular range query Q= {PA, PB} as input, where
Q∈ ΩMφ , and outputs a search token T.

• I←Search(T, C): is a deterministic algorithm run by the
server to search on encrypted data. It takes a search token
T and a ciphertext C as input, and returns an identifier
I (e.g., addresses of data points in the cloud server) of
ciphertext C, if the corresponding data record D ∈ Q;
otherwise, outputs ⊥.

Correctness. We say that the above symmetric-key CRSE
scheme is correct if for all λ ∈ N, all SK output by
GenKey(1λ), all D ∈ ΩMφ , all C output by Enc(SK, D), all
Q ∈ ΩMφ , all T output by GenToken(SK, Q),
• If D∈ Q: Search(T, C) = I;
• If D/∈ Q: Pr [Search(T, C) = ⊥] ≥ 1-ε;

where ε is a very small (possibly negligible) probability.

IV. PRELIMINARIES

In this section, we introduce some basic knowledge includ-
ing secure kNN computation, Order-Preserving Encryption
(OPE) and R-Tree, which we use as stepping stones to design
our complete scheme.

A. Secure kNN Computation

Wong et al. [13] proposed a secure k-nearest neighbor
scheme, which is able to calculate the inner product without re-
vealing privacy. Generally speaking, secure kNN computation
is made up of for polynomial-time algorithms: SkC.GenKey,
SkC.Enc, SkC.GenToken and SkC.Search.
• SkC.GenKey

(
1λ
)
: Given a security parameter λ, data

owner generates a secret key SK = (sk1, S,M1,M2),
where sk1 is leveraged to encrypt raw spatial data, S is a
(8 + N)-dimensional binary vector, and M1,M2 denote
two (8 +N)× (8 +N)-dimensional invertible matrices.

• SkC.Enc (SK,D): Given SK, data owner first encrypts
the raw data utilizing sk1. After this, a (8 + N)-
dimensional vector D represents a index for each data
point will be generated, and D will be divided into
Da and Db with S. Finally, Da and Db will be en-
crypted to ciphertext C as an encrypted index, then
C = {DaM1, DbM2} will be sent to the cloud server.

• SkC.GenToken (SK,Q): Given a query Q, a search
user first send Q to data owner. Then, data owner
generates a (8 + N)-dimensional vector R and choose
a positive random number r to multiply R as R∗. With
SK, data owner splits R∗ into Ra and Rb. After that,
a token can be expressed as T =

{
M−11 Ra,M

−1
2 Rb

}
.

Finally, T will be sent to search user and search user will
submit T to cloud server.

• SkC.Search (C, T ): After receiving the encrypted index
C and the search token T , cloud server will perform the
following calculations:

RES = C · T
= {DaM1, DbM2} ·

{
M−11 Ra,M

−1
2 Rb

}
= Da ·Ra +Db ·Rb = D ·R∗

= r (D ·R) (1)

And the cloud server will return the ciphertext I asso-
ciated with D to search user if RES satisfy the preset
conditions.

B. Order-Preserving Encryption

Order-Preserving Encryption (OPE) [6], [7] is a special
type of encryption, we can use it to compare the orders
of ciphertextes directly since the orders of ciphertexts are
consistent with the orders of their plaintexts (e.g., if m1 > m2,
then [m1] > [m2]), where we use [·] to describe the form of
ciphertexts. Because of this property, OPE can be leveraged to
sort on encrypted data without revealing sensitive information.
Generally speaking, an OPE scheme contains three algorithms,
including GenKey, Enc, and Dec, Specifically,



Fig. 3. An example of building encrypted R-Tree.

• sk ← GenKey
(
1λ
)
: Given a security parameter λ,

output a secret key sk.
• [m]← Encsk(m): Given a plaintext m and a secret key
sk, output a ciphertext [m].

• m ← Decsk([m]): Given a ciphertext [m] and a secret
key sk, output a plaintext m.

In this paper, we will use OPE to compare the orders of
ciphertexts on encrypted spatial data, which can correctly and
efficiently perform some geometric comparisons with R-tree
structures.

C. R-Tree

The main idea of building an R-tree [20] is to group nearby
spatial data according to the distance relationship and include
them to a minimal bounding box. As illustrated in Fig. 3, each
leaf node in an R-tree is a spatial data point, and each non-leaf
node represents a rectangle.

