
A huge class of infinite sequences of minimal binary linear

codes with or without crossing the Ashikhmin-Barg’s bound

Fengrong Zhang ∗ Enes Pasalic† René Rodŕıguez‡ Yongzhuang Wei §

Abstract

A special class of linear codes, having important applications in secret sharing and se-
cure two-party computation, called minimal is characterized by the property that none of
the codewords is covered by some other codeword. Denoting by wmin and wmax the mini-
mal and maximal weight of a binary linear code respectively, a sufficient but not necessary
condition for achieving minimality is that wmin/wmax > 1/2 (called Ashikhmin-Barg’s
bound). Those minimal codes satisfying the condition wmin/wmax ≤ 1/2 are called wide
in this article (generally harder to construct), whereas codes satisfying wmin/wmax > 1/2
are called narrow. In this article, we first show that the so-called direct sum of Boolean
functions of the form h(x, y) = f(x) + g(y) induces narrow minimal codes whenever g is
a bent function. Then, we introduce the concept of non-covering permutations (referring
to the property of minimality) which is shown to be sufficient for providing many infi-
nite classes of minimal binary linear codes of larger dimension by employing a suitable
subspace of derivatives of the bent function g. In the second part of this article, we first
provide one efficient method (with easily satisfied initial conditions) of generating wide
minimal codes. Then, we again consider the use of derivatives (along with the underlying
Boolean function given as the direct sum) for the purpose of defining another class of
wide minimal codes. To the best of our knowledge, the latter method is the most gen-
eral framework for designing wide binary linear codes. It uses a (suitable) subspace of
derivatives of h(x, y) = f(x) + g(y), where g is a bent function and f satisfies certain
minimality requirements. For a fixed suitable function f , one can derive a huge class of
non-equivalent wide binary linear codes of the same length by varying the permutation
ϕ when specifying the bent function g(y1, y2) = ϕ(y2)·y1 in the Maiorana-McFarland class.

Keywords: Minimal linear codes, Ashikhmin-Barg’s bound, Derivatives, Direct sum.

∗School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, Jiangsu
221116, P.R. China, and State Key Laboratory of Integrated Services Networks, Xidian University, Xian,
710071, P.R. China, e-mail: zhfl203@163.com

†University of Primorska, FAMNIT & IAM, Koper, Slovenia, and Guangxi Key Laboratory of Cryp-
tography and Information Security, Guilin University of Electronic Technology, Guilin, P.R. China, e-mail:
enes.pasalic6@gmail.com

‡University of Primorska, FAMNIT, Koper Slovenia, e-mail: rene7ca@gmail.com
§Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic Tech-

nology, Guilin, P.R. China, e-mail: walker−wyz@guet.edu.cn

1

1 Introduction

Error correcting codes have many applications in communication systems, data storage de-
vices and consumer electronics. A special class of linear codes, calledminimal, is characterized
by the property that none of the (nonzero) codewords is covered by some other codeword.
These codes are widely used in certain applications such as secret sharing schemes [5, 12, 22]
and secure two-party computation in e.g. [7]. Ashikhmin and Barg [1] proved that a sufficient
condition for a linear code over Fq to be minimal is that wmin/wmax > q−1

q , which in binary

case means that wmin/wmax > 1
2 . Nevertheless, this condition is not necessary and there are

several designs of binary minimal linear codes for which wmin/wmax ≤ 1
2 (intrinsically harder

to specify); attributed as wide in this article. In their pioneering work, Chang and Hyun
[6] constructed an infinite family of minimal binary linear codes satisfying wmin/wmax ≤ 1

2
and soon after that C. Ding et al. [10] provided three explicit classes of wide minimal linear
codes over binary alphabet. In the same article [10], a useful relationship between Walsh
spectrum of the defining Boolean function and the weight distribution of the resulting code
was derived. Quite recently, the problem of designing minimal linear code was also considered
using the notion of so-called cutting blocking sets [3] (generalized in [20]). It was shown in
[3] that cutting blocking sets precisely capture the property of minimality and one explicit
design example that employs homogenous functions was given. The main conclusion is that
an infinite sequence of wide minimal codes could be specified using this particular class of
functions (corresponding to a hypersurface of the affine space A(Fn

q)), see [3, Theorem 5.5].
Finally, we also mention a method that employs characteristic functions [16] for the purpose
of designing wide minimal codes, which essentially generalizes the approach taken by Ding
em et al. [10]. We notice that a lot of work has been done towards the design of minimal
linear codes over non-binary alphabet and other related structures (e.g. over finite fields),
see e.g. [2, 21, 13]. Nevertheless, since the topic of this article is the design of minimal binary
linear codes we do not discuss these methods in more detail.

In this article, we address the problem of specifying binary minimal linear codes using
mainly the direct sum method for constructing Boolean functions (given in the form h(x, y) =
f(x)+g(y)) and a suitable (predetermined) subspace of derivatives of bent functions. In brief,
the use of the direct sum provides a simple method to specify minimal codes without any
initial conditions. More precisely, selecting an arbitrary Boolean function f on Fr

2 and a
bent function g on Fs

2 is sufficient to specify a minimal linear code of dimension r + s + 1
given as Ch = {(ah(x, y) + λ · x + β · y)x∈Fr

2,y∈Fs
2
: a ∈ F2, λ ∈ Fr

2, β ∈ Fs
2}, cf. Theorem 2.

To accommodate a class of minimal linear codes having a larger dimension than r + s + 1,
we show that a suitable subspace of derivatives of g of dimension s/2 can be added to the
basis of Ch so that the resulting code is again minimal but of dimension r + s + 1 + s/2
instead. To achieve the minimality property a special class of non-covering permutations {ϕ}
is introduced to define a bent function g(y1, y2) = ϕ(y2) · y1 in the Maiorana-McFarland class
which is shown to be a sufficient condition for minimality, cf. Theorem 3. The increase of
dimension is not traded-off against stronger initial conditions which are once again absent
(apart from selecting non-covering permutations to define a bent function g which are easily
specified). In the second part of this article, we first provide one efficient method (with
easily satisfied initial conditions) of generating wide minimal codes. Then, we again consider

2

the use of derivatives (along with the direct sum of the underlying Boolean function) for
the purpose of defining another class of wide minimal codes. Finally, to the best of our
knowledge, we provide the most general framework for designing wide minimal codes which
use a (suitable) subspace of derivatives of h(x, y) = f(x) + g(y), where g is a bent function
again and f give rise to minimal codes. Employing a bent function g(y1, y2) = ϕ(y2) · y1 in
the Maiorana-McFarland class, one can derive a huge class (for a fixed suitable function f)
of non-equivalent wide binary linear codes through different selections of the permutation ϕ.
Concludingly, an extremely large family of infinite sequences of wide binary linear codes can
be generated using this method since g can be selected in many different ways.

This paper is organized as follows. In Section 2, we introduce some basic definitions and
results related to Boolean functions, linear codes and specifically to minimal linear codes.
The use of direct sum method for the purpose of constructing minimal linear codes without
initial conditions is described in Section 3. Its extension, based on the use of a suitable
subspace of derivatives, is presented in Section 3.1. In Section 4, two generic methods for
constructing infinite sequences of (non-equivalent) wide binary linear codes are given. Some
concluding remarks are given in Section 5.

2 Preliminaries

Let F2 denote the finite field with two elements {0, 1}, and let Fn
2 denote an n-dimensional

vector space over F2. A Boolean function f is a map from the vector space Fn
2 to the binary

field F2, i.e., f : Fn
2 → F2. The set of all Boolean functions in n variables is denoted by Bn.

Any Boolean function f ∈ Bn uniquely identifies a sequence of output values (called truth
table) given as

[f(0, . . . , 0, 0), f(0, . . . , 0, 1), . . . , f(1, . . . , 1, 1)],

which in turn can be viewed as a binary codeword of length 2n. The Hamming weight of f ,
denoted by wt(f), is the number of ones in its truth table. The Hamming distance d(f, g)
between f and g is the Hamming weight of f + g (i.e., d(f, g) = wt(f + g)).

The Walsh transform of f ∈ Bn at a point λ ∈ Fn
2 is defined as

Wf (λ) =
∑

x∈Fn
2

(−1)f(x)+λ·x,

where “ · ” denotes the standard inner (dot) product of two vectors, that is, λ · x = λ1x1 +
· · ·+λnxn. The nonlinearity of a Boolean function f ∈ Bn is the minimum Hamming distance
between f and the set of all n-variable affine functions (denoted by An), that is,

Nf = min
g∈An

d(f, g).

Furthermore, it is known that Nf is upper bounded by 2n−1 − 2n/2−1 in terms of Parseval’s
equation

∑
λ∈Fn

2
(Wf (λ))

2 = 22n [14]. If a Boolean function f ∈ Bn attains the upper bound

2n−1 − 2n/2−1 on its nonlinearity, then the Boolean function f is called bent. Obviously,
bent functions exist only for an even number of variables. The Walsh transform of f can be

3

related to Nf using the equality

Nf = 2n−1 − 1

2
max
λ∈Fn

2

|Wf (λ)|.

Thus a Boolean function f ∈ Bn is bent if and only if Wf (λ) = ±2
n
2 , for any λ ∈ Fn

2 .
The original Maiorana-McFarland class of bent functions [15], denoted by MM, is the

set of all bent functions on F2n
2 = {(x, y) | x, y ∈ Fn

2} of the form:

f(x, y) = x · π(y) + g(y), (1)

where π is a permutation on Fn
2 and g ∈ Bn is arbitrary.

