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Abstract

Broadcast is a primitive which allows a specific party to distribute a message consistently among n

parties, even if up to t parties exhibit malicious behaviour. In the classical model with a complete
network of bilateral authenticated channels, the seminal result of Pease et al. [10] shows that
broadcast is achievable if and only if t < n/3. There are two generalizations suggested for the
broadcast problem – with respect to the adversarial model and the communication model. Fitzi
and Maurer [5] consider a (non-threshold) general adversary that is characterized by the subsets of
parties that could be corrupted, and show that broadcast can be realized from bilateral channels if
and only if the union of no three possible corrupted sets equals the entire set of n parties. On the
other hand, Considine et al. [3] extend the standard model of bilateral channels with the existence of
b-minicast channels that allow to locally broadcast among any subset of b parties; the authors show
that in this enhanced model of communication, secure broadcast tolerating up to t corrupted parties
is possible if and only if t < b−1

b+1 n. These generalizations are unified in the work by Raykov [9],
where a tight condition on the possible corrupted sets is presented such that broadcast is achievable
from a complete set of b-minicasts.

This paper investigates the achievability of broadcast in general networks, i.e., networks where
only some subsets of minicast channels may be available, thereby addressing open problems posed
in [8, 9]. To that end, we propose a hierarchy over all possible general adversaries, and identify
for each class of general adversaries 1) a set of minicast channels that are necessary to achieve
broadcast and 2) a set of minicast channels that are sufficient to achieve broadcast. In particular,
this allows us to derive bounds on the amount of b-minicasts that are necessary and that suffice
towards constructing broadcast in general b-minicast networks.
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1 Introduction

One of the most fundamental problems in distributed computing is to achieve consistency
guarantees among parties, even if some of the parties behave arbitrarily. A core primitive to
achieve global consistency is broadcast. More concretely, the Byzantine broadcast problem
[10] is described as follows: A designated party, called the sender, intends to distribute a
value consistently among n parties such that all honest parties obtain the same value, even
if the sender and/or some of the other parties behave in a malicious manner; if the sender
is honest, then all honest parties agree on the sender’s value.

Broadcast is an important primitive that has applications in many protocols for secure
multi-party computation (MPC) – as defined in [12] and [6]. It is used to implement different
protocols for secure bidding, voting, collective contract signing, just to name a few. With
the recent trends in research in mind, another application worth mentioning is related to
cryptocurrencies, where users’ transactions are to be broadcast securely among all the nodes
of the underlying blockchain network even when some of the nodes could behave arbitrarily.

1.1 Motivation

The seminal result of Pease et al. [10] (also [1], [2]) shows that in the standard communica-
tion model of a complete synchronous network of pairwise authenticated channels, perfectly-
secure broadcast is achievable if and only if less than a third of the parties are corrupted
(i.e., t < n/3). The fundamental reason why the bound t < n/3 is tight is that a corrupted
node can consistently send different messages to correct processors and make them agree on
different values. To avoid this, several researchers have considered using stronger commu-
nication primitives such as partial broadcast channels, which guarantee that a message is
consistent among all recipients on the channel. Hence, a natural question is to investigate a
generalization of the classical broadcast problem, namely the trade-off between the strength
of the communication primitives and the corruptive power from the adversary.

Most results which study such trade-offs for broadcast achievability are phrased in the
so-called b-minicast model [4, 3, 9], i.e., a network which contains partial broadcast channels
among any subset of parties with size at most b. But one can go beyond this threshold
characterization of communication models (similar to the adversaries seen above modelled
by a threshold t) by considering a general network where the set of minicasts of size at most
b among the n parties may not be complete.

To the best of our knowledge, current works on such general networks [11, 8] focus on the
problem of Byzantine agreement for the concrete case of 3-minicast channels, and against
a threshold adversary in the range n/3 ≤ t < n/2. We continue the line of research w.r.t.
general b-minicast channels. We remark that – as noted in [3] – when b > 3, perfectly secure
broadcast can be realized even when there is no honest majority, in contrast to Byzantine
agreement. Surprisingly, there is a lack of literature devoted to this generalization. This
paper thus attempts to lay out some significant starting steps towards research in this
direction.

1.2 Related Work

Complete/Threshold Networks. Many of the previous results assume a complete net-
work of partial broadcast channels up to a certain size. Fitzi and Maurer [4] showed that
assuming partial broadcast channels among every triplet of parties, global broadcast can
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be realized if and only if t < n/2. Considine et al. [3] generalized this result to the b-
minicast model, i.e. a partial broadcast channel among any b parties, where it was shown
that broadcast is achievable if and only if t < b−1

b+1 n.
Apart from generalizing the communication primitives, one can also generalize the ad-

versary model to general adversary structures. The classical problem [10] focuses on ad-
versaries that, for a threshold t, can corrupt any subset of parties a such that |a| ≤ t. This
was later extended to a generalized characterization of the adversary A, where it can corrupt
a set of parties a such that a ∈ A for a monotone set of subsets of the n parties [7, 5].

It was shown by Fitzi and Maurer [5] that secure broadcast can be realized from point-to-
point channels if and only if there are no three sets of parties in the adversary structure that
can cover the whole party set. Finally, Raykov [9] unified the previous results by studying
the feasibility of broadcast in the b-minicast model that is secure against general adversaries.
Specifically, Raykov proved that broadcast is achievable from b-minicast channels against
adversary structures A if and only if A satisfies the so-called (b + 1)-chain-free condition.

General Networks. Current works on general network structures with partial broadcast
channels focus on the achievability of Byzantine agreement. Given that Byzantine agreement
is achievable from bilateral channels if t < n

3 and not well defined for t ≥ n
2 , they focus on the

case where the network of partial broadcast channels only contains 3-minicasts (in addition
to bilateral channels), and the adversary is in the range n/3 ≤ t < n/2. Ravikant et al. [11]
provide necessary and sufficient conditions for general 3-minicast networks to satisfy so that
Byzantine agreement can be achieved while tolerating threshold adversaries in the range
n/3 ≤ t < n/2. In a follow-up work, Jaffe et al. [8] provide asymptotically tight bounds on
the number of necessary and sufficient 3-minicast channels to construct Byzantine agreement
for the same threshold adversary.

1.3 Contributions
We extend the results for general 3-minicast networks to general b-minicast networks and
address open questions posed in both of the papers [8, 9], namely to study broadcast achievab-
ility in general communication models where only a subset of b-minicast channels may be
available.

The contributions of the paper are three-fold. First, we propose a simple hierarchy of all
possible adversary structures with respect to n parties, by imposing a partial order based on
the b-chain terminology introduced by Raykov [9]. This allows us to analyze the feasibility
of broadcast in general networks in a meaningful way. We believe this hierarchy of general
adversaries could be of independent interest to the broader area of secure MPC.

Second, we present necessary conditions on general network structures for secure broad-
cast to be possible against general adversaries. To be precise, for each of the adversary
classes in the above hierarchy, we identify types of minicast channels that are essential in
any network in order to achieve broadcast.

Finally, we provide sufficient conditions towards achieving broadcast in general networks
while tolerating general adversaries. That is, given any adversary belonging to one of the
hierarchy classes, we construct a broadcast protocol for networks satisfying the sufficiency
condition corresponding to that adversary. We also show that these conditions are non-
trivial in the sense that they do not always require a complete set of minicast channels to
begin with; w.r.t. certain weak adversaries in each class, there exist general networks with
an incomplete set of minicasts that can still realize global broadcast using our protocol.

Our results generalize previous works in communication models assuming partial broad-
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cast channels [4, 11, 8, 9]. We show an example in Table 1 with 6 parties P = {P1, P2, P3, P4, P5, P6}.
Against a threshold adversary that can corrupt up to 3 parties, it is known that with the
network structure containing all 3-minicasts, N3, broadcast is impossible, whereas with a
network structure containing all 4-minicasts, N4, broadcast is possible. We depict the net-
work N = N4 \ {P1, P2, P4, P5}, {P1, P2, P4, P6}, {P1, P3, P4, P6}, {P1, P3, P4, P5}, for which
broadcast was unknown to be impossible. We also show, for the same network structure, that
broadcast is possible against the adversary structure A = {{P1, P4, P5}, {P1, P4, P6}, {P2, P3, P5}, {P2, P3, P6}}.