In this paper, we generate a minimal bounding rectan-
gle(MBR) covering the original circular range query. Gen-
erally speaking, given this minimal bounding rectangle, the
search process of an R-tree starts from the root node and
performs as follows:

1)If the MBR intersects with the rectangle of a deepest non-
leaf node, continue to check its children(i.e., leaf nodes) as
described in next step. Otherwise, return null.

2)A Children node above may exactly in the circular range
we search, or it is not inside the original circle but inside the
MBR. We test all data points representing these nodes in our
scheme, if the results satisfy the preset conditions, return these
points. Otherwise, return null.

V. CIRCULAR RANGE SEARCHABLE ENCRYPTION

A. Main Idea

The main idea of our design is to determine the positional
relationship between a point and a circular range query by
calculating the inner product. Specifically, if AB is known to
be a diameter of a circle Q, and P denotes a point in the data
space, then the following conclusions are made (we assume
that the points on the boundary of the circle are also in the
circle).
−→
PA ·

−→
PB ≤ 0⇐⇒Point P in the circle Q

−→
PA ·

−→
PB > 0⇐⇒Point P outside the circle Q

Algorithm 1 Polynomial Split
Input:

Given a polynomial P that can express a certain geometric
meaning.

Output:
Output two vectors ~u and ~v, where ~u only contains
information about data and ~v only contains information
about query.

Interestingly, we can naturally leverage secure kNN com-
putation to calculate

−→
PA ·

−→
PB, however, we can’t exploit

it directly. That’s because both
−→
PA and

−→
PB contain the

data information. Considering that one vector in secure kNN
computation is the index of the point P and the other is the
description about the circle Q, thus the main step is to split
−→
PA ·

−→
PB into two independent vectors that one contains infor-

mation about the point P and the other contains information
about the circle Q with Algorithm 1. More specifically, we
can easily know

−→
PA= (Ax − Px, Ay − Py) (2)

−→
PB= (Bx − Px, By − Py) (3)

Then, we simply split
−→
PA ·

−→
PB into an expression of two

vectors described in Algorithm 1:

−→
PA ·

−→
PB = (Ax − Px)(Bx − Px) + (Ay − Py)(By − Py)

=
(
Ax ·Bx −Ax · Px −Bx · Px + P 2

x

)
+
(
Ay ·By −Ay · Py −By · Py + P 2

y

)
= 1 · (Ax ·Bx) + Px · (−Ax) + Px · (−Bx) + P 2

x · 1
+ 1 · (Ay ·By) + Py · (−Ay) + Py · (−By) + P 2

y · 1
= (1, Px, Px, P

2
x , 1, Py, Py, P

2
y ) ◦ (Ax ·Bx,−Ax,−Bx, 1,

Ay ·By,−Ay,−By, 1)

=

8∑
i=1

ui · vi (4)

Where ~u = (u1, u2, u3, u4, u5, u6, u7, u8) = (1, Px, Px, P
2
x ,

1, Py, Py, P
2
y ), ~v = (v1, v2, v3, v4, v5, v6, v7, v8) = (Ax ·Bx,



−Ax,−Bx, 1, Ay ·By,−Ay,−By, 1) and we have

−→
PA ·

−→
PB ≤ 0⇐⇒

8∑
i=1

ui · vi ≤ 0 (5)

−→
PA ·

−→
PB > 0⇐⇒

8∑
i=1

ui · vi > 0 (6)

Algorithm 2 Intersect
Input:

Given two encrypted rectangles [B] = ([Bll], [Bur]) and
[V ] = ([V ll], [V ur]) , where [Bll] = ([bll1 ], [bll2 ]), [Bur] =
([bur1 ], [bur2 ]), [V ll] = ([vll1 ], [vll2 ]), [V ur] = ([vur1 ], [vur2 ])

Output:
Output true if B ∩ V 6= Ø ; otherwise, output false.

1: flag = true;
2: if ([bur1 ] < [vll1 ]) or ([vur1 ] < [bll1 ]) or ([bur2 ] < [vll2 ]) or

([vur2 ] < [bll2 ]) then
3: flag = false;
4: end if
5: return flag;

B. PSCS

• SK←GenKey(1λ): Given a security parameter λ,
the data owner generates the secret key SK =
(sk1, sk2, S,M1,M2), where sk1 and sk2 are symmetric
keys leveraged to encrypt raw spatial data and MBR,
respectively. S is a (8 + N)-dimensional binary vector
used to splits plaintext vectors, and M1,M2 denote two
(8+N)×(8+N)-dimensional invertible matrices utilized
to encrypt the vectors split by S.

