
NTT Multiplication for NTT-unfriendly Rings
New Speed Records for Saber and NTRU on Cortex-M4 and AVX2

Chi-Ming Marvin Chung1,2, Vincent Hwang1,2, Matthias J. Kannwischer3,
Gregor Seiler4,5, Cheng-Jhih Shih1,2 and Bo-Yin Yang1

1 Academia Sinica, Taipei, Taiwan
{marvin852316497,vincentvbh7,cs861324}@gmail.com, by@crypto.tw

2 National Taiwan University, Taipei, Taiwan
3 Max Planck Institute for Security and Privacy, Bochum, Germany

matthias@kannwischer.eu
4 IBM Research – Zurich, Rüschlikon, Switzerland

5 ETH Zurich, Zurich, Switzerland
gseiler@inf.ethz.ch

Abstract. In this paper, we show how multiplication for polynomial rings used in
the NIST PQC finalists Saber and NTRU can be efficiently implemented using the
Number-theoretic transform (NTT). We obtain superior performance compared to the
previous state of the art implementations using Toom–Cook multiplication on both
NIST’s primary software optimization targets AVX2 and Cortex-M4. Interestingly,
these two platforms require different approaches: On the Cortex-M4, we use 32-bit
NTT-based polynomial multiplication, while on Intel we use two 16-bit NTT-based
polynomial multiplications and combine the products using the Chinese Remainder
Theorem (CRT).
For Saber, the performance gain is particularly pronounced. On Cortex-M4, the
Saber NTT-based matrix-vector multiplication is 61% faster than the Toom–Cook
multiplication resulting in a 22% speed-up of Saber encapsulation. For NTRU,
the speed-up is less impressive, but still NTT-based multiplication performs better
than Toom–Cook for all parameter sets on Cortex-M4. The NTT-based polynomial
multiplication for NTRU-HRSS is 10% faster than Toom–Cook which results in a
6% speed-up for encapsulation. On AVX2, we obtain speed-ups for three out of four
NTRU parameter sets.
As a further illustration, we also include code for AVX2 and Cortex-M4 for the
Chinese Association for Cryptologic Research competition award winner LAC (also a
NIST round 2 candidate) which outperforms existing code.
Keywords: Polynomial Multiplication, NTT Multiplication, Saber, NTRU, Cortex-
M4, AVX2

1 Introduction
Popular PKC primitives like RSA and elliptic curve cryptography (ECC) which are based
on the hardness of factoring large integers and the discrete logarithm problem both are
vulnerable to quantum computer attacks [Sho94]. Thus we often hear that Quantum
Computers (QCs) may arrive soon and break all common Public-Key Cryptography (PKC)
today.
∗This work was in part done while MJK was employed by Radboud University, Nijmegen, The

Netherlands and visiting Academia Sinica, Taipei, Taiwan.

mailto:{marvin852316497,vincentvbh7,cs861324}@gmail.com
mailto:by@crypto.tw
mailto:matthias@kannwischer.eu
mailto:gseiler@inf.ethz.ch

2 NTT Multiplication for NTT-unfriendly Rings

Hence Post-Quantum Cryptography (PQC), the study of QC-resistant PKCs. There
are five major classes of PQCs today, based on multivariate quadratics (MPKCs), lattices,
error-correcting codes, (supersingular) isogenies, and hash functions. Most extant PQCs
have merit as PKCs beyond being post-quantum. They tend to be faster at the same
designed level of security, and as such are reasonable candidates for wide deployment even
without considering QC. In particular, PQC based on hard lattice problems combine good
overall performance with acceptable transmission bandwidth requirements.

At the moment the U.S. National Institute of Standards and Technology (NIST) has
called for candidates for the next generation post-quantum cryptography. 82 cryptosystems
were submitted in 2017 and 15 are currently in the 3nd round which started in July 2020
of which 7 are considered finalists and 8 are alternate schemes. NIST plans to start
standardization of some of the finalists in about 2 years from the start of the 3rd round.
The perceived superiority of lattice-based crypto is reflected in the NIST post-quantum
cryptography standardization process, as nearly half of the candidates were (and are) using
hard lattice problems as their building blocks. Most of these are “small lattice systems”
which use polynomial rings as the basic algebraic structure. The most critical algebraic
step is a polynomial multiplication modulo a specified polynomial. Most of the time one
multiplicand has random-looking coefficients, and the other has small coefficients.

Of these small lattice-based cryptosystems, several are designed from the ground up
to depend on a specific way to multiply polynomials in an integer ring: the Number
Theoretic Transform (NTT). The remaining third round candidates with this structure
are Kyber, Falcon, and Dilithium [ABD+19, FHK+19, LDK+19], and there were other
similar submissions in earlier rounds of the NIST competition (e.g., [PAA+19, DTGW17]).

There seems to be a common conception that schemes that were not specifically designed
to benefit from NTT-based multiplication by using a NTT-friendly ring cannot be efficiently
implemented using them and, hence, one has to fall back to other multiplication algorithms
like Karatsuba multiplication [KO63] or Toom–Cook multiplication [Too63, Coo66]. Among
the finalists, this applied to two schemes: Saber [DKRV19] and NTRU [ZCH+19]. Both
use a power-of-two modulus which is inherently incompatible with straightforward NTTs.
Previous implementations of Saber and NTRU use a combination of Toom-4 and Karatsuba
to implement efficient polynomial arithmetic. However, as we show in this work it is still
possible to use NTTs to implement their underlying polynomial arithmetic and obtain
superior performance compared to the state of the art implementations both on the ARM
Cortex-M4 and AVX2.

Leaving the performance aspect aside, it is also interesting to be able to implement
all lattice-based schemes with NTT-based polynomial multiplication algorithms from an
ease of implementation point of view. Furthermore, this way all schemes can benefit from
potential future hardware support for computing NTTs. Because of these reasons we
think that even a small decrease in runtime maybe acceptable when using NTT-based
multiplication instead of other methods.

The Chinese Association for Cryptologic Research (CACR) also sponsored a competition
similar to that of NIST between 2018–19 [CAC19]. All three First Class Award winners were
small lattice-based systems. Two of them, styled Aigis-ENC and Aigis-Sign, resemble Kyber
and Dilithium in their design (see [ZYF+19], where the authors detail their deviations
from Kyber and Dilithium). The other, LAC [LLJ+19], has a very small prime modulus
(q = 251) which is not suited to NTTs, and the designers suggest a sparse multiplication
technique instead. We also show below that NTTs can be used to obtain performance
superior to all previous implementations.

Contribution. We show how NTTs can be used to obtain efficient polynomial arithmetic
in finite fields modulo a power-of-two. We present new implementations of Saber, LAC, and
NTRU targeting the ARM Cortex-M4 and AVX2 which are faster than any implementations

Chung, Hwang, Kannwischer, Seiler, Shih, Yang 3

described in the literature for the majority of parameter sets. Only for ntruhps2048509 we
were unable to obtain a speed-up on AVX2. Interestingly, our two platforms require different
multiplication strategies due to limitations of the available multiplication instructions.

Code. Our implementations of Saber, LAC, and NTRU are Open Source and are available
at https://github.com/ntt-polymul/ntt-polymul.

Structure of this Paper. Section 2 describes Saber, LAC, and NTRU and the background
of the techniques required to implement polynomial arithmetic using NTTs for each.
Section 3 presents the implementation details on the Cortex-M4. Section 4 presents the
implementation details for AVX2 on Skylake. In Section 5 we present the performance
results for Saber, LAC, and NTRU on our target platforms.

2 Preliminaries
This section is organized as follows: First, we introduce the cryptographic schemes we
consider in this paper: Saber (Section 2.1), NTRU (Section 2.2), and LAC (Section 2.3).
Second, Section 2.4 introduces the NTT techniques that can be used to implement
polynomial arithmetic for NTRU ans Saber. Last, we present some of the intricacies of
Cortex-M4 in Section 2.5.

2.1 Saber
Saber [DKRV19] is a lattice-based key encapsulation mechanism based on the Module
Learning With Rounding M-LWR problem. The polynomial ring used within Saber is
Rq = Zq[x]/(Xn + 1) with q = 213 and n = 256 across all parameter sets. As most other
lattice-based schemes, Saber constructs a CCA-secure KEM from a CPA-secure DPKE.

Algorithm 1 Saber Key Generation
Output: pk = (seedA, b), sk = (s)
1: seedA ← SampleU ()
2: A ∈ Rl×lq ← Expand(seedA)
3: s ∈ Rlq ← SampleB()
4: b← Round(AT · s)

Algorithm 3 Saber CPA Decryption
Input: ct = (c, b′), sk = (s)
Output: m
1: v ← b′T (s mod p)
2: m← Round(v − 2εp−εT c mod p)

Algorithm 2 Saber CPA Encryption
Input: m, r, pk = (seedA, b)
Output: ct = (c, b′)
1: A ∈ Rl×lq ← Expand(seedA)
2: s′ ∈ Rlq ← SampleB(r)
3: b′ ← Round(As′)
4: v′ ← bT (s′ mod p)
5: c← Round(v′ − 2ε−1m)

Algorithm 1, Algorithm 2, and Algorithm 3 depict the CPA-secure key generation,
encryption, and decryption respectively. SampleU refers to sampling from a uniform
distribution, SampleB refers to sampling from a binomial distribution. Expand expands
a seed to a uniform matrix of polynomials. We omit the CCA variants for brevity and
refer the reader to the specification for the corresponding CCA transformation. Saber’s
major operation in key generation and encryption is the matrix-vector multiplication of
polynomials AT · s and As′. In decryption the most expensive operation is the inner
product of b′T · s.

https://github.com/ntt-polymul/ntt-polymul

4 NTT Multiplication for NTT-unfriendly Rings

Table 1: NTRU and Saber Parameter Sets

(a) Saber

name l T = 2εT µ
Lightsaber 2 23 10

Saber 3 24 8
Firesaber 4 26 6

(b) NTRU

name q n
ntruhps2048509 2048 = 211 509
ntruhps2048677 2048 = 211 677

ntruhrss701 8192 = 213 701
ntruhps4096821 4096 = 212 821

Parameters The Saber submission specifies the three parameter sets Lightsaber, Saber,
and Firesaber targetting the NIST security levels 1, 3, and 5 respectively. While the
underlying polynomial ring remains the same for all parameter sets, the module dimension
l, the rounding parameter T , and the secret distribution parameter µ varies per parameter
set. The parameters are summarized in Table 1a.

CCA Transform To achieve IND-CCA2 security, Saber is using a variant of the FO
transform due to Hofheinz, Hövelmanns, and Kiltz [HHK17]. However, as the randomness
r (and the corresponding s′) cannot be recovered in decryption, Saber does require re-
encryption in the decapsulation algorithm. Hence, improving the encryption also improves
decapsulation. For technical details on the FO transform, refer to the specification
[DKRV19].

2.2 NTRU

The NTRU submission [ZCH+19] is based on the NTRU crytosystem which was first
proposed by Hoffstein, Pipher, and Silverman in 1998 [HPS98]. Two teams submitted
an NTRU-like scheme to the NIST competition named NTRU-HRSS and NTRUEncrypt.
After the first round, those teams merged their proposals giving it the new name ‘NTRU’.
It operates in the three polynomial rings Z3[x]/Φn, Zq[x]/Φn, and Zq[x]/(Φ1 ·Φn) with
Φ1 = (x− 1) and Φn = (xn−1 + xn−2 + · · ·+ 1).

