
Deterministic-Prover Zero-Knowledge Proofs

Hila Dahari1 and Yehuda Lindell2

1 Weizmann Institute of Science?

hila.dahari@weizmann.ac.il
2 Bar-Ilan University

yehuda.lindell@biu.ac.il

Abstract. Zero-knowledge proof systems enable a prover to convince a
verifier of the validity of a statement without revealing anything beyond
that fact. The role of randomness in interactive proofs in general, and in
zero-knowledge in particular, is well known. In particular, zero-knowledge
with a deterministic verifier is impossible for non-trivial languages (out-
side of BPP). Likewise, it was shown by Goldreich and Oren (Journal
of Cryptology, 1994) that zero-knowledge with a deterministic prover is
also impossible for non-trivial languages. However, their proof holds only
for auxiliary-input zero knowledge and a malicious verifier.
In this paper, we initiate the study of the feasibility of zero-knowledge
proof systems with a deterministic prover in settings not covered by the
result of Goldreich and Oren. We prove the existence of deterministic-
prover auxiliary-input honest-verifier zero-knowledge for any NP lan-
guage, under standard assumptions. In addition, we show that any lan-
guage with a hash proof system has a deterministic-prover honest-verifier
statistical zero-knowledge proof, with an efficient prover. Finally, we show
that in some cases, it is even possible to achieve deterministic-prover
uniform zero-knowledge for a malicious verifier. Our contribution is pri-
marily conceptual, and sheds light on the necessity of randomness in zero
knowledge in settings where either the verifier is honest or there is no
auxiliary input.

1 Introduction

Zero-knowledge proofs enable a prover to convince a verifier of the validity of
a statement without revealing anything beyond that fact [19]. The theory and
practice of zero knowledge has been studied in great depth in the more than 3
decades since its invention, and it is one of the central topics of the foundations of
cryptography. In this paper, we revisit a fundamental question that was initially
asked in [17]:

To what extent is randomness necessary in zero-knowledge proofs? In
particular, can zero knowledge with a deterministic prover be achieved?

This question was asked in [17], and they provided negative answers. First, they
proved that zero knowledge with a deterministic verifier exists only for trivial

? This work was done while the author was at Bar-Ilan University.

languages. This is due to the fact that any proof with a deterministic verifier
can be made non-interactive (since the prover already knows what the verifier
is going to send), and non-interactive zero knowledge (without any setup) is
possible only for languages in BPP. Second, they proved that auxiliary-input
zero knowledge with a deterministic prover exists only for trivial languages. The
proof in this case is more involved, and relies inherently on the fact that the
verifier may receive auxiliary input, and may not necessarily be honest. Indeed,
as they point out, the honest-verifier statistical zero-knowledge proof of graph
non-isomorphism in [16] has a deterministic prover. This is actually true for any
language in statistical zero knowledge (SZK), since the honest-verifier proof for
statistical difference of [21] (which is a complete language for SZK) also has
a deterministic prover. We remark, however, that the deterministic prover in
these cases is not efficient, and analogous protocols with an efficient prover are
probabilistic [20]. The above leaves open the following questions:

1. Can deterministic-prover honest-verifier zero knowledge be achieved
for languages not in SZK? In particular, can it be achieved for all
NP (or beyond)?

2. Can deterministic-prover honest-verifier zero knowledge be achieved
for non-trivial languages with an efficient prover?

3. Can deterministic-prover honest-verifier zero knowledge be achieved
for non-trivial languages when the verifier is malicious, in a setting
with no auxiliary input?

Our interest in deterministic-prover zero knowledge is not due to any application
per se, but rather due to the view that the role of randomness in computation in
general, and in zero-knowledge in particular, is fundamental. Our work reopens
this question that was thought to be closed. We provide answers to some of the
open questions, but our work also leaves questions unanswered and highlights
the fact that our understanding of this issue is far from complete.

Our results. We first consider the question of honest-verifier zero-knowledge, and
prove that indeed it is possible to construct deterministic-prover zero knowledge
proofs for all NP. The idea behind our construction is for the verifier to send
the randomness needed by the prover in the proof. Of course, this would not
work naively since zero knowledge is only preserved if the prover’s randomness
is not known to the verifier. This can be solved by having the verifier send
random strings, and then the prover inverts them relative to a one-way function
and takes the hard-core bits of the preimages as its random tape. In order for
this to work, it is necessary for the verifier to be able to sample images of
the one-way function that are hard to invert, even given the randomness of
the sampling algorithm. This is due to the fact that the verifier knows this
randomness. Trapdoor permutations with this property are called enhanced, and
this property is needed to prove that the oblivious transfer protocol of [6] is
secure [13]. We actually need an additional enhancement, that was used in the
context of achieving non-interactive zero knowledge [18]; however, we only need

2

1–1 one-way functions and not trapdoor permutations. In Section 2, we prove
the following theorem:

Theorem 1.1. Assuming the existence of doubly-enhanced 1–1 one-way func-
tions, every language in NP has an honest-verifier auxiliary-input zero-knowledge
proof with a deterministic prover.

One of the challenges that arises when trying to instantiate Theorem 1.1
under standard assumptions (like factoring and discrete log) is that collections
of one-way functions are needed. In particular, the prover cannot choose the
function since it is deterministic, and the verifier must be able to choose the
function without being able to invert it. This can be achieved assuming that the
function description is dense, meaning that a random string is a valid function
description with noticeable probability. We show that in our setting, even though
the verifier cannot necessarily check if the function is valid, it is possible for the
prover to do so, without sacrificing soundness. See more details in Section 2.2.

The prover in the proof of Theorem 1.1, as in the two-message proof for
graph non-isomorphism of [16] and the statistical zero-knowledge proof of [21]
for statistical distance, is not efficient. This seems inherent in some sense, since
these SZK proofs all work by the verifier sending a challenge that can be solved
only if the statement is correct. However, the solution to the challenge cannot be
found efficiently (e.g., it requires computing graph isomorphisms and the like).
We prove that for languages that have hash proof systems [3,4], it is possible to
make the prover efficient. Our proof is also two message; however, the structure of
the hash proof systems means that it is possible to solve the challenge efficiently
given the witness. The following is proven in Section 3:

Theorem 1.2. Let L be an NP-language. If there exists a hash-proof system
for L, then there exists an auxiliary-input honest-verifier statistical zero-knowledge
where P is an efficient deterministic algorithm.