• C←Enc (SK,D): Given a secret key SK and a
spatial data point P (Px, Py), data owner first en-
crypts P (utilizing AES) to fundamentally protect
data privacy and generate a plaintext index D =
(1, Px, Px, P

2
x , 1, Py, Py, P

2
y ) for each data point, then

place encrypted data point into the corresponding rectan-
gle according to the R-tree generation rule and modify D
to D∗ = (1, Px, Px, P

2
x , 1, Py, Py, P

2
y , 1, 1, · · · , 1︸ ︷︷ ︸

N

). Next,

the encrypted D∗ is split by the binary vector S and the
invertible matrices M1,M2, respectively. Specifically,if
S[i] = 1, set Da[i] + Db[i] = D∗[i], or set Da[i] =
Db[i] = D∗[i]. Finally, Da and Db will be encrypted to
ciphertext C with M1 and M2 as an encrypted index, and
C = {DaM1, DbM2} will be sent to the cloud server.

• T←GenToken (SK,Q): Given a secret key SK
and a circular range query Q, Q is represented
as two intersections A and B of a diameter with
a query circle, therefore Q = {A,B}, where A
and B denote two points A(Ax, Ay), B(Bx, By) will
be sent to data owner. Then data owner generates
R = (Ax ·Bx,−Ax,−Bx, 1, Ay ·By,−Ay,−By, 1),
and modify R to R

′
= (Ax ·Bx,−Ax,−Bx, 1, Ay ·By,

−Ay,−By, 1, n1, n2, · · · , nN︸ ︷︷ ︸
N

). Later, R∗ = rR
′

will be

calculated, where (n1, n2, · · · , nN ) indicates the noises
we choose to blind R, which satisfies

∑N
i=1 ni = 0, and

r denotes a random positive number. Then, data owner
splits R∗ as before. If S[i] = 0, set Ra[i] + Rb[i] =
R∗[i], otherwise, set Ra[i] = Rb[i] = R∗[i]. As illus-
trated in Section.IV-C, data owner generates a MBR =
([Bll], [Bur]) for query Q, where [Bll] and [Bur] denote
encrypted lower-left corner and upper-right corner of the
MBR, respectively. Hence the token can be expressed
as T =

{
M−11 Ra,M

−1
2 Rb, [B

ll], [Bur]
}
. Finally, data

owner will send T to the search user and the search user
will submit T to the cloud server.

• I←Search (C, T ): Once the cloud server receives token
T , the encrypted rectangle [Bll], [Bur] will be used to
traverse entire R-tree and find non leaf nodes intersected
with it. The concrete ergodic process is illustrated in
Algorithm 2. Then, if there is a non leaf node intersected
with [Bll], [Bur], for each point contained in non leaf,
the following calculation will be performed :

RES = C · T = {DaM1, DbM2} ·
{
M−11 Ra,M

−1
2 Rb

}
= Da ·Ra +Db ·Rb = D∗ ·R∗

= r(D∗ ·R
′
)

= r(Ax ·Bx −Ax · Px −Bx · Px + P 2
x

+Ay ·By −Ay · Py −By · Py + P 2
y +

N∑
i=1

ni)

= r(
−→
PA ·

−→
PB +

N∑
i=1

ni) (7)

Therefore, if RES ≤ 0, the corresponding ciphertext I
associated with C will be returned to the search user.

Correctness. Since we have
∑N
i=1 ni = 0, then RES can

be simplified as RES = r(
−→
PA ·

−→
PB), and the positive number

r will not affect the sign of the result.

• If RES ≤ 0: P ∈ Q;
• If RES > 0: P /∈ Q;

An Example of PSCS. Here we provide a concrete example
to show how PSCS works. For instance, given the number of
dimension φ = 2, a point P1 = (Px, Py) = (2, 2), a circle
Q = {A,B} = {(3, 1), (3, 5)} as shown in Fig. 4. According
to Eq. 4, a data owner first computes

~u = (1, 2, 2, 4, 1, 2, 2, 4),

~v = (9,−3,−3, 1, 5,−1,−5, 1).

