
Computing Square Roots Faster than the Tonelli-Shanks/Bernstein

Algorithm

Palash Sarkar
Indian Statistical Institute

203, B.T. Road
Kolkata

India 700108
email:palash@isical.ac.in

November 15, 2020

Abstract

We describe an algorithm to compute square roots modulo a prime p = 1 + 2nm, with m odd
and n ≥ 1, which requires T + O(n3/2) operations (i.e., squarings and multiplications), where T is
the number of operations required to exponentiate an element of Zp to the power (m − 1)/2. This
improves upon the Tonelli-Shanks (TS) algorithm which requires T + O(n2) operations. Bernstein
had proposed a table look-up based variation of the TS algorithm which requires T + O((n/w)2)
operations and O(2wn/w) storage, where w is a parameter. A table look-up variant of the new
algorithm requires T + O((n/w)3/2) operations and the same storage. In practical terms, the new
algorithm is shown to require significantly less number of operations for concrete values of n.
Key Words: square root, Tonelli-Shanks algorithm, table look-up.
MSC Codes: 11Y16

1 Introduction

Let p be an odd prime such that p − 1 = 2nm, where n and m are integers with n ≥ 1 and m odd.
Suppose an element u in Zp is a square (which can be determined by computing the Legendre symbol
(up)). A basic task in many applications is to obtain a square root of u modulo p. If n = 1 (i.e.,

p ≡ 3 mod 4), then u(m+1)/2 is a square root of u. If n > 1 (equivalently, p ≡ 1 mod 4), there are several
approaches to computing a square root of u.

The Tonelli-Shanks (TS) algorithm [15, 14] requires T+O(n2) operations (i.e., squarings and multi-
plications), where T is the number of operations required to compute u(m−1)/2. The Adleman-Manders-
Miller (AMM) algorithm [1] also requires T+O(n2) operations, though in the average case, the Tonelli-
Shanks algorithm is faster. A detailed analysis of the average case behaviour of the TS algorithm is
provided in [11]. Bernstein [4] proposed a method to speed-up the computation of the TS algorithm
using a pre-computed table containing elements of Zp. Given a positive integer w, Bernstein’s method
requires T +O((n/w)2) operations and storage of 2wn/w elements.

A different approach to square root computation is the Cipolla-Lehmer algorithm [7, 10] which
requires working in a quadratic extension of Fp. This approach requires an exponentiation to the
power (p − 1)/2 in the quadratic extension. Müller [12] described a method based on Lucas sequence
which is faster than working with quadratic extensions. As mentioned above, for p ≡ 3 mod 4, a single

1

exponentiation in Zp is sufficient to obtain a square root. Atkin [2] showed that a single exponentiation
is also sufficient for the case p ≡ 5 mod 8. Atkin’s method was extended to the case p ≡ 9 mod 16
in [12, 9], but this requires two exponentiations. Atkin’s method was extended to cover the entire case
of p ≡ 1 mod 4 in [13], again requiring two exponentiations plus additional operations.

In the present state-of-the-art, depending on the relative values of n, m and lg p, either the TS
algorithm along with Bernstein’s table look-up based implementation, or the Lucas sequence based
algorithm of Müller [12] would be used. An approximate guide is as follows. If m is very small
compared to lg p, then Müller’s algorithm is the fastest; if n < (lg p)1/2, then the TS algorithm would
be preferable to Müller’s algorithm; if n < w(lg p)1/2, then Bernstein’s algorithm would be preferable
to Müller’s algorithm.

Let z be a non-square in Zp and set g = zm. The new algorithm starts by computing v = u(m−1)/2

as in the TS algorithm. The algorithm has several parameters. Let k ≥ 1 be a positive integer and let
`0, . . . , `k−1 be positive integers such that `0+· · ·+`k−1 = n−1. Let x = u·v2 = um. For i = 0, . . . , k−1,
let λi = n− 1− `i and xi = x2

λi so that x2
`i

i = 1. In k steps, the goal is to obtain s0, s1, . . . , sk−1 and
0 = t0, t1, . . . , tk−1 such that for i = 0, . . . , k−1, if we define αi = xi ·gti , then αi ·gsi = 1. A square root
of u is u(m+1)/2 · g(tk−1+sk−1)/2. If k = 1, then essentially the TS algorithm is obtained. On the other
end, if k = n − 1 and `0 = `1 = · · · = `k−1 = 1, then essentially the AMM algorithm is obtained. The
complexity of the algorithm (other than the computation of um) at both these ends are similar where
the number of operations is quadratic in n. A careful analysis shows that it is possible to choose k and
the integers `0, . . . , `k−1 such that the number of operations becomes O(n3/2).

We propose a table look-up based method to speed up the new algorithm. The idea of using table
look-up is an extension of Bernstein’s idea of using the table look-up to speed up the TS algorithm.
The table look-up based variation of the new algorithm requires O((n/w)3/2) operations using a table
storing O(2wn/w) elements.

In practical terms, the new algorithm improves upon the TS algorithm for all n ≥ 3. We provide
concrete examples to illustrate the improvement gain. Similarly, we also provide concrete examples
to illustrate the gain in speed of the new look-up table based algorithm in comparison to Bernstein’s
algorithm [4]. For n < (lg p)2/3, the new algorithm is faster than Müller’s algorithm, and for n <
w(lg p)2/3, the table look-up based variation of the new algorithm is faster than Müller’s algorithm.

2 Algorithm

The following result provides the basis of the method for computing square roots.

Lemma 1 Let p be an odd prime such that p − 1 = 2nm with m odd and n ≥ 1. Let z ∈ Z?p be a

non-square and g = zm. Let α ∈ Z?p be such that α2` = 1 for some ` ∈ {0, . . . , n− 1}. Then there is an

integer s with 0 ≤ s < 2n such that α · gs = 1 and s ≡ 0 mod 2n−`. Consequently, it is possible to write
s = q2n−` with 0 ≤ q < 2`.

Proof: Since z is a non-square, g2
n−1

= zm2n−1
= z(p−1)/2 = −1. Also, g2

n
= zp−1 = 1. So, the

element g is a generator of the cyclic subgroup of Z?p of order 2n and gi, i = 0, . . . , 2n − 1 are all the

distinct roots of the equation X2n−1 = 0 (over the field Fp). It is given that α2` = 1 with 0 ≤ ` ≤ n−1.

So, α2n =
(
α2`
)2n−`

= 1 which shows that α is a root of X2n − 1 = 0. Consequently, α can be written

as a power of g, i.e., we may write α = gσ, where 0 ≤ σ < 2n. Then 1 = α2` = gσ2
`
. Since the order of

g is 2n, it follows that σ2` ≡ 0 mod 2n and so σ = 0 mod 2n−`. Define s as follows: s = 0, if σ = 0; and

2

s = 2n − σ, if σ > 0. Then s ≡ 0 mod 2n−`, 0 ≤ s < 2n and α · gs = gσ · gs = 1. �
Suppose u ∈ Z?p be a square and x = um. Then x2

n−1
= u(p−1)/2 = 1 and so, by Lemma 1, there is an

even integer t ≥ 0 such that x · gt = 1. Let v = u(m−1)/2. Then (u · v · gt/2)2 = u · um · gt = u · x · gt = u
and so u · v · gt/2 is a square root of u.

Henceforth, we will assume that the prime p = 2nm, with n ≥ 1 and m an odd integer. We also
assume that a quadratic non-residue z in Zp is known and we define g = zm.

Pre-computed powers of g: Let gi = g2
i
, i = 0, . . . , n − 2. The powers (gi)0≤i≤n−2 are to be

computed and stored. Computing these powers requires n− 2 squarings. Since the same g can be used
for all u, we assume that these n− 1 powers of g are pre-computed and stored.

Given a square u ∈ Z∗
p, the algorithm for finding a square root of u is described as Function

findSqRoot(u) in Algorithm 1. The algorithm is parameterised by the following choices. Let k > 0
be an integer and `0, . . . , `k−1 be positive integers such that `0 + · · · + `k−1 = n − 1. The following
subroutines are used by the algorithm.

eval(α): Given α ∈ Z?p such that α2` = 1 with 0 ≤ ` ≤ n − 1, eval(α) returns s such that α · gs = 1.
The existence of such an s is guaranteed by Lemma 1.

find(δ): Given δ ∈ Z?p, with δ 6= 1 such that δ2
`

= 1, for some 1 ≤ ` ≤ n− 1, find(δ) returns i ≥ 0 such

that δ2
i

= −1.