Network Adversary Broadcast
possible Literature

N3 = {p | p ⊆ P and |p| ≤ 3} t = 3 No [3, 9]
N4 = {p | p ⊆ P and |p| ≤ 4} t = 3 Yes [3, 9]

t = 3

A

No

Yes

This work

Table 1 In the first column, we describe network structures among 6 parties in line with Defin-
ition 3. The first two entries are related to the complete 3-minicast and 4-minicast models re-
spectively (cf. Definition 4). We depict an incomplete 4-minicast network in the third entry
where the 4-minicasts that are not available are {P1, P2, P4, P5}, {P1, P2, P4, P6}, {P1, P3, P4, P6}
and {P1, P3, P4, P5}. The adversary is indicated in the second column. In the first three entries the
adversary can corrupt up to t = 3 parties, whereas in the last entry he can corrupt any element
in A = {{P1, P4, P5}, {P1, P4, P6}, {P2, P3, P5}, {P2, P3, P6}}. We then indicate whether broadcast
can be realized securely with the corresponding network/adversary w.r.t. any sender.

1.4 Techniques
Here we give a higher-level overview for some of the technical ideas behind our results.
As briefly mentioned above, we rely on a particular characterization of general adversary
structures A based on whether or not A contains a so-called b-chain; if not, then A is said to
be b-chain-free and vice-versa. This condition was introduced in [9] and was in turn inspired
by a broadcast impossibility proof of [3]. Consider a chain (or ordering) of b + 1 parties,
namely (P1, . . . , Pb+1). Then it was shown in [3] that no protocol can realize broadcast
among these b + 1 parties in the complete b-minicast model when any pair of adjacent
parties (Pi, P1+(i mod b+1)) (i = 1, . . . , b + 1) can be honest while the remaining parties are
corrupted by an adversary. Raykov [9] then generalized this type of corruption to a chain
of party subsets, where (P1, . . . , Pb+1) is now a partition of n parties into b + 1 non-empty
subsets Pi. He later shows that when there is such a (b + 1)-partition of n parties such that
the subset of parties (Pi ∪P1+(i mod b+1)) (i = 1, . . . , b+1) can be honest while the remaining
parties are corrupted by an adversary, then broadcast is impossible among n parties in the
complete b-minicast model, via a straightforward reduction to the setting with b + 1 parties
considered in [3]. In this context, the partition is called a (b + 1)-chain and the corrupting
adversary is said to contain a (b + 1)-chain. But what is surprising is that this condition is
tight in the sense that, if an adversary does not contain a (b + 1)-chain, then broadcast is
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achievable in the b-minicast model. Namely,

I Theorem 1. ([9, Theorem 1]) In the complete b-minicast communication model, broad-
cast tolerating adversary structure A is achievable if and only if A is (b + 1)-chain-free.

Hierarchy of Adversaries. We partition the space of all possible general adversary struc-
tures w.r.t. n parties into (n − 1) classes based on the b-chain-free condition introduced
in [9]. The class A(b), for b ≥ 3, is the set of adversaries that contain a b-chain but are
(b + 1)-chain-free. Given a general adversary A, to study the feasibility of broadcast in a
general network N , we consider the unique class A belongs to – say A ∈ A(b), then because
of Theorem 1, broadcast tolerating A is impossible in the complete (b − 1)-minicast model,
but is possible in the complete b-minicast model. This allows us to analyze the b-minicast
channels in N which are necessary or which suffice to achieve broadcast securely against A.

Necessary Conditions. Given an adversary A ∈ A(b), we identify certain types of b-
minicast channels that are necessary to realize secure broadcast among parties P in any
general network. We proceed to show it by starting with a complete b-minicast model, and
removing b-minicast channels of the aforementioned type. Then we prove that any protocol
that achieves broadcast among P in the resulting network against A can be reduced to a
protocol that achieves broadcast in a setting with b parties in the complete (b − 1)-minicast
model against an adversary that contains a b-chain. Because the latter is deemed to be
impossible by Theorem 1, we conclude that secure broadcast protocols cannot exist when
such essential b-minicast channels are missing from a network.

Sufficient Conditions. Again given an adversary A ∈ A(b), we identify a set S of b-
minicast channels such that, for any general network N , it suffices to have N contain the
minicast channels S in order to achieve broadcast secure against A (assuming sufficient
connectivity w.r.t. (b − 1) and lower minicast channels in N ). For ease of exposition, we
consider general networks N with an underlying complete set of (b − 1) minicast channels.
Now since A is (b + 1)-chain-free, secure broadcast is possible in the complete b-minicast
model according to Theorem 1. Hence the idea is to simulate the b-minicast model on
the general network N using its (possibly) incomplete set of b-minicast channels and the
complete set of (b − 1)-minicasts underneath.

Towards finding S, we focus on its complement set S{, namely the set of b-minicast
channels which are not required to be present in N to realize broadcast tolerating A. If
the b-minicast channels of S{ were to be missing in N , it should be possible to simulate
them via a local application of the feasibility result of Theorem 1, i.e., subsets of b parties
that have their corresponding b-minicast channel missing could simulate partial broadcast
among themselves by executing Raykov’s protocol [9] using their underlying (b−1)-minicast
channels. In that case, we have to formally argue that A’s corrupting power when restricted
to these b parties is b-chain-free.

We also show that our set S for sufficiency of broadcast need not be the trivial complete
set of b-minicast channels for all adversaries in A(b). Specifically, we identify certain weak
adversaries of the class A(b), which we call b-chain adversaries, and prove that the set S{

is non-empty for such adversaries. Our arguments here are related to the b-chain property
of [9] and are mostly combinatorial. They revolve around showing the (non-)existence of
special configurations of parties placed in bins which are arranged in a circular fashion.
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1.5 Outline
In Section 2 we introduce some definitions, including that of general communication net-
works, types of corruption, and the broadcast primitive. Also, we look at Raykov’s [9]
chain-free condition on general adversary structures with respect to the b-minicast model
which generalizes all prior results on secure broadcast in complete networks.In Section 3,
we present a hierarchy of all possible general adversaries w.r.t. n parties. Sections 4 and 5
describe the above necessary and sufficient conditions, respectively, on general communica-
tion networks towards achieving broadcast secure against general adversary structures. We
conclude the paper with some further discussions and open problems in Section 6.

2 Models and Definitions

In this section, we introduce the main concepts, along with some notation, that will be used
in this paper – which includes a description of the models of communication and corruption
with respect to a set of parties being considered. Most of the definitions are borrowed from
[9] and [3]. In this paper we consider a setting where parties do not have a public-key
infrastructure (PKI) available. Note that if one assumes a PKI, it would allow messages to
be signed and broadcast would be possible with arbitrary resilience.

2.1 Parties
Unless stated otherwise, we always consider a setting with n parties, namely P = {P1, . . . , Pn}.
We now describe some notions with respect to the partitions of the party set P .

I Definition 2. A list S = (S0, . . . , Sk−1) is a k-partition of P if
⋃k−1

i=0 Si = P and all Si

and Sj are pair-wise disjoint. Such partitions are said to be proper if all Si are non-empty.

In addition, we present a notation to denote the set of parties from P minus the two sets
Si and Sj from the k-partition S:

S↓i,j := P \ (Si mod k ∪ Sj mod k)

2.2 Communication Network
In the classical model [10], parties are connected by a complete, synchronous network of
bilateral authenticated channels. Such communication channels between any two parties Pi

and Pj guarantee that only the aforementioned pair can send messages on the channel – no
third party can access (or block) the channel in any way other than possibly reading the
communication between Pi and Pj .

A synchronous network here means that all parties share common clock cycles. In a
particular clock cycle, each party initially receives a finite (possibly empty) set of messages
from the other parties, performs a finite (possibly zero) number of local computations, and
finally sends a finite (possibly empty) set of messages to each other party. Additionally, it is
guaranteed that the messages sent during a clock cycle arrive at the beginning of the next
cycle.

We focus on a very general characterization of such communication models where, in
addition to pairwise channels, there could be partial broadcast channels among the parties
of P that allow messages to be consistently delivered to more than one recipient, i.e, channels
which allow broadcast to be realized locally within certain subsets of parties.
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I Definition 3. (General network) A general network N among a set of parties P is a
monotone1 set of subsets of P .