Then, data owner will encrypt ~u = (1, 2, 2, 4, 1, 2, 2, 4)
to a ciphertext C with SkC.Enc(SK, ~u), and ~v =
(9,−3,−3, 1, 5,−1,−5, 1) will be used to generate a search
token T with SkC.GenToken(SK,~v). After that, the cloud



Fig. 4. An example

server evaluates SkC.Search(C, T ) and returns the encrypted
form of P1, because

~u ◦ ~v = (1, 2, 2, 4, 1, 2, 2, 4) ◦ (9,−3,−3, 1, 5,−1,−5, 1)

= 9− 6− 6 + 4 + 5− 2− 10 + 4 = −2 < 0

which indicates point P1 is in the circle Q. On the contrary,
as for point P2 = (5, 5), its vector form is

~u = (1, 5, 5, 25, 1, 5, 5, 25).

The cloud server will not return this point (i.e., point P2 is
outside the circle Q) because

~u ◦ ~v = (1, 5, 5, 25, 1, 5, 5, 25) ◦ (9,−3,−3, 1, 5,−1,−5, 1)

= 9− 15− 15 + 25 + 5− 5− 25 + 25 = 4 > 0.

Discussions. PSCS can be extended to higher-dimensional
space. For example, in three-dimensional space, we can still
leverage the inner product to determine whether a spatial data
point is in the sphere.

VI. SECURITY DEFINITIONS AND ANALYSIS

In this section, we first introduce the formal security def-
initions of our PSCS, and then analyze the security of our
scheme by rigorously following these security definitions.

A. Leakage Function

To describe all possible information leaked during the
whole process of PSCS, we first introduce an indispensable
concept in the searchable encryption security definition which
called leakage function L [21], [22], [23]. Especially, private
information leaked by the query Q on the dataset of index D
is expressed as L(D, Q). Informally, the leakage function in
our PSCS can be summarized as following aspects:

•Size Pattern: The cloud server knows both the total number
of indexes in the dataset and the total number of circular range
queries (i.e., search token) have been submitted by search user.

•Access Pattern: The cloud server learns the identifier
of each encrypted data returned for specific circular range
query(i.e., search token).

•Search Pattern: The cloud server reveals whether a same
encrypted spatial data is retrieved by different trapdoors..

These previous patterns are default information leaks in
searchable encryption. We can utilize existing cryptographic
primitives such as Oblivious RAMs [24] to protect access
pattern and search pattern. However, it suffers from inefficient
and may damage the scalability of searchable encryption, so
we put it out of the scope of this paper. Recent studies about
Oblivious RAMs[24]-[26] can give more details to interested
readers.

B. Formal Security Definitions

Considering the preceding leakage, we will define the
security definitions of our scheme. Since our design is built
from secure kNN computation (a Functional Encryption) [13],
we use the game-based approach to define our security like all
the previous FE-based searchable encryption [8], [16], [27] do.
Specifically, we can summarize the security issues in our PSCS
into two aspects, index privacy and query privacy. These two
aspects can both be strictly defined with indistinguish ability
under same-closeness-pattern chosen-plaintext attacks (IND-
CLS-CPA). The detailed security definitions of index privacy
and token privacy are given below:

1) Index Privacy: Informally speaking, index privacy of our
PSCS under IND-CLS-CPA means by submitting two datasets
of index D0 and D1, a computationally bounded adversary A
is able to adaptively choose a number of index requests and
token requests restricted by leakage function L. However, A
cannot distinguish these two datasets D0 and D1.

Definition 2 (IND-CLS-CPA Index Privacy): Let
∏

=
(GenKey,Enc,GenToken, Search) be a probabilistic
symmetric-key PSCS scheme over security parameter λ.
We define a security game between a challenger B and an
adversary A:

Init: Adversary A submits two datasets of index D0 and
D1 with the same number of index records to challenger B,
where D0 = {D0,1, · · · , D0,n}, D1 = {D1,1, · · · , D1,n},
and D0,i, D1,i ∈ ΩMφ , for 1 ≤ i ≤ n.

Setup: Challenger B runs GenKey(1λ) to generate secret
key SK = (sk1, sk2, S,M1,M2), and it keeps SK private.

Phase 1: Adversary A adaptively submits a number of
requests, where each request is one of the two following types:

• Index Request: On the j-th index request, adversary A out-
puts a dataset D′

j =
{
D′j,1, · · · , D′j,n

}
, and D′j,i ∈ ΩMφ ,

for 1 ≤ i ≤ n. Challenger B responses with encrypted
index C ′j = Enc(SK,D′j).

• Token Request: On the j-th token request, adversary A
outputs a circular range query Qj ∈ ΩMφ . Challenger B
responses with a search token Tj = GenToken(Sk,Qj),
where Qj is subjected to
1) L(D0, Qj) = L(D1, Qj);
2) For 1 ≤ i ≤ n, D0,i ∈ Qj ∧D1,i ∈ Qj
OR D0,i /∈ Qj ∧D1,i /∈ Qj ;
with 1) and 2).