Finally, we consider the feasibility of achieving deterministic-prover zero
knowledge for malicious verifiers. As described above, by the results of [17]
this can only be achieved for plain zero knowledge (with no auxiliary input). We
show that there exist non-trivial languages for which this can be achieved. In
particular, we construct deterministic zero-knowledge proofs for languages with
more than one witness, where it is hard to compute the second witness from
the first. This is reminiscent of the construction of witness hiding proofs from
witness indistinguishability by [9], and indeed we show that languages of the
form used by them have deterministic-prover zero knowledge. In addition, we
describe some natural languages for which deterministic-prover zero knowledge
can be achieved (e.g., proving that a tuple is a Diffie-Hellman tuple, or proving
that a ciphertext encrypts a given message). Informally stated, in Section 4 we
prove:

Theorem 1.3 (informal). Assuming the existence of one-way functions (hard
to invert for non-uniform adversaries), there exist non-trivial languages which
have deterministic-prover computational plain zero-knowledge proof systems.

3

Open questions. Our work leaves open some natural open questions. First and
foremost, can we categorize the languages for which deterministic-prover plain
zero knowledge is feasible with malicious verifiers? Is it possible for all NP,
or at least for all “hard” languages? Providing positive or negative answers to
these questions goes to core of the role of randomness in (plain) zero knowl-
edge. Another question that arises from our work is whether or not efficient
deterministic-prover zero knowledge be achieved for SZK or for NP.

Related work. As we have mentioned, the question of the necessity of randomness
in zero knowledge was studied by [17], who proved negative results. Another line
of work aimed at understanding the role of randomness in zero knowledge was
initiated by [2], who introduced the notion of resettable zero knowledge. In this
setting, the prover receives a single random tape, and reuses it in every proof. It
was shown in [2] and considerable follow-up work that resettable zero knowledge
can be achieved. Clearly, our setting is far more strict, since the prover has no
randomness whatsoever.

Organisation. The full definitions that we use throughout appear in Appendix A.

2 Auxiliary-Input Honest-Verifier Zero Knowledge

The proof of impossibility for deterministic-prover zero knowledge of [17] uti-
lizes a malicious verifier (who forwards its auxiliary input as verifier-messages).
In this section, we consider the case of an honest verifier, which is not covered
by that proof. We prove that it is indeed possible to achieve auxiliary-input
deterministic-prover zero-knowledge for all languages in NP (and even all lan-
guages in IP). Our proof system requires an unbounded prover.

The idea behind our proof system is very simple; we use the verifier to gen-
erate the randomness that the prover will use in the proof. Clearly, this cannot
work in a naive way, since the zero-knowledge property requires the prover’s ran-
domness to be hidden from the verifier. However, this can be achieved by having
the verifier send random strings, and the prover derive pseudorandom coins by
inverting each string under a one-way function and taking the hard-core bit. This
is reminiscent of the hidden bits paradigm for non-interactive zero knowledge [8]
under the assumption of a one-way permutation f : {0, 1}∗ → {0, 1}∗. Our con-
struction assumes the existence of doubly enhanced 1–1 one-way functions which
include oblivious sampling properties, as in non-interactive zero knowledge [14].
We can transform the protocol of [8] to the plain model since we consider the
case of an honest verifier, and so we can let the verifier generate the common
reference string by itself. Our construction can be achieved under weaker as-
sumptions than [8,14], that include RSA, factoring and discrete log. We note
that we do not require a trapdoor function, since in our model the prover is not
required to be efficient.

4

2.1 The Proof System

We begin by defining the hardness assumption needed for our construction; the
existence of doubly enhanced 1–1 one-way functions.

Doubly-enhanced 1–1 one-way functions. Let f : {0, 1}∗ → {0, 1}∗ be a 1–1 one-
way function. Informally speaking, f is enhanced if there exists an algorithm S
that samples values in the range that are hard to invert, even given the random-
ness used by the sampler S. We remark that the “canonical” way of sampling
elements in the range – by choosing a random x and computing y = f(x) – is
not sufficient. This is due to the fact that the sampler’s coins reveal the preim-
age itself. Goldreich introduce the notion of enhanced trapdoor permutations
for oblivious transfer [13]; we use the same notion but require only 1–1 one-
way functions. We note that enhanced 1–1 one-way functions can be built from
standard assumptions (factoring, discrete log, etc.), as shown in [13].

As in the case of non-interactive zero knowledge, we need an additional en-
hancement, which is the ability to sample pairs of randomness used by the sam-
pler together with a preimage; more exactly, we need to be able to generate
random pairs (xi, ri) such that f(xi) = S(1n; ri). This is needed in our proof
in order to prove a hybrid argument that many hard-core bits of f cannot be
guessed, when given the randomness of the range-sampler. We now formally
present the definition:

Definition 2.1. A 1–1 one-way function f : {0, 1}∗ → {0, 1}∗ is called a doubly
enhanced 1–1 one-way function if the following conditions hold:

1. Easy to sample elements in the range: There exists a sampling algorithm
S such that the output distribution of S on input 1n is distributed almost
identically to f(Un).

2. Hard to invert given sampling randomness: For every non-uniform proba-
bilistic polynomial-time algorithm A, there exists a negligible function µ(·)
such that for every n ∈ N,

Pr
[
A(S(1n;Un), Un) = f−1(S(1n;Un))

]
≤ µ(n).

3. Easy to sample pairs of sampling randomness and preimgage: There exists a
probabilistic polynomial-time algorithm R that outputs a pair (r, x) such that

{R(1n)} s≡ {(Un, f−1(S(1n;Un))}.

As with any one-way function, an enhanced one-way function has a hard-
core predicate. However, it must be hard to guess the bit even given the sampler
randomness. Since it is hard to invert the one-way function in this case, such a
hard-core predicate can be constructed as in [15,18].

Given the above enhancements, it is possible to prove that many hard-core
bits are hard. We remark that proving that many hard-core bits are hard does
not require the double enhancement; however, it is needed in order to prove
that they are still hard given the sampler’s randomness. The following lemma is
proven via a standard hybrid argument.

5

Lemma 2.2. Let f be a doubly-enhanced 1–1 one-way function and let B its
hardcore predicate. Then, for every polynomial p(·),{(

U (1)
n , B(f−1(S(1n;U (1)

n)))
)
, . . . ,

(
U (p(n))

n , B(f−1(S(1n;U (p(n))
n)))

)}
n∈N

c≡
{
U(n+1)·p(n)

}
n∈N .

The fact that f must be doubly enhanced in order to prove the lemma is due
to the fact that in the hybrid argument, the reduction must be able to gener-

ate pairs
(
U

(i)
n , B(f−1(S(1n;Un)))

)
. However, computing this requires knowing

both the randomness Un used by S to sample a value in the range, as well as the
preimage (since without the preimage, the hard-core bit of the preimage cannot
be computed). This is exactly the definition of the double enhancement.

We are now ready to present the theorem:

Theorem 2.3. Let L be a language with an honest-verifier efficient-prover zero-
knowledge proof. If there exist doubly-enhanced 1–1 one-way functions, then there
exists an auxiliary-input honest-verifier computational zero-knowledge proof sys-
tem (P, V) for L, where P is deterministic (but not efficient). Furthermore, if
L has a public-coin zero-knowledge proof, then (P, V) is public coin.