Given a general network N , we have {Pi1 , . . . , Pik
} ∈ N if and only if there is a partial

broadcast channel among {Pi1 , . . . , Pik
} – based on the sizes of the subset of parties, such

channels are also known as k-minicast channels [9].
The partial broadcast channels also provide authentication, similar in spirit to the bi-

lateral channels, and are synchronous. Also, observe that the classical model with bilateral
channels can be seen as a particular network structure N , where N contains nothing but
all possible subsets of P with size 2. In the same way, the complete b-minicast model is a
network structure which contains all partial broadcasts of size at most b.

I Definition 4. (b-minicast model) A complete b-minicast model is a network structure Nb

that contains all possible subsets of P with size at most b, i.e., Nb = {p | p ⊆ P and |p| ≤ b}

Finally, we define a subclass of general networks which, roughly speaking, do not contain
(b + 1) and higher minicast channels.

I Definition 5. (General b-minicast network) A general b-minicast network is any
network structure N such that N ⊆ Nb, where Nb is the complete b-minicast model.

2.3 Adversary and Security

We assume the existence of a central adversary that corrupts a subset of parties and makes
them deviate from a protocol in an arbitrary way. Such corrupted parties are often called
Byzantine, and the parties that are not corrupted will be referred to as honest or correct.
Our protocols are perfectly secure, which guarantees that a protocol never fails (zero probab-
ility of error) even under computationally unbounded adversaries. On the other hand, our
impossibility results hold even against a bounded adversary.

In the paper, we mainly consider a general adversary structure A [7], which specifies the
possible subsets of parties that the adversary can corrupt. We require that A be monotone,
i.e., ∀ a, a′ (a ∈ A) and (a′ ⊆ a) =⇒ a′ ∈ A.

I Definition 6. (General adversary) A general adversary A among a set of parties P is
a monotone set of subsets of P .

In the literature, a specific type of adversary is widely discussed, namely a threshold
adversary, that is characterized by the maximum number of parties t which can be corrupted;
the adversary structure takes the following form At = {a | a ⊆ P and |a| ≤ t}. A typical
non-threshold adversary structure is the so-called Q(k) adversary. The adversary structure
A is said to satisfy Q(k) if the union of no k sets in A equals the party set P . In this paper,
we are more interested in the k-chain condition, which was introduced in [9]. In Appendix
A, we briefly discuss the relation between the k-chain condition and the Q(k) condition.

I Definition 7. An adversary structure A is said to contain a k-chain if there exists a proper
k-partition S = (S0, . . . , Sk−1) of the party set P such that ∀i ∈ [0, k − 1] S↓i,i+1 ∈ A. An
adversary structure is k-chain-free if it does not have a k-chain.

1 If N ∈ N and N ′ ⊆ N then N ′ ∈ N .

OPODIS 2020
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2.4 Broadcast

In broadcast, a designated party (known as the sender) wants to distribute its input value,
i.e., a message, among n parties such that all honest parties receive the same message.

I Definition 8. (Broadcast) A protocol among the party set P where some specific party
Ps ∈ P (the sender) holds an input v ∈ D and each party Pi ∈ P outputs a value yi ∈ D
achieves broadcast if the following holds:

Validity: If the sender Ps is honest, then every honest party Pi ∈ P outputs the sender’s
value, i.e., yi = v.

Consistency: All honest parties in P output the same value.

3 Hierarchy of Adversary Structures

Let us consider any general adversary A with respect to the parties P . Ignoring the two
extreme cases where the adversary is either too weak that broadcast is achievable by only
using bilateral channels (i.e., A is 3-chain-free, see Theorem 1), or when the adversary is too
strong that secure broadcast is not possible among the n parties unless we assume a global
broadcast primitive in the first place (i.e., A contains an n-chain), we note that there must
exist b ∈ [3, n − 1] such that A contains a b-chain and is (b + 1)-chain-free.

This observation gives us a way to define a simple partial order over the complete space
of general adversarial structures with respect to the party set P , which is highly relevant
to the problem of achieving secure broadcast in general communication models. Define the
weakest and strongest class of adversaries respectively as,

A(0) = {A ⊆ 2P | A is 3-chain-free}

A(n) = {A ⊆ 2P | A contains an n-chain}

The subsequent classes of adversary structures in-between are defined as: ∀b ∈ [3, n − 1],

A(b) = {A ⊆ 2P | A contains a b-chain and is (b + 1)-chain-free}

The classes of adversaries arranged in an increasing order of strength would then be A(0) ≤
A(3) ≤ A(4) ≤ . . . ≤ A(n). Note that this forms indeed a partition over all possible adversary
structures, since for b > 3, any adversary structure in A(b) also contains an implicit (b − 1)-
chain (and lower). This can be seen from the definition of a b-chain-free adversary structure.
More concretely, if an adversary structure A is b-chain-free, then it is also (b + 1)-chain-free.
This is because if it contains a (b + 1)-chain (S0, . . . , Sb), then (S0, . . . , Sb−2, Sb−1 ∪ Sb) is a
valid b-chain, since A is monotone. In fact, we also show in Subsection 5.1 that the partition
is a proper partition, i.e., each set A(b) is non-empty.

Given this partition, one can consider a partial order over adversary structures as follows:
we define the order relation ≺ such that for any two general adversaries Ap ∈ A(k) and
Aq ∈ A(k′): Ap ≺ Aq ⇐⇒ (k < k′) ∨ (k = k′ ∧ Ap = Aq).

As mentioned in Subsection 1.4, given a general adversary A, there is a unique class
A(b) that A belongs to. We know that broadcast tolerating A is impossible in the complete
(b−1)-minicast model, but is possible in the complete b-minicast model because of Theorem
1. We can then analyze the b-minicast channels which are necessary or which suffice to
achieve broadcast in a general network securely against A.
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Figure 1 On the left, there is an adversary containing a 4-chain (Q′
0, Q′

1, Q′
2, Q′

3) among 6 parties
in the incomplete 4-minicast network missing all 4-minicasts that have non-empty intersection with
the sets Q′

0, . . . , Q′
3. On the right, there is an adversary with a 4-chain (Q0, Q1, Q2, Q3) among 4

parties in the complete 3-minicast network. Now our reduction lets each party Qi emulate the set
of parties Q′

i. Then, any 4-minicast present on the left can be emulated by a 3-minicast on the right.
For example, the 4-minicast depicted in light-gray on the left can be emulated using the 3-minicast
depicted on the right.

4 Necessary Conditions

In this section, we provide necessary conditions on general communication networks for
broadcast to be possible while tolerating general adversaries. Specifically, given an adversary
structure A ∈ A(b), we identify some types of minicast channels that have to be present in
any network N in order to achieve secure broadcast.

Let P = (P0, . . . , Pb−1) be any b-chain that is present in A. We then characterize b-
minicasts that are essential for broadcast against A in a general communication network,
namely of the form {p0, . . . , pb−1} where p0 ∈ P0, . . . , pb−1 ∈ Pb−1. At a very high level, the
proof uses any protocol that achieves broadcast in an incomplete b-minicast network – with
the aforementioned essential b-minicasts missing – against A ∈ A(b) in order to construct
a broadcast protocol among b parties in the complete (b − 1)-minicast model against an
adversary containing a b-chain. Since the latter is known to be impossible by Theorem 1,
the former is also impossible. We depict in Figure 1 a concrete example of the reduction for
the case of b = 4.

I Lemma 9. Secure broadcast on a general network N tolerating a general adversary A ∈
A(b) is possible for some sender only if: for every b-chain in A, namely P = (P0, . . . , Pb−1),
there is a b-minicast channel in N that has non-empty intersection with the sets P0, . . . , Pb−1.

Proof. Consider any b-chain in A, P = (P0, . . . , Pb−1). From a complete network struc-
ture Ncomp = 2P , we remove b-minicast channels of the form {p0, . . . , pb−1} where p0 ∈
P0, . . . , pb−1 ∈ Pb−1. Because the set of partial broadcast channels is monotone (cf. Defini-
tion 3), all higher b′-minicasts (with b′ > b) that contain a b-minicast of the removed type
will be missing implicitly as well (more formally, if S = {p0, . . . , pb−1}, then we are talking
about b′-minicasts shared by the set S′ of b′ parties such that S′ ⊇ S).

Assume there exists a broadcast protocol π for some sender Ps from P tolerating the
adversary A. Using π, we now construct a protocol π′ for achieving broadcast among b

parties {Q0, . . . , Qb−1} in the complete (b − 1)-minicast communication model under an
adversary containing a b-chain, i.e., any pair (Qi, Q(i+1) mod b) can be honest while the
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adversary corrupts the rest of the parties. Since from Theorem 1 such protocol π′ cannot
exist, we arrive at a contradiction.