The algorithms for key generation, encryption, and decryption are shown in Alorithm 4,
Algoritm 5, and Algoritm 6 respectively. For the details of Sample and Lift, see [ZCH+19].

NTRU’s main benefit is the relatively cheap encapsulation which is the fastest of
the KEM finalists in the NIST competition. However, it comes with a rather costly
key generation procedure as it requires polynomial inversion. In both encryption and
decryption, the major arithmetic operation is polynomial multiplication

Algorithm 4 NTRU Key Generation
Output: pk = (h), sk = (f, fp, hq)
1: f, g ← Sample()
2: fq ← f−1 mod (q,Φn)
3: h← (3 · g · fq) mod (q,Φ1 ·Φn)
4: hq ← h−1 mod (q,Φn)
5: fp ← f−1 mod (3,Φn)

Algorithm 5 NTRU CPA Encryption
Input: m, r, pk = (h)
Output: c
1: m′ ← Lift(m)
2: c← (r · h+m′) mod (q,Φ1 ·Φn)

Algorithm 6 NTRU CPA Decryption
Input: c, sk = (f, fp, hq)
Output: r,m or fail
1: if c 6≡ 0 (mod(q,Φ1)) return fail
2: a← (c · f) mod (q,Φ1 ·Φn)
3: m← (a · fp) mod (3,Φn)
4: m′ ← Lift(m)
5: r ← ((c−m′) · hq) mod (q,Φn)

Chung, Hwang, Kannwischer, Seiler, Shih, Yang 5

Table 2: LAC Parameters
name n lv B B′ ECC

LAC-128 512 511
(1

4 ; 1
2 ; 1

4
)n (1

4 ; 1
2 ; 1

4
)lv

BCH(511, 256, 33)
LAC-192 1024 511

(1
8 ; 3

4 ; 1
8
)n (1

8 ; 3
4 ; 1

8
)lv

BCH(511, 256, 17)
LAC-256 1024 1023

(1
4 ; 1

2 ; 1
4
)n (1

4 ; 1
2 ; 1

4
)lv

BCH(511, 256, 33) +D2

Parameters. NTRU proposes four parameter sets listed in Table 1b. Those parameter sets
mostly differ in the used polynomial dimensions n and the modulus q which consequently
leads to different security levels. The ntruhrss701 comes from the first round submission
NTRU-HRSS, while the other parameters were initially submitted as NTRUEncrypt.

CCA transformation. NTRU is using a variant of the FO transform [FO99] transforma-
tion to obtain a CCA-secure KEM from the CPA-secure PKE. By implicitly rejecting
invalid ciphertexts, NTRU can avoid having to re-encrypt the message in the decapsu-
lation. Due to space limitations, we omit the details here and refer the reader to the
specification [ZCH+19].

2.3 LAC
LAC [LLJ+19] is a lattice-based key encapsulation mechanism based on the Ring Learning
with Errors problem. The polynomial ring used in LAC is Rq = Zq[x]/(Xn + 1) with
q = 251 and n = 512 for LAC-128 and n = 1024 for LAC-192 and LAC-256. As most other
lattice-based schemes, LAC constructs a CCA-secure KEM from a CPA-secure DPKE.

Algorithm 7, Algorithm 8, and Algorithm 9 depict the CPA-secure key generation,
encryption, and decryption respectively. SampleU refers to sampling from a uniform
distribution, SampleB refers to sampling from a fixed-weight ternary distribution. SampleB′
refers to sampling from a ternary distribution. Expand expands a seed to a uniform matrix of
polynomials. (·)lv means to take the first lv coefficients of a polynomial as a vector. We omit
the CCA variants for brevity and refer the reader to the specification for the corresponding
CCA transformation. LAC’s major operations are multiplications (as, ar, br, c1s).

Algorithm 7 LAC Key Generation
Output: pk = (seeda, b), sk = (s)
1: seeda ← SampleU ()
2: a ∈ Rq ← Expand(seeda)
3: s, e ∈ R(h)

q ← SampleB()
4: b← as+ e

Algorithm 9 LAC CPA Decryption
Input: ct = (c1, c2), sk = (s)
Output: m = ECCDec(m̂)
1: m̃← c2 − (c1s)lv
2: m̂← Round(m̃)

Algorithm 8 LAC CPA Encryption
Input: m, pk = (seeda, b)
Output: ct = (c1, c2)
1: a ∈ Rq ← Expand(seeda)
2: m̂ = ECCEnc(m)
3: r, e1 ∈ Rq ← SampleB()
4: e2 ∈ Rq ← SampleB′()
5: c1 ← ar + e1
6: c2 ← (br)lv + e2 +

⌊
q
2
⌉
m̂

Parameters The LAC submission specifies the three parameter sets LAC-128, LAC-192,
and LAC-256 targetting the NIST security levels 1, 3, and 5 respectively. The parameters
are summarized in Table 2.

CCA Transform To achieve IND-CCA2 security, LAC is using a variant of the Fujisaki-
Okamoto transform due to Hofheinz, Hövelmanns, and Kiltz [HHK17], similar to Saber,

6 NTT Multiplication for NTT-unfriendly Rings

a //

''

+ // a+ ωb

b // ×

??

// − // a− ωb

ω

OO

(a) Cooley–Tukey Butterfly

a //

��

+ // a+ b

b //

@@

− // × // 1
ω (a− b)

1
ω

OO

(b) Gentleman–Sande Butterfly

Figure 1: The “Butterflies” of Fast Fourier Transforms

For technical details on the FO transform, refer to the specification [LLJ+19].

2.4 FFT-based Polynomial Multiplications and NTT
In NTRU, LAC, and Saber, we need to multiply in the following rings: Z8192[x]/

(
(x256 + 1

)
,

Z2048[x]/
(
x509 − 1

)
, Z251[x]/

(
x512 − 1

)
,Z2048[x]/

(
x677 − 1

)
, Z8192[x]/

(
x701 − 1

)
,

Z4096[x]/
(
x821 − 1

)
, Z251[x]/

(
x1024 − 1

)
. In Saber, we actually need more: a matrix-to-

vector product and an inner product based on that ring multiplication. We describe below
tools to construct those multiplications.

Using Fast Fourier Transforms for multiplication is a common technique. Let R be the
base ring. The basic idea is the Chinese Remainder Theorem: if f, g are co-prime then we
can write down the ring isomorphism φ : R[x]/ (f(x)g(x)) ∼= R[x]/ (f(x))×R[x]/ (g(x)),
φ(h) = (h mod f, h mod g). When f(x) = xn − a, g(x) = xn + a, φ naturally becomes

φ

(2n−1∑
i=0

hix
i

)
=

(
n−1∑
i=0

(hi + ahn+i)xi,
n−1∑
i=0

(hi − ahn+i)xi
)
. (1)

φ−1

((
n−1∑
i=0

h′ix
i

)
,

(
n−1∑
i=0

h′′i x
i

))
=

n−1∑
i=0

1
2 (h′i + h′′i)xi +

n−1∑
i=0

1
2a (h′i − h′′i)xn+i. (2)

In short, the FFT multiplication trick is fg (mod (x2n − a2)) ≡
xn+a

2a (f mod (xn − a)) (g mod (xn − a)) + −xn+a
2a (f mod (xn + a)) (g mod (xn + a)).

If we consider this an “in-place” operation with a size-2n array of elements of R
representing an element of R[x]/

(
x2n − a2) and the bottom and top half of that array

representing the element of R[x]/ (xn − a) and of R[x]/ (xn + a) respectively, then with a
little change of notation we see the standard “butterfly” transformations (Figure 1).

To multiply fg with deg f, deg g < n in an initial ring that is not an easy quotient
ring for NTTs, such as in NTRU, we would first consider everything as a polynomial
multiplication in R[x], then R[x]/

(
x2n′ − 1

)
, where n′ > n is a convenient order for NTTs.

The “layer 0” in the FFT is then trivial. Interested readers may refer to [Ber] for various
tricks of polynomial multiplications.

2.4.1 The “Standard” Cooley–Tukey (CT) NTT-Based Multiplication

“The FFT” usually means to split everything down from x2k − 1 to linear factors, which
requires a primitive root ζ ∈ R of degree 2k (an element such that ζ2k−1 = −1). The
Number Theoretic Transform (NTT) means an FFT in a prime field, which must be
modulo an “NTT-friendly” prime of the form p = 2kp′ + 1.

One might invert the FFT trick by using Gentleman–Sande butterflies, replacing all
the divisions by 2 in favor of a final division by 2k. We may also treat this as a forward

Chung, Hwang, Kannwischer, Seiler, Shih, Yang 7

FFT map (again followed by a final division by 2k) implementing it with Cooley–Tukey
butterflies. This frequently requires extra data movement on larger platforms, but often
can be convenient on a small micro-controller like the ARM Cortex-M4.

Note that in a standard Fourier analysis situation, one needs to map

R[x]/(xn − 1)→ (R[x]/(x− 1))× (R[x]/(x− ζ)× · · · × (R[x]/(x− ζn−1),

with the powers of ζ appearing in order, whereas doing layers of Cooley–Tukey butterfly
operations leaves the results in bit-reversed order. But the order is not important when all
that we care about is to multiply two polynomials. Schemes that are specifically designed
to use the NTT like Kyber, NewHope, and Dilithium usually build the bit-reversed order
into their specifications [ABD+19, LDK+19, PAA+19].

If we define the bit reversal brvn
(∑n−1

i=0 ai2i
)

:=
∑n−1
i=0 ai2n−1−i, then the j-th (of 2i)

multiplier used in a standard NTT based on CT butterflies of layer i in a k-layer NTT, for
2k−1−i butterflies starting at index j · 2k−i, for entries 2k−1−i apart, is ζbrvk−1(j).

2.4.2 The “Twisted” Gentleman–Sande (GS) NTT-Based Multiplication

“The Twisted FFT trick” means to do the FFT trick on R[X]/(X2n− 1) to split it down to
the rings R[X]/(Xn ∓ 1) then map R[X]/(Xn + 1) to R[Y]/(Y n − 1) where Y = ζX with
ζn = −1 the primitive root of order 2n. When n = 2k−1 and our prime is NTT-friendly, we

can split it down to
2n︷ ︸︸ ︷

(R[x]/(x− 1))× · · · × (R[x]/(x− 1)). One can verify that the result
is componentwise the same as the more familiar form above.

The butterflies appearing in such a forward NTT would all be of the GS variety. The
j-th (of 2k−1−i) multiplier used in layer i in a k-layer NTT, for butterflies for 2i pairs of
entries spaced 2k−1−i apart, starting at index j and incrementing by 2k−i, is ζj·2i .

Note that doing backward NTTs using CT butterflies as in Sec. 2.4.1 is properly
considered the reverse of the Gentleman-Sande NTT and is often used to avoid reductions.

2.4.3 NTT-based Negacyclic Convolutions

The “Negacyclic convolution” means to multiply modulo xn + 1. When n = 2k−1 and the
ring R contains a primitive root ζ of degree 2n, the full negacyclic NTT is just the top
half of a full FFT mod(x2n − 1). I.e., the j-th (of 2i) multiplier encountered in layer i, for
2k−1−i CT butterflies starting at index j · 2k−i, for indices 2k−1−i apart, is ζbrvk(j+2i−1).

Here starting by “twisting” into mod(xn − 1) costs an extra layer of multiplications.