Proof: Let f be a doubly-enhanced 1–1 one-way function and let B be its
hardcore predicate (that exists, as shown in [15,18]. By the assumption in the
theorem, the language L has an honest-verifier zero-knowledge proof; denote the
proof system by (P ′, V ′). Since P ′ is efficient, let p(n) denote the maximum
(polynomial) number of coins used by P ′ on input of length n. We construct the
following proof system (P, V) for L:

PROTOCOL 2.4 (proof system (P, V) for L):

– Input: common input x ∈ {0, 1}n (and witness w for P)
– The protocol:

1. V chooses a random string r ∈R {0, 1}n·p(n), and sends r to P .
2. Denote the message achieved from V by r = (r1, · · · , rp(n)), where each

ri ∈ {0, 1}n.
3. For i = 1, · · · , p(n), prover P computes yi = S(1n, ri).
4. For i = 1, · · · , p(n), prover P computes xi = f−1(yi) and bi = B(xi).
5. P runs P ′ with input x, witness w, and random tape b = (b1, b2, · · · , bp(n)).
6. V runs V ′ with input x and a uniform random tape.

By inspection, Protocol 2.4 has a deterministic prover, and is public coin if
(P ′, V ′) is public coin. Furthermore, completeness is immediate. Likewise, sound-
ness holds since otherwise a cheating prover P ∗ for the proof system (P ′, V ′)
could choose the string r ∈ {0, 1}n·p(n) itself and run P using the derived ran-
dom coins. Thus, if a cheating prover can cause V to accept for x /∈ L with
non-negligible probability, then it is also possible for V ′, in contradiction to the
assumed soundness of the original protocol.

It remains to show that Protocol 2.4 is honest-verifier zero-knowledge. Intu-
itively, this follows from the fact that although V chose the coins r ∈ {0, 1}n·p(n)

6

that determine the coins used by P in the proof (P ′, V ′), by the double enhance-
ment the hard-core bits define a string that is pseudorandom to V . Thus, V ’s is
indistinguishable from V ′’s view in (P ′, V ′), and the simulator for (P ′, V ′) can
be used. The full proof of this statement appears in Appendix B. ut

Since public-coin efficient-prover zero-knowledge proof systems exist for every
language in NP as long as one-way functions exist, we conclude that:

Corollary 2.5. If doubly-enhanced 1–1 one-way functions exist, then every lan-
guage L ∈ NP has an honest-verifier public-coin deterministic-prover auxiliary-
input zero-knowledge proof.

2.2 An Extension to Collections of Dense 1–1 One-Way Functions

We proved Theorem 2.3 under the assumption that there exists a single 1–1 one-
way function f : {0, 1}∗ → {0, 1}∗ that is doubly enhanced. However, it is not
known how to construct such a one-way function under any standard assump-
tion, to the best of our knowledge. Rather, in such situations (like when using
enhanced trapdoor permutations), collections of one-way functions are used in-
stead. However, this raises a challenge regarding who should choose the one-way
function in the collection. In typical uses, like non-interactive zero knowledge,
the prover chooses the function and proves to the verifier that it chose a valid
function. However, here the prover is deterministic and so cannot do this. If
we have the verifier naively choose the function, then it may learn a trapdoor,
making it easy to invert (e.g., in the case that the 1–1 one-way function is in-
stantiated via a family of trapdoor permutations). In this section, we show how
to overcome this problem using families of dense 1–1 one-way functions. As a
result, we show that our result can be achieved under the factoring, RSA and
discrete log assumptions.

A collection of dense one-way functions (I,D, F) is a collection of one-way
functions (see Definition A.5) with the additional property that the domain
contains a polynomial fractions of the strings of the specific length. Formally, we
require that there exists a positive polynomial `(·) such that for all large enough
n’s ∣∣I ∩ {0, 1}n∣∣ ≥ 2n

`(n)
,

where I is as in Definition A.5. When the collection is dense, then we can solve
the aforementioned problem of how to choose the function without having a
trapdoor that the verifier can use to invert, by having the verifier just choose
a random string and hope that it defines a valid function. Clearly, this is not
sufficient since we need to find a valid function with high probability. Thus,
the verifier can choose many random strings, and the prover can just use the
first valid one (since anyway, the prover is not efficient, it can verify if a string
describes a valid function or not). As we will show, this strategy is sound, as a
cheating prover cannot gain anything even by choosing an invalid function.

We begin by proving an extension to Theorem 2.3 for collections of dense
functions, and then show to instantiate it under standard assumptions later. (To
simplify the theorem statement, we present it as an extension of Corollary 2.5.)

7

Theorem 2.6. If collections of dense doubly-enhanced 1–1 one-way functions
exist, then every language L ∈ NP has an honest-verifier public-coin deterministic-
prover auxiliary-input zero-knowledge proof.

Proof: Let L ∈ NP be a language, let (I,D, F) be a collection of dense
doubly-enhanced 1–1 one-way functions, and let `(·) be the polynomial such
that |I ∩ {0, 1}n| > 2n

`(n) for all large enough n’s. The idea behind the protocol

has been described above

PROTOCOL 2.7 (proof system (P, V) for L):

– Input: common input x ∈ {0, 1}n (and witness w for P)
– The protocol:

1. V chooses random α1, . . . , αn·`(n) ∈R {0, 1}n, and sends them to P .

2. P finds the first 1 ≤ i ≤ n · `(n) such that αi ∈ I ∩ {0, 1}n, and aborts if
there is no such i. (This can be carried out by P checking if I(1n; r) = αi,
for each random string r of the maximum length used by I.)

3. P sends i to V .
4. P and V run Protocol 2.4 for L, using the function fαi

defined by αi.

By inspection, Protocol 2.7 has a deterministic prover, and is public coin if
the proof of Protocol 2.4 is public coin (which exists by Corollary 2.5). Regarding
completeness, the probability that a random αi ∈ {0, 1}n is in I ∩ {0, 1}n is at
least 1

`(n) . Thus, the probability that none of α1, . . . , αn·`(n) are in I ∩ {0, 1}n is

at most
(

1− 1
`(n)

)n·`(n)
< e−n, which is negligible.

Soundness holds for exactly the same reason as for Protocol 2.4, since a
cheating prover can use any randomness it likes. We stress that this is the reason
that we can have the prover choose i, and even if it chooses an invalid function,
this makes no difference.

Finally, zero knowledge is proven exactly as in Protocol 2.4, since the proof
there relies on the verifier not being able to distinguish the hard-core bits from
random. Since the function used is guaranteed to be a valid one, it follows that
it is hard to invert for V , and Lemma 2.2 holds. ut
Instantiations under standard assumptions. In Appendix D we show that the
result of Theorem 2.6 can be instantiated under the RSA, factoring and discrete
log assumptions.