To construct protocol π′ from π, the protocol π′ lets each Qi simulate the set Pi. The
key thing to note is that all partial broadcast channels that will be used among P in the
execution of π can be simulated by these b parties in the (b−1)-minicast model. On the other
hand, the simulation of channels that were removed in the first place would have required a
(non-existent) global broadcast channel {Q0, . . . , Qb−1}. Also all possible corruptions by an
adversary containing a b-chain, among {Q0, . . . , Qb−1} is already covered by the adversary
structure A with respect to π, because P is a b-chain contained in A, and if Qi is corrupted,
all the parties simulated by it Pi can behave arbitrarily. Since protocol π is assumed to
be secure against A, π′ allows the party that simulates Ps to broadcast securely, thereby
arriving at the contradiction. J

In fact, we can extend the above simulation argument to have a similar characterization
of essential partial broadcast channels for every lower k-chain (k < b) P = (P0, . . . , Pk−1)
contained in A, i.e., minicasts of the type {p0, . . . , pk−1} where p0 ∈ P0, . . . , pk−1 ∈ Pk−1.
This leads us to our necessary condition for secure broadcast in general network structures.

I Theorem 10. Secure broadcast on a general network N and against a general adversary
A ∈ A(b) is possible for some sender only if: ∀k ∈ [3, b], if P = (P0, . . . , Pk−1) is a k-chain
in A, then there must be a k-minicast channel in N that has non-empty intersection with
each of the sets P0, . . . , Pk−1.

Sufficient Number of b-Minicasts. Jaffe et. al. [8] present asymptotically tight bounds
on the number of 3-minicast channels that are necessary and sufficient to achieve Byzantine
agreement in general 3-minicast networks against threshold adversaries in the range n/3 ≤
t < n/2. One of their main results is giving a bound for the quantity Un(t) which is
the minimum m such that any general 3-minicast network N with m 3-minicast channels
achieves Byzantine agreement while tolerating at most t corrupted parties – the underlying
graph (2-minicast network) of N is assumed to be sufficiently connected, e.g., via a complete
set of bilateral channels among the n parties.

An open question in [8] was scaling its definitions and results to general b-minicast
networks, for b > 3. We provide some steps towards answering it by first generalizing the
definition of Un(.) in a higher b-minicast setting. Similar to [8], there we consider general
b-minicast networks N that have a complete set of (b − 1)-minicast channels underneath.

I Definition 11. Let U b
n(A) denote the minimum number m such that any general network

structure N with m b-minicast channels, and satisfying Nb−1 ⊆ N ⊆ Nb, achieves global
broadcast for some sender among the n parties while tolerating the general adversary A.

We now present a lower bound on U b
n(A), for b ≥ 3 and any general adversary A ∈ A(b).

Note that this is similar in spirit to the analysis in [8] because the threshold adversaries
n/3 ≤ t < n/2 belong to the class A(3) (see Appendix A). Towards our bound, we consider
another quantity which is like a complement to U b

n(A), namely ub
n(A) which is defined as the

minimum number of b-minicast channels that can be removed from a complete b-minicast
model to ensure broadcast cannot be realized securely w.r.t. any sender among the n parties
against A. It is then not hard to see that U b

n(A) =
(

n
b

)
− ub

n(A) + 1.
So we essentially provide an upper bound on ub

n(A) by removing b-minicast channels
of the type described in Lemma 9 so as to violate our necessary condition for secure
broadcast in the resulting incomplete b-minicast network. We do this by finding a b-chain
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P = (P0, . . . , Pb−1) in A ∈ A(b) which minimizes, over all b-chains present in A, the size of the
corresponding set of essential b-minicast channels {{p0, . . . , pb−1} ∈ Nb | p0 ∈ P0, . . . , pb−1 ∈
Pb−1} (here Nb is the complete b-minicast model as denoted in Definition 4). To be pre-
cise, we attempt to solve the following optimization problem, over all proper b-partitions
P = (P0, . . . , Pb−1) of the party set P w.r.t. the adversary structure A:

minimize
P

|P0| × . . . × |Pb−1|

subject to P↓i,i+1 ∈ A, i = 0, . . . , b − 1.

If πA is a solution to the above problem, we have ub
n(A) ≤ πA which results in the following

lower bound on U b
n(A).

U b
n(A) ≥

(
n

b

)
− πA + 1

Note that the above results hold for every adversary in the class A(b) – in particular, the
threshold adversaries in the range b−2

b n ≤ t < b−1
b+1 n [3], as explored in detail in Appendix B.

5 Sufficient Conditions

In this section, we present some conditions on general networks which are sufficient to achieve
global broadcast secure against general adversaries. To be specific, given an adversary
structure A ∈ A(b) and a network N satisfying the aforementioned sufficiency condition, we
construct a protocol that realizes Byzantine broadcast for any sender in P .

The main idea is to simulate Raykov’s protocol [9] – that considers complete b-minicast
models and (b + 1)-chain-free adversaries – on the general network N . And we do this
by patching any b-minicast channel that might be missing in N with local executions of
Raykov’s protocol among subsets of b parties. To make this intuition more rigorous, we first
define an operator on the general adversary A that, roughly speaking, projects its corruption
power onto such subsets of parties.

I Definition 12. Let A be any general adversary over a party set P . For a given subset
of parties S ⊆ P , we define the adversary structure A[S] to be the projection of A onto S,
where A[S] = {a ∩ S | a ∈ A}.

We make a couple of observations about the projected adversary A[S]. First, A[S] ⊆ A:
Given any a ∈ A[S], we have a = a′ ∩ S for a corresponding a′ ∈ A. But since a ⊆ a′ and
A is monotone, we have a ∈ A. Second, A[S] is a well-defined general adversary among
the set of parties S in accordance with Definition 6, i.e., A[S] is a monotone set of subsets
of S. It is clear that A[S] is a subset of 2S , because ∀a ∈ A[S], we have a ⊆ S. To show
monotonicity, let a ∈ A[S] and a′ ⊆ a. Then because A[S] ⊆ A and A is monotone, we have
a′ ∈ A. As a′ ⊆ a ⊆ S, we have a′ = a′ ∩ S, which implies that a′ ∈ A[S].

Coming to our protocol idea, consider a subset S of b parties. If A[S] is b-chain-free,
then the network N can afford to have the b-minicast channel among S to be missing, since
such a minicast channel can be locally simulated by the parties S via executing Raykov’s
broadcast protocol [9] on their underlying (b − 1)-minicast network. It is then not hard to
see that this line of reasoning extends recursively w.r.t. (b − 1) and lower minicast channels.
That is, now a (b − 1)-minicast channel among S, say the one shared by a subset of parties
S′ ⊂ S with |S′| = b − 1, is not required by our protocol if the projected adversary A[S′]
is (b − 1)-chain-free. For this recursion to terminate, we assume a complete set of bilateral
channels in the network N . Thus, we arrive at the following sufficient condition for secure
broadcast in general networks.
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I Theorem 13. Secure broadcast on a general network N and against a general adversary
A ∈ A(b) is possible for any sender if:

N contains a complete set of bilateral channels, i.e. N2 ⊆ N .
For each subset of parties S of size k, where 3 ≤ k ≤ b: if A[S] contains a k-chain, there
is a k-minicast channel in N among S.

5.1 Chain Adversaries
At first glance, our sufficient condition above may seem to require the general network to
have a complete set of b-minicast channels in the first place. We show that this is not the
case for a certain class of adversaries – chain adversaries – which we define as follows.

I Definition 14. Let the list P = (P0, . . . , Pb−1) be any proper b-partition of P . Then we
define a corresponding b-chain adversary:

AP = {a | ∃i ∈ [0, b − 1] such that a ⊆ P↓i,i+1}

It is clear that AP contains a b-chain, since we have a proper b-partition P such that
∀i ∈ [0, b − 1] P↓i,i+1 ∈ AP . From Theorem 1, we note that these b-chain adversaries are
precisely the minimal adversary structures under which broadcast is impossible in the (b−1)-
minicast model. So one would expect them to be weaker (i.e., broadcast to be possible) when
assuming a b-minicast model. We show that this is indeed the case by formally proving that
b-chain adversaries are (b + 1)-chain-free, i.e., AP ∈ A(b).