Challenge: With D0,D1 selected in Init, challenger B flips
a coin b ∈ {0, 1} and returns Cb = Enc(SK,Db) to adversary
A.

Phase 2: Adversary A continues to adaptively submit a
number of requests, which are still subjected to the same
restrictions in Phase 1.

Guess: The adversary takes a guess b′ of b.
We say

∏
is secure against same-closeness-pattern chosen-

plaintext attacks on index privacy if for any polynomial time
adversary A in the above game, it has at most negligible
advantage

AdvIND−CLS−CPA−Index∏
,A (1λ) =

∣∣∣∣pr [b′ = b]− 1

2

∣∣∣∣ ≤ negl(λ)

where negl(λ) denotes a negligible function with parameter
λ in [28][29].

2) Query Privacy: Similarly, query privacy under IND-
CLS-CPA means by submitting two circular range queries
Q0 and Q1, a computationally bounded adversary A is able
to adaptively choose a number of index requests and token
requests restricted by leakage function L. However, A is not
able to distinguish these two circular range queries.

Definition 3 (IND-CLS-CPA Query Privacy): Let
∏

=
(GenKey,Enc,GenToken, Search) be a probabilistic
symmetric-key PSCS scheme over security parameter λ.
We define a security game between a challenger B and an
adversary A:

Init: Adversary A submits two circular range queries Q0

and Q1 with the same number of dimensions to challenger B,
where Q0, D1 ∈ ΩMφ .

Setup: Challenger B runs GenKey(1λ) to generate secret
key SK = (sk1, sk2, S,M1,M2), and it keeps SK private.

Phase 1: Adversary A adaptively submits a number of
requests, where each request is one of the two following types:

• Index Request: On the j-th index request, adversary A out-
puts a dataset Dj = {Dj,1, · · · , Dj,n}, and Dj,i ∈ ΩMφ ,
for 1 ≤ i ≤ n. Challenger B responses with encrypted
index Cj = Enc(SK,Dj), where Dj is subjected to
1) L(Dj , Q0) = L(Dj , Q1);
2) For 1 ≤ i ≤ n, Dj,i ∈ Q0 ∧Dj,i ∈ Q1

OR Dj,i /∈ Q0 ∧Dj,i /∈ Q1;
with 1) and 2).

• Token Request: On the j-th token request, adversary A
outputs a circular range query Q′j ∈ ΩMφ . Challenger B
responses with a search token T ′j = GenToken(Sk,Q′j),

Challenge: With Q0, Q1 selected in Init, challenger B flips
a coin b ∈ {0, 1} and returns Tb = GenToken(SK,Qb) to
adversary A.

Phase 2: Adversary A continues to adaptively submit a
number of requests, which are still subjected to the same
restrictions in Phase 1.

Guess: The adversary takes a guess b′ of b.
We say

∏
is secure against same-closeness-pattern chosen-

plaintext attacks on index privacy if for any polynomial time

adversary A in the above game, it has at most negligible
advantage

AdvIND−CLS−CPA−Query∏
,A (1λ) =

∣∣∣∣pr [b′ = b]− 1

2

∣∣∣∣ ≤ negl(λ)

where negl(λ) denotes a negligible function with parameter
λ.

C. Security Analysis

We now analyze the security of our PSCS scheme. Infor-
mally speaking, since our PSCS uses secure kNN computation
[13] and Order-Preserving Encryption (OPE) [6] as lower-
layer building blocks, its IND-CLS-CPA security can be
deduced based on the IND-CLS-CPA security of secure kNN
computation and Order-Preserving Encryption (OPE).

Theorem 1: Our PSCS is IND-CLS-CPA index secure,
as long as secure kNN computation is IND-CLS-CPA index
secure.

Proof: We exploit the index security game of our proposed
PSCS scheme with , and demonstrate that to compromise the
security of PSCS is equivalent to compromise the security of
kNN computation.

Init: Adversary A selects two datasets of index
D0 and D1 with the same number of index records
to challenger B, where D0 = {D0,1, · · · , D0,n},
D1 = {D1,1, · · · , D1,n}, D0,i, D1,i ∈ ΩMφ , and D0,i =
(1, P(0,i)x , P(0,i)x , P

2
(0,i)x

, 1, P(0,i)y , P(0,i)y , P
2
(0,i)y

, 1, 1, · · · , 1︸ ︷︷ ︸
N

),

D1,i = (1, P(1,i)x , P(1,i)x , P
2
(1,i)x

, 1, P(1,i)y , P(1,i)y , P
2
(1,i)y

,

1, 1, · · · , 1︸ ︷︷ ︸
N

), for 1 ≤ i ≤ n.