2.4.4 Incomplete NTTs

If we proceed with the FFT trick for ` layers on multiplicands (coming down to 2`
polynomials (mod xh − ζi)), do pairwise modular multiplications using schoolbook on h
entries, then invert the FFT trick, we have performed a multiplication by incomplete NTT.

[LS19] first introduced Incomplete NTTs to lattice-based crypto, with moduli not
allowing a full NTT (e.g., Kyber with (2 · 256) 6 |(3329− 1)). In later works Incomplete
NTTs were later chosen deliberately even when a full NTT was possible, e.g., in [ABCG20].

2.4.5 Good’s Trick and NTTs

Instead of the incomplete NTT, if the length of the NTT is n = h · 2k with h odd, we apply
Good’s FFT trick [Goo51], where we set x = yw with y2k−1 = −1 = wh−1 +wh−2 + · · ·+w.

A multiplicand a(x) ∈ Zq′ [x]/(xh·2k − 1) with deg a < h · 2k becomes b(y, z) ∈ Zq′ [y, w]
with xi = yi mod 2k

wi mod h, with degy b < 2k and degw b < h. We may write b =

8 NTT Multiplication for NTT-unfriendly Rings

∑h−1
i=0 w

ibi(y) with bi(y) ∈ Zq′ [y]/(y2k − 1). We term “Good’s permutation” the map from
the array a[] representing

∑
0≤i<h·2k aix

i to b[][] representing
∑h−1
i=0

∑2k−1
j=0 bi,jw

iyj .
We follow Good’s permutation with a size-2k FFT w.r.t. y on each multiplicand,

represented by h parallel size-2k NTTs. Then we do “point” multiplication by convolving
together degree-(h − 1) polynomials in w modulo wh − 1, do an inverse size-2k FFT
(represented by h inverse NTTs), and then finally undo Good’s permutation.

2.4.6 NTTs with Modulus not of the form 2kp′ + 1

Suppose we have a convolution modulo xn− 1 modulo q, where n 6 |(q− 1). We can express
the polynomials with coefficients in [− q2 ; q2) and compute the convolution as a polynomial
of integer coefficients. The absolute magnitude of the resulting coefficients would be at
most nq2/4. Therefore, if we find a prime p > nq2/2 such that n|(p− 1), and compute the
multiplication mod p (which we can using NTTs of length n mod p), then the result must
be correct as a polynomial with integer coefficients, and then we can recover our correct
result modulo q.

The procedure is quite similar if it is a different kind of convolution or another product.
In the case of our applications (Saber and NTRU), one of the multiplicands is usually
“small” so that we can use an even smaller prime.

2.4.7 Mixed-Radix NTT for Multiplications

In [CT65] Cooley and Tukey explained how to effectively compute a general FFT of a
composite size N . In such cases, the FFT operation can be realized by combining the
results of N/p smaller FFTs on vectors of size p. These elementary FFT operations over
vectors of prime size are also referred to by the shape of their diagrams as butterflies.
After such subdivisions, the immediate output of the algorithm would appear in an order
different from that of the input (however, like the radix-2 case, that need not concern us).

2.4.8 Multiple Moduli and the Explicit CRT (Divided Difference Form)

As in Section 2.4.6 suppose we have a convolution modulo xn − 1 modulo q, where
n 6 |(q − 1). A different possibility is to take various NTT-friendly primes pi whose product
P is sufficiently large (usually > nq2/2). Clearly computing the multiplication mod P
must return the correct product as polynomial with integer coefficients. This we can do by
computing the product modulo each pj using NTTs. There are at least two methods to
put the pieces together modulo P , from which we can compute our correct results. One is
via the Explicit Chinese Remainder Theorem [BS07]. The other is the following approach:

Theorem 1. Let pi > 0 be odd, pairwise co-prime (gcd(pi, pj) = 1 for 1 ≤ i < j ≤ s). An
explicit solution u of u ≡ ui (mod pi), i = 1 . . . s, where |ui| < pi/2, where |u| < P/2 =∏s
i=1 pi, is given by

y1 = u1
y2 = y1 + ((u2 − y1)m2 mod ±p2) p1
y3 = y2 + ((u3 − y2)m3 mod ±p3) p1p2
...

...
u = ys = ys−1 + ((us − ys−1)ms mod ±ps) p1 · · · ps−1

where each mi := (p1 · · · pi−1)−1 mod ±pi.

The theorem is also true for noncentered mod and is faster than [BS07] for small s.

Chung, Hwang, Kannwischer, Seiler, Shih, Yang 9

2.5 Cortex-M4
As selected by NIST for evaluating PQC candidates on micro-controllers, the ARM Cortex-
M4 (or M4F since a floating point unit is assumed) is one of our target platforms for
implementing PQC schemes. It is a RISC microcontroller which has fourteen 32-bit general
purpose registers. Its instruction set has several unusual features:

Single Cycle: Most instructions take 1 cycle each, including 32× 32 + 64 = 64-bit MADD.
The most conspicuous exception is the first load in a sequence of loads (2 cycles).

Barrel Shifter: In almost all instructions one of the operands can be shifted or rotated by
an arbitrary number of bits at no extra cost (and even sometimes help set carry).

Flexible Indexing: Registers may be shifted before/after being used as the index to load.

SIMD: Some arithmetic instructions that operate on 8- and 16-bit chunks of registers.

Restricted immediates: Not all 32-bit numbers can be used as an immediate operand.

Optional Flag-setting: Instructions don’t set flags by default, though most optionally do.

We mention some of the main tricks which we employ below.

Reductions. Since all of our approaches on Cortex-M4 are 32-bit NTTs, we need 32-bit
modular reductions. We implement 32-bit signed Barrett reduction and 32-bit signed
Montgomery multiplication with Cortex-M4’s powerful 1-cycle long multiplications smull,
smlal, and smmulr. Fix an integer a, a modulus q, and let R = 232. For Barrett reduction,

we compute a mod ±q with a−
⌊
a
q

⌉
·q ≈ a−

⌊
a·b R

q e
R

⌉
·q in 2 cycles as shown in Algorithm 10.

For Montgomery multiplication, we compute

abR−1 mod ±q = hi
((
ab · (R mod ±q)

)
+ q · lo

(
(−q−1 mod ±R) · lo

(
ab · (R mod ±q)

)))
(cf. Algorithm 11). When b is a known constant, we may precompute bR mod ±q and derive
ab mod ±q instead. While computing the point multiplication for NTTs using schoolbook
multiplication, neither multiplicand is known beforehand, but we may cancel out the
R−1 mod ±q by Montgomery-multiplying the precomputed NTT−1

N R2 mod ±q (i.e. an extra
factor of R) at the end of NTT−1. For convenience, we denote the computations (a, b) 7→
abR−1 mod ±q by montgomeryM and a(64-bit) 7→ aR−1 mod q(32-bit) by montgomeryR.

Algorithm 10 Barrett reduction
Input: c0 = a

Output: c0 = a−
⌊
a
q

⌉
· q

1: smmulr tmp, c0,
⌊

R
q

⌉
2: mls c0, tmp, q, c0

Algorithm 11 Montgomery multiplication
Input: (c0, c1) = (a, b)
Output: c0 = abR−1 mod ±q

1: smull tmp0, c0, c0, c1
2: mul tmp1, tmp0, (−q−1 mod ±R)
3: smlal tmp0, c0, tmp1, q

Floating-point registers. On the Cortex-M4 as specified by NIST, there are 14 general
purpose registers and 32 floating-point registers. Floating-point registers not only enable us
to access frequently used twiddle factors but also give us great flexibility on designing our
approaches; loading twiddle factors to floating-point registers before loops for butterflies
saves a general purpose register (crucial, since all our implementation on Cortex-M4 are
32-bit NTTs), we have a slighty faster implementation for ntruhps2048509 comparing to

10 NTT Multiplication for NTT-unfriendly Rings

Toom-4 implementation and a faster variant to use 64-bit (vs. the usual 32-bit) accumulators
for Saber’s matrix-to-vector product. Details for these variants would be eleborated in the
relevant sections.

3 NTTs on the Cortex-M4
On Cortex-M4, we commonly compute three layers of radix-2 NTTs at a time, Algorithm 19
illustrates the idea and is adapted from [ACC+20]

3.1 Saber
For Saber, we replace polynomial multiplications in the subroutines InnerProd and
MatrixVectorMul using the negacyclic NTT trick to eliminate all Toom-4 multiplications
in Saber. In the interest brevity, we only detail MatrixVectorMul (which takes most of
the time) that multiplies an l× l matrix with an l× 1 vector, where each component is an
element of Zq[x]/(x256 +1). The design of Saber provides additional incentives to use NTTs
because the matrix-to-vector product is turned into a matrix-to-vector point-multiplication
in NTT domain. More concretely, we do not merely save the difference in cycles between
Toom-4 and NTT-based degree-255 polynomial multiplications, because to compute the
l2 multiplications in MatrixVectorMul, we only need to compute l2 + l NTTs and l NTT
inverses instead of 2l2 NTTs and l2 inverse NTTs as normally might be expected.

Our NTT-based MatrixVectorMul therefore proceeds as follows: compute the size-256
negacyclic NTT for each component in the matrix and the vector, multiply the matrix by
the vector with degree-3 schoolbooks, accumulate the result to a vector, and then compute
the NTT inverses for each component.

We compute incomplete NTTs and degree-3 schoolbook as it gives the best performance
for Saber. To compute a0 · b0 + a1 · b1 + a2 · b2 (mod q′) using Montgomery reductions,
we only need 1 smull, 2 smlal, and 1 Montgomery reduction instead of computing 3
multiplications, each followed by a Montgomery reduction, adding the results together,
and then reducing modulo q′ again. Furthermore, this idea also applies where each ai · bi
is a degree-3 schoolbook.

Choosing the best incomplete NTT. When using incomplete NTTs we need to choose
at which point we should stop doing NTT butterfly operations and simply multiplying
the polynomials using school-book multiplication. One can choose between 8 layers of
NTTs, 7 layers of NTTs followed by 2 × 2 schoolbook, 6 layers of NTTs followed by
4× 4 schoolbook, and 5 layers of NTTs followed by 8× 8 schoolbook. First we compare
the behavior of incomplete NTTs. On a Cortex-M4, among the 14 general purpose
registers, we need one register for loading coefficients, one register for loading the twiddle
factors ζ, two registers for constants used in Montgomery multiplication, two registers as
temporary storage for Montgomery multiplication in schoolbook. There are only 8 registers
remained where computing 3 layers of NTTs at a time could be achieved without overhead.
Computing 5 layers of NTTs would not achieve the economical use of registers, since we
can often compute the 5-th layer without spilling the registers. Computing 7 layers of
NTTs would involve a lot of vmovs because of the lack of registers. For Saber, we achieve
the best performance when doing 6 layers of NTTs. This can be explained by comparing
4 × 4 school-book multiplication and size-4 NTTs. For simplicity, we will focus on an
l-dimensional matrix-to-vector product in which each component is a degree-3 polynomial.
A 4 × 4 school-book multiplication requires 7 smulls, 12 smlals, and 7 montgomeryRs
as illustrated in Algorithm 17 in the Appendix. For accumulation, each l-dimensional
row-column inner product requires 4l − 4 adds and 4l − 4 vmovs for temporary storage.
Therefore, 41l2 − 8l cycles are required for the 4 × 4 school-book approach. To use a

Chung, Hwang, Kannwischer, Seiler, Shih, Yang 11

size-4 NTT trick, we calculate the size-4 NTT of each component, multiply components
by components with point-multiplication, accumulate to a vector, and finally, compute the
size-4 NTT inverse of each component. Each size-4 NTT requires 4 montgomeryMs and 4
add-sub pairs as shown in Algorithm 16. Since only 14 registers are available, we need to
vmov 4 · (2 · (l− 1) + l) · l = 12l2− 8l times for storing intermediate values for accumulation.
If the NTT trick is adopted, the matrix-to-vector product would require 20l2 + 40l cycles
for l2 + l NTTs and l NTT inverses, l2 montgomeryMs, 12l2 − 8l vmovs, and 4l2 − 4l adds,
resulting in 39l2 + 28l cycles. We have 41l2 − 8l < 39l2 + 28l for l < 18.