Before proceeding with the technical details, we describe a setting that will be helpful
to understand our proofs of the following results. When arguing about (ordered) lists such
as S = (S0, . . . , Sb−1) that are b-chains w.r.t. general adversaries, it helps to think of their
partition sets (i.e., the Si’s) as being arranged in a circular fashion, among which there is
a collection of ⌈b/2⌉ bins. More precisely, ∀k ∈ [1, ⌈b/2⌉ − 1], define Bk = (S2k−2 ∪ S2k−1),
and depending on whether b is even or odd, the last bin B⌈b/2⌉ is either (Sb−2 ∪ Sb−1) or
Sb−1 respectively. Figure 2 describes the setting of Lemma 15 where each Si = {ni+1} is
a singleton set. It depicts some simpler examples of b = 6 and b = 7. For the diagram
on the left, we consider a subset SN = {n1, n3, n5}, and on the right, we consider SN =
{n1, n4, n6}. The ni’s are represented as vertices of a regular b-gon; a bold vertex means
that the corresponding ni is included in SN , and a hollow vertex implies that ni /∈ SN . A
bin Bj is lightly shaded if it is covered by SN , i.e., either n2j−1 ∈ SN or n2j ∈ SN , or more
generally, Bj ∩ SN ̸= ϕ. In the example for b = 7 detailed in Figure 2, B2 is covered as
n4 ∈ SN whereas B4 is not because n7 /∈ SN .

Now towards proving that b-chain adversaries are indeed (b + 1)-chain-free, we start
with the following combinatorial lemma that considers a simpler setting with b entities (or
parties), namely {n1, . . . , nb}. The proof is in Appendix D and uses the above methodology
with bins.

I Lemma 15. Let N = {n1, . . . , nb} and the list S = ({n1}, . . . , {nb}) be a b-partition of N .
Define S↓i,i+1 = N \ {ni, n1+(i mod b)} for i = 1, . . . , b.

(a) For all subsets SN ⊆ N with |SN | < ⌈b/2⌉ ∃i ∈ [1, b] such that SN ⊆ S↓i,i+1.
(b) There exist subsets SN ⊆ N with |SN | = ⌈b/2⌉ such that ∀i ∈ [1, b] SN ̸⊆ S↓i,i+1.

I Lemma 16. Let AP be any b-chain adversary. Then AP ∈ A(b).
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Figure 2 Examples for b = 6 and b = 7

Proof. As discussed before, AP already contains a b-chain, namely P. Now we show that
the adversary structure is also (b + 1)-chain-free, thereby completing the proof. Towards
a contradiction, assume AP contains a (b + 1)-chain, namely S = (S0, . . . , Sb), where ∀i ∈
[0, b] S↓i,i+1 ∈ AP . Consider a subset of ⌈b/2⌉ alternating list elements from P, namely
SP = {P0, P2, . . . , P2(⌈b/2⌉−1)}. From Lemma 15(b) w.r.t. P, it is not hard to see that
if we pick a single party from each partition set in SP and construct a subset of parties
Sp = {p0, p2, . . . , p2(⌈b/2⌉−1)}, where p0 ∈ P0, p2 ∈ P2, . . ., then ∀i ∈ [0, b − 1] Sp ̸⊆ P↓i,i+1
(this can also be seen by noting that for any i ∈ [0, b − 1] Sp ∩ (Pi ∪ P(i+1) mod b) ̸= ∅). Thus
because of the way AP is defined, Sp ̸∈ AP .

Now coming to the (b + 1)-chain S, no matter where we assign the parties of Sp among
the partition sets of S, we can only consider at most ⌈b/2⌉ of those sets. For even b, as
⌈ b

2 ⌉ < ⌈ b+1
2 ⌉, using Lemma 15(a) with respect to S, we note that ∃i ∈ [0, b] such that

Sp ⊆ S↓i,i+1, and hence, Sp ∈ AP , which is a contradiction.
When b is odd, we have ⌈ b

2 ⌉ = ⌈ b+1
2 ⌉. Using the bins methodology described above,

we observe that each of the ⌈ b
2 ⌉ disjoint bins in S must be covered by the ⌈ b

2 ⌉ parties
of Sp such that the assigned partition sets of the (b + 1)-chain are alternating (the set
Si is said to be assigned w.r.t. parties in Sp if and only if Sp ∩ Si ̸= ∅), so as to avoid
the contradiction Sp ∈ AP . Note that for any i ∈ [0, b], Sp ⊆ S↓i,i+1 ⇐⇒ Sp ∩ (Si ∪
S(i+1) mod b+1) = ∅. Thus the contradiction occurs whenever there is a pair of consecutive
unassigned partition sets (Si, S(i+1) mod b+1). Now without loss of generality, let the assigned
sets be {S0, S2, . . . , Sb−1} with respect to Sp. More formally, let π be a bijection from the
set {0, 2, . . . , b − 1} onto itself such that p0 ∈ Sπ(0), p2 ∈ Sπ(2), . . ., pb−1 ∈ Sπ(b−1). Now
consider a subset of parties wherein we replace pb−1 in Sp with another party from Pb−1,
i.e, S′

p = {p0, p2, . . . , p′
b−1} where p′

b−1 ∈ Pb−1. Again it is not hard to see from above that
S′

p ̸∈ AP . As the assignment of the parties p0, p2, . . . , pb−3 is already fixed, to preserve the
cyclic arrangement of the partition sets so as to avoid a contradiction with respect to S′

p, we
have p′

b−1 ∈ Sπ(b−1). Repeating this procedure with all parties of Pb−1, and moving over to
other Pi’s, we essentially get that P0 ⊆ Sπ(0), P2 ⊆ Sπ(2), . . ., Pb−1 ⊆ Sπ(b−1). Now consider
another subset of ⌈b/2⌉ list elements from P, i.e., SP = {P1, P3, . . . , Pb−2, P0}. Looking at
the subset of parties Sp = {p1, p3, . . . , pb−2, p0}, where p1 ∈ P1, p3 ∈ P3, . . ., Lemma 15(b)
again shows that ∀i ∈ [0, b − 1] Sp ̸⊆ P↓i,i+1, and thus Sp ̸∈ AP . As the assignment of
p0 to Sπ(0) in the (b + 1)-chain is already fixed, we observe that the assigned partition
sets with respect to Sp again has to be {S0, S2, . . . , Sb−1} in order to avoid contradictions.
Thus, define a bijection π from the set {1, 3, . . . , b − 2, 0} onto {0, 2, . . . , b − 1} such that
p1 ∈ Sπ(1), p3 ∈ Sπ(3), pb−2 ∈ Sπ(b−2), and π(0) = π(0). Again we have P1 ⊆ Sπ(1),

OPODIS 2020



25:14 On Broadcast in Generalized Network and Adversarial Models

P3 ⊆ Sπ(3), . . ., Pb−2 ⊆ Sπ(b−2). We see that all parties of P are distributed among the even
indexed partition sets of S. In particular, it means that S1 = ∅, thereby implying that the
(b + 1)-chain S is not a proper partition, which is again a contradiction.

Finally, we have that AP is indeed (b + 1)-chain-free, and thus belongs to the class A(b).
J

So w.r.t. the hierarchy of general adversary structures described in Section 3, we can
view these b-chain adversaries to be the weakest within the class A(b). Now against these
chain adversaries, we achieve Byzantine broadcast in general networks N with missing b-
minicast channels using Theorem 13. Specifically, we identify certain b-minicast channels
which are not required (and thus can be missing in N ) to achieve broadcast against b-chain
adversaries.

I Lemma 17. For 3 < b < n: given any b-chain adversary AP ∈ A(b), there exist subsets
of parties S of size b such that the projected adversary structure AP [S] is b-chain free.