3 Efficient-Prover Auxiliary-Input Honest-Verifier SZK

In Section 2, we showed the existence of deterministic-prover computational zero
knowledge. This begs the question as to whether deterministic-prover statistical
zero knowledge exists. As we have discussed in the introduction, the protocol for
the SZK complete language statistical difference (SD) actually has a determin-
istic prover [21]. Thus, it is already known that every language in SZK has an
honest-verifier deterministic prover zero-knowledge proof system.

In this section, we ask whether or not it is possible to achieve deterministic-
prover statistical zero-knowledge with an efficient prover. We already know that

8

every L ∈ SZK ∩ NP has a statistical zero-knowledge proof with an efficient,
but not deterministic, prover [20]. Furthermore, we already know that every
L ∈ NP that has a statistically-sound witness encryption scheme is in SZK
with a deterministic, but not efficient, prover [5]. The question that we address
here is whether or not we can construct an efficient and deterministic prover
for SZK. We show that this can be achieved in some cases, and in particular,
for every language with a hash proof system [4]. While our proof will be for
languages with a hash proof system, the same result extends to every language
L that has a witness encryption scheme. We remark that a similar construction
was suggested by [7]. This work showed that for every NP-relation RL = {(x,w)}
with a sampler SRL

that has an extractable hash proof system it is possible
to construct predictable arguments of knowledge for the related relation R′L =
{(x, r) | SRL

(1n; r) = (x,w)} (where r is the randomness used to sample the
instance (x,w) ∈ RL). They used the construction as a sub-protocol to obtain
a zero-knowledge predictable arguments of knowledge, but only in the random
oracle model. We analyze this construction from a completely different point of
view, we construct for every relation R that has a hash proof system (and not for
R′ as was done in [7]), a deterministic prover in the plain model. Note that for our
protocol R is not required to be sampleable. Our construction yields a statistical
zero-knowledge proof system in the plain model with an efficient prover for every
relation R that has a hash proof system (similarly, witness encryption), without
requiring it to be extractable.

Hash proof system. The notion of hash proof systems was introduced in [3,4]
in order to construct practical CCA-secure encryption schemes under standard
assumptions. The original definition in [4] refers only to hard subset membership
problems, problems for which “hard instances” can be efficiently sampled. In our
setting, we do not need to consider only hard instances, and so have a slightly
relaxed definition.

The core property of a hash proof system is the notion of a projection function
that enables the hash function to be computed in one of two ways. Informally
speaking, let L be an NP-language. Then, a function from the collection of hash
functions is determined by choosing a key k, and the function output Hk(x) can
be efficiently computed for any x. In addition, a hash function is projective if
there exists a projection function α(·) that maps keys k into their projections
s = α(k). The interesting point about the projection key s is that it is also
possible to compute Hk(x) using the projection key s together with x and a
witness w to the fact that x ∈ L. Furthermore, for any x /∈ L, the value Hk(x) is
essentially uniformly distributed (this is called “smoothness”). All of the above
together implies that the ability to compute Hk(x) given s is a proof that x ∈ L.
In particular, if x ∈ L and a witness is known, then given s one can efficiently
compute the proof Hk(x). However, if x /∈ L, then given s it is possible to
guess Hk(x) with only negligible probability. Observe that this proof can only
be verified by a verifier who knows k and so can compute Hk(x) for all x (in and
not in the language). In the original definition by [4], the smoothness property

9

was only required for a random x ∈ L. Since we wish to use this for any x ∈ L,
we require smoothness for any x ∈ L, as in the definition provided in [10].

Formally, let X = {Xn}n∈N, G = {Gn}n∈N and K = {Kn}n∈N where each
of Xn, Gn,Kn are finite, non-empty sets, and let H = {Hn}n∈N with Hn =
{Hk}k∈Kn be a collection of hash functions from X to G. We call K the key
space of the family. Let L be a non-empty language. We define a key projection
function α : K ×X → S, where S = {Sn}n∈N is the space of key projections.

Definition 3.1. The family (H,K,X , L,G,S, α) is a projective hash family if for
all n ∈ N, k ∈ Kn and x ∈ L∩{0, 1}n, it holds that the value of Hk(x) is uniquely
determined by α(k, x) and x.

Next, we define the notion of smoothness, meaning that Hk(x) is not deter-
mined by α(k, x) and x, when x /∈ L. (We do not actually need Hk(x) to be
almost uniform in G in this case, and it would suffice that it be hard to predict.
However, we use the standard notion in any case.)

Definition 3.2. Let (H,K,X , L,G,S, α) be a projective hash family. Then, for
every x ∈ X \ L of length n, let V (x, α(k, x), Hk(x)) be the following ran-
dom variable: choose k ∈R Kn and output (x, α(k, x), Hk(x)). Similarly, de-
fine V (x, α(k, x), g) as follows: choose k ∈R Kn and g ∈R Gn and output
(x, α(k, x), g). The projective hash family (H,K,X , L,G,S, α) is smooth if for

all x ∈ X \ L, {V (x, α(k), Hk(x))}x∈X\L
s≡ {V (x, α(k), g)}x∈X\L .

Finally, a hash proof system is a smooth projecting hash function that can
be sampled and computed efficiently.

Definition 3.3. Let L be an NP-language. Then, L has a hash proof system if
there exists a smooth projective hash family (H,K,X , L,G,S, α) such that the
following algorithms exist:

1. Key sampling: a probabilistic polynomial-time algorithm that upon input 1n

samples k ∈ Kn uniformly at random.

2. Projection computation: a deterministic polynomial-time algorithm that upon
input 1n, k ∈ Kn and x ∈ X ∩ {0, 1}n, outputs sx = α(k, x).

3. Efficient hashing from key: a deterministic polynomial-time algorithm that
upon input 1n, k ∈ Kn and x ∈ X, outputs Hk(x).

4. Efficient hashing from projection key and witness: a deterministic polynomial
time algorithm that upon input 1n, x ∈ L, a witness w such that (x,w) ∈ R,
and sx = α(k, x) (for some k ∈ Kn), computes Hk(x).

We are now ready to prove our theorem:

Theorem 3.4. Let L be an NP-language. If there exists a hash-proof system
for L, then there exists an auxiliary-input honest-verifier statistical zero-knowledge
where P is an efficient deterministic algorithm.