A derivative of a Boolean function f ∈ Bn at direction γ ∈ Fn
2 is defined as

Dγf(x) = f(x+ γ) + f(x). (2)

Throughout this paper we denote (0, 0, . . . , 0) ∈ Fn
2 by 0n and (1, 1, . . . , 1) ∈ Fn

2 by 1n.
We reserve the double bar symbol to represent the cardinality of a set, i.e., ∥S∥ represents
the cardinality of the set S. For a vector υ = (υ1, υ2, . . . , υn) ∈ Fn

2 , we define its support
to be the set supp(υ) = {i ∈ {1, 2, . . . , n} : vi = 1}. Clearly, wt(υ) = ||supp(υ)||. The same
applies to codewords of length 2n that belong to a linear code spanned by the truth tables
of f ∈ Bn and linear functions on Fn

2 .

2.1 Linear codes via Boolean functions

In general, for functions mapping from Fn
p to Fp, where p is a prime number, there are two

standard methods to define linear codes that stem from such functions [9]. The first generic
method, which has been greatly explored in many works, specifies codes using a mapping
f : Fn

p → Fp. Namely, the linear code Cf , as a linear subspace of Fn
p , is defined by

Cf = {(af(x) + λ · x)x∈Fn
p
: a ∈ Fp, λ ∈ Fn

p}, . (3)

The dimension of Cf is at most n+1 and its length is pn. If f(0n) = 0, we may also consider
the code obtained by puncturing the first coordinate in Cf . In this case, the length is pn − 1
while the dimension remains at most n+ 1.

On the other hand, the second generic method specifies a code using a subset Sf =
{s1, s2, . . . , sm} ⊆ Fn

p , usually called the defining set, so that

CSf
= {(s1 · x, s2 · x, . . . , sm · x) : x ∈ Fn

p}. (4)

Some good codes were derived [8, 9] using special classes of vectorial mappings from Fn
p to

Fn
p . In this article we exclusively consider the binary case p = 2, though some notions are

given in a more general context.
The weight distribution of binary linear codes is directly related to the Walsh spectrum

of a given Boolean function f : Fn
2 → F2 through the following fundamental result.

Theorem 1 [9] Let f be a function from Fn
2 to F2. Consider the linear code Cf defined in

(3). If f is a nonlinear function (that is, for all b ∈ Fn
2 it holds f(x) ̸= b · x), then Cf has

dimension m+ 1. Its weight distribution is given by the following multiset:{{
2n−1 − 1

2
Wf (λ) : λ ∈ F2n

}}
∪
{{

2n−1
}}

∪ { 0 }. (5)

4

2.2 Minimal Linear Codes

An [n, k, d] linear code C ⊆ Fn
q over the alphabet Fq is a k-dimensional linear subspace of

Fn
q , whose minimum distance (the minimum weight of its non-zero codewords) is d. For any

u, v ∈ C, we say that u covers v if and only if supp(v) ⊆ supp(u). We denote this relation
by v ≼ u. A codeword u ∈ C is called minimal if it only covers the elements in ⟨u⟩, i.e., for
every v ∈ C if v ≼ u then there exists a ∈ Fq such that v = au. The linear code C is said
to be minimal if every element c ∈ C is minimal. Let Ai be the number of codewords with
Hamming weight i in C. The code C is fully specified by its weight enumerator which is the
polynomial 1 +A1z + · · ·+Anz

n.
Ashikhmin and Barg [1] gave a sufficient condition to obtain minimal linear codes over

Fq, namely, we have the following result.

Lemma 1 Let C be a linear code over Fq. Denote by wmin and wmax the minimum and
maximum nonzero Hamming weights in C, respectively. If it holds that wmin

wmax
> q−1

q , then C
is minimal.

In the binary case, we will call a linear code narrow if it satisfies the condition of Lemma
1, namely, wmin/wmax > 1/2. However, the above condition is not necessary and the minimal
codes satisfying wmin/wmax ≤ 1/2 are called wide.

The key observations, related to minimality, are given in the following two lemmas.

Lemma 2 [10] Let C ⊂ Fn
2 be a binary linear code. The code C is minimal if and only if for

each pair of distinct nonzero codewords a and b in C,

wt(a + b) ̸= wt(a)− wt(b).

Lemma 3 [10] Let f : Fn
2 → F2 be a Boolean function. Then, the code Cf in (3) is minimal

if and only if for every pair of distinct λ1, λ2 ∈ Fn
2 it holds that

Wf (λ1) +Wf (λ2) ̸= 2n, (6)

and
Wf (λ1)−Wf (λ2) ̸= 2n. (7)

The following result is a quite straightforward consequence of the above lemmas and it pro-
vides a simple characterization of wideness.

Lemma 4 For a given non-affine Boolean function f ∈ Bn, consider the code Cf given by
(3). It holds that Cf is wide if and only if

2Wf (uM)−Wf (um) ≥ 2n. (8)

Where uM (resp. um) is such that Wf (uM) (resp. Wf (um)) is maximum (resp. minimum).

Proposition 1 Let C ⊆ Fn
2 be an arbitrary binary linear code and C0 ⊆ C be any subcode

of C. The following hold:

• (Narrowness is hereditary) If C is narrow then so is C0.

• (Minimality is hereditary) If C is minimal then so is C0, moreover, none of its subsets
with two or more elements satisfies the covering property.

5

3 Minimal linear codes from direct sum of Boolean functions

In this section, we describe a simple method to generate minimal linear codes using the so-
called bent concatenation. We first notice that taking two nonlinear functions h1, h2 ∈ Bn,
whose sum is nonlinear as well, the construction in (3) can be extended to consider

Ch1 ⊕ Ch2 := {(ah1(x) + bh2(x) + v · x)x∈Fn
2
: a, b ∈ F2, v ∈ Fn

2}. (9)

Note that Ch1 , Ch2 are subcodes of Ch1 ⊕Ch2 whose dimension is n+2. The notation Ch1 ⊕Ch2 ,
used for brevity, is slightly misleading since it does not refer to the direct sum of subspaces.
We notice that Ch1 ∪ Ch2 ∪ Ch1+h2 := {(ah1(x) + bh2(x) + v · x)x∈Fn

2
: a, b ∈ F2, v ∈ Fn

2}.
A necessary and sufficient condition for Ch1 ⊕ Ch2 to be minimal is that Ch1 , Ch2 , Ch1+h2 are
minimal and additionally none of the codewords in Ch1 , Ch2 or Ch1+h2 is covered by some
other codeword (cross terms), which appears to be quite difficult. One can easily extend this
method and consider

⊕k
i=1 Chi

, which implies even harder restrictions on the choice of hi.
On the other hand, these conditions can be significantly relaxed by considering the direct

sum of the form h(x, y) = f(x)+g(y), where f and g defined on disjoint variable spaces. The
following result is a well-known property of this construction method.

Lemma 5 [18, 4] Let r, s and n be three positive integers such that r + s = n. Let f ∈ Br

and g ∈ Bs, and define h(x, y) = f(x) + g(y). Then, for any α ∈ Fr
2, β ∈ Fs

2, we have

(i)
Wh(α, β) = Wf (α)Wg(β). (10)

(ii) Let vx = (v1, . . . , vr) and vy = (vr+1, . . . , vn) so that v = (vx, vy) ∈ Fn
2 . Then,

wt
(
(h(x, y) + (vx, vy) · (x, y))(x,y)∈Fn

2

)
= 2rwt

(
(g(y) + vy · y)y∈Fs

2

)
+ 2swt

(
(f(x) + vx · x)x∈Fr

2

)
−2wt

(
(f(x) + vx · x)x∈Fr

2

)
wt

(
(g(y) + vy · y)y∈Fs

2

)
.

Theorem 2 Let n, r, s be three integers such that s > 2 is even and r + s = n. Let f ∈ Br

be arbitrary and g ∈ Bs be bent and define h(x, y) = f(x) + g(y). Then, the code Ch defined
by (3) is a narrow binary linear code. Furthermore, Nh > 2n−2.

Proof. It is well-known that Wh(α, β) = Wf (α)Wg(β). Then, we have Wh(vM) =
2s/2Wf (uM) and Wh(vm) = 2s/2Wf (um), where uM (resp. um) is such that Wf (uM) (re-
sp. Wf (um)) is maximum (resp. minimum). Thus, we know that vM (resp. vm) is such that
Wh(vM) (resp. Wh(vm)) is maximum (resp. minimum). Further,

2Wh(vM)−Wh(vm) = 2s/2(2Wf (uM)−Wf (um)) < 2s/2 × 3× 2r < 2n,

for s > 2. From Lemma 4, we can conclude that the code Ch is narrow for s > 2.
Now, since g is a bent function in s variables, |Wg(β)| = 2s/2. Then

max
(α,β)∈Fn

2

|Wh(α, β)| = 2s/2max
α∈Fr

2

|Wf (α)| ≤ 2r+s/2. (11)

6

Moreover, as s > 2 we have that s
2 < s− 1 and therefore

r +
s

2
< r + s− 1 = n− 1.

Thus, 2r+s/2 < 2n−1 and max
(α,β)∈Fn

2

|Wh(α, β)| < 2n−1. We can finally compute Nh as

Nh = 2n−1 − 1

2
max

(α,β)∈Fn
2

|Wh(α, β)|

hence,

Nh > 2n−1 − 1

2
× 2n−1 = 2n−2

by the previous observation.

Example 1 For r = 3, s = 4 consider the functions f ∈ B3 and g ∈ B4 given by

f(x1, x2, x3) = x1x2 + x3 and g(y1, y2, y3, y4) = y1y3 + y2y4.

The function g is a bent function and the Walsh spectrum of f is given in the table below.