Better Accumulation For Schoolbook Multiplication. There is an even better approach
to matrix-to-vector products utilizing the commutativity of instructions. All adds and
some montgomeryR can be removed at the cost of some additional vmovs. The following
observation results in an efficient implementation that is difficult to match independent of l.
Consider one inner product h =

∑3
i=0 pi ?qi where ? is multiplication (mod z4− ζ). Now

[z0]h = Σ
i

(
pi0qi0 + ζ(pi1qi3 + pi2qi2 + pi3qi1)

)
is its constant term1. So we can compute

the 64-bit value of [z0]h and then reduce it to 32-bit with montgomeryR, wherein all the
adds can be absorbed (changing some smull into smlal). Algorithm 18 is an illustration
of the idea. To summarize, we save 4l2− 4l adds and 4l2− 4l montgomeryRs (each of which
takes 2 cycles) at the cost of 8l2− 8l vmovs and therefore the cycle count becomes 37l2− 4l,
smaller than 39l2 + 28l for all l.

Our Optimized Negacyclic NTT Trick. Since incomplete size-256 negacyclic NTTs are
computed, we choose prime q′ = 25166081 = 196610 · 128 + 1 for Saber and Firesaber,
and prime q′ = 20972417 = 163847 ·128 + 1 for Lightsaber. The NTTs are computed with
six layers of radix-2 NTTs (CT butterflies), where the first three layers are merged and the
following three layers are merged, compute schoolbook-and-accumulate with above strategy,
and then compute incomplete size-256 NTT negacyclic inverses using GS butterflies with
the same 3-layer-merge.

3.2 NTRU
In this section, we go into implementation details for polynomial multiplication in NTRU on
Cortex-M4. We are targeting the first two poly_Rq_muls and the first poly_Sq_mul in
key generation, the poly_Rq_mul in encryption, and the first poly_Rq_mul in decryption.
While implementing polynomial multiplication for each parameter set, we optimized the
code in various aspects. Some ideas work for all parameter sets, and some are only suitable
for a particular one. The core ideas are simple: manipulate registers wisely, compute small
convolutions with schoolbook, and change the domain only when needed. We summarize
the tricks used for each parameter set in Table 3.

Layers of NTT. As usual, several layers of NTTs are computed at a time to avoid
load-stores and use the registers economically. On Cortex-M4, since only 14 general
purpose registers are available, we compute three layers of radix-2 NTTs (and two layers of
radix-3 NTTs) at a time. For ntruhps2048509, we employ a seemingly strange alternative,
computing four layers of radix-2 NTTs at a time, to set up better a foundation for polyno-
mial multiplication. This results in a slightly faster implementation for ntruhps2048509
compared to the Toom-4 approach.

Tricks for commutative operations. Recall that for computing an NTT, we must cancel
out the scaling factor NTTN. We can halve the number of Montgomery-multiplications by

1Combinatorially it is customary to write [xi]f for the coefficient of xi in f .

12 NTT Multiplication for NTT-unfriendly Rings

Table 3: Overview of NTTs for NTRU on Cortex-M4

(a) NTT tricks for NTRU parameter sets.

Parameter sets NTTN q′ Strategy
ntruhps4096821 1728 = 9 · 64 · 3 3365569 Mixed-radix(CT+GS)
ntruhrss701 1536 = 512 · 3 5747201 Good’s(CT+CT)
ntruhps2048677 1536 = 512 · 3 1389569 Good’s(CT+CT)
ntruhps2048509 1024 = 256 · 4 1043969 Radix-2(CT+GS)

(b) Layers of NTTs for each set of parameter.

NTT baseMul NTT inverse

ntruhps4096821
2-layer-radix-3 3× 3 2× 3-layer-radix-2

+2× 3-layer-radix-2 +2-layer-radix-3
ntruhrss701 3× 3-layer-radix-2 3× 3 3× 3-layer-radix-2
ntruhps2048677
ntruhps2048509 2× 4-layer-radix-2 4× 4 2× 3-layer-radix-2

NTT−1
N R2 mod ±q by first reducing modulo the polynomial modulus and then performing

the multiplication. The same idea also applies to the operations of reducing the coefficient
from Zq′ to Zq and packing two coefficients into one register. Because they commute, we
pack two coefficients and then and with (q− 1)||(q− 1). Algorithm 20 shows how the ideas
are implemented at the final stage.

ntruhps4096821. Algorithm 12 depicts the NTT for ntruhps4096821. We compute
incomplete mixed-radix size-1728 NTTs for each polynomial by splitting down to x3

i,j − ζi,j ,
multiply degree-2 polynomials with schoolbook, derive incomplete mixed-radix NTT
inverses, and then reduce the coefficient ring to Zq. For incomplete size-1728 NTTs, we
first compute size-9 NTTs with two radix-3 NTTs for each 9-set distancing apart by 192
units. Next, for each consecutive 192 coefficients, we compute size-64 NTTs with six layers
of radix-2 NTTs for each 64-set distancing apart by 3 units, leaving degree-2 polynomials.
Among 9 sets of 192-coefficient, standard size-64 NTTs are computed for the first 192-
coefficient and twisted size-64 NTTs are computed for the rest. The incomplete size-1728
NTT inverse is computed in the reversed manner. For the final stage, we employ all the
ideas mentioned in the previous paragraph – taking quotient before Montgomery-multiplying
(R)2NTT−1

N mod q′ and pack two coefficients before the and. For merging layers, the two
layers of radix-3 NTTs are merged, the first three layers of radix-2 NTTs are merged, the
following three layers of radix-2 NTTs are merged, and the NTT inverses are merged in
the same manner.

ntruhrss701 and ntruhps2048677. Algorithm 13 shows the NTT used for ntruhrss701
and ntruhps2048677. We use Good’s trick for both. Our approach is almost the
same as [ACC+20], with a slightly faster final stage. This is because (mod 2k) and
(mod (xn− 1)) are cheaper. We employ Good’s permutation of size 3× 29 for the size-1536
NTT. The algorithm goes in the following order: compute three size-512 NTTs (CT
butterflies), each for 512 contiguous entries, compute 3× 3 convolutions, where coefficients
are distancing apart by 512 units, invert size-512 NTTs (CT butterflies), and a final
stage. This last stage consists of: inverting Good’s permutation, taking the remainder
mod(xn − 1), Montgomery-multiplication by (R)2NTT−1

N mod q′, packing two coefficients
into one register, and reducing to coefficient ring Zq. We implement the iNTT using CT
butterfiles because we need fewer reductions to avoid overflows. As mentioned above, we do
mod(xn − 1) first so we save half the Montgomery-multiplications by (R)2NTT−1

N mod q′.

Chung, Hwang, Kannwischer, Seiler, Shih, Yang 13

Algorithm 12 Incomplete mixed-radix size-1728 NTT for ntruhps4096821

Representing
{

src1[i] with ntt1[i/192][(i mod 192)/3][(i mod 3)]
src2[i] with ntt2[i/192][(i mod 192)/3][(i mod 3)]

.

1: For each j, k, compute
{

NTT9(ntt1[0-8][j][k])
NTT9(ntt2[0-8][j][k])

.

2: For each i, k, compute
{

NTT64:ζi,0(ntt1[i][0-63][k])
NTT64:ζi,0(ntt2[i][0-63][k])

.

3: For each i, j, compute nttout[i][j][0-2] =
ntt1[i][j][0-2] ? ntt2[i][j][0-2] mod (x3 − ζi,j) .

4: For each i, k, compute NTT−1
64:ζi,0

(nttout[i][0-63][k]).
5: For each j, k, compute NTT−1

9 (nttout[0-8][j][k]).
6: Compute des[0-1727] = final_stage(nttout[0-8][0-63][0-2]).

Algorithm 13 Good’s trick of size-1536 NTT for ntruhrss701 and ntruhps2048677

1: Compute
{

ntt1[0-2][0-511] = (NTT⊗3
512:0−2 ◦ Good3×512)(src1[0-1535])

ntt2[0-2][0-511] = (NTT⊗3
512:0−2 ◦ Good3×512)(src2[0-1535])

.

2: For each i, compute
{

NTT512:3−8(ntt1[i][0-511])
NTT512:3−8(ntt2[i][0-511])

.

3: For each j, compute nttout[0-2][j] = ntt1[0-2][j] ? ntt2[0-2][j] mod (ω3 − 1).
4: For each i, compute NTT−1

512(nttout[i][0-511]).
5: Compute des[0-1535] = final_stage(nttout[0-2][0-511]).

ntruhps2048509. We merge our NTT layers differently for ntruhps2048509 to provide
a better framework for polynomial multiplication. See Algorithm 14 for the details. We do
2 sets of four-layer NTTs (CT butterflies) for incomplete size-1024 NTTs, perform each
4-coefficient (modulo a degree-3 polynomial) multiplication with schoolbook, do 2 sets of
3-layer NTT inverses (GS butterflies), and a final stage. Here GS butterfles make for an
easier final stage comprising the following operations: 2 layers of NTT inverses, taking
mod(xn − 1), Montgomery-multiplication by (R)2NTT−1

N mod q′, packing two coefficients
into one register, and reducing to coefficient ring Zq. This approach saves 1 layer of
load-stores.

3.3 LAC on Cortex-M4
For LAC-128, LAC-192, and LAC-256, we focus on big-by-small polynomial multiplications
where the ’small’ polynomials have coefficients in {0,±1}.

Algorithm 14 Incomplete size-1024 NTT for ntruhps2048509

Representing
{

src1[i] with ntt1[i/4][i mod 4]
src2[i] with ntt2[i/4][i mod 4]

.

1: For each j, compute
{

NTT256(ntt1[0-255][j])
NTT256(ntt2[0-255][j])

.

2: For each i, compute nttout[i][0-3] = ntt1[i][0-3] ? ntt2[i][0-3] mod (x4 − ζi).
3: For each j, compute NTT−1

256(nttout[0-255][j]).
4: Compute des[0-1023] = final_stage(nttout[0-255][0-3]).

14 NTT Multiplication for NTT-unfriendly Rings

Table 4: Overview of NTTs for LAC on Cortex-M4

(a) NTT tricks for LAC parameter sets.

Parameter sets NTTN q′ Strategy
LAC-128 512 133121 Complete NTT(CT+GS)
LAC-192 1024 270337 Incomplete NTT(CT+GS)
LAC-256

(b) Layers of NTTs for each set of parameter.