Setup: Challenger B runs the SkC.GenKey(1λ)
and OPE.GenKey(1λ) to generate secret key
SK = (sk1, sk2, S,M1,M2), and it keeps SK private.

Phase 1: Adversary A adaptively submits a number of
requests, where each request is one of the two following types:
• Index Request: On the j-th index request, adversary A

outputs a dataset D′
j =

{
D′j,1, · · · , D′j,n

}
, and D′j,i ∈

ΩMφ , for 1 ≤ i ≤ n. Challenger B responses with
encrypted index C ′j = (C ′j,1, · · · , C ′j,n), where C ′j,i ←
SkC.Enc

(
SK,D′j,i

)
.

• Token Request: On the j-th token request, adversary A
outputs a circular range query Qj = (R∗, Bll, Bur),
where Qj ∈ ΩMφ . Then, R∗ will be encrypted as{
M−11 Ra,M

−1
2 Rb

}
← SkC.GenToken(SK,R∗).

Besides,
{
Bll, Bur

}
will be encrypted as{

[Bll], [Bur]
}

← OPE.Encsk2(Bll, Bur). After
this, challenger B responses with a search token
Tj = (M−11 Ra,M

−1
2 Rb, [B

ll], [Bur]), where Tj satisfies
the following restrictions:
1) (P(0,i)x , P(0,i)y ) ∈ (Bll, Bur) ∧ (P(1,i)x , P(1,i)y ) ∈
(Bll, Bur) OR (P(0,i)x , P(0,i)y ) /∈ (Bll, Bur) ∧ (P(1,i)x ,
P(1,i)y ) /∈ (Bll, Bur);
2)D0,i·

{
M−11 Ra,M

−1
2 Rb

}
∈ Qj ∧

D1,i·
{
M−11 Ra,M

−1
2 Rb

}
∈ Qj OR



Fig. 5. Comparison of encryption time. (no index
building phase in [8] )

Fig. 6. Comparison of token generation time. Fig. 7. Comparison of search time ([8] could not
fit into this graph).

D0,i ·
{
M−11 Ra,M

−1
2 Rb

}
/∈ Qj

∧D1,i ·
{
M−11 Ra,M

−1
2 Rb

}
/∈ Qj ;

which are equivalent to the constraint conditions of
definition 2:
1) L(D0, Qj) = L(D1, Qj);
2) For 1 ≤ i ≤ n, D0,i ∈ Qj ∧D1,i ∈ Qj
OR D0,i /∈ Qj ∧D1,i /∈ Qj ;

Challenge: With D0,D1 selected in Init, challenger B flips
a coin b ∈ {0, 1} and returns Cb = (Cb,1, · · · , Cb,n) to
adversary A, where Cb,i ← SkC.Enc(SK,Db,i).

Phase 2: Adversary A continues to adaptively submit a
number of requests, which are still subjected to the same
restrictions in Phase 1.

Guess: The adversary takes a guess b′ of b.
Since we successfully simulate the data security game of

our PSCS with an adversary A from the data security game
of secure kNN computation, it means that if adversary A can
distinguish D0 and D1, it is able to distinguish D0,i and
D1,i in secure kNN computation [13], for 1 ≤ i ≤ n. Thus,
the probabilities of distinguishing D0 and D1 in our PSCS
can be interpreted as :

AdvIND−CLS−CPA−IndexPSCS,A (1λ)

= 1− (1− AdvIND−CLS−CPA−IndexSkC,A (1λ))n

≤ negl′(λ)

where negl′(λ) denotes a negligible function with parameter
λ in [28][29].

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
PSCS in real cloud platform. Specifically, we run our test
code in an Amazon EC2 medium instance of Ubuntu 14.04
with variable ECUs (i.e., EC2 Compute Unit), 2 CPUs (2.5
GHz Intel Xeon Family) and 4 GB Memory. Besides, for
further demonstrating the efficiency of our proposed scheme,
latest literature [8], [10] are referenced to compare with PSCS,
where we suppose the range of every spatial data falls in the
range of [0, 1000] and the number of dimension φ = 2. More
concretely, we analyze the functionality, storage overhead and
computational overhead of these schemes.