Proof. Towards the proof, we construct such a subset S ⊆ P with |S| = b. Let P =
(P0, P1, . . . , Pb−1) be the b-chain corresponding to the adversary AP . Since b < n, at least
one Pi contains more than one party; without loss of generality, let P0 be such a set. Define
the subset S = {p0, p′

0, p1, . . . , pb−2} where {p0, p′
0} ⊆ P0, p1 ∈ P1, . . . , pb−2 ∈ Pb−2. We

show that the projected adversary AP [S] does not contain a b-chain.
When b is even, consider the following subsets of size b/2: S0 = {p0, p2, . . . , pb−2} and

S′
0 = {p′

0, p2, . . . , pb−2}. From Lemma 15(b), we have that ∀i ∈ [0, b − 1] S0, S′
0 ̸⊆ Pi,i+1↓,

which in turn means that S0, S′
0 /∈ AP . Because we have AP [S] ⊆ AP , it is then clear that

S0, S′
0 /∈ AP [S]. Now towards a contradiction, assume AP [S] contains a b-chain. Describing

such a b-chain using b/2 bins, as in the proof of Lemma 16, we observe that each element of
S0 has to be put in a unique bin in an alternative fashion to ensure that S0 /∈ AP [S] – i.e.,
every pair of consecutive elements in the b-chain must have a non-empty intersection with
S0. Coming to S′

0, we have to place p′
0 in the same bin as p0 so that every bin is covered

by S′
0. But this would disrupt the alternative arrangement among S′

0 which would lead to a
pair of consecutive spots on the b-chain that are not occupied by S′

0 resulting in S′
0 ∈ AP [S],

a contradiction.
Similarly for odd b, we consider four subsets of size ⌈b/2⌉: S0 = {p0, p2, . . . , pb−3, pb−2},

S′
0 = {p′

0, p2, . . . , pb−3, pb−2}, S1 = {p0, p1, p3, . . . , pb−2} and S′
1 = {p′

0, p1, p3, . . . , pb−2}.
Using the same arguments as the even case above, we infer that S0, S′

0, S1, S′
1 /∈ AP [S].

Also it is worth noting that S0 ∪ S′
0 ∪ S1 ∪ S′

1 = S; in other words, any element of S will
belong to at least one of these four subsets. Again we assume that AP [S] contains a b-chain.
We claim that in such a b-chain, the only elements that are allowed to be adjacent to p0 (p′

0
resp.) are p′

0 (p0 resp.) and pb−2. Because, for example, if p0 was adjacent to some pk in
the b-chain where k ∈ [1, b − 3], then using the bins terminology, the bin defined by {p0, pk}
is not covered by either S′

0 or S′
1 (depending on whether k is odd or even respectively),

thereby arriving at either S′
0 ∈ AP [S] or S′

1 ∈ AP [S], both of which are contradictions. But
since b > 3, such a configuration cannot exist – i.e., no matter how we arrange p0, p′

0 and
pb−2 in the assumed b-chain, at least one of p0 or p′

0 has to be adjacent to some pk where
k ∈ [1, b − 3]. This concludes the proof. J

Necessary Number of b-Minicasts. Another main result of Jaffe et. al. [8] is a tight
characterization of the quantity Tn(t) which is defined as the minimum m such that there
exists a general 3-minicast network N with m 3-minicast channels that achieves Byzantine
agreement while tolerating at most t corrupted parties – the underlying graph (2-minicast
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network) of N is also assumed to be sufficiently connected, e.g., via a complete set of bilateral
channels among the n parties. To extend their analysis to general b-minicast networks, for
b > 3, we start with generalizing the definition of Tn(.) in a higher b-minicast setting. Similar
to [8], in the following we again consider general b-minicast networks N that have a complete
set of (b − 1)-minicast channels underneath.

I Definition 18. Let T b
n(A) denote the minimum number m such that there exists a general

network structure N with m b-minicast channels, satisfying Nb−1 ⊆ N ⊆ Nb, that achieves
global broadcast for any sender among the n parties while tolerating the general adversary
A.

We now provide an upper bound on T b
n(AP), for b > 3 and any b-chain adversary

AP ∈ A(b). Again, we note that this is in a similar vein to the analysis in [8] because
the threshold adversaries n/3 ≤ t < n/2 belong to the class A(3) (see Appendix A); here
we consider the weakest adversaries, a.k.a. b-chain adversaries, of the class A(b). The idea
behind the upper bound is to explicitly construct a network N , of the type described in
Definition 18, that satisfies the sufficiency condition of Theorem 13 for broadcast against a
b-chain adversary AP . And for a tighter bound, we would like N to have as few b-minicast
channels as possible.

So to construct the network N , we start with the complete b-minicast model and remove
b-minicast channels that are not required to achieve Byzantine broadcast against AP , i.e.,
minicast channels shared by any subset S of b parties where AP [S] is b-chain free. Specifically
in our case, the discarded b-minicast channels will be of the type described in the proof of
Lemma 17: if P = (P0, P1, . . . , Pb−1) is the b-chain corresponding to the adversary AP ,
then we remove the minicast channel shared by the subset S = {p0, p′

0, p1, . . . , pb−2} where
{p0, p′

0} ⊆ P0, p1 ∈ P1, . . . , pb−2 ∈ Pb−2, leaving out Pb−1 (and assuming P0 contains more
than one party). In fact, we can also consider another type of b-minicast channels where, for
the corresponding subset S, we pick two parties from P1 (if possible) and continue to select
a party from consecutive chain elements, namely P2, P3, . . . Pb−1, leaving out P0 this time.
And we could also start with two parties from P0 and continue picking a party in the reverse
direction, i.e., from elements Pb−1, Pb−2, . . . P2 – it is not hard to see that for such a subset
S, the adversary AP [S] is going to be b-chain free. Considering all these combinations, the
resulting number of b-minicast channels in our network will be an upper bound on T b

n(AP).
For the sake of brevity, let σi = |Pi| with σi−1 = |P(i−1) mod b| and σi+1 = |P(i+1) mod b|.
Also let πP =

∏b−1
i=0 σi. Then we have the following:

T b
n(AP) ≤

(
n

b

)
− πP ·

b−1∑
i=0

1
σi

((
σi−1

2
)

σi−1
+
(

σi+1
2
)

σi+1

)

Towards computing the above bound, we sum over all unpicked elements Pi and choose two
parties either from P(i−1) mod b or P(i+1) mod b; this also implies that the set of removed b-
minicast channels w.r.t. each of the above combinations are disjoint, i.e., there is no need to
account for any intersections among distinct types of such minicast channels. We believe that
the above bound can be made tighter by exhaustively identifying (and removing) additional
b-minicast channels shared by subsets S of b parties such that AP [S] is b-chain free and
which do not fall under the type (or its above variants) described in the proof of Lemma
17.
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6 Conclusions

We identified certain types of partial broadcast channels that are necessary or that suffice for
global broadcast to be realized securely against general adversaries on general communica-
tion networks. The analysis included proposing a partial ordering over all possible adversary
structures with respect to n parties, which could be of independent interest.

Our results are general enough to characterize such important sets of partial broadcasts
of any size b, against general adversary structures. In particular, this allows us to extend
the results of Jaffe et. al. [8] related to finding the number of necessary and number of
sufficient 3-minicast channels for constructing broadcast to general b-minicast channels. But
at the same time, we note that there is a lot of room for improvement because, in contrast to
general 3-minicast networks, we do not (yet) have tight necessary and sufficient conditions
on general b-minicast networks – for b > 3 – towards achieving secure broadcast.

So a clear open problem would be to formulate such conditions for higher minicast
networks. One approach could be to generalize the tight sufficiency condition of secure
broadcast on general 3-minicast networks, as studied in [11, 8], to b-minicast networks. In
Appendix C, we show that a straightforward extension of the so-called virtual party emu-
lation technique – used by [11] for their broadcast protocols in general 3-minicast networks
– is not feasible when it comes to b-minicast channels. Hence it would be interesting to see
how one may circumvent this limitation.

On an abstract level, our necessary conditions looked at the b-chain property of general
adversaries on a global scale, i.e., with respect to all n parties. Whereas for our sufficient
conditions, we considered the b-chain condition of adversary structures on a local scale,
namely w.r.t. subsets of b parties. Thus, another intriguing open question would be to know
whether a middle ground between these two viewpoints could lead to tighter necessary and
sufficient conditions on general networks for realizing broadcast. All in all, we hope this paper
laid a firm groundwork for more advanced research on broadcast in general communication
networks that is secure against general adversaries.
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A Relation between Chain-Freeness and Q(k) Conditions on
Adversaries

It is not hard to see that the class of 3-chain-free adversaries is precisely the set of adversary
structures satisfying Q(3).

I Lemma 19. An adversary is 3-chain-free if and only if it satisfies Q(3).