Note that Step 5 of the Function eval in Algorithm 1 makes use of the pre-computed powers of g.
We establish the correctness of findSqRoot. To this end, we consider the correctness of the two

subroutines find and eval. The correctness of find is easy to see. For δ 6= 1, let i be the minimum
non-negative integer such that (δ2

i
)2 = 1. Then δ2

i
must be equal to −1, since in Zp, the only square

roots of 1 are 1 and −1. The minimum non-negative i is obtained by repeated squarings of δ.
The correctness of eval is given by the following result.

Lemma 2 (Correctness of eval) Let α ∈ Z?p be such that α2` = 1 for some ` ∈ {0, . . . , n− 1} and let
s be the output of eval(α). Then α · gs = 1.

Proof: In the proof, the step numbers refer to the steps of the Function eval shown in Algorithm 1.
Let δ0 be the value assigned to δ in Step 2 and so δ0 = α. Let i0 = `. In the j-th iteration (j ≥ 1)

of the loop in Steps 3 to 6, let the values assigned to i and δ in Steps 4 and 5 be ij and δj respectively.

From the definition of find we have δ2
ij

j−1 = −1. Also, from Step 5, δj = δj−1 · g2
n−1−ij

.

We first show that the loop in Steps 3 to 6 terminates. We have δ2
i0

0 = α2` = 1. For j ≥ 1,

δ2
ij

j =
(
δj−1 · g2

n−1−ij
)2ij

= δ2
ij

j−1 · gn−1 = (−1)(−1) = 1. So, we have for j ≥ 0, δ2
ij

j = 1 and

δ2
ij+1

j = −1 which shows that ij+1 < ij . Consequently, n − 1 ≥ ` = i0 > i1 > i2 > · · · . This shows
that n − 1 − ij > 0 for j ≥ 1. The values i1, i2, . . . are returned by find and so these are non-negative
integers. Since ` = i0, i1, i2, . . . is a strict monotone decreasing sequence of non-negative integers, the
loop in Steps 3 to 6 has to terminate.

Suppose that the loop in Steps 3 to 6 in eval runs r times and so δr = 1. From the manner in
which s is updated, the final value returned at Step 7 is s = 2n−1−i1 + 2n−1−i2 + · · ·+ 2n−1−ir . We have
1 = δr = δr−1 · g2

n−1−ir
= δr−2 · g2

n−1−ir−1 · g2n−1−ir
= · · · = δ0 · gs = α · gs. �

3

Algorithm 1 Algorithm for computing a square root of u modulo an odd prime p, where u is a non-zero
square in Z?p. In the algorithm, p− 1 = 2nm with n ≥ 1 and m odd; g = zm where z is a non-square in
Z?p; k ≥ 1 and `0, . . . , `k−1 > 0 are such that `0 + · · ·+ `k−1 = n− 1.

1: function findSqRoot(u)
2: v ← u(m−1)/2;
3: if n = 1 then y ← u · v; return y; end if
4: x← uv2; (so that x = um)

5: let xi ← x2
n−1−(`0+···+`i) , i = 0, . . . , k − 1; store (xi)0≤i≤k−1;

6: s← 0; t← 0;
7: for i← 0 to k − 1 do
8: t← (s+ t)/2`i ; γ ← gt; α← xi · γ; s← eval(α);
9: end for

10: t← s+ t; γ ← gt/2; y ← u · v · γ;
11: return y;
12: end function.

1: function eval(α)
2: δ ← α; s← 0;
3: while δ 6= 1 do
4: i← find(δ); s← s+ 2n−1−i;
5: if i > 0 then δ ← δ · g2n−1−i

; else δ ← −δ;
6: end while
7: return s;
8: end function

1: function find(δ)
2: µ← δ; i← 0;
3: while (µ 6= −1) do µ← µ2; i← i+ 1; end while
4: return i;
5: end function

Definitions of ti, αi and si: For i = 0, . . . , k − 1, let ti, αi and si be the values assigned to t, α and
s respectively in Step 8 of findSqRoot. Let tk be the value assigned to t in Step 10 of findSqRoot. The
quantities x0, . . . , xk−1 are defined in findSqRoot. From the description of the algorithm, t0 = 0 and the
following relations hold.

ti = (ti−1 + si−1)/2
`i , for i = 1, . . . , k − 1;

tk = tk−1 + sk−1;
αi = xi · gti , for i = 0, . . . , k − 1.

 (1)

Lemma 3 For i = 0, . . . , k − 1, the following holds.

1. α2`i
i = 1, for i = 0, . . . , k − 1.

2. αi · gsi = 1, for i = 0, . . . , k − 1.

Proof: First note that α0 = x0 = x2
n−1−`0 and so α2`0

0 = x2
n−1

= um2n−1
= u(p−1)/2 = 1, where the

last equality holds since u is a square in Z?p. Since s0 is obtained as eval(α0), by correctness of eval, it
follows that α0 · gs0 = 1.

4

Assume 1 ≤ i ≤ k − 1. From (1) we have 2`iti = ti−1 + si−1 and αi = xi · gti . From the definition

of xi, we have x2
`i

i = xi−1. So, α2`i
i = x2

`i

i · gti2
`i = xi−1 · gti−1 · gsi−1 = αi−1 · gsi−1 = 1, where the last

equality follows by induction. For i = 1, . . . , k − 1, si is obtained as eval(αi) and by the correctness of
eval, it follows that αi · gsi = 1. �

Using Lemmas 1 and 3, for i = 0, . . . , k − 1, we have

si = qi2
n−`i , with 0 ≤ qi < 2`i . (2)

Note that since t0 = 0, gt0 = 1. So, we consider ti for i ≥ 1.

Lemma 4 For i = 1, . . . , k,

ti =
(
q0 + 2`0q1 + 2`0+`1q2 + · · ·+ 2`0+···+`i−2qi−1

)
2`i+1+···+`k−1+1. (3)

Consequently, ti ≡ 0 mod 2`i+1+···+`k−1+1. In particular, both tk−1 and tk are even.

Proof: Recall that `0 + · · · + `k−1 = n − 1. Define `k = 0, so that the relation ti = (ti−1 + si−1)/2
`i

holds for i = 1, . . . , k (see (1)). We have t1 = s0/2
`1 = q02

n−`0/2`1 = q02
`2+···+`k−1+1. Assume by

induction that the expansion for ti holds for some i ∈ {1, . . . , k − 1}. From (2), we have si = qi2
n−`i .

Using this and induction, we have

ti+1 =
1

2`i+1
(ti + si)

=
1

2`i+1

((
q0 + 2`0q1 + 2`0+`1q2 + · · ·+ 2`0+···+`i−2qi−1

)
2`i+1+...+`k−1+1 + qi2

n−`i
)

=
(
q0 + 2`0q1 + · · ·+ 2`0+···+`i−2qi−1 + 2`0+···+`i−1qi

)
2`i+2+···+`k−1+1.

�

For i = 1, . . . , k and j = 0, . . . , i− 1, define

κi,j = `0 + · · ·+ `j−1 + `i+1 + · · ·+ `k−1 + 1. (4)

Then the expression for ti in Lemma 4 can be written as

ti = q02
κi,0 + q12

κi,1 + · · ·+ qi−12
κi,i−1 . (5)

The expression for ti in terms of κi,j will be useful in describing the computation of gti .
Next we establish the correctness of findSqRoot.

Theorem 1 (Correctness of findSqRoot) Let u ∈ Z?p be a square and y is the result of findSqRoot(u).
Then y2 = u.