NTT baseMul NTT inverse
LAC-128 3× 3-layer-radix-2 1× 1 3× 3-layer-radix-2
LAC-192 3× 3-layer-radix-2 2× 2 3× 3-layer-radix-2
LAC-256

NTT trick for LAC We employ the negacyclic NTT trick on the rings Zq[x]/(x512 + 1),
Zq[x]/(x1024 + 1), Zq[x]/(x1024 + 1) for LAC-128, LAC-192, and LAC-256, respectively.
Our approach for LAC-128 proceeds as follows: compute the negacyclic size-512 NTTs of
polynomials, do point-by-point multiplications, and finally, compute the size-512 NTT
inverse. Our approach for LAC-192 and LAC-256 proceeds as the follows: derive incomplete
negacyclic size-1024 NTT by three sets of 3-layer-radix-2 NTTs, compute 2×2 schoolbooks,
and invert the NTT.

On the “optimized implementation’ in the LAC submission The original LAC “opti-
mized” code stores small polynomials as arrays of the indices of the non-zero terms (and
do secret-dependent table lookups), and they use the C % operator. These operations are
not constant time, posing a security risk. We use a standard form for the array to do
NTTs, and replace all C % operator using Montgomery reductions to obtain a constant-time
implementation.

4 Vectorized NTT on AVX2
For fast NTT-based polynomial multiplication on current x86 processors from Intel and
AMD, it is necessary to use a vectorized implementation of the NTT. These processors
support the AVX2 instruction set, offering a large number of instructions that operate on
16 vector registers, each of length 256 bit. Kyber, NTTRU, and Dilithium.

4.1 Fast mulmods
A first obstacle towards fast vectorization of the NTT is the problem of efficiently multi-
plying many coefficients modulo a small prime q. The standard way to compute modular
products is to first compute the double-length products over Z, and then reduce these
intermediate results modulo q. In a vectorized implementation, in order to achieve the
highest possible throughput, one wants to pack as many coefficients as possible in a vector
register. But double-length intermediate products mean it is only possible to achieve half
the density compared to packing only mod-q reduced integers. This effectively reduces
the speed of the implementation by a factor of two. Note that this is not a problem when
computing products modulo a two-power as in other polynomial multiplication implemen-
tations for Saber or NTRU that directly operate over the respective polynomial rings.
There the binary arithmetic in modern CPUs automatically takes care of the modular
reduction. To overcome this obstacle we use the modified Montgomery reduction algorithm
from [Sei18] together with the improvement from [LS19]. Here the modular multiplications

Chung, Hwang, Kannwischer, Seiler, Shih, Yang 15

Algorithm 15 Multiplication modulo 16-bit q

Require: −215 ≤ a < 215, q−1
2 ≤ b ≤ q−1

2 , b′ = bq−1 mod 216

Ensure: r ≡ 216ab (mod q)
1: t1 ←

⌊
ab
216

⌋
. signed high product

2: t0 ← ab′ mod 216 . signed low product
3: t0 ←

⌊
t0q
216

⌋
. signed high product

4: r ← (t1 − t0) mod 216

are computed from separate intermediate low and high half-products. When using the
AVX2 instruction set, this approach is most efficient for 16-bit primes q. The reason is that
there is a specific high-only half-product instruction vpmulhw for packed 16-bit integers
that does not have an equivalent instruction for packed 32-bit integers. Therefore, unlike
on the Cortex-M4, we use NTTs modulo 16-bit primes q on AVX2. Then we need to use a
multi-modular approach and compute the polynomial products modulo two such primes so
that we are able to correctly lift the results to Z with the help of the Chinese remainder
theorem. The additional polynomial product modulo a second prime involving three NTT
computations and a base product computation does not result in reduced speed, because
this loss of a factor of two is completely compensated for by twice the throughput from
packing 16-bit integers instead of 32-bit integers. Another benefit of 16-bit primes is that
it is possible to compute the occasional product modulo 3 in NTRU more efficiently, but
we haven’t used this improvement in our experiments.

We state the modular multiplication algorithm in Algorithm 15. As inputs it gets a 16-bit
integer a, and an mod-q reduced integer b together with the precomputed b′ = bq−1 mod 216.
The algorithm then outputs a representative modulo q for the scaled product ab216 mod q.
The second multiplicand b is always a fixed constant in the NTT and hence b and the
corresponding element b′ can easily be precomputed. The scaling factor 216 is handled as
usual by precomputing b and b′ with an additional factor of 2−16.

4.2 Choice of Transforms
We considered several different choices of transforms. For Saber with its NTT-friendly
polynomial modulus X256 + 1, we compute the negacyclic length-256 transforms modulo
X256+1 as we do on the Cortex-M4. For performing only a single polynomial multiplication
it is usually advantageous to use an incomplete NTT but for Saber where in the matrix-
vector product the vector of polynomials only needs to be transformed once and the
inner products can be computed in the NTT basis, a complete NTT is preferable. In
the case of ntruhps2048677 and nthuhrss701 we compute an incomplete NTT modulo
X1536 − 1 where we do 9 radix-2 splitting down to factors of degree 3. Since the input
polynomials have degree less than 768, the first splitting is for free. For ntruhps2048509
and ntruhps4096821 the same approach that we use on the Cortex-M4 should also gives
good results on Skylake. In particular, a length-1728 NTT with two radix-3 splittings,
followed by 6 radix-2 splittings, down to polynomials of degree less than 3. For LAC
with its polynomial moduli X512 + 1 and X1024 + 1, we compute incomplete negacyclic
length-512 and length-1024 NTTs, respectively, each with 8 layers, coming down to factors
of degree 2 and 4.

We chose the prime moduli 7681 and 10753 for the NTTs of length 256, 512, 1024 and
1536. Their product is slightly longer than 26 bits, which is enough for all our applications.
In the case of Saber, the absolute value of the polynomial coefficients when computing
the matrix-vector product over Z is bounded by 224, which is below 225. In NTRU, the
maximum absolute value is attained in ntruhrss701, where the coefficients are bounded
by 224.04 in all products of a uniform polynomial with a short polynomial. Next, as 7680

16 NTT Multiplication for NTT-unfriendly Rings

and 10752 are divisible by 1536 = 3 · 29, both of these moduli support complete transforms
modulo X1536− 1, which is all that we need for Saber and the NTRU arameter sets except
ntruhps4096821. For LAC, the coefficients are even smaller so this is no problem.

For implementing the length-1728 NTT that we need in the remaining NTRU parameter
set ntruhps4096821, the two 16-bit primes 3457 and 8641 are used. Their product is
sufficiently large, they support complete length-17218 NTTs and they are even slightly
smaller than the primes described above, which is good for modular reductions.

So, algebraically, for Saber we compute the map

Zq[X]/(X256 + 1)→ Zq[X]/(X − ζ0)× · · · × Zq[X]/(X − ζ255)

where ζi denote the primitive 512-th roots of unity in Zq. For ntruhrss701 and ntruhps2048677
we compute

Zq[X]/(X1536 − 1)→ Zq[X]/(X3 − ζ0)× · · · × Zq[X]/(X3 − ζ511)

where ζi denote all the 512-th roots of unity.
For ntruhps2048509 we compute

Zq[X]/(X1024 − 1)→ Zq[X]/(X2 − ζ0)× · · · × Zq[X]/(X2 − ζ511),

with ζi again ranging over all 512-th roos of unity.
Then, for ntruhps4096821 we compute

Zq[X]/(X1728 − 1)→ Zq[X]/(X3 − ζ0)× · · · × Zq[X]/(X3 − ζ575),

where ζi denote all the 576-th roots of unity. Finally, for LAC, we do

Zq[X]/(X512 + 1)→ Zq[X]/(X2 − ζ0)× · · · × Zq[X]/(X2 − ζ255), and
Zq[X]/(X1024 + 1)→ Zq[X]/(X4 − ζ0)× · · · × Zq[X]/(X2 − ζ255),

where ζi denote all the primitive 512-th.

4.3 Register allocation
Intel’s Skylake and later microarchitectures have a throughput of 2 vector multiplications
per clock cycle with a latency of 5 cycles [Fog20]. The addition and subtraction instructions
have a throughput of 3 instructions per cycle since they can go to a third execution port
that is not able to execute multiplications. Their latency is 1 cycle. Hence, the subtraction
instruction in Algorithm 15 ideally does not compete with the multiplication instructions
for execution resources, and the maximum theoretical throughput is 2/3 vector mulmod
operations per cycle, or 32/3 scalar modular multiplications per cycle. On the other hand,
the critical path of a vector mulmod consists of two multiplication instructions and a
subtraction and thus has a latency of 11 cycles. In order for the code to not be completely
latency bound and get near the maximum throughput, it is important that there are always
many independent mulmods that can be computed in parallel. In principle, the out of
order execution capability allows the CPU to find independent mulmods. But in practice
the code will not come from the small uop cache and the instruction fetch from the L1
instruction cache is limited to 16 bytes per cycle, which translates to only less than about
three vector instructions per cycle on average. So the code is likely to bottleneck on the
front-end of the pipeline and the instruction decoding will not be able to run sufficiently
far ahead for the CPU to be able to find independent instructions if they are far apart in
the code. Hence it is important to schedule the instructions so that as many mulmods
as possible are as close as possible. We achieve this by filling as many vector registers
as possible with polynomial coefficients to operate on under the constraint that we also

Chung, Hwang, Kannwischer, Seiler, Shih, Yang 17

need auxiliary registers for constants and scratch registers for intermediate results. Then
we can compute several NTT layers with loading coefficients only once, and, after only
a few layers, arrive at polynomials that we completely load into the registers. We also
experimented with more refined approaches to scheduling where we implemented several
parallel mulmods in an interleaved fashion so that we could schedule the addition and
subtraction instructions in a way that they do not steal executions resources from the
multiplication instructions. The downside of this approach is that by interleaving mulmod
operations one needs more scratch registers so that one can either only operate on fewer
polynomial coefficients at a time or needs to temporarily store away some of the coefficients.
In the end we found that not doing this and letting the register renaming capability of the
CPU take care of allocating scratch registers from the register file leads to superior results.
In the two-power NTTs we always have 8 vector registers with a total of 128 polynomial
coefficients loaded whereas in the NTT for NTRU whose length 1536 is divisible by 3 we
have always 12 registers with 192 coefficients loaded.