λ (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

Wf (λ) 0 4 0 4 0 4 0 −4

The Walsh spectrum of the direct sum h(x, y) = f(x)+h(y) can be computed using Lemma
5. By computer simulations we have verified that the linear code Ch is a minimal code with
minimum weight wmin = Nh = 56 and wmax = 72. It is a [128, 8, 56] code. Moreover, its
weight enumerator is

1 + 36z56 + 191z64 + 28z72

i.e. Ch is a three-weight code.

Example 2 For r = 4, s = 4 consider the functions f ∈ B4 and g ∈ B4 given by

f(x1, x2, x3, x4) = x1x2x3 + x4 and g(y1, y2, y3, y4) = y1y3 + y2y4 + 1.

The function g is a bent function and the Walsh spectrum of f is displayed in the table below.

λ v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16
Wf (λ) 0 12 0 4 0 4 0 −4 0 4 0 −4 0 −4 0 4

where we consider F4
2 = {v1, . . . , v16} ordered lexicographically. The Walsh spectrum of the

direct sum h(x, y) = f(x) + h(y) can be computed using Lemma 5. It can be verified that
the linear code Ch is a minimal [256, 9, 104] code with wmin = Nh = 104 and wmax = 152.
Moreover, its weight enumerator is

1 + 6z104 + 54z120 + 383z128 + 58z136 + 10z152

i.e. Ch is a five-weight code.

7

Remark 1 Note that the number of nonzero Walsh values of h are directly related to the
number of different nonzero values in the Walsh spectrum of f , namely, there are

2||{|Wf (λ)| ̸= 0 : λ ∈ Fn
2}||+ 1

nonzero weights in Ch. Furthermore, the maximum Walsh value is 2s/2Wf (λM) and therefore
the minimum distance of Ch is 2n−1 − 2s/2−1Wf (λM).

3.1 Minimal linear codes through suitable derivatives

In this section, we extend the approach based on the direct sum by employing a suitable sub-
space of derivatives of a bent function g which is taken from the MM class of bent functions.
To achieve the minimality of the resulting codes, it will be required that a permutation used
to define a bent function g in the MM class satisfies certain properties.

For our purpose, we will focus on the simplest bent functions in the MM class. Namely,

for s even and y = (y(1), y(2)) ∈ Fs/2
2 × Fs/2

2 , consider g to be a bent function in the MM
class defined as

g(y(1), y(2)) = ϕ(y(2)) · y(1), (12)

where ϕ is a permutation on Fs/2
2 without linear components.

The following lemma identifies certain useful non-covering properties of the codewords
related to suitable derivatives of g.

Lemma 6 Let g be a bent function on Fs
2 (s even) in the MM class, as specified in (12).

Then we have
Dαg(y) +Dβg(y) = D(α+β)g(y), (13)

Dαg(y) ̸= Dβg(y), (14)

for any two different vectors α, β ∈ Fs/2
2 × {0s/2}. Furthermore, for every v ∈ Fs

2, γ ∈
Fs/2
2 × {0s/2} and ϵ ∈ F2 it holds

wt(Dγg(y) + v · y + ϵ) ∈ {2s/2k : k ∈ {0, 2, . . . , 2s/2 − 2, 2s/2}}. (15)

Proof. For every y = (y(1), y(2)) ∈ Fs/2
2 × Fs/2

2 , denoting α = (α(1), 0s/2), β = (β(1), 0s/2),
we have

Dαg(y) +Dβg(y) = ϕ(y(2)) · (y(1)) + ϕ(y(2)) · (y(1) + α) + ϕ(y(2)) · (y(1)) + ϕ(y(2)) · (y(1) + β)

= ϕ(y(2)) · (α+ β) = ϕ(y(2)) · (y(1)) + ϕ(y(2)) · (y(1) + α+ β)

= D(α+β)g(y).

Thus, equation (13) holds. Since g is bent, D(α+β)g is a balanced function and hence (14)
follows.

In (15), k = 0 and k = 2s/2 correspond to the trivial cases when γ = 0s, v = 0s, ϵ = 0 (the
zero function) and γ = 0s, v = 0s, ϵ = 1 (the constant one function), respectively. We then

8

assume that the considered functions are non-constant. Now, let v ∈ Fs
2, γ ∈ Fs/2

2 × {0s/2}
and ϵ ∈ F2 be arbitrary vectors. Since γ = (γ(1), γ(2)) ∈ Fs/2

2 × {0s/2}, we have that

Dγg(y) = ϕ(y(2)) · γ(1),

so the derivative Dγg(y) only depends on the coordinate y(2). We also notice that since ϕ is
a permutation then Dγg(y) is balanced, for any nonzero γ ∈ Fs

2. The function v · y + ϵ can

be viewed as a · y(1) + b · y(2) + ϵ for some a, b ∈ Fs/2
2 .

To show (15), we consider the different cases w.r.t. v = (a, b):
i) When a ̸= 0s/2 then Dγg(y) + a · y(1) + b · y(2) + ϵ involves (canonical) linear functions

from the variable space y(1) and is therefore balanced since Dγg(y) only depends on y(2). The
balancedness of Dγg(y) + v · y + ϵ clearly remains when γ = 0s.
ii) When a = 0s/2, then the codewords are of the form Dγg(y) + b · y(2) + ϵ = ϕ(y(2)) · γ(1) +
b · y(2) + ϵ. Assuming additionally that b = 0s/2 gives again balanced codewords due to the

term Dγg(y) = ϕ(y(2)) · γ(1). On the other hand, when b ̸= 0s/2 then summing over all y(2)

the expression ϕ(y(2)) ·γ(1)+ b ·y(2) corresponds to computing Wϕ(b). Since both ϕ(y(2)) ·γ(1)
and b · y(2) have a balanced Hamming weight, the fact that ϕ(y(2)) · γ(1) is not linear implies
that

wt(Dγg(y) + v · y + ϵ) ∈ {2s/2k : k ∈ {2, . . . , 2s/2 − 2, }},

where the factor 2s/2 is due to the missing variables of y(1). Summarizing all the cases, we
conclude that (15) indeed specifies the possible weights of Dγg(y) + v · y + ϵ).

The following result specifies the non-covering property of certain codewords that stem
form the bent function g.

Lemma 7 Let s be even and y = (y(1), y(2)) ∈ Fs/2
2 ×Fs/2

2 . Let g(y(1), y(2)) = ϕ(y(2)) · y(1) be
a bent function in Bs. For α, β ∈ Fs/2

2 × {0s/2}, u, v ∈ Fs
2 and ϵ ∈ F2, the following hold:

(i) If α ̸= β or v · y ̸= u · y + ϵ then

(g(y + α) + v · y)y∈Fs
2
̸≼ (g(y + β) + u · y + ϵ)y∈Fs

2
.

(ii) If β ̸= 0s or u · y + ϵ ̸= 1 then

(g(y + α) + v · y)y∈Fs
2
̸≼ (g(y) + g(y + β) + u · y + ϵ)y∈Fs

2
.

(iii) If α ̸= 0s or v · y ̸= 0 then

(g(y) + g(y + α) + v · y)y∈Fs
2
̸≼ (g(y + β) + u · y + ϵ)y∈Fs

2
.

Proof. The statements are proved separately.

(i) Consider the codewords

c1 := (g(y + α) + v · y)y∈Fs
2
and c2 := (g(y + β) + u · y + ϵ)y∈Fs

2
.

9

Since g is a bent function, we have

wt(c2)− wt(c1) = ±2s/2 or 0.

On the other hand,

c1 + c2 = (Dα+βg(y) + (v + u) · y + ϵ)y∈Fs
2
.

Using Lemma 6, we have wt(c1 + c2) ̸= 2s/2. Hence, if c1 ≼ c2 then c1 = c2. Equiva-
lently, α = β and v · y = u · y + ϵ.

(ii) Now, consider the vectors

c1 := (g(y + α) + v · y)y∈Fs
2
and c2 := (g(y) + g(y + β) + u · y + ϵ)y∈Fs

2
.

Note that the function corresponding to c1 and c1 + c2 is the sum of a bent function
and an affine function. Specifically, using the definition of g, we have

g(y + α) + g(y) + g(y + β) = ϕ(y2) · (y(1) + α(1)) + ϕ(y2) · (β(1))

hence
c1 + c2 = (g(y + α+ β) + (v + u) · y + ϵ)y∈Fs

2
.

From this we have that wt(c1) = 2s−1 ± 2s/2−1 and wt(c1 + c2) = 2s−1 ± 2s/2−1, thus

wt(c2 + c1) + wt(c1) = 2s + 2s/2 or 2s − 2s/2 or 2s.

If c1 ≼ c2 then

wt(c2) = wt(c2 + c1) + wt(c1) = 2s + 2s/2 or 2s − 2s/2 or 2s.

By Lemma 6, wt(c2) ̸= 2s − 2s/2. Hence, if c1 ≼ c2 then c2 is the constant one vector
which gives β = 0s and u · y + ϵ = 1.

(iii) Finally, consider the vectors

c1 := (g(y) + g(y + α) + v · y)y∈Fs
2
and c2 := (g(y + β) + u · y + ϵ)y∈Fs

2
.

Similarly as in the previous case, the functions corresponding to c2 and c1 + c2 are the
sum of a bent function and an affine function, specifically,

c1 + c2 = (g(y + α+ β) + (v + u) · y + ϵ)y∈Fs
2
.

It follows that wt(c2) = 2s−1 ± 2s/2−1 and wt(c1 + c2) = 2s−1 ± 2s/2−1, thus

wt(c2)− wt(c2 + c1) = ±2s/2 or 0.

By Lemma 6, wt(c1) ̸= 2s/2. Hence if c1 ≼ c2, then c1 is the all-zero vector which gives
α = 0s and v · y = 0.