10

Proof: Intuitively, a hash proof system can be used to generate an interactive
proof by having the verifier sample a key k ∈ Kn for a hash function, compute
its projection sx = α(k, x), and send sx to the prover. Then, if the prover can
return Hk(x), the verifier is convinced that x ∈ L. This is honest-verifier zero
knowledge since a simulator can simply sample k, compute sx and simulate
the prover sending Hk(x). Furthermore, the prover is deterministic (since it
just computes the hash function using the projection) and is efficient given the
witness (by the definition of a hash proof system). We now prove this formally.
(H,K,X , L,G,S, α) be a hash proof system for L. We construct a proof system
(P, V) for L, as follows:

PROTOCOL 3.5 (auxiliary-input HVSZK with an efficient prover):

– Inputs: common input x ∈ {0, 1}n (and witness w for P)

– The protocol:

1. V samples a random k ∈R Kn, computes sx = α(k, x) and sends sx to P .

2. P computes Hk(x) using x, sx and w, and sends Hk(x) to V.

3. V computes Hk(x) and accepts iff it received y such that y = Hk(x).

It is clear that the prover in Protocol 3.5 is deterministic and efficient. It
remains to prove that the proof system is auxiliary-input honest-verifier zero
knowledge.

Completeness. If x ∈ L then, there exists an NP witness w such that (x,w) ∈ RL.
Thus, the honest P can run the efficient hashing from projection key and witness
with probability 1.

Soundness. For all n, all x /∈ L ∩ {0, 1}n, all (possibly unbounded) cheating

provers P ∗, it holds that: {V (x, α(k), Hk(x))}x∈X\L
s≡ {V (x, α(k), g)}x∈X\L.

Thus, for every cheating prover P ∗, the probability that it returns y = Hk(x) is
at most negligibly greater than 1/|Gn|.

Zero-knowledge. We construct a simulator S who upon input x ∈ {0, 1}n, chooses
k ∈R Kn, and computes α(k, x) and Hk(x). Then, S outputs the verifier’s view
to be k (or to be more exact, the randomness used to sample k) and Hk(x) as
the message received from the prover. Since α(k, x) uniquely determines Hk(x)
for any witness w when x ∈ L, the distribution generated by the simulator is
identical to that of an honest prover. ut

Instantiations. Hash proof systems are known to exist for languages defined
by the decisional Diffie-Hellman problem, quadratic residuosity, and Paillier’s
decisional composite residuosity [4,10]. Thus, this demonstrates that efficient
and deterministic-prover statistical zero-knowledge does exist for at least some
non-trivial languages.

11

Remark. We can construct the same result from witness encryption scheme.
The idea is that the verifier encrypts it own random tape with respect to the
statement in a way that if the statement is true, the prover can decrypt the
encryption and reveal the random tape, and if not there is no way for the prover
to open the commitment. As we expected, decrypting the encryption and sending
the message to the verifier will be the proof that the statement is true.

Corollary 3.6. Let L be an NP-language. If L has a statistical witness encryp-
tion with PPT encryption, then there exists an auxiliary-input honest-verifier
statistical zero-knowledge where P is an efficient deterministic algorithm.

Corollary 3.7. If L has a computational witness encryption with PPT encryp-
tion, then there exists an auxiliary-input honest-verifier zero-knowledge argument
where P is an efficient deterministic algorithm.

4 Plain ZK (Malicious and Honest Verifier)

4.1 Background

In this section, we ask whether it is possible to achieve deterministic-prover
zero knowledge for any non-trivial language. Clearly, by the result of [17], this
is not possible for auxiliary-input zero knowledge. However, it may be possible
for plain zero knowledge. We show that it is indeed possible, and in particular,
when the language is such that statements have two (or more) witnesses that are
“computationally independent” of each other (meaning that it is not possible to
compute one from the other). Such languages were used in [9] for constructing
witness-hiding proofs from witness indistinguishable proofs. The idea behind
the [9] construction is that if a proof that is a conjunction of two independent
(hard) statements leaks the witness, then the witness that is leaked reveals which
witness the prover used. This then contradicts witness indistinguishability. Our
use of such languages is different, and is based on the observation that if the two
witnesses are (computationally) independent, then one witness can be used to
prove the proof and the other can be used as a basis for the prover’s randomness.
More specifically, if we consider a statement x with two witnesses w1, w2 that
attest to x ∈ L, then the prover can run a standard zero-knowledge proof using
w1 with randomness that is obtained by applying a randomness extractor to w2.
This works as long as w2 has high enough entropy to extract a pseudorandom
string of the length needed for the proof (using a pseudorandom generator, it
suffices to extract O(n) bits). As such, w1 can be used as the actual witness in
the proof, and w2 can be used to obtain the “randomness” used by the prover
strategy in the standard zero-knowledge proof for the language.

We begin by defining the property needed from a relation in order for our
proof to work.

Definition 4.1. Let RL be a relation, and let L = {x | ∃w s.t (x,w) ∈ RL} be
an NP language. We say that L is a hard dual-witness language if the following
conditions hold:

12

– Easy to sample statements with two witnesses: There exists a probabilistic
polynomial-time sampler SL that on input 1n outputs a tuple (x,w1, w2)
where x ∈ {0, 1}n and w1 6= w2, such that (x,w1) ∈ RL and (x,w2) ∈ RL .

– Witness intractability: For every PPT algorithm A there exists a negligible
function µ(·) such that:∣∣∣Pr[(SxL(1n),A(SxL(1n), 1n)) ∈ RL]

∣∣∣ ≤ µ(n),

– Second witness intractability: For every PPT algorithm A there exists a
negligible function µ(·) such that:∣∣∣Pr[A(S1

L(1n), 1n) = S2
L(1n)]

∣∣∣ ≤ µ(n),

where SxL(1n) denotes the first element x of the triple, S1
L(1n) denotes the

first two elements (x,w1) of the triple, and S2
L(1n) denotes the third ele-

ment w2.

Remark. Definition 4.1 rules out some types of trivial relations. For example,
for any NP relation R, we can consider a new relation R′ = {(x,w||z) | (x,w) ∈
R, z ∈ {0, 1}`(n)} (where `(·) is the polynomial bound on the prover’s random
coin tosses). Consider a random instance (x,w||z) where z is random and inde-
pendent from w, the prover can use z as its random tape. This clearly trivializes
the problem, but, we note that this relation R′ does not meet Definition 4.1,
because R′ is not a hard relation. This is because any string z can be appended
to a valid witness of R to create a valid witness of R′, in contradiction to the
second witness intractability property. Definition 4.1 does not allow such trivial
relations.

Definition 4.1 requires only that it is hard to find w2 given (x,w1). However,
we actually require that the computational entropy of w2 given (x,w1) be high
enough to extract a polynomial amount of pseudorandomness. We formalize this
in the following definition:

Definition 4.2. Let L be a hard dual-witness language, let SL be the sampler,
and let `(n) be a function. We say that L has `(n)-extractable entropy if there
exists an extractor function Ext : L→ {0, 1}∗ such that{(

S1
L(1n),Ext(S2

L(1n))
)} c≡

{(
S1
L(1n), U`(n)

)}
.

We say that L has high extractable entropy if `(n) = ω(log n).