Proof: Since u is a square, we have u(p−1)/2 = um2n−1
= 1. If n = 1, then y2 = (u · v)2 = um+1 =

um · u = u. So, assume that n > 1.
From Lemma 4, we have that tk is even. So the computation gtk/2 in Step 10 of findSqRoot is

meaningful.
By Lemma 3, we have αk−1 · gsk−1 = 1. From (1), αk−1 = xk−1 · gtk−1 and by definition, xk−1 =

x = um. So, we get x · gtk−1 · gsk−1 = um · gtk−1+sk−1 = 1. Again, from (1), tk = tk−1 + sk−1 and so,
y = u · v · gtk/2 = u(m+1)/2 · g(tk−1+sk−1)/2. Therefore y2 = u · um · gtk−1+sk−1 = u. �

5

Remark: In Appendix A, we describe the relation of findSqRoot to the TS and the AMM algorithms.

2.1 Computations of gt and gt/2

Step 8 of findSqRoot requires the computation of gti , i = 0, . . . , k − 1, and Step 10 requires the compu-
tation of gtk/2, where the expressions for ti, i = 1, . . . , k are given by (5).

From (2), we have qj < 2`j , for j = 0, . . . , k − 1. So, the binary expansion of qj can be written as

qj = qj,0 + qj,12 + · · ·+ qj,`i−12
`j−1 (6)

where qj,0, . . . , qj,`j−1 ∈ {0, 1}. Substituting the expression for qj given by (6) in (5) we obtain

ti =
i−1∑
j=0

(
qj,0 + qj,12 + · · ·+ qj,`i−12

`j−1
)

2κi,j .

So, for i = 1, . . . , k − 1,

gti =
i−1∏
j=0

g

(
qj,0+qj,12+···+qj,`i−12

`j−1
)
2κi,j

=
i−1∏
j=0

((
g2

κi,j
)qj,0 (

g2
κi,j+1

)qj,1
· · ·
(
g2

κi,j+`j−1
)qj,`j−1

)

=
i−1∏
j=0

((
gκi,j

)qj,0 (gκi,j+1

)qj,1 · · · (gκi,j+`j−1

)qj,`j−1
)
. (7)

Note that the elements gκi,j , . . . , gκi,j+`j−1 are available from the list (gi)0≤i≤n−2 of pre-computed powers
of g. As a result, since qj,0, . . . , qj,`j−1 are bits, the computation of((

gκi,j
)qj,0 (gκi,j+1

)qj,1 · · · (gκi,j+`j−1

)qj,`j−1
)

(8)

involves multiplications of known elements.
The computation of gtk/2 is similar to (7), with the only difference being that κk,j is to be replaced by

κk,j−1. Note that κk,k−1 +`k−1−1 = n−2 and the corresponding power g2
n−2

has been pre-computed.
This is the highest power of g that is required in the computations in Step 8 and 10 of findSqRoot.

2.2 Choice of `0, . . . , `k−1

In Algorithm findSqRoot, the only required condition on `0, . . . , `k−1 is `0 + · · · + `k−1 = n − 1. For
any choice of `0, . . . , `k−1 satisfying this condition, the algorithm correctly computes a square root of
u. In practice, a particular choice of values for `0, . . . , `k−1 will be required. We mention one method
of choosing these parameters so that they are more or less equal. Given n and k, let `, k1, k2 and
`0, . . . , `k−1 be chosen as follows.

n− 1 = (`− 1)k + k2, 1 ≤ k2 ≤ k;
k1 = k − k2;
`i = `− 1, for i = 0, . . . , k1 − 1;
`i = `, for i = k1, . . . , k − 1.

 (9)

The above ensures that the first k1 of the `i’s are equal to `− 1 and the last k2 of the `i’s are equal to
`. If k divides n− 1, then all the `i’s are equal to `.

6

2.3 Complexity

The dominant operations in the algorithm are squarings and multiplications. So, to determine the time
complexity, we determine the numbers of squarings and multiplications. By [S] (resp. [M]) we will
denote a squaring (resp. multiplication).

Step 2 of findSqRoot performs the computation v ← u(m−1)/2. This constitutes the first phase of the
algorithm. Let T denote the total number of multiplications and squarings required for this computation.
We analyse the number of squarings and multiplications required by the rest of the algorithm.

Suppose ` is such that δ2
`

= 1 and δ 6= 1. The call find(δ) returns i ≥ 0 such that δ2
i

= −1. The
value of i is determined by repeated squarings. So, find(δ) requires at most (`− 1)[S] to determine i.

Consider the call eval(α) where α2` = 1. From Lemma 2, the values of i in the while loop inside eval
form a strict monotone decreasing sequence of non-negative integers whose largest element is at most `.
These values of i are returned by the calls find. So, the maximum number of squarings required by all
the calls to find in eval(α) is (`− 1) + (`− 2) + · · ·+ 1 = `(`− 1)/2. In addition, eval requires r[M] (for
updating δ), where r is the number of times the while loop in Steps 3 to 6 of eval executes. We have
r ≤ ` and we use the upper bound for the worst case analysis.

In the worst case, eval(α0), . . . , eval(αk−1) requires

k−1∑
i=0

`i(`i − 1)

2
[S] + (`0 + · · ·+ `k−1)[M] =

k−1∑
i=0

`i(`i − 1)

2
[S] + (n− 1)[M]. (10)

The computation given in (8) requires at most (`j − 1)[M]. Consequently, the computation of gti ,
for i ∈ {1, . . . , k − 1} in (7) requires at most ((`0 − 1) + (`1 − 1) + · · · + (`i−1 − 1) + (i − 1))[M]. The
term (i− 1)[M] arises due to the requirement of multiplying the i factors in the product over j from 0
to i− 1. Similarly, at most ((`0 − 1) + (`1 − 1) + · · ·+ (`k−1 − 1) + (k− 1))[M] are required to compute
gtk/2. So, the number of multiplications in the computations of gt1 , . . . , gtk−1 and gtk/2 is at most

k∑
i=1

((`0 − 1) + (`1 − 1) + · · ·+ (`i−1 − 1)) + k(k − 1)/2

= k(`0 − 1) + (k − 1)(`1 − 1) + · · ·+ 2(`k−2 − 1) + (`k−1 − 1) + k(k − 1)/2. (11)

Other than v = u(m−1)/2, eval, gt and gt/2 the rest of the computation of findSqRoot and the associated
numbers of squarings and multiplications are as follows.

Computing x as u · v2: 1[S]+1[M],
Computing (xi)0≤i≤k−2: (n− 1− `0)[S],

Multiplications in Step 8: (k − 1)[M],
Multiplications in Step 10: 2[M].

 (12)

Note that in Step 8, for i = 0, γ = gt0 = 1 and α1 = x1 · γ, so that there is no multiplication, which is
the reason that there are a total of k − 1 multiplications, instead of k multiplications in Step 8.

In view of the above analysis, we have the following result.

Theorem 2 The maximum numbers of multiplications/squarings required by findSqRoot other than
those considered in T (for the computation of v) are as follows.

Squarings: (n− `0) +

k−1∑
i=0

`i(`i − 1)

2
, (13)

Multiplications: n+ k + 1 +
k(k − 1)

2
+

k−1∑
i=0

(k − i)(`i − 1). (14)

7

Suppose k = 1 and `0 = n − 1. Then the maximum number of operations required is ((n + 1)(n −
2)/2)[S]+(3n − 1)[M]. At the other end, if k = n − 1 and `0 = · · · = `k−1 = 1, then the maximum
number of operations required is 2(n− 2)[S]+(2n+ 1 + (n− 1)(n− 2)/2)[M]. The number of operations
required by both of these options is quadratic in n.

It is possible to choose values of k and `0, . . . , `k−1 so as to balance the expressions in (13) and (14).
This leads to a better complexity as stated in the following result.

Theorem 3 It is possible to choose the parameters k and `0, . . . , `k−1 such that the number of multipli-
cations and squarings required by findSqRoot is T + O(n3/2), where T is the number of multiplications
and squarings required to compute u(m−1)/2.

Proof: We may balance the expressions in (13) and (14) by choosing k and `0, . . . , `k−1 to be about√
n. More precisely, choose k = b

√
n− 1c. Using n and k, choose `0, . . . , `k−1 as in (9). Note that with

these choices, all of the quantities k and `0, . . . , `k−1 are O(n1/2). Consequently, both (13) and (14) are
O(n3/2). This leads to the time complexity of findSqRoot to be T +O(n3/2). �

For practical assessment of the efficacy of the algorithm, the average case complexity is more im-
portant. We consider the average case complexity of findSqRoot. This requires considering the average
case complexity of eval and the average case complexity of exponentiating g.