10

Let us now consider the canonical basis E = {e1, . . . , es/2} for F
s/2
2 (ei = (0, . . . , 0, 1, 0, . . . , 0)

with “1” at the ith position) and define the functions g0(y) = g(y) and gi(y) = g(y + ei).
The previous lemma suggests that the linear code⊕

i∈I
Cgi (16)

is potentially a minimal code, where I = {0, . . . , s2}. Unfortunately, this is not true in general
since the covering property in Lemma 7 does not necessarily hold for the derivatives of g.
Notice that Lemma 7 does not address the covering property of two codewords that both
stem from the derivative of g.

To resolve this issue, we will consider a special subclass of permutations ϕ over Fm
2 that

allows us to prove the minimality of the aforementioned code.

Definition 1 A permutation ϕ on Fm
2 such that ϕ(0m) = 0m will be called a non-covering

permutation if for every (a1, b) ̸= (a2, b) ∈ Fm
2 × (Fm

2)∗ we have

Wb·ϕ(a1)±Wb·ϕ(a2) ̸= 2m, (17)

and furthermore for every pair (a1, b1) ̸= (a2, b2) ∈ Fm
2 × (Fm

2)∗ the following is satisfied

Wb1·ϕ(a1)−Wb2·ϕ(a2) +W(b1+b2)·ϕ(a1 + a2) ̸= 2m. (18)

A particular class of non-covering permutations is given by the so-called almost bent (AB)
permutations. Recall that if m is odd, a vectorial boolean function ϕ : Fm

2 → Fm
2 is called an

AB function if Wb·ϕ(a) ∈ {0,±2
m+1

2 } for every pair (a, b) ∈ Fm
2 × (Fm

2)∗. For odd m > 3, any
AB permutation ϕ satisfies

Wb·ϕ(a1)±Wb·ϕ(a2) ≤ 2 · 2
m+1

2 < 2m,

for (a1, b) ̸= (a2, b) ∈ Fm
2 × (Fm

2)∗ and

Wb1·ϕ(a1)−Wb2·ϕ(a2) +W(b1+b2)·ϕ(a1 + a2) ≤ 3 · 2
m+1

2 < 2m

for (a1, b1) ̸= (a2, b2) ∈ Fm
2 × (Fm

2)∗. Therefore, an AB permutation ϕ is non-covering for odd
m > 3.

Remark 2 In general, if a mapping ϕ : Fm
2 → Fm

2 satisfies max(a,b)∈Fm
2 ×(Fm

2)∗ |Wb·ϕ(a)| <
2m/3 then ϕ is a non-covering permutation. Hence, non-covering permutations are easily
obtained.

Example 3 The monomial ϕ(y) = y30 on F25 is a non-covering permutation. Namely, for
every a, b ∈ F5

2 we have
Wb·ϕ(a) ∈ {−12,−4,−8, 0, 4, 8}.

Moreover, the spectral value −12 appears exactly once, thus

Wb·ϕ(a1)±Wb·ϕ(a2) ≤ 8 + 12 = 20 < 32,

11

for (a1, b) ̸= (a2, b) ∈ Fm
2 × (Fm

2)∗ and

Wb1·ϕ(a1)−Wb2·ϕ(a2) +W(b1+b2)·ϕ(a1 + a2) ≤ 8− (−12) + 8 = 28 < 32,

for (a1, b1) ̸= (a2, b2) ∈ Fm
2 × (Fm

2)∗.

Similarly as before, let s be even and y = (y(1), y(2)) ∈ Fs/2
2 × Fs/2

2 . We again consider g

in the MM class defined by (12) and assume that ϕ is a non-covering permutation on Fs/2
2 .

The following lemma shows that the covering property applies to codewords that stem from
suitable derivatives of g defined by (12).

Lemma 8 Let s be even and y = (y(1), y(2)) ∈ Fs/2
2 × Fs/2

2 . Let g(y(1), y(2)) = ϕ(y(2)) · y(1)

be a bent function in Bs, as specified by (12). For α, β ∈ Fs/2
2 × {0s/2}, u, v ∈ Fs

2 and ϵ ∈ F2,
consider the vectors

c1 := (g(y) + g(y + α) + v · y)y∈Fs
2
and c2 := (g(y) + g(y + β) + u · y + ϵ)y∈Fs

2
.

Suppose that c1 ̸= c2. We have that c1 ̸≼ c2, unless c1 is the zero vector or c2 is the constant
one vector.

Proof. Using the definition of g, we have that

g(y) + g(y + α) + g(y) + g(y + β) = ϕ(y(2)) · (α(1) + β(1)) = g(y) + g(y + α+ β)

hence
c1 + c2 = (g(y) + g(y + α+ β) + (v + u) · y + ϵ)y∈Fs

2
.

Assume that c2 is not the constant one vector. If either c1 or c2 depend on y(1), then exactly
two vectors amongst c1, c2, c1+ c2 are balanced since the only terms that depend on y(1) are
affine. In this case c1 ̸≼ c2 unless c1 is the zero vector. Suppose that none of c1, c2, c1 + c2
depend on y(1) and c1 ≼ c2, i.e.

wt(c2)− wt(c1) = wt(c1 + c2).

In this case,
2s/2w(c′2)− 2s/2w(c′1) = 2s/2wt(c′1 + c′2),

where c′i denotes the restriction of ci to the coordinate y(2). This gives

wt(c′2)− wt(c′1) = wt(c′1 + c′2). (19)

Let us represent with a superindex (i) the restriction of an element in Fs/2
2 × Fs/2

2 to the
coordinate y(i) where i ∈ {1, 2} , e.g. v(2) is the restriction of v to the coordinate y(2). Note
that

c′1 = (ϕ(y(2)) · α(1) + v(2) · y(2))
y(2)∈Fs/2

2

, c′2 = (ϕ(y(2)) · β(1) + u(2) · y(2) + ϵ)
y(2)∈Fs/2

2

.

12

If α(1) ̸= 0s/2, β
(1) ̸= 0s/2 and α(1) ̸= β(1) then

wt(c′1) = 2s/2−1 − 1

2
Wα(1)·ϕ(v

(2)), wt(c′2) = 2s/2−1 − 1

2
(−1)ϵWβ(1)·ϕ(u

(2)),

and

wt(c′1 + c′2) = 2s/2−1 − 1

2
(−1)ϵW(α(1)+β(1))·ϕ(v

(2) + u(2)).

Using (19) we obtain

Wα(1)·ϕ(v
(2))− (−1)ϵWβ(1)·ϕ(u

(2)) + (−1)ϵW(α(1)+β(1))·ϕ(v
(2) + u(2)) = 2s/2,

which contradicts (18) in the definition of a non-covering permutation.
Now, if α(1) ̸= 0s/2, β

(1) ̸= 0s/2 and α(1) = β(1) then

wt(c′1) = 2s/2−1 − 1

2
Wα(1)·ϕ(v

(2)), wt(c′2) = 2s/2−1 − 1

2
(−1)ϵWα(1)·ϕ(u

(2)),

and wt(c′1 + c′2) = 2s/2−1. Using (19) we obtain

Wα(1)·ϕ(v
(2))− (−1)ϵWα(1)·ϕ(u

(2)) = 2s/2,

which contradicts (17) in the definition of a non-covering permutation. A similar argument
rules out the possibility that α(1) ̸= 0s/2, β

(1) = 0s/2. The only possibilty is that α(1) = 0s/2.
Finally, using similar arguments and the fact that c2 is not the constant one vector of Fs

2, we
get v(2) = 0s/2. Therefore c′1 = 0. Thus v = 0s and α = (0s/2, 0s/2), in other words, c1 is the
all-zero codeword.

Now, we can claim the minimality of the linear code in (16) using a bent function g
defined by (12) and its suitable derivatives in accordance to Lemma 8.

Theorem 3 Let s > 2 be an even integer. Consider the canonical basis E = {e1, . . . , es/2}
of Fs/2

2 . If g is a bent function as in (12), then assigning g0 = g and gi(y) = g(y + ei) for
i = 1, . . . , s/2 the linear code

C =
⊕

i∈{0,..., s
2
}

Cgi , (20)

is a [2s, s+ s
2 +1, d] code with d ≥ 2s/2+1. Moreover, if ϕ is non-covering then C is minimal.

Proof. We already know that the length of C is 2s and its dimension is s+ s
2 +1 since the

set {gi} is linearly independent. The minimum distance can be deduced using Lemma 6 and
expressing any codeword c ∈ C in the form

c = (µg(y)+g(y+ei1)+ · · ·+g(y+eik)+v ·y)y∈Fs
2
= (µg(y)+g(y+ei1 + · · ·+eik)+v ·y)y∈Fs

2
,

where k is a non-negative integer, µ ∈ F2 and v ∈ Fs
2. Let us now consider c1, c2 ∈ C, whose

parameters are indexed accordingly so that ki and µi correspond to ci, for i = 1, 2. Suppose
that c1 ≼ c2. Lemma 7 implies that c1 is the zero codeword when µ1 = 0 or µ2 = 0. If
µ1 = µ2 = 1, then Lemma 8 (due to the choice of derivatives) implies that c1 is the zero
codeword. Therefore, C is minimal.

13

Corollary 1 Let the notation of Theorem 3 hold. If ϕ is an AB permutation over Fs/2
2 ,

then C defined by (20) for s ≡ 2 mod 4 is a five-valued minimal code with parameters

[2s, s+ s
2 + 1, 2s−1 − 2

s+s/2−1
2], whose weight distribution is displayed in Table 1.

Table 1: Weight distribution of C in Corollary 1.