Before proceeding, we give some concrete examples of relations that fulfill
Definitions 4.1 and 4.2:

1. OR of two hard languages: In [9], witness hiding proofs were constructed for
languages that are defined as the OR of two hard statements. For example,
let f be a one-way function. Then, one can define

L =
{

(x1, x2) | ∃w : f(w) = x1 ∨ f(w) = x2

}
.

13

Since f is a one-way function, a sampler SL can easily be defined by choos-
ing independent random w1, w2 ∈ {0, 1}n and outputting the statement
x = (x1, x2) and witnesses w1, w2. The fact that it is hard to compute the
second witness from the first follows easily from the fact that it is hard to
invert the one-way function (and that w1, w2 are independent). In order to
achieve Definition 4.2, L can be repeated `(n) times for `(n) = ω(log n), and
hard-core bits can be taken from each instance. This can be generalized to
arbitrary hard languages for which it is hard to compute the witness from
the statement in the natural way.

2. Diffie-Hellman tuples: In some natural cases, it is not necessary to take the
OR of two statements; rather, a single statement has two witnesses. Let G
be a group of order q with generator g and assume that the Diffie-Hellman
assumption holds in the group (formally, assume a generator algorithm that
upon input 1n outputs a description (G, g, q) with |q| = n, for which the
Diffie-Hellman assumption holds). From here on, we omit the description of
the group, for conciseness. Consider the language

L =
{

(h1, h2, h3) | ∃a, b ∈ Zq : (h1, h2, h3) = (ga, gb, gab)
}

and observe that a by itself and b by itself are witnesses that suffice for
determining that (h1, h2, h3) ∈ L. This is due to the fact that given a one can
verify that h1 = ga and h3 = h2

a. Likewise, given b one can verify that h2 =
gb and h3 = h1

b. Next, consider a sampler who generates a group description
(G, g, q), chooses a, b ∈ Zq at random, and outputs

(
(ga, gb, gab), a, b

)
. We

argue that given (ga, gb, gab) and a, it is hard to compute b. This follows
immediately from the discrete log assumption (otherwise, given gb, compute
ga and gab and use the triple to obtain b). As in the previous example, this
can be used to achieve Definition 4.2 by taking `(n) statements and hard-core
bits.
Observe that this type of language arises quite naturally, in proving that
the key generated from a Diffie-Hellman key exchange is a certain value,
without revealing the private exponents a and b (which may be important if
they may be reused over multiple exchanges).

3. Public-key encryption ciphertext: Another example of a natural statement
that has two witnesses that fulfill Definition 4.1 can be obtained from public-
key encryption. In particular, consider the language

L =
{

(pk,m, c) | ∃r, sk : c← Encpk(m; r),m← Decsk(c)
}
.

Once again, this language has two witnesses, each of which suffice by itself
to validate that (pk,m, c) ∈ L. Specifically, given r one can verify that
c = Epk(m; r) and given sk one can verify that Decsk(c) = m. Furthermore,
it is clear that given r it is hard to compute sk (otherwise, one can break
the security of the encryption scheme by encrypting c = Epk(m; r) and using
this information to find sk). Regarding Definition 4.2, one can use the same
method as above of repetition, or can prove the existence of an extractor
function directly.

14

Observe that this type of language arises quite naturally, in proving that
a given ciphertext indeed encrypts a given message, without revealing the
public key.

The above demonstrates that the requirements of Definitions 4.1 and 4.2 can be
achieved, and even exist in many natural settings.

We remark that it is not possible to fulfil Definitions 4.1 and 4.2 by taking
the second witness w2 to be an independent random string. This is because
Definition 4.1 mandates that both (x,w1) ∈ R and (x,w2) ∈ R. Thus, a random
independent string cannot be taken as the second witness, and the definition
cannot be achieved trivially.

4.2 Plain ZK For Dual Hard Languages

We note that even hard languages may have an easy sampler, and deterministic-
prover zero knowledge cannot hold for such generation. Therefore, we suggest
a new definition is called “plain zero knowledge for dual hard instances”. The
definition requires zero knowledge to hold only with respect to samplers that
fulfill the definition of hardness as in Definition 4.1, instead of every sampler as
in Definition A.4, or random samplers as in [11].

More formally, we define 〈P, V ∗〉(SL(1n)) to be the process of running SL(1n)
to receive (x,w1, w2) and then outputting the output of V ∗ after running the
zero knowledge proof with P on common input x, where P has auxiliary input
(w1, w2). Define S(SxL(1n)) to be the result of running SL(1n) to get (x,w1, w2)
and then outputting S(x). We also define 〈P, V ∗〉(S1

L(1n)) to be the process of
running SL(1n) to receive (x,w1) and then and then outputting the output of
V ∗ after running with P on common input x, where P has auxiliary input w1.

Definition 4.3 (plain zero-knowledge for dual hard instances). Let (P, V)
be an interactive proof system for a hard dual-witness language L. We say that
(P, V), is statistical/computational uniform plain zero-knowledge for dual hard in-
stances if for every probabilistic polynomial-time V ∗ there exists a probabilistic
polynomial-time algorithm S such that the following two ensembles are uniform
computationally indistinguishable:

– {〈P, V ∗〉(SL(1n))}n∈N
– {S(SxL(1n))}n∈N

where SL is a sampler as in Definition 4.1

4.3 The Construction

We are now ready to prove that deterministic-prover plain zero knowledge for
dual hard instances exists for such languages.

Theorem 4.4. Let L be a hard dual-witness language with high extractable en-
tropy with parameter `(n), and assume the existence of a pseudorandom gener-
ator G : {0, 1}`(n) → {0, 1}p(n) for non-uniform distinguishers, where p(n) is

15

the number of random bits needed by the prover in the proof of [16] for L. Then
there exists a deterministic prover computational plain zero-knowledge for dual
hard instances proof system for L. Furthermore, given both witnesses, the proof
has an efficient prover.

Proof: Let (PL, VL) be the computational zero-knowledge proof system for L
known to exist by [16] (the assumptions in the theorem imply the existence of
one-way functions that suffice for [16]), and let p(n) be the number of coins used
by the prover in (PL, VL) on input x ∈ {0, 1}n. We construct a deterministic-
prover proof (P, V) for L as follows:

PROTOCOL 4.5 (computational plain zero-knowledge for L):

– Input: common input x ∈ {0, 1}n (and two witnesses w1, w2 for P)
– The protocol:

1. P computes s = Ext(w2) ∈ {0, 1}`(n).
2. P computes r = G(s) ∈ {0, 1}p(n).
3. P and V run the zero-knowledge proof (PL, VL), where P runs PL on

input (x,w1) with random tape r, and V runs VL on input x and a
uniform random tape.