The average case analysis of eval is based on the average case analysis of the Tonelli-Shanks algorithm
by Lindhurst [11]. In the average case analysis, the probability is over a random u and also a random
generator g of the cyclic subgroup of order 2n of Z?n. From the randomness of u, it follows that the
inputs α to eval are also random.

Lemma 5 Let α ∈ Z?p be such that α2` = 1 for some ` ∈ {0, . . . , n − 1}. Then eval(α) requires
(`(`− 1)/4)[S]+((`− 1)/2)[M] operations in the average case, where the probability is considered over a
random choice of α and a random choice of g.

Proof: Since α2` = 1, it follows that α is a random element of a subgroup of order 2`.
Suppose the loop in Steps 3 to 6 of eval runs for r iterations. Let δ0 = α and i0 = ` and for

j = 1, . . . , r, let δj and ij be defined as in the proof of Lemma 2. We have ` = i0 > i1 > i2 > · · · > ir ≥ 0.

Also, for j = 0, . . . , r − 1, we have the following relations from the proof of Lemma 2: δ2
ij

j = 1,

δj+1 = δj · g2
n−1−ij

and δr = 1. For j = 0, . . . , r − 1, the probability that the random element δj of

a subgroup of order 2ij is transformed (by multiplication with g2
n−1−ij

) to a random element δj+1 of
a subgroup of order 2ij+1 is 2ij+1−ij . Also, the probability that δr = 1 is obtained by transforming
(on multiplying by g2

n−1−ir−1
)) the random element δr−1 is 2−ir−1 . So, the probability of the sequence

i1 > i2 > · · · > ir is

1

2`−i1
× 1

2i1−i2
× · · · × 1

2ir−2−ir−1
· 1

2ir−1
=

1

2`
.

So, each of the possible 2` sequences ` > i1 > i2 > · · · > ir ≥ 0 occurs with the same probability 2−`.
Let us first consider the average number of multiplications in Step 5 of eval. Given a sequence

`− 1 ≥ i1 > i2 > . . . > ir ≥ 0, the number of multiplications in Step 5 is r or r − 1 according as ir > 0
or ir = 0. The number of sequences with ir = 0 is

(
`−1
r−1

)
and the number of sequences with ir > 0 is

8

(
`−1
r

)
. So, the expected number of multiplications in Step 5 is

1

2`
×
∑̀
ı=0

(
ı

(
`− 1

ı

)
+ (ı− 1)

(
`− 1

ı− 1

))
=

1

2`
×

(∑̀
ı=0

ı

(
`

ı

)
−
∑̀
ı=0

(
`− 1

ı− 1

))

=
1

2`
×
(
`2`−1 − 2`−1

)
=
`− 1

2
.

Given a sequence i1 > i2 > · · · > ir, the number of squarings done in the calls to find is i1+i2+· · ·+ir.
So, the expected number of squarings is

1

2`
× C` (15)

where C` =
∑`

r=0(i1 + i2 + · · ·+ ir). Note that C1 = 0. We obtain a recurrence relation for C`. Consider
C`+1. A total of 2`+1 sequences are considered in C`+1. Of these, 2` sequences start with i1 = ` and
the other 2` sequence start with i1 < `. The contribution to C`+1 from the second class of sequences is
C`, while the contribution to C`+1 from the first class of sequences is C` + 2``. So, we have the relation
C`+1 = 2C` + 2``. We may write

C` = 2C`−1 + 2`−1(`− 1)

= 2
(

2C`−2 + 2`−2(`− 2)
)

+ 2`−1(`− 1)

= 22C`−2 + 2`−1((`− 1) + (`− 2))

· · · ·
= 2`−1((`− 1) + (`− 2) + · · ·+ 1) (using C1 = 0)

= 2`−1 `(`− 1)

2
.

Combining with (15), the expected number of squarings is obtained to be `(`− 1)/4.
�

Theorem 4 The average number of multiplications/squarings required by findSqRoot other than those
considered in T (for the computation of v) is as follows.

Squarings: (n− `0) +

k−1∑
i=0

`i(`i − 1)

4
, (16)

Multiplications:
n+ k + 3

2
+
k(k − 1)

2
+

1

2

(
k−1∑
i=0

(k − i)(`i − 1)

)
. (17)

Proof: The operations counted in (12) remain the same for both worst case and average case. The

average case number of operations required by a call to eval(α), where α2` = 1 is given by Lemma 5.
Algorithm findSqRoot makes the calls eval(α0), . . . , eval(αk−1), where α`ii = 1, for i = 0, . . . , k − 1. So,
the average case number of operations required by all the calls to eval is(

k−1∑
i=0

`i(`i − 1)

4

)
[S] +

(
k−1∑
i=0

`i − 1

2

)
[M] =

(
k−1∑
i=0

`i(`i − 1)

4

)
[S] +

(
n− k − 1

2

)
[M].

9

We next consider the average number of operations required in the computations of gt1 , . . . , gtk−1

and gtk/2. The computation of gti is shown in (7) and (8). On an average, about half of the bits
qj,0, . . . , qj,`j−1 will be 0 and so, in the average case, the computation in (8) requires ((`j − 1)/2)[M],
so that on an average, the computation of gti , i = 1, . . . , k − 1 requires (((`0 − 1) + (`1 − 1) + · · · +
(`i−1− 1))/2 + (i− 1))[M]. Similarly, on an average, the computation of gtk/2 requires (((`0− 1) + (`1−
1) + · · ·+ (`k−1− 1))/2 + (k− 1))[M]. So, on an average, the number of multiplications required for the
computations of gt1 , . . . , gtk−1 and gtk/2 is

1

2

(
k−1∑
i=0

(k − i)(`i − 1)

)
+
k(k − 1)

2
.

Putting togther the different counts provides the average number of operations stated in the theo-
rem. �

2.4 Concrete Comparison

From [11], the average complexity of the Tonelli-Shanks algorithm (including the initialisation consisting
of two multiplications) is 2 + (n2 + 7n− 12)/4 + 21−n operations (i.e., counting both squarings and mul-
tiplications). The division of this total into the number of squarings and the number of multiplications
is not provided in [11].

In Table 1, we provide a comparison of the average case complexity of the TS algorithm with that
of the new algorithm. The column #TS provides the average number of operations required by the
TS algorithm determined according to the above mentioned formula. For the new algorithm, the value
of k, the break up of the operations into squarings and multiplications and also the total number of
operations are provided in the table. Given n and k, the values of `0, . . . , `k−1 are determined as given
by (9). The numbers for the new algorithm given in Table 1 were generated by writing a simple Python
program to evaluate the expressions given in (16) and (17). The value of k was varied from 1 to d

√
ne

and the value of k for which the sum of the expressions in (16) and (17) is minimised is reported in the
table.

In most implementations, a squaring will be faster than a multiplication. So, along with the total
number of operations, the proportion of the number of squarings and the number of multiplications
also needs to be taken into consideration. For example, for n = 32, the minimum total operation
count is 134.5=66.5[S]+68[M] which is obtained for k = 5; for k = 4, the total operation count is
136=77.5[S]+58.5[M]. Even though the total operation count for k = 4 is higher than that for k = 5,
due to the higher ratio of squarings to multiplications, the choice of k = 4 will be faster than the choice
of k = 5 on almost all systems. So, the figures in Table 1 should be seen only as comparing the TS
algorithm with the new algorithm. For the acutal choice of k in the new algorithm, the expressions
in (16) and (17) will require a closer look.

For n = 2, the numbers of operations required by the TS algorithm and the new algorithm are the
same. The average case complexity of the new algorithm is lower than the average case complexity of
the TS algorithm for n ≥ 3. The gap grows as n increases.

3 Table Look-Up

Choose a parameter w.