Proof. If an adversary structure A does not satisfy Q(3), i.e., there exists sets S1, S2 and S3
in A such that (S1 ∪ S2 ∪ S3) = P , then A contains a 3-chain where the proper 3-partition
is (S0, S1, S2) with S0 = S1, S1 = S2 \ S1 and S2 = S3 \ (S1 ∪ S2). If A contains a 3-
chain with the proper 3-partition as (S0, S1, S2), then A does not satisfy Q(3) as we have
(S0 ∪ S1 ∪ S2) = P . J

At the same time, we have the following relation for Q(2) adversaries, namely the Q(2)

condition implies their k-chain-freeness, for any k ≥ 4.

I Lemma 20. A Q(2) adversary is k-chain-free for k ≥ 4.

Proof. If an adversary A contains a 4-chain with the proper 4-partition being (S0, S1, S2, S3),
then we have (S0 ∪ S1) ∈ A and (S2 ∪ S3) ∈ A from Definition 7, and thus A does not
satisfy Q(2) because (S0 ∪ S1) ∪ (S2 ∪ S3) = P . Also, the (k − 1)-chain-free condition
implies k-chain-freeness, because if A has a k-chain with the proper k-partition being P =
(P0, P1, . . . , Pk−1), then A also contains a (k−1)-chain because of the proper (k−1)-partition
P ′ = (P0 ∪ P1, P2, . . . , Pk−1). J

B Lower Bounds Regarding Threshold Adversaries

In this section, we show how to apply our techniques to the case of threshold adversaries.
Given a threshold adversary that can corrupt up to t parties, we consider the following
question: how many b-minicast channels are necessary to make sure that, in every general
b-minicast network of that size, at least one party can broadcast securely in the network? Or
equivalently, for the same adversary, what is the minimum number of minicast channels that
can be removed from a complete b-minicast model to ensure broadcast cannot be realized
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securely with respect to any sender? That is, if m is the answer to the latter formulation,
then the number of necessary b-minicasts would be M =

(
n
b

)
− m + 1.

We focus on threshold adversaries in each class A(b). These adversaries correspond to
threshold adversaries in the range b−2

b n ≤ t < b−1
b+1 n. To see this, it is enough to recall

that in the complete b-minicast model, one can achieve broadcast if and only if t < b−1
b+1 n

[3]. Also, from [9] we know that broadcast is achievable in the complete b-minicast model
if and only if the adversary structure is (b + 1)-chain-free. Since each adversary in A(b)

contains a b-chain and is (b + 1)-chain-free, threshold adversaries in A(b) are in the range
b−2

b n ≤ t < b−1
b+1 n. Observe that for larger thresholds t ≥ b−1

b+1 n, even with all b-minicasts,
broadcast is impossible, and for smaller thresholds t < b−2

b n, none of the b-minicasts are
necessary.

To derive a bound on m against the aforementioned threshold adversary, it is enough
to find a b-chain P = (P0, . . . , Pb−1) and compute the size of the corresponding set of
essential b-minicast channels. We would like that the size of the set containing the essential
channels {{p0, . . . , pb−1} | p0 ∈ P0, . . . , pb−1 ∈ Pb−1} is as small as possible. To be more
precise, we attempt to solve the following optimization problem, over all proper b-partitions
P = (P0, . . . , Pb−1) of the party set P :

minimize
P

|P0| × . . . × |Pb−1|

subject to |P↓i,i+1| ≤ t, i = 0, . . . , b − 1.

For starters, [3] proves the impossibility of broadcast in the (b − 1)-minicast model for
t ≥ b−2

b n by explicitly constructing a (simple) b-chain w.r.t. to the same threshold adversary
([3, Lemma 3]): Let r = n mod b and n = bq + r. The set P is partitioned into b sets Pi of
⌈n/b⌉ or ⌊n/b⌋ elements in any possible manner, but with the additional condition that, if
r ≥ b/2 then it is assured that |Pi| = ⌊n/b⌋ would imply |P(i+1) mod b| = ⌈n/b⌉. It is not
hard to see that this partition is indeed a b-chain by considering the two cases of r < b

2
and r ≥ b

2 separately. Trivially, this is also a b-chain for threshold adversaries in the range
b−2

b n ≤ t < b−1
b+1 n. The size of the corresponding set of essential b-minicast channels would

then be
(⌈n/b⌉)r(⌊n/b⌋)b−r = (q + 1)rqb−r <

(qb + r

b

)b

=
(n

b

)b

The inequality holds since the function g(x) =
(
1 + r

qx

)x is monotonically increasing
for x > 0, and we have

(
1 + 1

q

)r
<
(
1 + r

qb

)b as r < b. Thus, we end up with a simple
upper bound: m <

(
n
b

)b. We also observe that only a significantly smaller fraction f of
b-minicast channels need to be removed from the complete network for secure broadcast to
be infeasible. More precisely, using Stirling’s inequalities of

√
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n

for all positive integers n, we have

f <
(n/b)b(

n
b

) ≤ e2
√

b√
2π

(
1 − b

n

)n−b+ 1
2

And for larger values of n, we note that f < e2√
b√

2π
· e−b.

Looking at the class of threshold adversaries b−2
b n ≤ t < b−1

b+1 n, we would expect that
as adversaries get stronger, the upper bound on m should drop down, i.e., the number of
partial broadcast channels that need to be removed for broadcast to be impossible should
reduce. We show that for the strongest adversary in the above class, namely t = b−1

b+1 n − 1,
the upper bound on m is of the order O(nb/2), which surpasses the general O(nb) bound we
have above.
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I Lemma 21. For even b and sufficiently large n: in the b-minicast communication model
among P , there exists a set of O(nb/2) b-minicast channels, the removal of which makes
it impossible for broadcast to be realized securely with respect to any single sender, while
tolerating up to t = b−1

b+1 n − 1 corrupted parties.

Proof. As explained above, we explicitly construct the required proper b-chain P = (P0, . . . , Pb−1)
which induces a set of essential b-minicasts with size of the order O(nb/2). Let k = b/2,
r = (n−k) mod k and n−k = kq +r. The set P is partitioned in such a way so that even in-
dexed partition sets Pi (i = 0, 2, . . . , b−2) are of size one, and the remaining (n−k) parties are
distributed (almost) equally among the odd indexed partition sets; i.e., Pj (j = 1, 3, . . . , b−3)
will be of size ⌊ n−k

k ⌋ (= q) and the set Pb−1 of size
(
⌊ n−k

k ⌋ + r
)
.

To see that this partition is indeed a b-chain with respect to the aforementioned adversary,
we have to show ∀i ∈ [0, b − 1] |P↓i,i+1| < b−1

b+1 n, or equivalently, |Pi ∪ P(i+1) mod b| > 2n
b+1 .

As b is even, any pair (Pi, P(i+1) mod b) will consist of an even and an odd indexed set. So
we have the following, |Pi ∪ P(i+1) mod b| ≥ 1 + q. And with some simple calculations, for n

roughly of the order b2 (so that q > b), we note that (1 + q) > 2n
b+1 is equivalent to showing

q > 2r − 1.
The size of the essential set of b-minicast channels thus obtained from P is, |P0| × . . . ×

|Pb−1| = qk−1(q + r) ≈ O(qk) = O(nb/2). J

Comparison to Previous Work

If we consider the paper [8] which studies the number of 3-minicast channels that need to
be present to achieve broadcast tolerating threshold adversaries in the range n/3 ≤ t < n/2,
one of its results is the following: n−h

2 · h2 is the minimum number of 3-minicasts that can
be removed to ensure Byzantine agreement is not possible in the network, where h = n − 2t

is a parameter used in the analysis.
To derive a similar result in our setting, we need to construct a 3-chain P = (P0, P1, P2)

while trying to minimize the product |P0| · |P1| · |P2|. One candidate 3-chain would involve
a partition of P such that P0 and P1 are of sizes t, and P2 will consist of the remaining h

parties. This is indeed a 3-chain that is contained in the threshold adversary – the sets P0
and P1 belong to the structure At as their sizes are t, and P2 ∈ At since h ≤ n/3. We thus
end up with an essential set of 3-minicasts of size t2 · h = ( n−h

2 )2 · h.
Note that when the function h(n) is linear in n, our upper bound of ( n−h

2 )2 · h is asymp-
totically the closest to the global minimum n−h

2 · h2. And in the worst case, when h(n) is a
constant, our bound is off by a factor of O(n).