Intuitively, Protocol 4.5 is zero knowledge since r is indistinguishable from an
independently chosen random tape. We formally prove this in Appendix C. ut
Plain versus auxiliary-input zero knowledge. The fact that Theorem 4.4 holds
only for plain zero knowledge can be seen as follows. Consider the setting of
auxiliary input, and where the distinguisher is given the witnesses w1, w2. In
this case, the distinguisher can run P (x,w1, w2) itself and compare that the
result is exactly what it received. The probability that a simulator can generate
this view is negligible, due to the fact that it w2 has high extractable entropy.

Technically, in the proof of Theorem 4.4, observe that we use the fact that
L has high extractable entropy, meaning that{(

S1
L(1n),Ext(S2

L(1n))
)}
n∈N

c≡
{(
S1
L(1n), U`(n)

)}
n∈N .

However, such indistinguishability can only be assumed for uniform distinguish-
ers. In particular, in the case of non-uniform distinguishers or auxiliary input,
a distinguisher who is given w2 as well as (x,w1) can always distinguish the
distributions with probability 1.

Single witness languages and circularity. An interesting question that arises in
this context is whether it is possible to achieve a similar construction when there
is only a single witness of high entropy. The problem that arises in this context is
that of circularity since the same witness is used to run the prover strategy in the
proof and to derive its randomness. It may be possible to therefore construct
deterministic-prover zero knowledge under circular-secure assumptions, but it
seems unlikely that this is possible under standard assumptions that do not
imply security in this type of circular setting.

16

4.4 A Generic Instantiation using Strong Extractors

Our above construction assumes the existence of an appropriate extractor func-
tion Ext without specifying what it should be. For one-way functions it could be
a hard-core predicate, for example, as we described above. In this section, we
give a more generic instantiation that uses strong extractors and works as long
as the min-pseudoentropy of the witness is high enough. However, since strong
extractors need a random seed, this must be chosen by the verifier, and thus the
construction in this section works only for honest verifiers. As such, the results
here provide an alternative to those of Section 2 that assume the existence of
a doubly-enhanced 1–1 one-way function. Thus, for languages of the type we
consider here, one-way functions alone suffice, and we do not need the addition
assumption of the double enhancement.

We begin by formally defining pseudoentropy and strong extractors.

Definition 4.6. A random variable X has pseudoentropy at least k if there exists
a random variable Y such that: X is computationally indistinguishable from Y ,
and H(Y) ≥ k, where H(·) denotes Shannon entropy.

In our constructions in this section, we assume that the distribution
{
S2
L(1n)

}
n∈N

has min-pseudoentropy of ω(log(n)).

Definition 4.7. A strong extractor family (or simply strong extractor) is an in-
finite family E = {En}, indexed by a parameter n, of the form En : {0, 1}h(n) ×
{0, 1}m(n) → {0, 1}`(n) where the functions h(n),m(n), `(n), are all polynomial
in n. The extractor family E is called (k(n), ε(n))-statistical if for any probability
ensemble X with support in {0, 1}h(n) and min-entropy k(n), it holds that:

StatDiff(〈U`(n), En(Xn, Um(n))〉, Um(n)+`(n)) ≤ ε(n)

The construction. Clearly, we cannot expect to obtain true statistical closeness
between the extracted value from w2 and a random string, since w2 has no real
entropy (in particular, an unbounded distinguisher can find w2 and compute
the extractor on the value). Thus, we have only computational entropy, and so
want to achieve computational indistinguishablity. We achieve this by having
the verifier choose the seed for the extractor, and the prover applying it to w2 as
the source. We therefore use an extractor, according to the following definition:

Definition 4.8. A family E = {En} of strong extractors is called k(n)-comput-
ational if En is polynomial-time computable, and for all efficiently-samplable
probability ensembles X with min-entropy k(n), the joint distribution 〈U`(n),
En(Xn, Um(n))〉 is computationally indistinguishable from Um(n)+`(n).

We are now ready to state the theorem:

Theorem 4.9. Let L be a hard dual-witness language. Assume that there exists
a strong extractor En : {0, 1}h(n) × {0, 1}m(n) → {0, 1}`(n) for a polynomial
`(n) = ω(log(n)) and a pseudorandom generator G : {0, 1}`(n) → {0, 1}p(n) for

17

non-uniform distinguishers, where p(n) is the number of random bits needed by
the prover in the proof of [16] for L. Then there exists a deterministic prover
computational plain zero-knowledge proof system for L. Furthermore, given both
witnesses, the proof has an efficient prover.

Proof: Let (PL, VL) be the computational zero-knowledge proof system for L
known to exist by [16], and let p(n) be the number of coins used by the prover
in (PL, VL). We construct a deterministic-prover proof (P, V) as follows:

PROTOCOL 4.10 (honest-verifier computational plain zero-knowledge):

– Input: common input x ∈ {0, 1}n (and two witnesses w1, w2 for P)
– The protocol:

1. V choose a random s′ ∈R {0, 1}m(n) and sends s′ to P .
2. P computes s = En(w2, s

′) ∈ {0, 1}`(n).
3. P computes r = G(s) ∈ {0, 1}p(n).
4. P and V run zero-knowledge proof (PL, VL), where P runs PL on (x,w1)

with random tape r, and V run VL on input x.

The proof of this protocol is as in the proof of Theorem 4.4. ut

5 Sequential Composition

An interesting question that arises in the setting of deterministic-prover zero
knowledge relates to sequential composition. The fact that sequential composi-
tion holds for auxiliary-input zero knowledge was proved in [17]. Since our results
in Sections 2 and 3 are auxiliary-input zero knowledge, it immediately follows
that:

There exist deterministic-prover zero knowledge proofs (with an honest
verifier) that remain zero knowledge under sequential composition.

In contrast, it is clear that Protocol 4.5 does not preserve zero knowledge under
sequential composition. This is due to the fact that the verifier can send different
queries in each execution and obtain the witness, in the same way that the
knowledge extractor for [16] works (using the fact that it is a proof of knowledge).

Acknowledgments

We thank Iftach Haitner for significant helpful discussions.

References

1. B. Barak, Y. Lindell and S. Vadhan. Lower Bounds for Non-Black-Box Zero
Knowledge. In Journal of Computer and System Sciences, 72(2):321–391, 2006.

18

2. R. Canetti, O. Goldreich, S. Goldwasser and S. Micali. Resettable Zero-
Knowledge. In the 32nd STOC, pages 235–244, 2000.

3. R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Se-
cure Against Adaptive Chosen Ciphertext Attack. In CRYPTO 1998, Springer
(LNCS 1462), pages 13–25, 1998.

4. R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adap-
tive Chosen Ciphertext Secure Public-Key Encryption. In EUROCRYPT 2002,
Springer (LNCS 2332), pages 45–64, 2002.