10

Table 1: Comparison of the average case number of operations required by the new algorithm and the
TS algorithm.

n #TS
new algorithm

k ops #tot

16 91 3 26.0[S]+26.0[M] 52.0

32 311 5 66.5[S]+68.0[M] 134.5

48 659 6 121.5[S]+114.0[M] 235.5

64 1135 7 181.0[S]+170.0[M] 351.0

80 1739 8 246.5[S]+231.5[M] 478.0

96 2471 9 313.5[S]+300.0[M] 613.5

For i = 0, . . . , k − 1, let τi = d`i/we − 1 and τ? = max{τ0, . . . , τk−1}. The following tables are to be
pre-computed and stored. These tables are all based on g = zm and need to be computed only once.

Tab1: This table consists of triplets of the form (ν, i, gν2
n−iw

), for ν ∈ {1, . . . , 2w−1} and i = 2, . . . , τ?,
indexed on the first two components.

Tab2: This table consists of triplets of the form (ν, i, gν2
iw

) for ν ∈ {1, . . . , 2w−1} and i = 0, . . . , dn/we−
1, indexed on the first two components.

Tab3: This table consists of pairs of the form (h−ν , ν), for ν ∈ {1, . . . , 2w − 1} and h = g2
n−w

, indexed
on the first component.

Tab1 stores (2w − 1)(τ? − 1) tuples; Tab2 stores (2w − 1)(dn/we) tuples; and Tab3 stores 2w − 1 tuples.
So, the total storage requirement is (2w − 1)(τ? + dn/we) tuples. If w divides n, then Tab1 becomes a
part of Tab2 and the total storage requirement is (2w − 1)(n/w + 1) tuples.

Based on the parameter w, we define some quantities which will be required in the next two sections.

1. For i = 0, . . . , k − 1, let si and ri be such that

n− `i = siw + ri, (18)

where 0 ≤ ri < w.

2. From (4), recall the definition of κi,j , i = 1, . . . , k and j = 0, . . . , i − 1. We define ζi,j and ρi,j to
be such that

κi,j = ζi,jw + ρi,j i = 1, . . . , k − 1, j = 0, . . . , i− 1;
κk,j − 1 = ζk,jw + ρk,j j = 0, . . . , k − 1;

}
(19)

where 0 ≤ ρi,j < w for i = 1, . . . , k and j = 0, . . . , i− 1.

3.1 Computation of eval

Algorithm findSqRoot makes a total of k calls to eval on the k inputs α0, . . . , αk−1. The call eval(αi)
returns si, where from Lemma 3, αi · gsi = 1, and from (2), si = qi2

n−`i with 0 ≤ qi < 2`i for
i = 0, . . . , k − 1. The description of eval is provided in Algorithm 1. Using the previously mentioned
tables, we describe a different method of implementing eval.

11

From the relation αi · gsi = 1, we have αi = g−si . So, the task is to find si, given αi = g−si . Since
si = qi2

n−`i , it is sufficient to find qi.
Suppose, we write qi to base 2w in the following form

qi = q
(w)
i,τi

2`i−w + q
(w)
i,τi−12

`i−2w + · · ·+ q
(w)
i,1 2`i−τiw + q

(w)
i,0 , (20)

Here q
(w)
i,1 , . . . , q

(w)
i,τi
∈ {0, . . . , 2w − 1} and q

(w)
i,0 ∈ {0, . . . , 2`i−τiw}. In other words, q

(w)
i,1 , . . . , q

(w)
i,τi

are

w-bit integers while q
(w)
i,0 is the left-over (`i − τiw)-bit integer. If w divides `i, then all of the quantities

q
(w)
i,0 , q

(w)
i,1 , . . . , q

(w)
i,τi

are w-bit intgers. So, computing qi amounts to computing the values q
(w)
i,0 , q

(w)
i,1 , . . . , q

(w)
i,τi

.
We describe how this is done.

The first step is to compute and store the powers α2ı
i for ı = 0, w, 2w, . . . , τiw. This requires a total

of τiw squarings.
Next consider si = qi2

n−`i written out in the following manner.

si =
(
q
(w)
i,τi

2`i−w + q
(w)
i,τi−12

`i−2w + · · ·+ q
(w)
i,j+12

`i−(τi−j)w + q
(w)
i,j 2`i−(τi−j+1)w

+ q
(w)
i,j−12

`i−(τi−j+2)w + · · ·+ q
(w)
i,1 2`i−τiw + q

(w)
i,0

)
2n−`i . (21)

For j = 0, . . . , τi, multiplying both sides of (21) by 2w(τi−j) we have,(
−si +

(
q
(w)
i,j−12

`i−(τi−j+2)w + q
(w)
i,j−22

`i−(τi−j+3)w + · · ·+ q
(w)
i,1 2`i−τiw + q

(w)
i,0

)
2n−`i

)
2(τi−j)w (22)

= −
(
q
(w)
i,τi

2`i−w + q
(w)
τi−12

`i−2w + · · ·+ q
(w)
i,j+12

`i−(τi−j)w + q
(w)
i,j 2`i−(τi−j+1)w

)
2n−`i2(τi−j)w

= −2n
(
q
(w)
i,τi

2(τi−j−1)w + q
(w)
i,τi−12

(τi−j−2)w + · · ·+ q
(w)
i,j+1

)
− q(w)i,j 2n−w

= −2nχ− q(w)i,j 2n−w. (23)

Here χ = q
(w)
i,τi

2(τi−j−1)w + q
(w)
i,τi−12

(τi−j−2)w + · · ·+ q
(w)
i,j+1 is a positive integer.

If we raise both (22) and (23) to the power of g, then since g2
n

= 1, the expression corresponding

to (23) becomes g−2n−wq
(w)
i,j = h−q

(w)
i,j . The expression corresponding to (22) becomes

(
g−si

)2(τi−j)w · (gq(w)
i,j−12

n−2w

)
·
(
gq

(w)
i,j−22

n−3w

)
· · ·
(
gq

(w)
i,1 2n−jw

)
·
(
gq

(w)
i,0 2n−`i+(τi−j)w

)
= (αi)

2(τi−j)w ·
(
gq

(w)
i,j−12

n−2w

)
·
(
gq

(w)
i,j−22

n−3w

)
· · ·
(
gq

(w)
i,1 2n−jw

)
·
(
gq

(w)
i,0 2n−`i+(τi−j)w

)
= (αi)

2(τi−j)w ·
(
gq

(w)
i,j−12

n−2w

)
·
(
gq

(w)
i,j−22

n−3w

)
· · ·
(
gq

(w)
i,1 2n−jw

)
·
(
gq

(w)
i,0 2(si+τi−j)w

)2ri

. (24)

The relation given by (18) has been used in obtaining the last step.

So, we have h−q
(w)
i,j equal to the expression given by (24). There are two cases.

Case j = 0: In this case, (24) becomes (αi)
2τiw which is obtained from the computed powers of αi. So

h−q
(w)
i,0 = (αi)

2τiw .

Case 1 ≤ j ≤ τi: For this case, the terms of (24) may be obtained as follows.

12

1. The first term of (24) is obtained from the computed powers of αi.

2. The last term of (24) is obtained as follows. Suppose q
(w)
i,0 is known. Then the quantity within

the parenthesis is obtained from Tab2; this quantity is squared ri times to obtain the last term
of (24).

3. Suppose q
(w)
i,1 , . . . , q

(w)
i,j−1 are known. Then the middle j − 1 terms of (24) are obtained from Tab1.

So, for 1 ≤ j ≤ τi, given the values of q
(w)
i,0 , q

(w)
i,1 , . . . , q

(w)
i,j−1, the whole expression in (24) can be computed

using j multiplications and ri squarings.

In view of the above two cases, for 0 ≤ j ≤ τi, the value of h−q
(w)
i,j can be obtained. Using Tab3,

from h−q
(w)
i,j it is possible to find q

(w)
i,j .

The algorithm to compute si proceeds as follows. Start by computing q
(w)
i,0 ; using q

(w)
i,0 compute q

(w)
i,1 ;

using q
(w)
i,0 , q

(w)
i,1 compute q

(w)
i,2 ; and so on.

The computation of q
(w)
i,0 does not require any squaring or multiplication. For 1 ≤ j ≤ τi, the

computation of q
(w)
i,j requires ri[S]+j[M]. So, the computation of all the quantities q

(w)
i,0 , q

(w)
i,1 , . . . , q

(w)
i,τi

requires τiri[S]+(τi(τi + 1)/2)[M]. In addition, τiw squarings are required to compute the required
powers of αi. The total number of operations required by eval(αi) is (τiw + τiri)[S]+τi(τi + 1)/2[M].