4.4 Range Analysis
For the two primes q = 7681 and q = 10753 that we use, it is not possible to compute all
the layers of the NTT using straight-forward radix-2 steps without performing additional
modular reductions. We assume that the input polynomials we want to transform have
coefficients less than 4096 in absolute value. This is true for all our applications without
first reducing the polynomials modulo q. Now, by [Sei18, Lemma 2], the output coefficients
of Algorithm 15 lie in the interval [−q, q]. So, using this approximation, we find for the
forward negacyclic NTT with Cooley-Tukey butterflies that the coefficients grow by at
most q in absolute value in each layer of the NTT. It then follows that we can only perform
2 layers without additional reductions. Instead, we use a more refined range analysis where
for each layer and a given input range we compute the maximum range of the modular
products. This then determines the range of the output coefficients, which form the inputs
for the next layer. With this analysis we find that we can compute three layers of radix-2
splittings without additional reductions, both in the cyclic and in the negacyclic NTT.
After these three layers we twist all the factors into rings of the form Zq[X]/(Xn − 1).
The advantage of twisting the factors instead of merely reducing coefficients is that this
results in fewer modular multiplications in subsequent layers. Moreover, the mulmods
as in Algorithm 15 are even slightly more efficient than for example Barrett reductions
as they have the same throughput but shorter dependency chains. Concretely, splitting
rings of the form Zq[X]/(Xn − 1) does not need any mulmod. But for later factors of this
form we do in fact sometimes multiply coefficients by 1 in order to reduce them. We then
recursively compute the following maps with 16n mulmods, where ζ ∈ Zq is a primitive
8-th root of unity,

Zq[X]/(X8n − 1)
→ Zq[X]/(X4n − 1)× Zq[X]/(X4n + 1)
→ Zq[X]/(X2n − 1)× Zq[X]/(X2n + 1)× Zq[X]/(X2n − ζ2)× Zq[X]/(Xn + ζ2)
→ Zq[X]/(Xn − 1)× Zq[X]/(Xn + 1)× Zq[X]/(Xn − ζ2)× Zq[X]/(Xn + ζ2)
× Zq[X]/(Xn − ζ)× Zq[X]/(Xn + ζ)× Zq[X]/(Xn − ζ3)× Zq[X]/(Xn + ζ3)

→ Zq[X]/(Xn − 1)× · · · × Zq[X]/(Xn − 1)

5 Results
In this section, we describe the benchmarking results for our Saber, NTRU, and LAC
implementations. First, we describe our benchmarking setup for the Cortex-M4 and

18 NTT Multiplication for NTT-unfriendly Rings

Table 5: Saber Performance results in clock cycles for core arithmetic operations on
Cortex-M4 and Skylake. The Inner-product computation in our AVX2 implementation
for SABER does not contain the cost of computing the NTT of one of the input vectors.
In encryption the NTT of the secret vector is already computed for the matrix vector
product. For decryption the secret vector can be stored in NTT form in the secret key,
which does not need to be compatible with other implementations.

MatrixVectorMul
Cortex-M4 Skylake (AVX2)

[BMKV20] Our Work speed-up [BMKV20] Our Work speed-up
l = 2 159k 66k 58% 7 002 5 215 25%
l = 3 317k 125k 61% 14 145 9 579 32%
l = 4 528k 205k 61% 24 342 14 959 39%

InnerProducta

Cortex-M4 Skylake (AVX2)
[BMKV20] Our Work speed-up [BMKV20] Our Work speed-up

l = 2 73k 41k 44% 4 016 2 125 47%
l = 3 99k 57k 42% 5 977 2 706 55%
l = 4 126k 73k 42% 8 040 3 278 60%

a [BMKV20] report cycles on a different platform with a slightly newer Kabylake processor. We have
re-benchmarked their code on our Skylake platform.

Skylake and then we report our results for Saber, NTRU, and LAC in Sections 5.1, 5.2,
and 5.3.

Benchmarking setup for the Cortex-M4. Our benchmarking setup is based on the
pqm4 [KRSS] benchmarking framework and as such produces comparable cycle counts to
previous work [BMKV20, KRS19]. We target the STM32F407-DISCOVERY board which has
a STM32F407VG core. We clock it at 24 MHz with no flash wait states to obtain similar
cycle counts as the ones reported in pqm4. For obtaining randomness, we use the hardware
random number generator. As both NTRU and Saber make use of SHA-3 and SHAKE,
we make use of the optimized assembly implementations of Keccak from the XKCP2

which is also contained in pqm4. LAC relies on AES and SHA-2 which we source from
[SS17] and SUPERCOP3 respectively. All cycle counts in the following were obtained for
implementations compiled with gcc and -O3 (arm-none-eabi-gcc, Version 10.2.0). Each
cycle count reported is the average of 100 executions.

Benchmarking setup for Skylake. The cycle counts for AVX2 were obtained on a Intel
Core i7-6600U (Skylake) processor with a base frequency of 2.6 GHz. As usual we disable
TurboBoost and hyperthreading. We compile our implementations with gcc version 7.5.0
and use the compiler flags -O3, -fomit-frame-pointer, -march=native, -mtune=native.
All cycle counts are the median cycle counts of 10 000 executions.

5.1 Saber results
Table 5 contains the performance results for the polynomial arithmetic speed-ups in Saber.
We report the results for matrix-vector multiplication A · s as used in key generation
and encryption and vector-vector inner multiplication bT · s as used in encryption and
decryption separately. The dimension of the matrix is l × l and the dimension of the

2https://github.com/XKCP/XKCP
3https://bench.cr.yp.to/supercop.html

https://github.com/XKCP/XKCP
https://bench.cr.yp.to/supercop.html

Chung, Hwang, Kannwischer, Seiler, Shih, Yang 19

Table 6: Performance results in clock cycles for Lightsaber, Saber, and Firesaber

Cortex-M4 Skylake (AVX2)
[BMKV20]a Our Work [BMKV20] Our Work

Lightsaber

CPA
K 383k 294k(−23%) 49 132 47 068 (−4%)
E 448k 330k(−26%) 46 311 42 971 (−7%)
D 93k 58k(−38%) 7 842 5 887 (−2%)

CCA
K 466k 360k(−23%) 61 325 59 831 (−2%)
E 653k 513k(−21%) 75 876 72 473 (−4%)
D 678k 498k(−27%) 70 228 64 859 (−8%)

Saber

CPA
K 738k 554k(−25%) 86 502 81 579 (−6%)
E 830k 606k(−27%) 84 852 77 666 (−8%)
D 128k 79k(−38%) 10 909 7 870(−28%)

CCA
K 853k 658k(−23%) 104 832 99 715 (−5%)
E 1 103k 864k(−22%) 125 835 118 446 (−6%)
D 1 127k 835k(−26%) 118 553 107 264(−10%)

Firesaber

CPA
K 1 191k 879k(−26%) 135 986 126 476 (−7%)
E 1 312k 947k(−28%) 136 075 123 753(−10%)
D 162k 101k(−38%) 14 474 10 184(−30%)

CCA
K 1 340k 1 008k(−25%) 157 915 148 729 (−6%)
E 1 642k 1 255k(−24%) 184 322 171 993 (−7%)
D 1 679k 1 227k(−27%) 177 864 159 950(−10%)

a[BMKV20] only reports cycle counts for the CCA-secure Saber. The CPA-secure cycle counts are our
own benchmarks.

vectors is l × 1. The dimension l = 2, 3, 4 correspond to the parameter sets Lightsaber,
Saber, and Firesaber.

On Cortex-M4, we obtain speedups between 58% and 61% for A · s and between 42%
and 44% for bT · s. The speed-ups on Skylake range from 25% to 39% forA · s and from
47% to 60% for bT · s.

Table 6 illustrates the resulting performance of Lightsaber, Saber, and Firesaber
on the Cortex-M4 when our fast MatrixVectorMul and InnerProduct are plugged into
them. In addition to the full CCA-secure KEM schemes, we also report cycle counts
for the underlying CPA-Secure PKE. While those are not explicitly exposed in the
Saber specification, all our optimizations were inside of the CPA primitives and, hence,
the overhead of the CCA transformation did not change. Moreover, some schemes use
considerably more expansive CCA transforms than others. For example, Saber and Kyber
include very costly public key and ciphertext hashes in their CCA transforms that could
be omitted in a different choice of transform.

On Cortex-M4, we achieve significant speed-ups of consistently more than 20%. For
CPA-secure decryption, we get the most notable speed-up of 38%.

5.2 NTRU results
Table 7 shows the results for polynomial multiplication for NTRU for the four differ-
ent polynomial degrees used in ntruhps2048509, ntruhps2048677, ntruhrss701, and
ntruhps4096821. On the Cortex-M4, for the smallest polynomial size n = 509, our
implementation using NTTs is performing only slightly better than the Toom4 implemen-
tation [KRS19]. For the larger sizes, the speed-up on the Cortex-M4 is more pronounced
with 10% or more. On AVX2, n = 509 is the only polynomial size for which we were not
able to obtain a speed-up using NTTs. All other parameter sets have small speed-ups of
7% to 15%. The reason why we didn’t achieve a speed-up for n = 509 is partly because we

20 NTT Multiplication for NTT-unfriendly Rings

Table 7: NTRU Performance results in clock cycles for polynomial multiplication on
Cortex-M4 and Skylake

Cortex-M4 Skylake (AVX2)
n [KRS19]a Our Work speed-up [ZCH+19] Our Work speed-up
509 104k 101k 3% 6 643 8 540 −29%
677 175k 156k 11% 11 103 10 373 7%
701 173k 156k 10% 11 242 10 373 8%
821 230k 199k 13% 15 507 13 247 15%

a[KRS19] only reports cycle counts for n = 701, but their code generator has been used to generate Toom-4
polynomial multiplication code to speed-up the other NTRU parameter sets. See https://github.com/
mupq/pqm4/pull/86

chose a different vector layout and shuffling strategy in the length-1024 NTT compared
to the other NTTs. The advantage of the different vector layout is that it is easier to
precompute the constant vectors and they need less space. But they require more loads.
In principal the loads don’t compete with the arithmetic because they go to separate
execution ports and can be dispatched in parallel. Unfortunately, it turned out that this
does incur a penalty, most likely because the code is bottlenecking on the front-end. We
leave it as future work to optimize the length-1024 NTTs as much as the other NTTs.

Table 8 reports the results for the full NTRU schemes. As we only optimize polynomial
multiplication in this paper and key generation is dominated by polynomial inversion, we
do not see a big difference in cycle counts across all parameter sets and platforms. On the
Cortex-M4, encapsulation is 1% to 6% faster while decapsulation is 2% to 4% faster. For
the underlying CPA-secure PKE, we achieve higher speed-ups of 2% to 13% which comes
as no surprise as we did not modify the CCA transformation.

5.3 LAC results
Table 9 summarizes the speed of the (big by small) polynomial multiplication in LAC. We
can see that our code is faster than that of [LLZ+18] by a factor of 10× on the Cortex-M4
and a factor of 3× to 7× on Skylake.

Table 10 summarizes the results for the full LAC schemes. We can see that for LAC-128
we see a 3× up speedup on the Cortex-M4 while there is a more modest 20–50% speedup
for AVX2. For LAC-192 and LAC-256 there is a roughly 4× speedup for the Cortex-M4
and roughly a 2× speedup for Skylake.