Weight w Number of codewords Aw

2s−1 − 2
s+s/2−1

2 (2s/2 − 1)(2s/2−2 + 2(s/2−3)/2)

2s−1 − 2s/2−1 2s/2(2s−1 + 2s/2−1)

2s−1 2s/2−1(2s/2 − 1) + (2s − 2s/2)(2s/2 − 1) + (2s − 1)

2s−1 + 2s/2−1 2s/2(2s−1 − 2s/2−1)

2s−1 + 2
s+s/2−1

2 (2s/2 − 1)(2s/2−2 − 2(s/2−3)/2)

0 1

Remark 3 Note that when ϕ is an AB permutation, the minimality of C follows from the
fact that the ratio

wmin

wmax
=

2s−1 − 2
s+s/2−1

2

2s−1 + 2
s+s/2−1

2

is larger than 1/2 when s > 2. Moreover, we mention that AB functions were used in [19]
to provide linear codes with good parameters (in certain cases optimal codes) but without the
request on minimality or wideness.

On the other hand, the use of a non-covering permutation ϕ which is not AB may give rise
to wide minimal codes, thus violating the Ashikhmin-Barg’s bound.

Example 4 Set s = 10. Let ϕ be the permutation on F5
2 given by ϕ(y) = y2

5−2 = y30.
We noted before that ϕ is a (non-AB) non-covering permutation, thus the bent function
g(y(1), y(2)) = ϕ(y(2)) · y(1) satisfies the hypotheses of Theorem 3, therefore

C =
⊕

i∈{0,...,5}

Cgi

is an eight-valued minimal code with parameters [1024, 16, 320]. Moreover, C is a wide code
whose nonzero weights belong to the set

{320, 384, 448, 496, 512, 528, 576, 640}

and its weight enumerator is given by

1 + 31z320 + 155z384 + 310z448 + 16896z496 + 31961z512 + 15872z528 + 155z576 + 155z640.

In this case wmin/wmax = 1
2 .

Even though this approach in certain cases yields wide binary linear codes, in what follows
we specify generic methods that ensure wideness of the resulting codes.

14

4 Explicit non-trivial constructions of wide minimal codes

In this section, we provide several classes of wide minimal binary linear codes. Out first
method connects the result from the previous section, thus specifying a function f ∈ Br such
that both Cf and CDγ(f) are minimal codes and

wmin(Dγ (f))

wmax(Dγ (f))
≤ 1

2 , where γ ∈ Fr
2 \ {0r}. These

codes can be potentially used in a more general framework based on the direct sum method,
described in Section 4.1, for constructing wide minimal codes from those Boolean functions
whose associated derivative code CDγ(f) is wide. We provide several examples of embedding
these wide linear codes described by Theorem 4 into a broader framework given by Theorem
5, for the purpose of providing many infinite classes of wide minimal codes. Due to a large
number of possibilities of selecting a bent function g in Theorem 5, for a fixed suitable f ∈ Br,
we essentially exhibit a great variety of non-equivalent wide linear codes on the same variable
space.

Recall that the symmetric difference of two sets A and B is defined as (A∪B) \ (A∩B),
equivalently, it can be defined as (A\B)∪(B \A), where the union is disjoint. We will denote
the symmetric difference of A and B by A⊖B. Observe that ||A⊖B|| = ||A||+||B||−2||A∩B||.

Let r be a positive integer. Let ∆ be a subset of Fr
2 and consider the characteristic

function f ∈ Br of ∆, i. e., the Boolean function defined as

f(x) =

{
1, x ∈ ∆,
0, x ∈ Fr

2 \∆.
(21)

Lemma 9 [17] If ∆ ⊂ Fr
2, f ∈ Br given by (21), satisfies the following conditions:

1. r + 1 ≤ |∆| ≤ 2r−2;

2. ∆ includes at least one basis {a(1), . . . , a(r)} of Fr
2 and at least one nonzero vector

τ1a
(1) + · · ·+ τra

(r), where (τ1, . . . , τr) ∈ Fr
2\{0r} and wt(τ1, . . . , τr) is even,

then the code Cf given by (3) is a wide binary linear code.

Theorem 4 Let F = {a(1), . . . , a(r)} be a basis of Fr
2 and define

E = { e ∈ Fr
2 | e = τ · (a(1), . . . , a(r)), wt(τ) is even, τ ∈ Fr

2 }.

Consider ∆ = F ∪ S, where S ⊆ E such that S ̸= ∅ and ||S|| ≤ 2r−3 − r, and let f ∈ Br be
the indicator function of ∆ as in (21). Take τ ′ ∈ (Fr

2)
∗ and define γ = τ ′ · (a(1), . . . , a(r)).

The following is true:

(i) The code Cf given by (3) is a wide binary linear code.

(ii) If wt(τ ′) > 2 is even and S ⊖ (γ + S) ̸= ∅, then the code CDγf given by (3) is also a
wide minimal binary linear code.

(iii) If wt(τ ′) > 2 is odd and F ∩ (γ+S) = ∅, then the code CDγf given by (3) is also a wide
minimal binary linear code.

15

Proof. (i) The statement follows directly from Lemma 9.
(ii) Suppose that wt(τ ′) > 2 is even. We have that (γ+F)∩F = ∅ since wt(τ ′) > 2. Observe
that

supp(Dγf) = (γ + F) ∪ F ∪ (S ⊖ (γ + S)).

Since ||S|| ≤ 2r−3 − r, we have ||supp(Dγf)|| ≤ 2r−2. Now, the fact that wt(τ ′) is even and
S⊖(γ+S) ̸= ∅ imply that supp(Dγf) contains at least one element of the form τ ·(a(1), . . . , a(r))
with wt(τ) even. By Lemma 9, we conclude that the code CDτ ′f is a wide binary linear code.
(iii) Suppose that wt(τ ′) > 2 is odd and F ∩ (γ + S) = ∅. Again, (γ + F) ∩ F = ∅ since
wt(τ ′) > 2. We also have (γ + S) ∩ S = ∅ since wt(τ ′) is odd. Observe that

supp(Dγf) = (γ + F) ∪ F ∪ (γ + S) ∪ S.

As before, since ||S|| ≤ 2r−3 − r, we have ||supp(Dγf)|| ≤ 2r−2. Note that (γ + F) ∩ E ̸= ∅
thus supp(Dγf) contains at least one element of the form τ · (a(1), . . . , a(r)) with wt(τ) even.
By Lemma 9, we conclude that the code CDγf is a wide binary linear code.

Example 5 Set r = 7. Consider the basis F ⊆ F7
2 with elements

a(1) = e3 ⊕ e5 ⊕ e6; a(2) = e2 ⊕ e5 ⊕ e6; a
(3) = e1 ⊕ e2 ⊕ e3 ⊕ e4 ⊕ e6; a(4) = e4 ⊕ e6,

a(5) = e1 ⊕ e4 ⊕ e6 ⊕ e7; a(6) = e1 ⊕ e6; a(7) = e1 ⊕ e5 ⊕ e6 ⊕ e7;

where ei represents the vectors in the canonical base. Define S ⊆ E with elements

s(1) = a(1) + a(3) + a(4) + a(6); s(2) = a(3) + a(4) + a(5) + a(7); s(3) = a(1) + a(4);

s(4) = a(1) + a(2) + a(4) + a(5) + a(6) + a(7); s(5) = a(2) + a(3) + a(5) + a(6);

s(6) = a(1) + a(2) + a(3) + a(7); s(7) = a(1) + a(2) + a(5) + a(6),

and take γ = a(2) + a(4) + a(6) + a(7). Note that τ ′ = (0, 1, 0, 1, 0, 1, 1), wt(τ ′) = 4 and
||S|| = 7 < 9 = 27−3 − 7. By computer simulations, ||S ⊖ (γ +S)|| = 10 and the code CDγf is
a wide linear code, where f is the indicator function of ∆ = F ∪S. This is a [128, 8, 24] code
with wmax = 80, so that wmin/wmax = 1/3. This confirms the validity of (ii) in Theorem 4.
Moreover, the code Cf ⊕ CDγf is also a wide minimal code with parameters [128, 9, 16] and
wmax = 80, so that wmin/wmax = 1/5.

Example 6 Set r = 7. Consider the basis F ⊆ F7
2 with elements

a(1) = e1 + e2 + e5 + e6; a(2) = e1 + e3 + e6; a(3) = e4 + e7; a(4) = e1 + e4;

a(5) = e4 + e5; a(6) = e3 + e5 + e7; a
(7) = e1 + e2 + e5;

where ei represents the vectors in the canonical base. Define S ⊆ E with elements

s(1) = a(1) + a(4) + a(5) + a(7); s(2) = a(1) + a(2) + a(5) + a(6); s(3) = a(1) + a(2) + a(4) + a(7);

s(4) = a(2) + a(3) + a(4) + a(5); s(5) = a(1) + a(2) + a(5) + a(7); s(6) = a(4) + a(7);

s(7) = a(1) + a(2) + a(3) + a(5) + a(6) + a(7); s(8) = 07; s(9) = a(4) + a(6),

16

and take γ = a(2) + a(5) + a(7). Note that τ ′ = (0, 1, 0, 0, 1, 0, 1), wt(τ ′) = 3, and ||S|| = 9 =
27−3 − 7. One can verify that CDγf is a wide [128, 8, 28] linear code, where f is the indicator
function of ∆ = F ∪ S. Furthermore, wmax = 74, so that wmin/wmax = 8/37. This is in
accordance with (iii) in Theorem 4. Moreover, the code Cf ⊕ CDγf is also a wide linear code
with parameters [128, 9, 16] and wmax = 80, so that wmin/wmax = 1/5.

Remark 4 The codes constructed using Theorem 4 do not necessarily have the property that
Cf⊕CDγf is minimal. For instance, the problem arises when wt(Dγf) = 2wt(f) in which case
the codeword coming from Dγf covers both codewords related to f and f(x + γ) since they
have the same weight. Nevertheless, suitable choices for f and γ can ensure the minimality
of Cf ⊕ CDγf , as illustrated in Examples 5 and 6.