C Virtual Parties Emulation

In this section, we discuss the limitations of a straightforward application of a particular
technique to construct broadcast protocols in the b-minicast model – with possibly missing
b-minicast channels – that involve generating a new set of virtual parties V which are emu-
lated by the original party set P . For example, the authors of [11] address the problem
of achieving broadcast in a general 3-minicast network by using the available 3-minicasts
for the emulation of virtual parties, thereby reducing the original problem to that of im-
plementing broadcast among P ∪ V in the underlying communication model with bilateral
channels that is secure against an extended adversary structure (to account for corrupted
virtual parties) – provided it satisfies certain feasibility conditions like Q(3).
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To be more specific, in their modelling of the communication network as a (2, 3)-uniform
hypergraph H(P, E), they denote the set of virtual parties as V = {ve | e ∈ E and |e| = 3},
i.e., the real parties {p, q, r} sharing the 3-hyperedge/3-minicast e emulate ve. Any value
held by the virtual party ve is locally agreed in the minicast e by a triple majority voting
protocol, where each party broadcasts its value to others and agrees via a local majority.
Then the paper makes the observation that the value of ve can be reconstructed by a honest
party successfully whenever there is a honest majority among {p, q, r}. So [11] introduces the
notion of a set a in the adversary structure A dominating a virtual party ve if |e∩a| ≥ 2; the
value of ve may not be uniquely reconstruct-able by honest parties when there is a dishonest
majority in {p, q, r}, so ve can behave arbitarily when the dominating set a is corrupted.
The corresponding extended adversary over both real and virtual parties Aext is defined as
{b(a) | a ∈ A} where b(a) = a ∪ {ve

∣∣ |e ∩ a| ≥ 2}.
From the conditions on (2, 3)-uniform hypergraphs given in [11] that are sufficient for

secure broadcast, for every three adversary sets in Aext, we have a virtual party emulated by
three parties {p, q, r} where no two belong to a single adversary set, i.e., none of the three
adversary sets could corrupt this virtual party. This implies that the extended adversary
Aext satisfies Q(3). The paper thus proposes a simple extension of known protocols on
2-minicast models to achieve broadcast with respect to the real and virtual parties.

We show that this kind of reductionist strategy is not applicable for general b-minicast
channels since we deal with significantly stronger adversaries. To be more specific, if AP is
an adversary structure with respect to P that contains a b-chain and is (b+1)-chain-free (i.e.,
AP ∈ A(b)), we prove that – irrespective of the subset of b-minicasts available for emulation
in the communication model, including the essential b-minicasts of the type seen in Lemma
9 – the extended adversary AP ∪V still contains a b-chain, and thus, there does not exist any
protocol construction among P ∪ V that achieves secure broadcast in the reduced (b − 1)-
minicast model (note that there is no need to focus on the implementation details regarding
communication among the real and virtual parties).

By a similar reasoning as in [11], we first note that the virtual party vp emulated by
the set of actual parties p = {p0, . . . , pb−1} using the b-minicast (p0, . . . , pb−1) is considered
dishonest if at least ⌈b/2⌉ parties from p are corrupt. Now given the adversary structure
AP , we define the extended adversary as AP ∪V = {b(a) | a ∈ AP } such that b(a) =
a ∪ {vp

∣∣ |p ∩ a| ≥ ⌈b/2⌉}.

I Lemma 22. For b > 3: given an adversary structure AP ∈ A(b), for any possible set
of virtual parties V emulated using b-minicast channels in the communication model, the
corresponding extended adversary AP ∪V contains a b-chain.

Proof. Let P = (P0, . . . , Pb−1) be a b-chain present in AP ; by definition, we have ∀i ∈
[0, b − 1] P↓i,i+1 ∈ AP We will now construct a b-partition (not necessarily proper) of the
virtual parties V , namely V = (V0, . . . , Vb−1) such that P ⋆ V = (P0 ∪ V0, . . . , Pb−1 ∪ Vb−1)
is a b-chain contained in AP ∪V that satisfies ∀i ∈ [0, b − 1] V↓i,i+1 ⊆ b(P↓i,i+1) – and hence,
(P ⋆ V)↓i,i+1 ∈ AP ∪V .

Consider any virtual party vp ∈ V as defined previously. Note that vp ∈ Vi is a valid
assignment related to the new b-chain, if ∀j ∈ [0, b − 1] \ {i − 1, i} vp ∈ b(P↓j,j+1), i.e.,
|p ∩ P↓j,j+1| ≥ ⌈b/2⌉. If ∀i ∈ [0, b − 1] vp ∈ b(P↓i,i+1), then we assign vp to V0. Otherwise,
there must exist i ∈ [0, b − 1] such that |p ∩ P↓i,i+1| < ⌈b/2⌉. This implies that |p ∩ (Pi ∪
P(i+1) mod b)| ≥ ⌈b/2⌉. Thus, if vp ∈ b(P↓i−1,i), then assign vp to Vi+1. Or else, because we
have |p ∩ (P(i−1) mod b ∪ Pi)| ≥ ⌈b/2⌉ and |p ∩ (Pi ∪ P(i+1) mod b)| ≥ ⌈b/2⌉, assigning vp to
Vi is valid with respect to the new b-chain. After a complete partitioning of V as described,
we can see that the resulting P ⋆ V satisfies the b-chain property with respect to AP ∪V . J
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Figure 3 Examples for b = 6 and b = 7

As a side note, we observe that the above argument still works for any other threshold
of parties from p that need to be corrupt (say, at least ⌈ 3b

4 ⌉ of them) in order for the virtual
party vp to be considered dishonest.

D Proof of Lemma 15

The lemma is stated here again for convenience.

I Lemma 23. Let N = {n1, . . . , nb} and the list S = ({n1}, . . . , {nb}) be a b-partition of N .
Define S↓i,i+1 = N \ {ni, n1+(i mod b)} for i = 1, . . . , b.

(a) For all subsets SN ⊆ N with |SN | < ⌈b/2⌉ ∃i ∈ [1, b] such that SN ⊆ S↓i,i+1.
(b) There exist subsets SN ⊆ N with |SN | = ⌈b/2⌉ such that ∀i ∈ [1, b] SN ̸⊆ S↓i,i+1.

Proof. We use the setting with bins described in Subsection 5.1 and also depicted in Figure
3 above. For proving (a), consider any subset SN ⊆ N of size strictly less than ⌈b/2⌉.
We observe that there is always a bin that is not covered by SN ; formally, ∃k ∈ [1, ⌈b/2⌉]
such that Bk ∩ SN = ∅. Now if b is even, we have SN ⊆ S↓2k−1,2k – in fact, note that
SN ⊆ S↓i,i+1 ⇐⇒ SN ∩ {ni, n1+(i mod b)} = ∅. For odd b, the only case to consider is when
all bins except B⌈b/2⌉ are covered (exactly once) by SN ; i.e., for bin Bj , either n2j−1 or n2j

will be in SN but not both. Looking at bins B1 and B⌈b/2⌉−1, if either n1 or nb−1 is not in
SN , since there is a pair of unchosen consecutive elements (that includes nb), we are done.
Otherwise, we focus on the subsequent bins – (B2, B⌈b/2⌉−2) and so on – and argue about
such a pair. We note that, because of the restriction of covering each bin exactly once, at
each step if we cover the bins B1, B2, . . ., by including the odd indexed elements in SN ,
and bins B⌈b/2⌉−1, B⌈b/2⌉−2, . . . are covered by even indexed elements, we will reach a bin
halfway through which shares a pair of consecutive elements of N with an adjacent bin, that
is not in SN , thereby completing this part of the proof. As an example, looking at the right
diagram of Figure 3 where b = 7, we note that B4 is not covered by SN , and the bins B1
and B3 are covered by including n1 and n6 in SN respectively. Now to cover B2, no matter
which element between n3 and n4 we pick, there will be a pair of consecutive ni’s that are
not in SN ; in this case, we have SN ⊆ S↓2,3

To show (b), it suffices to construct a subset SN of size ⌈b/2⌉ such that ∀i ∈ [1, b]
SN ̸⊆ S↓i,i+1. For that, we pick the odd indexed element from each bin and add it to SN . It is
not hard to see that the subset satisfies the property as each of the ⌈b/2⌉ bins is covered, and
there is no pair of consecutive elements (ni, n1+(i mod b)) such that SN ∩{ni, n1+(i mod b)} = ∅.
For b = 6, the subset SN would be {n1, n3, n5} (cf. Figure 3). J
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