Acknowledgements
This work has been supported by the European Commission through the ERC Starting
Grant 805031 (EPOQUE) and by the SNSF ERC starting transfer grant FELICITY.
Taiwanese authors were supported by Taiwan Ministry of Science and Technology Grants
109-2923-E-001-001-MY3 and 109-2221-E-001-009-MY3, Sinica Investigator Award AS-
IA-109-M01, Executive Yuan Data Safety and Talent Cultivation Project (AS-KPQ-109-
DSTCP). We thank Daniel J. Bernstein for the idea of trying NTT-based multiplication
for schemes that are not specifically designed for NTTs and several important insights.

https://github.com/mupq/pqm4/pull/86
https://github.com/mupq/pqm4/pull/86

Chung, Hwang, Kannwischer, Seiler, Shih, Yang 21

Table 8: Performance results in clock cycles for NTRU

Cortex-M4 Skylake (AVX2)
[KRS19]a Our Work [ZCH+19] Our Work

ntruhps2048509

CPA
K 79 639k 79 617k (±0%) 155 306 164 952 (+6%)
E 160k 152k (−5%) 10 183 12 052(+18%)
D 441k 434k (−2%) 27 314 31 340(+15%)

CCA
K 79 682k 79 660k (±0%) 208 653 218 887 (+5%)
E 572k 564k (−1%) 71 018 73 176 (+3%)
D 545k 538k (−1%) 38 950 42 953(+10%)

ntruhps2048677

CPA
K 143 759k 143 671k (±0%) 264 398 264 276 (±0%)
E 251k 224k(−11%) 15 794 15 821 (±0%)
D 702k 676k (−4%) 43 352 42 515 (−2%)

CCA
K 143 808k 143 725k (±0%) 332 906 333 278 (±0%)
E 849k 821k (−3%) 96 293 95 953 (±0%)
D 845k 818k (−3%) 59 169 58 406 (−1%)

ntruhrss701

CPA
K 153 794k 154 377k (±0%) 265 341 264 501 (±0%)
E 299k 274k (−8%) 19 096 18 507 (−3%)
D 740k 716k (−3%) 45 130 43 770 (−3%)

CCA
K 154 477k 154 403k (±0%) 299 066 298 505 (±0%)
E 403k 377k (−6%) 56 616 56 084 (−1%)
D 896k 871k (−3%) 62 503 61 199 (−2%)

ntruhps4096821

CPA
K 208 892k 208 771k (±0%) 375 171 367 911 (−2%)
E 327k 285k(−13%) 18 914 16 917(−11%)
D 906k 862k (−5%) 55 573 52 204 (−6%)

CCA
K 208 953k 207 495k (−1%) 458 614 451 664 (−2%)
E 1 069k 1 027k (−4%) 114 986 113 935 (−1%)
D 1 075k 1 030k (−4%) 74 182 70 917 (−4%)

a[KRS19] only reports cycle counts for the CCA-secure ntruhrss701 from the first round of the NIST
competition. Cycle counts in this table are our own benchmarks of the second round code contained in
pqm4 [KRSS].

Table 9: LAC polynomial multiplication clock cycles on Cortex-M4 and Skylake

Cortex-M4 Skylake (AVX2)
[LLZ+18] Our Work speed-up [LLZ+18] Our Work speed-up

LAC-128 638k 65k 90% 14 691 4 552 69%
LAC-192 1 274k 131k 90% 73 955 10 119 86%
LAC-256 1 701k 132k 92% 73 955 10 119 86%

22 NTT Multiplication for NTT-unfriendly Rings

Table 10: Performance results in clock cycles for LAC

Cortex-M4 Skylake (AVX2)
[LLZ+18] Our Work [LLZ+18] Our Work

LAC-128

CPA
K 850k 282k(−67%) 42 841 30 959(−28%)
E 1 424k 444k(−69%) 60 797 41 485(−32%)
D 528k 113k(−79%) 26 880 14 512(−46%)

CCA
K 850k 282k(−67%) 53 000 42 167(−20%)
E 1 430k 450k(−69%) 76 418 59 252(−22%)
D 1 960k 565k(−71%) 86 209 55 880(−35%)

LAC-192

CPA
K 1 506k 373k(−75%) 90 742 36 248(−60%)
E 2 417k 601k(−75%) 111 839 52 055(−53%)
D 899k 210k(−77%) 66 349 12 508(−81%)

CCA
K 1 507k 373k(−75%) 96 270 41 713(−57%)
E 2 427k 610k(−75%) 128 342 67 732(−47%)
D 3 329k 824k(−75%) 189 660 74 393(−61%)

LAC-256

CPA
K 2 019k 459k(−77%) 125 380 60 242(−52%)
E 3 623k 739k(−80%) 171 038 77 268(−55%)
D 1 690k 359k(−79%) 87 588 23 558(−73%)

CCA
K 2 020k 459k(−77%) 143 568 76 917(−46%)
E 3 633k 748k(−79%) 202 346 106 836(−47%)
D 5 327k 1 111k(−79%) 262 901 104 897(−60%)

Chung, Hwang, Kannwischer, Seiler, Shih, Yang 23

References
[ABCG20] Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard. Cortex-

m4 optimizations for R,M lwe schemes. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(3):336–357, Jun. 2020.

[ABD+19] Roberto Avanzi, Joppe Bos, Láo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS–Kyber. Submission to the NIST Post-Quantum Cryptog-
raphy Standardization Project [NIS], 2019. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-2-submissions.

[ACC+20] Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, Hülya Evkan,
Leo Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben Niederhagen,
Cheng-Jhih Shih, Julian Wälde, and Bo-Yin Yang. Polynomial multiplication
in ntru prime — comparison of optimization strategies on cortex-m4. IACR
e-Print 2020/1216, 2020.

[Ber] Daniel J. Bernstein. Multidigit multiplication for mathematicians. http:
//cr.yp.to/papers.html#m3.

[BMKV20] Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Verbauwhede.
Time-memory trade-off in toom-cook multiplication: an application to module-
lattice based cryptography. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2020(2):222–244, Mar. 2020.

[BS07] Daniel J. Bernstein and Jonathan P. Sorenson. Modular exponentiation
via the explicit Chinese remainder theorem. Mathematics of Computation,
76(257):443–454, 2007. Article electronically published on September 14, 2006,
http://cr.yp.to/papers.html#meecrt.

[CAC19] Chinese Association of Cryptologic Research CACR. National crypto-
graphic algorithms design contest, 2019. http://sfjs.cacrnet.org.cn/
site/content/309.html.

[Coo66] Stephen Cook. On the Minimum Computation Time of Functions. PhD thesis,
Harvard University, 1966.

[CT65] James W. Cooley and JohnW. Tukey. An algorithm for the machine calculation
of complex Fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[DKRV19] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. SABER. Submission to the NIST Post-Quantum Cryptogra-
phy Standardization Project [NIS], 2019. https://www.esat.kuleuven.be/
cosic/pqcrypto/saber/.

[DTGW17] Jintai Ding, Tsuyoshi Takagi, Xinwei Gao, and Yuntao Wang. Ding
Key Exchange. Technical report, National Institute of Standards
and Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

[FHK+19] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. Falcon. Submission to the NIST Post-Quantum
Cryptography Standardization Project [NIS], 2019. https://falcon-sign.
info.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
http://cr.yp.to/papers.html#m3
http://cr.yp.to/papers.html#m3
http://cr.yp.to/papers.html#meecrt
http://sfjs.cacrnet.org.cn/site/content/309.html
http://sfjs.cacrnet.org.cn/site/content/309.html
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://falcon-sign.info
https://falcon-sign.info

24 NTT Multiplication for NTT-unfriendly Rings

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In Michael Wiener, editor, Advances
in Cryptology – CRYPTO ‘99, volume 1666, pages 537–554, 1999. http:
//dx.doi.org/10.1007/3-540-48405-1_34.

[Fog20] Agner Fog. Instruction tables, 2020. http://www.agner.org/optimize/
instruction_tables.pdf.

[Goo51] Irving J. Good. Random motion on a finite abelian group. Proceedings of the
Cambridge Philosophical Society, 47:756–762, 1951. MR 13,363e.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, Theory of Cryptography, volume 10677, pages 341–371, 2017. https:
//eprint.iacr.org/2017/604.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based
public key cryptosystem. In Algorithmic Number Theory – ANTS-III, pages
267–288, 1998. http://dx.doi.org/10.1007/BFb0054868.

[KO63] Anatolii Karatsuba and Yuri Ofman. Multiplication of multidigit numbers on
automata. Soviet Physics Doklady, 7:595–596, 1963. Translated from Doklady
Akademii Nauk SSSR, Vol. 145, No. 2, pp. 293–294, July 1962. Scanned version
on http://cr.yp.to/bib/1963/karatsuba.html.

[KRS19] Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. Faster mul-
tiplication in Z2m [x] on cortex-m4 to speed up NIST PQC candidates. In
Applied Cryptography and Network Security, pages 281–301, 2019.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://
github.com/mupq/pqm4.

[LDK+19] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-DILITHIUM.
Submission to the NIST Post-Quantum Cryptography Standardization
Project [NIS], 2019. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[LLJ+19] Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, JingnanHe, Zhenfei Zhang,
Zhe Liu, Hao Yang, Bao Li, and Kunpeng Wang. Lac. Submission to the
NIST Post-Quantum Cryptography Standardization Project [NIS], 2019. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions.

[LLZ+18] Xianhui Lu, Yamin Liu, Zhenfei Zhang, Dingding Jia, Haiyang Xue, Jingnan
He, and Bao Li. LAC: practical ring-lwe based public-key encryption with
byte-level modulus. IACR Cryptol. ePrint Arch., 2018. https://eprint.
iacr.org/2018/1009.

[LS19] Vadim Lyubashevsky and Gregor Seiler. NTTRU: truly fast NTRU using
NTT. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2019(3):180–201, 2019.

[NIS] NIST, the US National Institute of Standards and Technology. Post-quantum
cryptography standardization project. https://csrc.nist.gov/Projects/
post-quantum-cryptography.

http://dx.doi.org/10.1007/3-540-48405-1_34
http://dx.doi.org/10.1007/3-540-48405-1_34
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://eprint.iacr.org/2017/604
https://eprint.iacr.org/2017/604
http://dx.doi.org/10.1007/BFb0054868
http://cr.yp.to/bib/1963/karatsuba.html
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2018/1009
https://eprint.iacr.org/2018/1009
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography

Chung, Hwang, Kannwischer, Seiler, Shih, Yang 25

[PAA+19] Thomas Pöppelmann, Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas,
Antonio de la Piedra, Peter Schwabe, Douglas Stebila, Martin R. Albrecht,
Emmanuela Orsini, Valery Osheter, Kenneth G. Paterson, Guy Peer, and
Nigel P. Smart. NewHope. Submission to the NIST Post-Quantum Cryptog-
raphy Standardization Project [NIS], 2019. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-2-submissions.

[Sei18] Gregor Seiler. Faster AVX2 optimized NTT multiplication for ring-lwe lattice
cryptography. IACR Cryptol. ePrint Arch., 2018. https://eprint.iacr.
org/2018/039.

[Sho94] P.W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In FOCS 1994, pages 124–134. IEEE, 1994. https://ieeexplore.
ieee.org/abstract/document/365700.

[SS17] Peter Schwabe and Ko Stoffelen. All the AES you need on Cortex-M3 and M4.
In Roberto Avanzi and Howard Heys, editors, Selected Areas in Cryptology –
SAC 2016, volume 10532, pages 180–194, 2017. https://eprint.iacr.org/
2016/714.

[Too63] Andrei L. Toom. The complexity of a scheme of functional elements realizing
the multiplication of integers. Soviet Mathematics Doklady, 3:714–716, 1963.
www.de.ufpe.br/~toom/my-articles/engmat/MULT-E.PDF.

[ZCH+19] Zhenfei Zhang, Cong Chen, Jeffrey Hoffstein, WilliamWhyte, John M. Schanck,
Andreas Hulsing, Joost Rijneveld, Peter Schwabe, and Oussama Danba. NTRU.
Technical report, National Institute of Standards and Technology, 2019. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions.