4.1 Wide minimal linear codes through derivative subspaces

In what follows, we extend the construction based on the use of direct sum of f(x) + g(y) :=
h(x, y) for the purpose of increasing the dimension of the resulting codes. To achieve minimal-
ity of Ch, the function f ∈ Br will be selected so that it has at least one nonaffine derivative
Dγf such that Cf ⊕CDγf is a minimal code. The increase in dimension will be achieved using
suitable derivatives of h.

Let us define the following set

C(γ)
h =

{
(uh(x, y) + h(x+ α, y + β) + v · (x, y))(x,y)∈Fr

2×Fs
2
:

β ∈ Fs/2
2 × {0 s

2
}, u ∈ F2,

α ∈ {0r, γ}, v ∈ Fn
2

}
.

(22)

Lemma 10 Let f ∈ Br be a nonaffine function and γ ∈ Fr
2 \ {0r} such that Dγ(f) is

nonaffine. Let g(y(1), y(2)) = ϕ(y(2)) · y(1) be a bent function in Bs defined by (12), where

ϕ is a non-covering permutation on Fs/2
2 by means of Definition 1. If h(x, y) = f(x) + g(y),

then the set C(γ)
h defined in (22) is a linear binary code with parameters [2n, n+ s

2 + 2].

Proof. We first prove that C(γ)
h is a linear subspace of F2n

2 . Take two different vectors in

C(γ)
h , say,

(u(1)h(x, y) + h(x+ α(1), y + β(1)) + v(1) · (x, y))(x,y)∈Fn
2
∈ C(γ)

h

and
(u(2)h(x, y) + h(x+ α(2), y + β(2)) + v(2) · (x, y))(x,y)∈Fn

2
∈ C(γ)

h .

Using the definition of g, we have

g(y + β(1)) + g(y + β(2)) = g(y) + g(y + β(1) + β(2)).

Moreover, given that α(1), α(2) ∈ {0r, γ}, we have

f(x+ α(1)) + f(x+ α(2)) = f(x) + f(x+ α(1) + α(2)). (23)

17

These two facts imply that for h(x, y) = f(x) + g(y) we have

h(x+α(1), y+β(1))+h(x+α(2), y+β(2)) = f(x)+g(y)+f(x+α(1)+α(2))+g(y+β(1)+β(2)),

thus

h(x+ α(1), y + β(1)) + h(x+ α(2), y + β(2)) = h(x, y) + h(x+ α(1) + α(2), y + β(1) + β(2)).

From the last equality, we get that the sum of the functions

u(1)h(x, y) + h(x+ α(1), y + β(1)) + v(1) · (x, y)

and
u(2)h(x, y) + h(x+ α(2), y + β(2)) + v(2) · (x, y)

is equal to

(u(1) + u(2) + 1)h(x, y) + h(x+ α(1) + α(2), y + β(1) + β(2)) + (v(1) + v(2)) · (x, y),

hence the sum of the corresponding vectors belongs to C(γ)
h , thus C(γ)

h is a linear subspace of
F2n
2 .
By Theorem 2, we know that Nh > 2n−2 thus h is non-affine. In general, for arbitrary

α ∈ {0r, γ} and β ∈ Fs/2
2 × {0 s

2
},

h(x, y) + h(x+ α, y + β) is linear if and only if α = 0r and β = 0s. (24)

To prove this, note that h(x, y) + h(x+ α, y+ β) = f(x) + f(x+ α) + g(y) + g(y+ β), hence
it is linear if and only if both f(x) + f(x + α) and g(y) + g(y + β) are linear. Since Dγf
is non-affine by hypothesis and Dβg = ϕ(y(2)) · β is a non-affine Boolean function as ϕ does
not have affine components, the only possible way that these two functions are linear arises
when α = 0r and β = 0s.

Considering again the sum of two elements in C(γ)
h and applying (24) to α = α(1) + α(2), β =

β(1) + β(2) we conclude that

(u(1) + u(2) + 1)h(x, y) + h(x+ α(1) + α(2), y + β(1) + β(2)) + (v(1) + v(2)) · (x, y)

is the zero function if and only if u(1) + u(2) = 0, α(1) + α(2) = 0r, β
(1) + β(2) = 0s and

v(1) + v(2) = 0n. Thus, we have 2n+
s
2
+2 different elements, i.e. dim(C(γ)

h) = n+ s
2 + 2.

Theorem 5 Let n, r, s be three integers such that s(> 2) is even and r + s = n. Let f be a
non-affine r-variable function and γ ∈ Fr

2 \ {0r} with Dγf non-affine such that

Cf ⊕ CDγf := {(af(x) + b(f(x) + f(x+ γ)) + v · x)x∈Fn
2
: a, b ∈ F2, v ∈ Fn

2}

is a minimal code. Let g(y(1), y(2)) = ϕ(y(2)) · y(1), with (y(1), y(2)) ∈ Fs/2
2 × Fs/2

2 , be a bent

function where ϕ is a non-covering permutation on Fs/2
2 as in Definition 1. Then, the code

C(γ)
h defined as in (22), with h(x, y) = f(x) + g(y), is a minimal linear code with parameters

[2n, n+ s
2 + 2]. Further, if CDγ(f) is wide, then C(γ)

h is also wide.

18

Proof. From Lemma 10, we know C(γ)
h is a linear binary code with parameters [2n, n+ s

2+2].

Now we prove C(γ)
h is minimal. Define the following sets

A =
{
(h(x+ α, y + β) + v · (x, y))(x,y)∈Fn

2
: α ∈ {0r, γ}, β ∈ Fs/2

2 × {0s/2}, v ∈ Fn
2

}
,

B =
{
(h(x, y) + h(x+ α, y + β) + v · (x, y))(x,y)∈Fn

2
: α ∈ {0r, γ}, β ∈ Fs/2

2 × {0s/2}, v ∈ Fn
2

}
,

where h(x, y) = f(x) + g(y). From the definition of C(γ)
h , the sets A and B correspond to

u = 0, u = 1 respectively. Additionally, these sets form a partition of C(γ)
h .

Suppose C(γ)
h is not a minimal linear code, that is, assume that there exist

u1, u2 ∈ F2, α
(1), α(2) ∈ {0r, γ}, β(1), β(2) ∈ Fs/2

2 × {0s/2} and v(1), v(2) ∈ Fn
2

not all of them pairwise (referring to same symbols) equal to each other such that

(u1h(x, y)+h(x+α(1), y+β(1))+v(1)·(x, y))(x,y)∈Fn
2
≼ (u2h(x, y)+h(x+α(2), y+β(2))+v(2)·(x, y))(x,y)∈Fn

2
.

Let us denote by c1, c2 these two codewords in C(γ)
h , thus we assume c1 ≼ c2 and c1 ̸= c2.

We will prove that c1 is the zero codeword. There are four cases to consider according to the
possible values of (u1, u2) ∈ F2 × F2. We only provide the proof when u1 = u2 = 0 and for
convenience of the reader the remaining (similar) cases are given in Appendix.

By definition of ϕ, we know that ϕ(0s/2) = 0s/2. This implies that for every β ∈
Fs/2
2 × {0s/2} we have g(β) = 0. We will use this fact throughout the proof without fur-

ther mentioning it.

1. Assume that c1, c2 ∈ A, i.e., u1 = u2 = 0. There are two cases to be considered.

(a) Suppose that
β(1) ̸= β(2) or v(1) · (0r, y) ̸= v(2) · (0r, y).

Restricting these codewords to (0r, 0s) we see that f(α
(1)) ̸= 1 or f(α(2)) ̸= 0. The

restriction of C(γ)
h to the y-coordinates would give

(g(y+β(1))+v(1) · (0r, y)+f(α(1)))y∈Fs
2
≼ (g(y+β(2))+v(2) · (0r, y)+f(α(2)))y∈Fs

2
.

A contradiction to (i) in Lemma 7.

(b) Suppose that
β(1) = β(2) and v(1) · (0r, y) = v(2) · (0r, y).

We then have that

f(x+ α(1)) + v(1) · (x, 0s) ̸= f(x+ α(2)) + v(2) · (x, 0s)

and

(f(x+ α(1)) + v(1) · (x, 0s))x∈Fr
2
≼ (f(x+ α(2)) + v(2) · (x, 0s))x∈Fr

2
.

These two non-zero different codewords belong to Cf ⊕ CDγf and they cover each
other. This contradicts the minimality of Cf ⊕ CDγf .

19

Thus, assuming c1, c2 ∈ A (when u1 = u2 = 0) we have that c1 ≼ c2 implies that c1 = 0.

It remains to show the wideness of C(γ)
h assuming that CDγ(f) is wide. When β = 0s, we

have h(x, y)+h(x+γ, y) = f(x)+f(x+γ). We know wminCDγ(f) = wt(f(x)+f(x+γ)+l∗(x)),

for some l∗(x) ∈ Br. The upper bound on wminC(γ)
h satisfies

wminC(γ)
h ≤ wt(f(x) + f(x+ γ) + l∗(x)) = 2swminCDγ(f), (25)

where l∗(x) ∈ Bn and also f(x) + f(x + γ) + l∗(x) ∈ Bn. Similarly, there exists at least one
l′(x) ∈ Br such that wmaxCDγ(f) = wt(f(x) + f(x+ γ) + l′(x)). Then,

wt(f(x) + f(x+ γ) + l′(x)) = 2swmax(Dγ(f)) ≤ wmaxC(γ)
h (26)

for l′(x) ∈ Bn. From (25) and (26), we have

wminC(γ)
h

wmaxC(γ)
h

≤
wminCDγ(f)

wmaxCDγ(f)
≤ 1

2
.