TABLE I
COMPARISON OF FUNCTIONALITY

Functionality [8] [10] PSCS
Circular range search X X X
Unlimited search radius × X X
Faster-than-linear search × X X
Suitable for large-size datasets × × X

A. Functionality

As shown in TABLE I, [8], [10] and our PSCS can be
exploited to realize the circular range search on encrypted
cloud data. But in [8], the radius of circular range query
determines the number of concentric circles, and the number
of subtoken (several subtokens make up a search token) is
linearly related to the number of concentric circles, and no data
structure is used in this scheme to reduce search complexity.
And in [10], a two-level search structure consists of dictionary
and linked lists is used to achieve sub-linear search. Since the
algorithm in [10] generates tokens by enumerating all spatial
data in the circular range, thus search radius is not limited,
but the size of index and search token are linearly related
to the size of each dimension. So, both [8] and [10] are not
suitable for large-size datasets. Fortunately, in PSCS, we use
polynomial split algorithm to separate data from query. This
makes PSCS not only simple but also efficient, and can be
deployed on large-size databases. The most important thing is
that there is no bias in returned results, so as [8] and [10], that
is why we choose them as comparative schemes.

B. Storage Overhead

We use m to denote the number of concentric circles
exploited in [8], and n indicates the maximum range of each
dimension (we assume the maximum range of each dimension
are same) in [10]. Although [8], [10] and PSCS can be
exploited to realize the circular range search on encrypted
cloud data. However, in [8], when the search range increase,
which means the number of concentric circles will increase,
and search user should generate the same number of subtokens
as the concentric circles. Similar to [8], the range of each
dimension in [10] are inevitably increased as the search range



TABLE II
COMPARISON OF STORAGE OVERHEAD

Phase of storage overhead generating [8] [10] PSCS
Index building × o(n) o(1)
Search token generating o(m) o(n) o(1)

increase, and enormous storage overhead will be generated
certainly. It should be noted that there is no index building
phase in [8], which leads to its low search efficiency.

In PSCS, the size of index and search token is independent
of search range, so the storage overhead of PSCS can be
considered as a constant in index building phase and search
token generating phase. Therefore, as shown in TABLE II, it
is no doubt that PSCS greatly reduce the storage overhead
compared with [8] and [10].

C. Computational Overhead

We compare the computational overhead of PSCS with [8]
and [10] based on encryption time, token generation time and
total search time. And we present them in Fig.5 to Fig. 7. It is
worth noting that encryption time includes raw data encrypting
time and index building time. In addition, the search time of
[8] is up to hundreds of seconds and could not fit into Fig.
7 due to its heavy operations based on bilinear pairing. We
can observe that the search efficiency of PSCS is much higher
than [8] and [10].

VIII. CONCLUSION

In this paper, we propose a practical and secure circular
range search scheme (PSCS) to support circular range search
on encrypted spatial data without revealing index privacy or
query privacy to the semi-honest cloud server. Our future
research include 1) designing a public-key circular range
searchable encryption achieving practical search complexity;
2) studying high-accuracy searchable encryption schemes for
arbitrary geometric queries, such as polygon range search (i.e.,
searching for spatial data that are inside a polygon).

ACKNOWLEDGMENT

This work was supported in part by the National Natu-
ral Science Foundation of China (Grant No.61632012 and
61672239), in part by the Peng Cheng Laboratory Project of
Guangdong Province (Grant No. PCL2018KP004), and in part
by ”the Fundamental Research Funds for the Central Univer-
sities”. Zhenfu Cao and Jiachen Shen are the corresponding
authors.

REFERENCES

[1] P. Agarwal and J. Erickson, “Geometric range searching and its rela-
tives,” Discrete and Computational Geometry, 1999.

[2] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proc. of IEEE S&P’00, 2000.

[3] B. Zhang and F. Zhang, “An efficient public key encryption with
conjunctive-subset keywords search,” J. Netw. Comput. Appl., vol. 34,
no. 1, pp. 262–267, 2011.

[4] C. Wang, K. Ren, S. Yu, and K. M. R. Urs, “Achieving usable and
privacy-assured similarity search over outsourced cloud data,” in Proc.
IEEE INFOCOM, Mar. 2012, pp. 451–459.

[5] H. Li, X. Lin, H. Yang, X. Liang, R. Lu, and X. Shen, “EPPDR: An
efficient privacy-preserving demand response scheme with adaptive key
evolution in smart grid,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no.
8, pp. 2053–2064, Aug. 2014.