Algorithm findSqRoot makes a total of k calls to eval on the k inputs α0, . . . , αk−1. The total number
of operations in all of these calls is(

w

(
k−1∑
i=0

τi

)
+ r

)
[S] +

(
k−1∑
i=0

τi(τi + 1)

2

)
[M], (25)

where

r =
k−1∑
i=0

τiri. (26)

Since ri ≤ w − 1 for i = 0, . . . , k − 1, a loose upper bound on r is (w − 1)(τ0 + . . . + τk−1) < n. For
concrete cases, however, the value of r can be significantly less. Consider for example, n = 96, w = 6
and k = 2. In this case, the value of r is 7, whereas the upper bound is 96. For n = 96, w = 4 and
k = 4, the value of r is 5 whereas the upper bound is again 96.

Remark: Suppose k = 1 and `0 = n − 1. Then s0 = 2q0. The strategy we have described above
determines q0. Instead, one may determine s0 = 2q0. Depending on the values of n and w, this may
be advantageous, since this may avoid the r squarings required in the above strategy. Bernstein’s
method [4], determines 2q0. So, our method does not become Bernstein’s method simply by setting
k = 1 and `0 = n− 1.

3.2 Computation of gt

In findSqRoot, it is required to compute gt1 , . . . , gtk−1 and gtk/2, where ti is given by (5) to be ti =
q02

κi,0 + q12
κi,1 + · · ·+ qi−12

κi,i−1 and q0, . . . , qi−1 are known.

13

In (6), the binary expansion of qj has been considered. For the table look-up based method, we
consider the base 2w expansion of qj as follows.

qj = q
(w)
j,0 + q

(w)
j,1 2w + · · ·+ q

(w)
j,τj

2wτj (27)

where q
(w)
j,0 , q

(w)
j,1 , . . . , q

(w)
j,τj−1 ∈ {0, . . . , 2w − 1} and q

(w)
j,τj
∈ {0, . . . , 2`j−τjw}, i.e., q

(w)
j,0 , q

(w)
j,1 , . . . , q

(w)
j,τj−1 are

w-bit integers whereas q
(w)
j,τj

is an (`j − τjw)-bit integer. This is to be contrasted with the representation

of qj used for computing eval given in (20), where the first coefficient is small and the rest of the
coefficients are w-bit integers. If w divides `j , then the two representations coincide.

First consider the computation of gti , for i = 1, . . . , k − 1. Using the expression for ti given by (5),
this requires the computations of gqj2

κi,j
for j = 0, . . . , i− 1. Using (27), we have

gqj2
κi,j

= g
(q

(w)
j,0 +q

(w)
j,1 2w+···+q

(w)
j,τj

2wτj)2κi,j
(28)

=

((
gq

(w)
j,0 2wζi,j

)
·
(
gq

(w)
j,1 2w(1+ζi,j)

)
· · ·
(
g
q
(w)
j,τj

2w(τj+ζi,j)
))2ρi,j

. (29)

For the last step, we have used the relation κi,j = wζi,j +ρi,j from (19). Note that for j = 0, . . . , i−1, qj

is known and so qj,0, . . . , qj,τj are also known. Given the values of q
(w)
j,0 , q

(w)
j,1 , . . . , q

(w)
j,τj

each of the terms

in the inner expression of (29) can be obtained from Tab2. So, the inner expression can be obtained
using τj multiplications. Computing the whole expression in (29) requires an additional ρi,j squarings.

For i = 1, . . . , k− 1, to compute gti , it is required to obtain gqj2
κi,j

for j = 0, . . . , i− 1 and then use
i− 1 multiplications to multiply these together. So, computing gti requires(∑i−1

j=0 ρi,j

)
[S]+

(
i− 1 +

∑i−1
j=0 τj

)
[M].

The computation of gtk/2 is similar, except that κk,j − 1 is used in place of κi,j . Note that in (19),
ζk,j and ρk,j , j = 0, . . . , k − 1 have been defined in a manner such that (29) holds with i = k.

The total number of operations to compute gti for i = 1, . . . , k − 1 and gtk/2 is the following.

ρ[S] +

(
k−1∑
i=0

(k − i)τi +
k(k − 1)

2

)
[M], (30)

where

ρ =
k∑
i=1

i−1∑
j=0

ρi,j . (31)

Since ρi,j ≤ w − 1, a loose upper bound on ρ is (w − 1)k(k − 1). For concrete cases, the value of ρ can
be significantly less. Consider for example, n = 96, w = 6 and k = 2. In this case, the value of ρ is 6,
whereas the upper bound is 10. Again, for n = 96, w = 4 and k = 4, the value of ρ is 12, whereas the
upper bound is 36.

3.3 Complexity

Apart from the computations of eval and the exponentiations to the power of g, the operations given
by (12) are required. Combining these operation counts with the operation counts in the previous two
sections, we have the following result.

14

Theorem 5 Let w be a parameter. Using the table look-up method, the number of multiplications/squarings
required by findSqRoot other than those considered in T (for the computation of v) is as follows.

Squarings:

(
n− `0 + w

(
k−1∑
i=0

τi

)
+ r + ρ

)
(32)

Multiplications:

(
k + 2 +

(
k−1∑
i=0

(k − i)τi

)
+
k−1∑
i=0

τi(τi + 1)

2
+
k(k − 1)

2

)
[M] (33)

(34)

where r and ρ are given by (26) and (31) respectively.
If w divides n, then the pre-computed tables store (2w − 1)(n/w + 1) elements, while if w does not

divide n, then the pre-computed tables store (2w− 1)(τ? + dn/we) elements of Zp. Computing the tables
require (2w − 1)n operations (i.e., squarings and multiplications).

The following result determines the asymptotic complexity of the method.

Theorem 6 Given w > 1, it is possible to choose the parameters k and `0, . . . , `k−1 such that the total
number of multiplications and squarings required by findSqRoot using table look-up is T +O((n/w)3/2),
where T is the total number of multiplications and squarings required to compute u(m−1)/2.

Proof: Let k = b
√

(n− 1)/wc so that k = O(
√
n/w). Given n and k, choose `0, . . . , `k−1 as in (9).

Then all of the quantities `0, . . . , `k−1 are O(
√
nw) and so τ0, . . . , τk−1 are all O(

√
n/w). With these

choices, the sum of the expressions given in (32) and (33) becomes O((n/w)3/2) and so the correspond-
ing time complexity of findSqRoot is T +O((n/w)3/2). �

3.4 Concrete Comparison

First we compare the storage requirement of the new algorithm with that of Bernstein’s algorithm [4].
Bernstein’s method also requires pre-computed tuples of both the forms (ν, i, g−ν2

iw
) and (ν, j, g−ν2

n−jw
),

ν ∈ {1, . . . , 2w − 1}, i = 0, . . . , dn/we − 1 and j = 2, . . . , dn/we − 1. Additionally, Bernstein’s method
requires a table of pairs (hν , ν), ν ∈ {1, . . . , 2w − 1} which corresponds to Tab3. So, the total storage
required by Bernstein’s method is (2w−1)(2dn/we−1) tuples. If w divides n, then the two tables storing
tuples of the forms (ν, i, gν2

iw
) and (ν, j, gν2

n−jw
) become the same and so, the storage requirement

becomes (2w − 1)(n/w + 1). In the example given in [4], n = 96 and w is chosen to be either 6 or 8 so
that w divides n.

For the new algorithm, the total storage requirement is (2w − 1)(τ? + dn/we) tuples; if w divides
n, then Tab1 becomes a part of Tab2 and the total storage requirement is (2w − 1)(n/w + 1) tuples.
So, if either w divides n, or k = 1, then both Bernstein’s method and the new method require the
same storage. In general, since τ? ≤ dn/we − 1, the new method will never require more storage than
Bernstein’s method and will require less storage whenever τ? < dn/we − 1.

Both Bernstein’s algorithm and the new algorithm require (2w − 1)n operations for preparing the
pre-computed tables.