4.2 Applications of Theorem 5

The importance of the above result lies in the fact that the initial conditions in Theorem 5 are
entirely related to the function f and the bent function g in the MM class is selected using
a non-covering permutation ϕ. This gives a huge class of wide binary linear codes, which are
not necessarily equivalent since one can for instance employ permutations ϕ (when defining
g) of different algebraic degree. The following example exactly illustrates a possibility of
getting non-equivalent codes using different permutations ϕ.

Example 7 Let r = 6, s = 10. Consider the bent function g ∈ B10 as in (12) whose underly-
ing permutation is the cubic AB permutation ϕ : F5

2 → F5
2 given by ϕ(y) = y7. Let us identify

the integers in the interval [0, . . . , 63] with their binary representation (lexicographically or-
dered) which can be seen as a vector in F6

2, e.g. (0, 0, 0, 0, 0, 1) is identified with 1. Consider
f ∈ B6 whose support is given by

∆ = {4, 7, 8, 18, 21, 22, 24, 28, 35, 36, 42, 51, 54, 60}.

Take γ = (1, 0, 1, 1, 0, 1). Using computer simulations, we could conclude that Cf ⊕ CDγf

is a wide linear code. Theorem 5 implies that C(γ)
h is also wide. Moreover, its minimum

distance wmin equals 24576 = 3 · 213 and wmax = 49152 = 3 · 214; thus C(γ)
h has parameters

[216, 23, 3 · 213] and ratio wmin/wmax = 1/2.
Let us now consider the bent function g ∈ B10 as in (12) whose defining non-covering

permutation ϕ : F5
2 → F5

2 given by ϕ(y) = y30 is not AB. Let f ∈ B6 and γ be defined

as in the paragraph above. Again, Theorem 5 ensures the wideness of C(γ)
h . Furthermore,

wmin = 20480 = 5 · 212 and wmax = 49152 = 3 · 214 which implies that C(γ)
h is a wide linear

code with parameters [216, 23, 5 · 212] and ratio wmin/wmax = 5/12.

20

Remark 5 The initial conditions of Theorem 5 may be hard to satisfy but essentially the re-
sult given in Theorem 4 almost provides classes of Boolean functions suitable for this purpose.
Example 5 and 6 illustrate exactly the existence of f satisfying the conditions of Theorem 4
which can be utilized as initial functions in Theorem 5.

To further emphasize a wide range of possibilities of employing the result of Theorem 5 we
consider the use of function f in Example 5 more specifically.

Proposition 2 Let f ∈ B7 be specified as in Example 5. Let s = 10 and define a bent
function g(y1, y2) = ϕ(y2) · y1, with (y1, y2) ∈ F5

2×F5
2, where ϕ is a non-covering permutation

on F5
2 without affine components. For h(x, y) = f(x) + g(y), where y = (y1, y2), define the

code C(γ)
h by means of (22). Then, C(γ)

h is a [217, 24] wide linear code for any non-covering
permutation ϕ without affine components.

Remark 6 Using simple Walsh spectrum arguments and known bounds on the nonlinearity of
ϕ, one can show that there are no non-covering permutations ϕ over Fn

2 for n ≤ 4. However,
there are 32! permutations over F5

2 and many of these permutations are non-covering and
do not have affine components. Employing the function f ∈ B7 in Example 5, each of these

permutations specifies a wide linear [217, 24] code C(γ)
h among which there are many non-

equivalent codes.

Example 8 Set r = 6. Similarly to Example 7 we identify the integers in the interval
[0, . . . , 63] with their binary representation. Consider f ∈ B6 whose support is given by

∆ = {3, 5, 7, 11, 12, 24, 27, 31, 34, 37, 51, 52}.

Take γ = (0, 1, 1, 0, 1, 0). The Walsh spectra of f and Dγf satisfy

Wf (b) ∈ {−16,−12,−8,−4, 0, 4, 8, 12, 40},WDγf (b) ∈ {−24,−8, 0, 8, 24},

for every b ∈ F6
2. Using computer simulations, we could conclude that Cf ⊕CDγf is wide linear

code. From Theorem 5 we know that C(γ)
h is also wide, where h(x, y) = f(x) + g(y) and g is

a bent function of the form g(y) = ϕ(y(2)) · y(1) such that ϕ is a non-covering permutation

without affine components. The weight distribution of C(γ)
h for an arbitrary AB permutation

ϕ over Fs/2
2 and specifically over F5

2 are given in Table 2 and Table 3, respectively.

21

Table 2: Weight distribution of C(γ)
h in Example 8 for any AB permutation ϕ : Fs/2

2 → Fs/2
2

Weight w Number of codewords Aw

2n−1 − 2r+s/2−1 + 2s/2w 2s+s/2+1A
(f)
w when w ̸∈ {0, w(f)

min, 32, w
(f)
max}

2n−1 − 2r+s/2−1 + 2s/2w 2s/2+1(2s−1 + 2s/2−1)A
(f)
w when w ∈ {w(f)

min, w
(f)
max}

2n−1 + 2r+s/2−1 − 2s/2w 2s/2+1(2s−1 − 2s/2−1)A
(f)
w when w ∈ {w(f)

min, w
(f)
max}

2n−1 + w′(2
s+s/2−1

2
+1)

−2
s+s/2−1

2
+r

(2s/2 − 1)((2s/2−2 + 2(s/2−3)/2)A
(Dγf)
w′ +

(2s/2−2 − 2(s/2−3)/2)A
(Dγf)
64−w′) if w′ ̸∈ {0, 32}

2sw′ A
(Dγf)
w′ if w′ ̸∈ {0, 32}

2n−1 − 2
s+s/2−1

2
+r (2s/2 − 1)((2s/2−2 + 2(s/2−3)/2)

2n−1 + 2
s+s/2−1

2
+r (2s/2 − 1)((2s/2−2 − 2(s/2−3)/2)

2n−1 2n − 2r + 33 · 2s/2−1 − 161 · 2s−1

+47 · 2(3s)/2+1 + 2(3s)/2+r + 31

0 1

When considering an arbitrary AB permutation ϕ on Fs/2
2 , the weight distribution of

C(γ)
h in Table 2 can be described using the weight distributions of Cf and CDγf . Namely,

if A
(f)
w and A

(Dγf)
w′ denote the frequency of the weight w in Cf and the weight w′ in CDγf

respectively, then we can compute the weights of C(γ)
h accordingly as shown in Table 2. The

symbols w
(f)
max, w

(f)
max represent the maximum and minimum weight of Cf and the variables

w,w′ take values among the possible weights of Cf , CDγf , respectively.

22

Table 3: Weight distribution of C(γ)
h in Example 8 for any AB permutation ϕ : F5

2 → F5
2.

Weight w Number of codewords Aw

215 − 210 + 25 · 26 216 · 3
215 − 210 + 25 · 28 216 · 10
215 − 210 + 25 · 30 216 · 13
215 − 210 + 25 · 34 216 · 13
215 − 210 + 25 · 36 216 · 5
215 − 210 + 25 · 38 216 · 3
215 − 210 + 25 · 12 26(29 + 24)

215 − 210 + 25 · 40 26(29 + 24)

215 + 210 − 25 · 12 26(29 − 24)

215 + 210 − 25 · 40 26(29 − 24)

215 + 28 · 20− 213 (25 − 1)((23 + 2) + (23 − 2) · 3)
215 + 28 · 28− 213 (25 − 1)((23 + 2) · 21 + (23 − 2) · 7)
215 + 28 · 36− 213 (25 − 1)((23 + 2) · 7 + (23 − 2) · 21)
215 + 28 · 44− 213 (25 − 1)((23 + 2) · 3 + (23 − 2))

210 · 20 1

210 · 28 21

210 · 36 7

210 · 44 3

215 − 213 (25 − 1)(23 + 2)

215 + 213 (25 − 1)(23 − 2)

215 5160943

0 1

5 Conclusion

In this article, we have presented several generic methods of constructing (wide) minimal
binary linear codes. Most notably, the design of minimal binary linear codes does not involve
any initial conditions and therefore our approach based is quite general. Two generic methods
for constructing wide binary linear codes are also given and their initial conditions are easily
satisfied. Moreover, given a single Boolean function f which induces minimality of both Cf
and of Cf ⊕ CDγf one can construct a huge family of non-equivalent codes by using different
permutations on a suitable variable space. In this case, since the choice of a bent function in
the MM used in the direct sum is arbitrary (up to the non-covering property of permutation
ϕ) such families of non-equivalent wide binary linear codes of length 2n can be designed for
any n ≥ 7. It is an interesting research problem to consider subcodes of these codes for the
purpose of deriving optimal codes.

Acknowledgment: Fengrong Zhang is supported in part by the Natural Science Foun-
dation of China (No. 61972400), and in the part by the Fundamental Research Funds for

23

the Central Universities (2019XKQYMS86). Enes Pasalic is partly supported by the Slove-
nian Research Agency (research program P1-0404 and research projects J1-9108, J1-1694).
Yongzhuang Wei (corresponding author) is supported in part by the Natural Science Foun-
dation of China (No. 61872103), in part by the Guangxi Natural Science Foundation (No.
2019GXNSFGA245004), and in part by the Guangxi Science and Technology Foundation
(Guike AB18281019).

References

[1] A. E. Ashikhmin and A. Barg. Minimal vectors in linear codes. IEEE Trans. on Inf.
Theory, vol. 44, no. 5, 2010–2017, 1998.

[2] D. Bartoli and M. Bonini. Minimal linear codes in odd characteristic. IEEE Trans.
on Inf. Theory, vol. 65, no. 7, pp. 4152–4155, 2019.