[6] R. A. Popa, F. H. Li, and N. Zeldovich, “An ideal-security protocol for
order-preserving encoding,” in Proc. of IEEE S&P’13, 2013.

[7] K. Lewi and D. J. Wu, “Order-revealing encryption: New construc-
tions, applications, and lower bounds,” in Proc. ACM CCS, 2016, pp.
1167–1178.

[8] B. Wang, M. Li, H. Wang, and H. Li, “Circular range search on
encrypted spatial data,” in Proc. IEEE Int. Conf. Distrib. Comput. Syst.,
Jun./Jul. 2015, pp. 794–795.

[9] B. Wang, M. Li, and H. Wang, “Geometric range search on encrypted
spatial data,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 4, pp.
704–719, Apr. 2016.

[10] B. Wang, M. Li, and L. Xiong, “FastGeo: Efficient geometric range
queries on encrypted spatial data,” IEEE Trans. Dependable Secure
Comput., to be published, doi: 10.1109/TDSC.2017.2684802.

[11] G. Xu, H. Li, Y. Dai, K. Yang, and X. Lin, “Enabling efficient and
geometric range query with access control over encrypted spatial data,”
IEEE Trans. Inf. Forensics Secur., vol. 14, no. 4, pp. 870–885, Apr.
2019.

[12] Y. Luo, S. Fu, D. Wang, M. Xu, X. Jia, “Efficient and generalized
geometric range search on encrypted spatial data in the cloud”, in: The
25th International Symposium on Quality of Service (IWQoS), IEEE,
2017, pp. 1–10.

[13] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis, “Secure kNN
computation on encrypted databases,” in Proc. ACM SIGMOD, 2009,
pp. 139–152.

[14] E. Shen, E. Shi, and B. Waters, “Predicate privacy in encryption
systems,” in Proc. of TCC’09, 2009, pp. 457–473.

[15] H. Zhu, R. Lu, C. Huang, L. Chen, and H. Li, “An efficient privacy-
preserving location-based services query scheme in outsourced cloud,”
IEEE Trans. Veh. Technol., vol. 65, no. 9, pp. 7729–7739, Sep. 2016.

[16] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in the Proceedings of Theory of Cryptography (TCC).
Springer-Verlag, 2007, pp. 535–554.

[17] P. Wang and C. V. Ravishankar, “Secure and efficient range queries on
outsourced databases using R-trees,” in Proc. of IEEE ICDE’13, 2013.

[18] B. Wang, Y. Hou, M. Li, H. Wang, and H. Li, “Maple: scalable multi-
dimensional range search over encrypted cloud data with tree-based
index,” in Proc. of ACM ASIACCS’14, 2014.

[19] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[20] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proc. of ACM SIGMOD’84, 1984.

[21] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proc. ACM CCS, 2012, pp. 965–976.

[22] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient constructions,”
in Proc. ACM CCS, 2006, pp. 79–88.

[23] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Ro¸su, and M.
Steiner, “Highly-scalable searchable symmetric encryption with support
for Boolean queries,” in Proc. CRYPTO, 2013, pp. 353–373.

[24] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious RAMs,” J. ACM, vol. 43, no. 3, pp. 431–473, 1996.

[25] B. Pinkas and T. Reinman, Oblivious RAM Revisited. Berlin, Germany:
Springer, 2010.

[26] E. Stefanov et al., “Path ORAM: An extremely simple oblivious ram
protocol,” in Proc. ACM CCS, 2013, pp. 299–310.

[27] J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting
disjunctions, polynomial equations, and inner products,” in Proc. EU-
ROCRYPT, 2008, pp. 146–162.

[28] M. Bellare, A Note on Negligible Functions. New York, NY, USA:
Springer-Verlag, 2002.

[29] J. Katz and Y. Lindell, Introduction to Modern Cryptography: Principles
and Protocols. Boca Raton, FL, USA: CRC Press, 2007.

[30] J. Lai, X. Zhou, R. H. Deng, Y. Li, and K. Chen, “Expressive search
on encrypted data,” in Proc. ACM ASIA CCS, 2013, pp. 243–251.

[31] X. Li, Y. Zhu, J. Wang, and J. Zhang, “Efficient and secure mul-
tidimensional geometric range query over encrypted data in cloud,”
Journal of Parallel and Distributed Computing, 2019, doi: 10.1016/j.
jpdc.2019.04.015