Next we consider the comparison of the number of operations of the new algorithm and Bernstein’s
algorithm. Bernstein’s method requires (n−w)[S]+

(
2 + 1

2 · d
n
we
(
d nwe+ 1

))
[M] operations. The number

of operations required by the new algorithm is given by Theorem 5. For concrete values of n, a

15

comparison of the two algorithms is shown in Table 2. A cell in the table corresponds to a value of n
and a value of w. Each cell has two entries one above the other.

1. The upper entry in each cell corresponds to Bernstein’s algorithm and has three components: the
first component provides the numbers of squarings and multiplications, the second component is
the total number of operations, and the third component provides a number a such that a(2w−1)
elements of Zp are to be stored.

2. The lower entry in each cell corresponds to the new algorithm and has four components. The first
component is the value of k. Using this value of k and n, the values of `0, . . . , `k−1 have been
chosen as in (9). The second component provides the numbers of squarings and multiplications,
the third component provides the total number of operations, and the fourth component provides
a number a such that a(2w − 1) elements of Zp are to be stored.

The entries for the new algorithm were generated using a Python program to compute the expressions
given by (32) and (33). The value of k was varied from 1 to

√
n, and among the various counts, the one

for which the total number of operations is minimum has been reported in Table 2.
Based on the table, we have the following observations regarding the comparison between the new

algorithm and Bernstein’s algorithm.

1. For w = 8 and n = 96 or n = 128, Bernstein’s method requires less number of squarings.

2. For n = 96 and w = 6, the new algorithm requires 146[S]+82[M] for a total of 228 operations,
while Bernstein’s algorithm requires 90[S]+138[M] which also leads to a total of 228 operations.
However, since more squarings and less multiplications are required by the new algorithm, in
practice it will be faster than Bernstein’s algorithm.

3. In all other cases, the number of operations required by the new algorithm is less than that of
Bernstein’s algorithm. For a fixed value of w, the gap increases as the value of n increases.

4. If w divides n, then both the new algorithm and Bernstein’s algorithm require the same storage.
On the other hand, if w does not divide n, the storage requirement of the new algorithm is less
than that of Bernstein’s algorithm.

Remark: Suppose w is high enough compared to n such that k = 1 is the best choice for the new
algorithm. Setting k = 1 does not result in the new algorithm becoming the same as Bernstein’s
algorithm. We refer to the note at the end of Section 3.1. From Table 2, the cases arising from w = 8
and n = 96 or n = 128 have k = 1 as the best choice for the new algorithm. In both these cases,
we note that Bernstein’s algorithm performs better. It is not, however, true that when k = 1 for the
new algorithm, Bernstein’s algorithm will always perform better. For n = 97 and w = 8, Bernstein’s
algorithm requires 89[S]+93[M] for a total of 182 operations, while the new algorithm has k = 1 and
requires 100[S]+80[M] for a total of 180 operations. Similar small improvements are observed for other
values of n and w.

4 Comparison to Müller’s Algorithm

As mentioned in the introduction, for p ≡ 3 mod 4 or, p ≡ 5 mod 8, a single exponentiation in Zp
suffices to compute a square root. No other algorithm is faster. So, the comparison between various
methods is only for a general p which is not one of these two types. The TS algorithm and Bernstein’s

16

Table 2: Comparison of Bernstein’s table look-up method with the new table look-up method.
w = 2 w = 4

n = 96
(94[S]+1178[M],1272,49) (92[S]+302[M],394,25)
(6,182[S]+338[M],520,49) (4,170[S]+122[M],292,25)

n = 128
(126[S]+2082[M],2208,65) (124[S]+530[M],654,33)
(9,239[S]+514[M],753,65) (4,228[S]+194[M],422,33)

n = 256
(254[S]+8252[M],8512,129) (252[S]+2082[M],2334,65)

(14,519[S]+1484[M],2003,129) (8,484[S]+514[M],998,65)

n = 512
(510[S]+32898[M],33408,257) (508[S]+8258[M],8766,129)

(17, 991[S]+4098[M],5089,257) (8,972[S]+1538[M],2501,129)

n = 1024
(1022[S]+131330[M],132352,513) (1020[S]+32898[M],33918,257)
(19,2087[S]+11801[M],13888,513) (16,1996[S]+4098[M],6094,257)

w = 6 w = 8

n = 96
(90[S]+138[M],228,17) (88[S]+80[M],168,13)

(2,146[S]+82[M],228,17) (1,100[S]+80[M],180,13)

n = 128
(122[S]+255[M],377,42) (120[S]+138[M],258,17)

(3,235[S]+115[M],350,29) (1,136[S]+138[M],274,17)

n = 256
(250[S]+948[M],1198,84) (248[S]+530[M],778,33)
(4,469[S]+332[M],801,53) (4,448[S]+194[M],642,33)

n = 512
(506[S]+3743[M],4249,170) (504[S]+2082[M],2586,65)

(5,1057[S]+955[M],2012,103) (8,960[S]+514[M],1474,65)

n = 1024
(1018[S]+14708[M],15726,340) (1016[S]+8258[M],9274,129)
(16,2241[S]+2378[M],4619,188) (8,1928[S]+1538[M],3466,129)

17

table look-up based method is one option for computing square roots for general p. As discussed in the
introduction, the only competition to the TS/Bernstein algorithm is the Lucas sequence based algorithm
due to Müller [12]. In the previous sections, we have already made a detailed comparison of the number
of operations required by the new algorithm to the TS/Bernstein algorithm. In this section, we compare
to Müller’s algorithm.

The algorithm proposed by Müller requires −1 + lg(p − 1) squarings and the same number of
multiplications to compute a square root. For the sake of simplicity, let us assume that this is 2 lg p
operations. Note that lg p = n+lgm. If lgm is very small in comparison to lg p, then Müller’s algorithm
performs better than any other known algorithms. Below, we indicate the range of n for which the new
algorithm requires less operations than Müller’s algorithm.

The exponentiation u(m−1)/2 requires about lgm squarings and some multiplications. If the expo-
nentiation is done bit-by-bit, then the number of multiplications is equal to the weight of the binary
representation of (m − 1)/2. There are known methods for reducing the number of multiplications.
We refer to [5] for a survey. For simplicity, we assume that the exponentiation u(m−1)/2 requires lgm
squarings. Using an appropriate choice of k as in the proof of Theorem 3, the new algorithm requires
about n3/2 additional operations (i.e., counting both squarings and multiplications). So, the overall
number of operations is about lgm+n3/2. For n ≤ (lg p)2/3, the number of operations becomes at most
lgm + lg p which is less than the number of operations required by Müller’s algorithm. If the table
look-up based method is used, then total number of operations required for finding square root is about
lgm + (n/w)3/2, and so for n ≤ w(lg p)2/3) the number of operations is lgm + lg p which is less than
the number of operations required by Müller’s algorithm.

We provide a concrete example. Consider the prime p = 2224−296+1 and so n = 96 and m = 2128−1.
For this prime, Müller’s algorithm requires 223[S]+223[M]. (The algorithm also requires about 1.5
Legendre symbol evaluation, which we are ignoring for the purpose of this comparison). Now consider
the new algorithm. The exponentiation u(m−1)/2 requires 126[S]+10[M] (see [4]). Using the table look-
up based implementation with w = 4 and k = 4, the number of additional operations required is
170[S]+122[M] for a total of 296[S]+132[M] with storage of 375 elements of Zp; with w = 6 and k = 2,
the number of additional operations required is 146[S]+82[M] for a total of 272[S]+92[M] with storage
of 1088 elements of Zp. Both of these options are faster than Müller’s algorithm.

Acknowledgement

Thanks to Dan Brown for comments.

References

[1] Leonard M. Adleman, Kenneth L. Manders, and Gary L. Miller. On taking roots in finite fields.
In 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA,
31 October - 1 November 1977, pages 175–178. IEEE Computer Society, 1977.

[2] A. O. L. Atkin. Probabilistic primality testing, summary by f. morain. Technical Report 1779,
INRIA, 1992.

[3] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory, Volume 1, Efficient Algorithms. MIT
Press, 1996.

18

[4] Daniel J. Bernstein. Faster square roots in annoying finite fields. https://cr.yp.to/papers.

html#sqroot, 2001.