[ZYF+19] Jiang Zhang, Yu Yu, Shuqin Fan, Zhenfeng Zhang, and Kang Yang. Tweaking
the asymmetry of asymmetric-key cryptography on lattices: Kems and sig-
natures of smaller sizes. Cryptology ePrint Archive, Report 2019/510, 2019.
https://eprint.iacr.org/2019/510.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2018/039
https://eprint.iacr.org/2018/039
https://ieeexplore.ieee.org/abstract/document/365700
https://ieeexplore.ieee.org/abstract/document/365700
https://eprint.iacr.org/2016/714
https://eprint.iacr.org/2016/714
www.de.ufpe.br/~toom/my-articles/engmat/MULT-E.PDF
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2019/510

26 NTT Multiplication for NTT-unfriendly Rings

A Appendix

Algorithm 16 Size-4 NTT
Input: {a0, a1, a2, a3}, {ζ ′0, ζ ′1, ζ ′2} where ζ ′i =

(
232ζi mod q′

)
.

Output: {a′′0 , a′′1 , a′′2 , a′′3} where

a′′0 = a′0 + ζ1a
′
1

a′′1 = a′0 − ζ1a
′
1

a′′2 = a′2 + ζ2a
′
3

a′′3 = a′2 − ζ2a
′
3

←−

a′0 = a0 + ζ0a2

a′2 = a0 − ζ0a2

a′1 = a1 + ζ0a3

a′3 = a1 − ζ0a3
.
1: (r4, r5, r6, r7) = (a0, a1, a2, a3)
2: montgomeryM r6, r6, ζ ′0 . r6 = ζ0a2
3: montgomeryM r7, r7, ζ ′0 . r7 = ζ0a3
4: addSub2 r4, r6, r5, r7
5: . r4 : a′0, r5 : a′1, r6 : a′2, r7 : a′3
6: montgomeryM r5, r5, ζ ′1 . r5 = ζ1a

′
1

7: montgomeryM r7, r7, ζ ′2 . r7 = ζ2a
′
3

8: addSub2 r4, r5, r6, r7
9: . r4 : a′′0 , r5 : a′′1 , r6 : a′′2 , r7 : a′′3

Chung, Hwang, Kannwischer, Seiler, Shih, Yang 27

Algorithm 17 4× 4 schoolbook
Input: {k0, k1, k2, k3}, {b0, b1, b2, b3}, ζ ′ =

(
232ζ mod q′

)
.

Output: {c′0, c′1, c′2, c′3} where

c′0 = (k0b0 + ζ (k1b3 + k2b2 + k3b1)) /232 mod q′

c′1 = (k0b1 + k1b0 + ζ (k2b3 + k3b2)) /232 mod q′

c′2 = (k0b2 + k1b1 + k2b0 + ζk3b3) /232 mod q′

c′3 = (k0b3 + k1b2 + k2b1 + k3b0) /232 mod q′
.
1: smull r0, r1, k1, b3
2: smlal r0, r1, k2, b2
3: smlal r0, r1, k3, b1
4: montgomeryR r0, r1
5: smull r0, r1, r1, ζ ′

6: smlal r0, r1, k0, b0
7: montgomeryR r0, r1 . r1 = c′0
8: vmov s0, r1 . vmov for accumulation later on
9: smull r0, r1, k2, b3
10: smlal r0, r1, k3, b2
11: montgomeryR r0, r1
12: smull r0, r1, r1, ζ ′

13: smlal r0, r1, k0, b1
14: smlal r0, r1, k1, b0
15: montgomeryR r0, r1 . r1 = c′1
16: vmov s1, r1 . vmov for accumulation later on
17: smull r0, r1, k3, b3
18: montgomeryR r0, r1
19: smull r0, r1, r1, ζ ′

20: smlal r0, r1, k0, b2
21: smlal r0, r1, k1, b1
22: smlal r0, r1, k2, b0
23: montgomeryR r0, r1 . r1 = c′2
24: vmov s2, r1 . vmov for accumulation later on
25: smull r0, r1, k0, b3
26: smlal r0, r1, k1, b2
27: smlal r0, r1, k2, b1
28: smlal r0, r1, k3, b0
29: montgomeryR r0, r1 . r1 = c′3
30: vmov s3, r1 . vmov for accumulation later on

28 NTT Multiplication for NTT-unfriendly Rings

Algorithm 18 Saber 4× 4 schoolbook refined (l = 3 as an example)
Input:

{k0, k1, k2, k3}
{b0, b1, b2, b3}
{kn, kn+1, kn+2, kn+3}
{bn, bn+1, bn+2, bn+3}
{k2n, k2n+1, k2n+2, k2n+3}
{b2n, b2n+1, b2n+2, b2n+3}
ζ ′ =

(
232ζ mod q′

)
Output: {c′′0 , c′′1 , c′′2 , c′′3} where (c′is are as in Algorithm 17)

c′′0 = (c′0 + c′n + c′2n) mod q′

c′′1 =
(
c′1 + c′n+1 + c′2n+1

)
mod q′

c′′2 =
(
c′2 + c′n+2 + c′2n+2

)
mod q′

c′′3 =
(
c′3 + c′n+3 + c′2n+3

)
mod q′

1: smull r0, r1, k1, b3
2: smlal r0, r1, k2, b2
3: smlal r0, r1, k3, b1
4: montgomeryR r0, r1 . r1 = (k1b3 + k2b2 + k3b1)/232 mod q′
5: smull r0, r1, r1, ζ ′

6: smlal r0, r1, k0, b0
7: vmov s0, s1, r0, r1
8: . 232r1 + r0 = 232c′0 mod q′
9: smull r0, r1, kn+1, bn+1
10: smlal r0, r1, kn+2, bn+2
11: smlal r0, r1, kn+3, bn+3
12: montgomeryR r0, r1 . r1 = (kn+1bn+3 + kn+2bn+2 + kn+3bn+1)/232 mod q′
13: vmov r0, r4, s0, s1
14: smlal r0, r4, r1, ζ ′

15: smlal r0, r4, kn, bn
16: vmov s0, s1, r0, r1
17: . 232r4 + r0 = 232(c′0 + c′n) mod q′
18: smull r0, r1, k2n+1, b2n+1
19: smlal r0, r1, k2n+2, b2n+2
20: smlal r0, r1, k2n+3, b2n+3
21: montgomeryR r0, r1 . r1 = (k2n+1b2n+3 + k2n+2b2n+2 + k2n+3b2n+1)/232 mod q′
22: vmov r0, r4, s0, s1
23: smlal r0, r4, r1, ζ ′

24: smlal r0, r4, k2n, b2n
25: . 232r4 + r1 = 232(c′0 + c′n + c′2n) mod q′
26: montgomeryR r0, r4
27: . r4 = c′′0
28: compute c′′1 with above optimization
29: compute c′′2 with above optimization
30: compute c′′3 with above optimization
31: . Code sections for c′′0 , c

′′
1 , c
′′
2 , and c′′3 are actually interleaved.

Chung, Hwang, Kannwischer, Seiler, Shih, Yang 29

Algorithm 19 Cooley-Tukey FFT three layers(adapted from [ACC+20])
Input: {a0, . . . , a7}, {ζ′0, . . . , ζ′6} where ζ′i =

(
232ζi mod q′

)
.

Output: {a′′′0 , . . . , a
′′′
7 } where

a′′′0 = a′′0 + ζ3a
′′
1

a′′′1 = a′′0 − ζ3a
′′
1

a′′′2 = a′′2 + ζ4a
′′
3

a′′′3 = a′′2 − ζ4a
′′
3

a′′′4 = a′′4 + ζ5a
′′
5

a′′′5 = a′′4 − ζ5a
′′
5

a′′′6 = a′′6 + ζ6a
′′
7

a′′′7 = a′′6 − ζ6a
′′
7

←−

a′′0 = a′0 + ζ1a
′
2

a′′2 = a′0 − ζ1a
′
2

a′′1 = a′1 + ζ1a
′
3

a′′3 = a′1 − ζ1a
′
3

a′′4 = a′4 + ζ2a
′
6

a′′6 = a′4 − ζ2a
′
6

a′′5 = a′5 + ζ2a
′
7

a′′7 = a′5 − ζ2a
′
7

←−

a′0 = a0 + ζ0a4

a′4 = a0 − ζ0a4

a′1 = a1 + ζ0a5

a′5 = a1 − ζ0a5

a′2 = a2 + ζ0a6

a′6 = a2 − ζ0a6

a′3 = a3 + ζ0a7

a′7 = a3 − ζ0a7
.
1: (r4, . . . , r11) = (a0, . . . , a7)
2: montgomeryM r8, r8, ζ′0
3: montgomeryM r9, r9, ζ′0
4: montgomeryM r10, r10, ζ′0
5: montgomeryM r11, r11, ζ′0
6: addSub4 r4, r8, r5, r9, r6, r10, r7, r11
7: . (r4, . . . , r11) = (a′0, . . . , a′7)
8: montgomeryM r6, r6, ζ′1
9: montgomeryM r7, r7, ζ′1
10: montgomeryM r10, r10, ζ′2
11: montgomeryM r11, r11, ζ′2
12: addSub4 r4, r6, r5, r7, r8, r10, r9, r11
13: . (r4, . . . , r11) = (a′′0 , . . . , a′′7)
14: montgomeryM r5, r5, ζ′3
15: montgomeryM r7, r7, ζ′4
16: montgomeryM r9, r9, ζ′5
17: montgomeryM r11, r11, ζ′6
18: addSub4 r4, r5, r6, r7, r8, r9, r10, r11
19: . (r4, . . . , r11) = (a′′′0 , . . . , a

′′′
7)

20: . If ζ = ±1 then no multiplications

30 NTT Multiplication for NTT-unfriendly Rings

Algorithm 20 NTRU central reduction loop(for ntruhps2048677, ntruhrss701, and
ntruhps4096821)
Input: {ai, . . . , ai+3, an+i, . . . , an+i+3}.
Output: {a′i+1||a′i, a′i+3||a′i+2} where

a′i = (ai + an+i)232/NTTN mod q
a′i+1 = (ai+1 + an+i+1)232/NTTN mod q
a′i+2 = (ai+2 + an+i+2)232/NTTN mod q
a′i+3 = (ai+3 + an+i+3)232/NTTN mod q

.
1: (r4, r5, r6, r7, r8, r9, r10, r11) = (ai, . . . , ai+3, an+i, . . . , an+i+3)
2: add r4, r8
3: add r5, r9
4: add r6, r10
5: add r7, r11
6: montgomeryM r4, r4, (232)2/NTTN mod q′
7: montgomeryM r5, r5, (232)2/NTTN mod q′
8: montgomeryM r6, r6, (232)2/NTTN mod q′
9: montgomeryM r7, r7, (232)2/NTTN mod q′
10: centralR r4 . r4 = (ai + an+i)/NTTN mod q′
11: centralR r5 . r5 = (ai+1 + an+i+1)/NTTN mod q′
12: centralR r6 . r6 = (ai+2 + an+i+2)/NTTN mod q′
13: centralR r7 . r7 = (ai+3 + an+i+3)/NTTN mod q′
14: pkhbt r4, r4, r5, lsl #16
15: pkhbt r6, r6, r7, lsl #16
16: and r4, r4, (q − 1)||(q − 1) . r4 = a′i+1||a′i
17: and r6, r6, (q − 1)||(q − 1) . r6 = a′i+3||a′i+2

	Introduction
	Preliminaries
	Saber
	NTRU
	LAC
	FFT-based Polynomial Multiplications and NTT
	Cortex-M4

	NTTs on the Cortex-M4
	Saber
	NTRU
	LAC on Cortex-M4

	Vectorized NTT on AVX2
	Fast mulmods
	Choice of Transforms
	Register allocation
	Range Analysis

	Results
	Saber results
	NTRU results
	LAC results

	Appendix