[3] M. Bonini and M. Borello. Minimal linear codes arising from blocking sets. Journal
of Algebraic Combinatorics, 2020, 115.

[4] C. Carlet. Boolean models and methods in mathematics, computer science, and engi-
neering. Encyclopedia of Mathematics and its Applications (No. 134) - Cambridge Uni-
versity Press, pp. 398 – 469, 2013.

[5] C. Carlet, C. Ding and J. Yuan. Linear codes from highly nonlinear functions and
their secret sharing schemes. IEEE Trans. Inf. Theory, vol. 51, no.6, pp. 2089–2102, 2005.

[6] S. Chang and J. Hyun. Linear codes from simplicial complexes. Designs, Codes and
Cryptography vol. 86, pp. 2167–2181, 2018.

[7] G. Cohen, S. Mesnager and A. Patey. On minimal and quasi-minimal linear codes.
Proceedings of IMACC (Lecture Notes in Computer Science, vol. 8308), M. Stam, Eds.
Berlin: Springer-Verlag, pp. 85–98, 2013.

[8] C. Ding. Linear codes from some2-designs. IEEE Trans. on Inf. Theory, vol. 61, no. 6,
pp. 3265–3275, 2015.

[9] C. Ding. A construction of binary linear codes from Boolean functions. Discrete math-
ematics, vol. 339, No. 9, pp. 2288–2303, 2016.

[10] C. Ding, Z. Heng and Z. Zhou. Minimal binary linear codes. IEEE Trans. on Inf.
Theory, vol. 64, no. 10, pp. 6536–6545, 2018.

[11] K. Ding and C. Ding. A class of two-weight and three-weight codes and their appli-
cations in secret sharing. IEEE Trans. on Inf. Theory, vol. 64, no. 11, pp. 5835–5842,
2015.

[12] C. Ding and J. Yuan. Covering and secret sharing with linear codes. In: Discrete
Mathematics and Theoretical Computer Science, Lecture Notes in Computer Science, vol.
2731, Springer Verlag, pp. 11–25, 2003.

24

[13] Z. Heng, C. Ding and Z. Zhou. Minimal Linear Codes over Finite Fields. Finite
Fields Appl., vol. 54, pp. 176–196, 2018.

[14] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes.
North Holland, Amsterdam, 1977.

[15] R. L. McFarland. A family of noncyclic difference sets. J. Combin. Theory, Ser. A,
vol. 15, pp.1–10, 1973.

[16] S. Mesnager, Y. Qi, H. Ru and C. Thang. Minimal linear codes from characteristic
functions. IEEE Trans. on Inf. Theory, vol. 66, no. 9, pp. 5404–5413, 2020.

[17] E. Pasalic, F. Zhang, R. Rodriguez and Y. Wei. Several classes of mini-
mal binary linear codes violating the Ashikhmin-Barg’s bound. Available at http-
s://eprint.iacr.org/2020/1131.

[18] O. S. Rothaus. On bent functions. J. Combin. Theory, Ser. A, vol. 20, pp. 300–305,
May 1976.

[19] D. Tang, C. Carlet and Z. Zhou. Binary linear codes from vectorial Boolean
functions and their weight distribution. Discrete Mathematics, Vol. 340, Issue 12, pp.
3055–3072, 2017.

[20] C. Tang, Y. Qiu, Q. Liao, Z. Zhou. Full characterization of minimal linear codes as
cutting blocking sets. Available at https://arxiv.org/abs/1911.09867.

[21] G. Xu, L. Qu Three classes of minimal linear codes over the finite fields of odd
characteristic. IEEE Trans. on Inf. Theory, vol. 65, no. 11, pp. 7067–7078, 2019.

[22] J. Yuan and C. Ding. Secret sharing schemes from three classes of linear codes. IEEE
Trans. Inf. Theory, vol. 52, no. 1, pp. 206–212, 2006.

Appendix

Proof. (Theorem 5, the remaining cases are proved assuming that c1 ≼ c2 and showing
that necessarily c1 = 0)

2. Consider the case when c1, c2 belong to B, i.e., u1 = u2 = 1. There are two cases to
be considered:

(a) Suppose that β(1) ̸= β(2) or v(1) · (0r, y) ̸= v(2) · (0r, y). Restricting c1, c2 ∈ C(γ)
h to

(0r, 0s) (assuming c1 ≼ c2) we get f(0r) + f(α(1)) ̸= 1 or f(0r) + f(α(2)) ̸= 0. Now,
restricting to the y-coordinates gives that the codeword

(g(y) + g(y + β(1)) + v(1) · (0r, y) + f(0r) + f(α(1)))y∈Fs
2

is covered by

(g(y) + g(y + β(2)) + v(2) · (0r, y) + f(0r) + f(α(2)))y∈Fs
2
.

25

Lemma 8 implies that g(y) + g(y + β(1)) + v(1) · (0r, y) = 0, for all y ∈ Fs
2. This gives

that β(1) = 0s and v(1) · (0r, y) is zero.
Now, if f(x)+ f(x+α(1))+ v(1) · (x, 0s) is non-zero, then there exists x0 ∈ Fr

2 such that

f(x0) + f(x0 + α(1)) + v(1) · (x0, 0s) = 1. (27)

Also, the assumption c1 ≼ c2 applied to the projection onto the x-coordinates gives

f(x0) + f(x0 + α(2)) + v(2) · (x0, 0s) = 1. (28)

Select y0 ∈ Fs
2 such that

g(y0) + g(y0 + β(2)) + v(2) · (0r, y0) = 1, (29)

which is possible since g(y)+g(y+β(2))+v(2) · (0r, y) is non-constant. Combining (27),
(28) and (29), we obtain

c1(x0, y0) = f(x0) + f(x0 + α(1)) + v(1) · (x0, 0s) = 1

and

c2(x0, y0) = f(x0) + g(y0) + f(x0 + α(2)) + g(y0 + β(2)) + v(2) · (x0, y0) = 0.

A contradiction to c1 ≼ c2. Hence f(x) + f(x+α(1)) + v(1) · (x, 0s) = 0. Thus c1 is the
zero codeword.

(b) Suppose that
β(1) = β(2) and v(1) · (0r, y) = v(2) · (0r, y).

We then have that

f(x) + f(x+ α(1)) + v(1) · (x, 0s) ̸= f(x) + f(x+ α(2)) + v(2) · (x, 0s)

and
(f(x) + f(x+ α(1)) + v(1) · (x, 0s))x∈Fr

2

is covered by
(f(x) + f(x+ α(2)) + v(2) · (x, 0s))x∈Fr

2
.

We then get two different codewords in CDγf covering each other hence f(x) + f(x +

α(1)) + v(1) · (x, 0s) = 0, for all x ∈ Fr
2, since CDγf is minimal. Thus, α(1) = 0r, v

(1) ·
(x, 0s) = 0. Note that f(x) + f(x + α(2)) + v(2) · (x, 0s) ̸= 0 because c1 ̸= c2. Hence,
there exists x0 ∈ Fr

2 such that

f(x0) + f(x0 + α(2)) + v(2) · (x0, 0s) = 1. (30)

Now, if

g(y) + g(y + β(1)) + v(1) · (0r, y) = g(y) + g(y + β(2)) + v(2) · (0r, y) ̸= 0

26

then there is y0 ∈ Fs
2 such that

g(y0) + g(y0 + β(1)) + v(1) · (0r, y0) = g(y0) + g(y0 + β(2)) + v(2) · (0r, y0) = 1. (31)

Combining the equations (30) and (31) we get

c1(x0, y0) = g(y0) + g(y0 + α(1)) + v(1) · (0r, y0) = 1

and

c2(x0, y0) = f(x0) + g(y0) + f(x0 + α(2)) + g(y0 + β(2)) + v(2) · (x0, y0) = 0.

This contradicts c1 ≼ c2, hence

g(y) + g(y + β(1)) + v(1) · (0r, y) = 0, ∀y ∈ Fs
2.

Therefore, c1 is the zero codeword.

3. We now consider u(1) = 0 and u(2) = 1 so that c1 ∈ A and c2 ∈ B.

(a) Suppose that
β(1) ̸= β(2) or v(1) · (0r, y) ̸= v(2) · (0r, y).

The restriction of c1, c2 ∈ C(γ)
h to (0r, 0s) (assuming c1 ≼ c2) implies f(α(1)) ̸= 1 or

f(0r) + f(α(2)) ̸= 0. Now, the restriction of C(γ)
h to the y-coordinates gives that the

codeword
(g(y + β(1)) + v(1) · (0r, y) + f(α(1)))y∈Fs

2

is covered by

(g(y) + g(y + β(2)) + v(2) · (0r, y) + f(0r) + f(α(2)))y∈Fs
2
.

A contradiction to (ii) in Lemma 7.

(b) Suppose that
β(1) = β(2) and v(1) · (0r, y) = v(2) · (0r, y).

Since f is non-affine, we have that

f(x+ α(1)) + v(1) · (x, 0s) ̸= f(x) + f(x+ α(2)) + v(2) · (x, 0s).

Assuming that c1 ≼ c2 then

(f(x+ α(1)) + v(1) · (x, 0s))x∈Fr
2

is covered by
(f(x) + f(x+ α(2)) + v(2) · (x, 0s))x∈Fr

2
.

We have two different non-zero codewords in Cf ⊕ CDγf covering each other, a contra-
diction to the minimality of Cf ⊕ CDγf .

4. Finally, the case when u(1) = 1 and u(2) = 0 (c2 ∈ A and c1 ∈ B) can be reduced to the
first case since the sum of an element in B and an element in A belongs to A.

27