[5] Daniel J. Bernstein. Pippenger’s exponentiation algorithm. https://cr.yp.to/papers.html#

pippenger, 2002.

[6] Zhengjun Cao, Qian Sha, and Xiao Fan. Adleman-manders-miller root extraction method revisited.
In Chuankun Wu, Moti Yung, and Dongdai Lin, editors, Information Security and Cryptology - 7th
International Conference, Inscrypt 2011, Beijing, China, November 30 - December 3, 2011. Revised
Selected Papers, volume 7537 of Lecture Notes in Computer Science, pages 77–85. Springer, 2011.

[7] M. Cipolla. Un metodo per la risolutione della congruenza di secondo grado. Rendiconto
dell’Accademia Scienze Fisiche e Matematiche, Napoli, Series 3, IX:154–163, 1903.

[8] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag Berlin Hei-
delberg, 1993.

[9] Fanyu Kong, Zhun Cai, Jia Yu, and Daxing Li. Improved generalized Atkin algorithm for computing
square roots in finite fields. Information Processing Letters, 98(1):1–5, 2006.

[10] Derrick H. Lehmer. Computer technology applied to the theory of numbers. In W. Leveque, editor,
MAA Studies in number theory, 6, pages 117–151. Prentice-Hall, Englewood Cliffs, New Jersey,
1969.

[11] Scott Lindhurst. An analysis of shanks algorithm for computing square roots in finite fields. In
CRM Proceedings and Lecture Notes, volume 19, pages 231–242. 1999.

[12] Siguna Müller. On the computation of square roots in finite fields. Des. Codes Cryptogr., 31(3):301–
312, 2004.

[13] Armand Stefan Rotaru and Sorin Iftene. A complete generalization of Atkin’s square root algorithm.
Fundam. Informaticae, 125(1):71–94, 2013.

[14] D. Shanks. Five number-theoretic algorithms. In R. S. D. Thomas and Hugh C. Williams, editors,
Proceedings of the second Manitoba conference on numerical mathematics, Congressus Numeran-
tium 7, Utilitas Mathematica, pages 51–70, 1973.

[15] Alberto Tonelli. Bemerkung über die auflösung quadratischer congruenzen. Göttinger Nachrichten,
pages 344–346, 1891.

A Relation to the Tonelli-Shanks and the Adleman-Manders-Miller
Algorithms

As before, suppose the square root of u is to be computed, and let v = u(m−1)/2 and x = u · v2 = um.
By Lemma 1, there is a non-negative integer t such that x · gt = 1 and then u · v · gt/2 is a square root of
u. The goal of both the TS and the AMM algorithm is essentially to compute gt/2. We briefly explain
how the two algorithms perform this computation.

The Tonelli-Shanks algorithm computes gt/2 as follows. Since, x2
n−1

= 1, by repeatedly squaring x,
an integer i1 ∈ {0, . . . , n−2} is obtained such that x2

i1 = −1. Since g2
n−1

= −1, we have x2
i1 ·g2n−1

= 1.
Let c1 = g2

n−2−i1 and y1 = x · c21. We have y2
i1

1 = 1. If y1 = 1, then stop; otherwise, by repeatedly

19

https://cr.yp.to/papers.html#sqroot
https://cr.yp.to/papers.html#sqroot
https://cr.yp.to/papers.html#pippenger
https://cr.yp.to/papers.html#pippenger

squaring y1, an integer i2 ∈ {0, . . . , i1 − 1} is obtained such that y2
i2

1 = −1. Again y2
i2

1 · g2n−1
= 1.

Let c2 = c1 · g2
n−2−i2 and y2 = x · c22 = y1 · g2

n−1−i2 so that y2
i2

2 = 1. If y2 = 1, then stop; otherwise,

by repeatedly squaring y2 obtain i3 ∈ {0, . . . , i2 − 1} such that y2
i3

2 = −1. The algorithm proceeds by
defining c3, c4, . . . and correspondingly y3, y4, Since n− 1 > i1 > i2 > i3 > · · · , the process stops at
some step r such that yr = 1. At this point, we have 1 = yr = x · c2r . The element cr is the required
quantity gt/2. An algorithmic description of the Tonelli-Shanks algorithm can be found in [8, 3].

The Adleman-Manders-Miller algorithm computes gt/2 as follows. The powers x2, x2
2
, . . . , x2

n−2

and the powers g2, g2
2
, . . . , g2

n−2
are computed and stored. Let w0 = x2

n−1
= 1. A square root of

w0 is y0 = x2
n−2 ∈ {1,−1}. Let a0 ∈ {0, 1} be such that y0 = (−1)a0 . Let, w1 = y0 · ga02

n−1
= 1.

Since, w1 = y0 · ga02
n−1

= x2
n−2 · ga02n−1

a square root of w1 is y1 = x2
n−3 · ga02n−2 ∈ {1,−1} which

can be obtained from the computed powers of x and g. Let a1 ∈ {0, 1} be such that y1 = (−1)a1 .
Let, w2 = y1 · ga12

n−1
= 1. Since w2 = y1 · ga12

n−1
= x2

n−3 · ga02n−2 · ga12n−1
, a square root of w2

is y2 = x2
n−4 · ga02n−3 · ga12n−2 ∈ {1,−1} which can be obtained from the computed powers of x

and g. The procedure continues by obtaining w3, y3, w4, y4 and so on until it terminates after n − 1
steps yielding wn−1 = x · ga02+a122+···+an−22n−1

= 1. Then t = a02 + a12
2 + · · · + an−22

n−1 and

gt/2 = (g)a0 ·
(
g2
)a1 · (g22)a2 · · ·(g2n−2

)an−2

which can be computed using the previously computed

powers of g. A description of this idea can be found in [6].
Algorithm findSqRoot uses the parameter k. Depending on the value of k, the new algorithm becomes

essentially the TS algorithm or essentially the AMM algorithm. We explain this below.
Suppose k is chosen to be 1. Then `0 = n − 1 and x0 = x. So, α0 = x0. The loop in Steps 7 to 9

has only one iteration, in which eval(α0) computes and returns the value s0. In Step 10, t1 is set to be
equal to t0 + s0 = s0 (since t0 = 0) and γ is computed to be gt1/2 = gs0/2. The computed square root
of u is u · v · γ = u · v · gs0/2. The TS algorithm also returns u · v · gs0/2. The description of the TS
algorithm in [8] is a little different, where s0 is not explicitly computed. Exercise 25 of [8], on the other
hand, suggests that s0 can indeed be explicitly computed. So, for k = 1, the new algorithm provides a
different formulation of the TS algorithm.

Suppose k is chosen to be n − 1. Then `0 = · · · = `k−1 = 1. The loop in Steps 7 to 9 iterates for
n − 1 steps. The calls to eval in these n − 1 steps are eval(α0), eval(α1), . . . , eval(αk−1) which returns

s0, . . . , sk−1 respectively. From Lemma 3, we have 1 = α2`i
i = α2

i , for i = 0, . . . , k − 1. So, each αi
is either 1 or −1. Further, Lemma 3 also shows that αi · gsi = 1. So, if αi = 1, then si = 0, and if
αi = −1, then si = 2n−1. In other words, if we write αi = (−1)ai , then si = ai2

n−1. The value of ti
is computed as (ti−1 + si−1)/2 = (ti−1 + ai2

n−1)/2. So, the value of tk = tn−1 computed in Step 10 is
equal to a02 + a12

2 + · · · + an−22
n−1. Next gtk/2 is computed. Recalling the description of the AMM

algorithm provided above, we see that choosing k = n− 1 leads to exactly the AMM algorithm.
So, at the two ends, i.e., for k = 1 and k = n − 1, the new algorithm is essentially the TS and

the AMM algorithms respectively. For intermediate choices of k, the new algorithm provides improved
complexity.

20

	Introduction
	Algorithm
	Computations of gt and gt/2
	Choice of 0,…,k-1
	Complexity
	Concrete Comparison

	Table Look-Up
	Computation of eval
	Computation of gt
	Complexity
	Concrete Comparison

	Comparison to Müller's Algorithm
	Relation to the Tonelli-Shanks and the Adleman-Manders-Miller Algorithms