5. S. Garg, C. Gentry, A. Sahai and B. Waters. Witness Encryption and its Ap-
plications. In STOC, pages 467–476, 2013.

6. S. Even, O. Goldreich and A. Lempel. A Randomized Protocol for Signing
Contracts. In Communications of the ACM, 28(6):637–647, 1985.

7. A. Faonio, J.B. Nielsen and D. Venturi. Predictable Arguments of Knowledge
In Public-Key Cryptography, Springer (LNCS 10174), pages: 121–150 ,2017.

8. U. Feige, D. Lapidot and A. Shamir. Multiple Non-Interactive Zero Knowl-
edge Proofs Based on a Single Random String (Extended Abstract). In the 31st
FOCS, pages 308–317, 1990.

9. U. Feige and A. Shamir. Witness Indistinguishable and Witness Hiding Proto-
cols. In the 22nd STOC, pages 416–426, 1990.

10. R. Gennaro and Y. Lindell. A Framework for Password-Based Authenticated
Key Exchange. In EUROCRYPT 2003, Springer (LNCS 2656), pages 524–543,
2003.

11. O. Goldreich. A Uniform-Complexity Treatment of Encryption and Zero-
Knowledge. In Journal of Cryptology, 6(1):21–53, 1993.

12. O. Goldreich. Foundations of Cryptography: Volume 1 - Basic Tools. Cambridge
University Press, 2001.

13. O. Goldreich. Foundations of cryptography: Volume 2 - Basic Applications. Cam-
bridge University Press, 2004.

14. O. Goldreich. Basing Non-Interactive Zero-Knowledge on (Enhanced) Trapdoor
Permutations: The State of the art. Studies in Complexity and Cryptography,
Springer, pages 406–421, 2011.

15. O. Goldreich and L. Levin. A Hard-Core Predicate for All One-Way Functions.
In the 21st STOC, pages 25–32, 1989.

16. O. Goldreich S. Micali and A. Wigderson. Proofs That Yield Nothing But Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems. In the
Journal of the ACM, 38(1):691–729, 1991. (Extended abstract in FOCS 1986.)

17. O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof
Systems. In Journal of Cryptology, 7(1):1–32, 1994.

18. O. Goldreich and R. Rothblum. Enhancements of Trapdoor Permutations. In
Journal of Cryptology, 26(3):484–512, 2013.

19. S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Inter-
active Proof Systems. In SIAM Journal on Computing, 18(1):186–208, 1989.
(Extended abstract in STOC 1985.)

20. M.H. Nguyen and S. Vadhan. Zero Knowledge with Efficient Provers. In 38th
STOC, pages 287–295, 2006.

21. S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, Mas-
sachusetts Institute of Technology, August 1999.

19

A Definitions and Preliminaries

A.1 Preliminaries

A function µ(·) is negligible in n, or just negligible, if for every positive polyno-
mial p(·) and all sufficiently large n’s it holds that µ(n) < 1/p(n). We denote
the length of the statement x to the zero-knowledge proof by n. All parties are
assumed to run in time that is polynomial in the length of the statement (in
particular, if they also receive auxiliary input, then their running time still de-
pends only on the length of the statement, and not on the length of the auxiliary
input). We denote by A(x; r) the deterministic output of algorithm A on input
x and the random string r, and denote by tM (·) the running time of machine
M . We sometimes use PPT as shorthand for probabilistic polynomial time. A
non-uniform probabilistic polynomial time machine is a pair (M,a), where M is
a two-input polynomial-time Turing machine and a = a1, a2, · · · is an infinite
sequence of strings. For every x, we the computation of machine M is with the
input pair (x, a|x|); as stated above, the running time of the machine depends
only on the length of the first input x. An interactive protocol (M1,M2) consists
of two machines that compute the next-message function of the machines in the
protocol. We denote by M1(x, a, α1, · · · , αk; r) the next message αk+1 sent by
machine M1 on common input x, auxiliary-input a, random tape r, and messages
received α1, · · ·αk.

In this work, we consider uniform and non-uniform computational indistin-
guishability, defined as follows:

Definition A.1. Two distribution ensembles X = {Xn}n∈N and Y = {Yn}n∈N
are non-uniform computationally indistinguishable if for every non-uniform polynomial-
time algorithm D there exists a negligible function µ(·) such that for every n ∈ N,∣∣∣Pr[D(Xn) = 1]− Pr[D(Yn) = 1]

∣∣∣ ≤ µ(n)

If the above holds for every uniform probabilistic polynomial-time algorithm D,
then X and Y are said to be uniform computationally indistinguishable.

We denote computational indistinguishability by X
c≡ Y , with the distinc-

tion between uniform and non-uniform being by context. We also use statistical
closeness:

Definition A.2. Two distribution ensembles X = {Xn}n∈N and Y = {Yn}n∈N
are statistically close, denoted X

s≡ Y , if there exists a negligible function µ(·)
such that for every n ∈ N,

StatDiff(X,Y)
def
= max

S⊆{0,1}∗

∣∣∣Pr[X ∈ S]− Pr[Y ∈ S]
∣∣∣ ≤ µ(n)

20

A.2 Zero Knowledge Proof Systems – Definitions

Let L be an NP language and let RL be its associated relation. For any x, define
the witness set WL(x) to be the set of all w such that (x,w) ∈ RL. We denote
by 〈P (w, rP), V (z, rV)〉(x) the view of a PPT V after the interaction with P
on joint input x, where P has additional input w and random tape rP , and V
has additional input z and random tape rV . We denote by 〈P (w), V (z)〉(x) the
associated random variable when rP and rV are chosen uniformly.

Definition A.3 (auxiliary-input zero knowledge). Let (P, V) be an inter-
active proof system for a language L. We say that (P, V), is statistical/computational
auxiliary-input zero knowledge if for every probabilistic polynomial-time V ∗ there
exists a probabilistic polynomial-time algorithm S such that the following two
ensembles are statistically/computationally indistinguishable:

– {〈P (w), V ∗(z)〉(x)}x∈L,z∈{0,1}∗ for arbitrary w ∈WL(x)
– {S(x, z)}x∈L,z∈{0,1}∗

We say that the proof system is honest verifier auxiliary-input zero-knowledge if
the above holds for the specified V .

We remark that in the case of an honest verifier, it suffices to give the auxiliary
input to the distinguisher, since the verifier does not use it in any case.

We also note that in the case of auxiliary-input zero-knowledge, it suffices to
consider uniform computational indistinguishability (with uniform distinguish-
ers), as this is equivalent to non-uniform distinguishers [12].

Plain zero-knowledge. The original definition of zero knowledge did not consider
auxiliary inputs. Although auxiliary inputs are crucial in many applications (and
to obtain sequential composition), questions of feasibility regarding zero knowl-
edge with no auxiliary input are of theoretical interest. We call this original
definition plain zero knowledge. There are two ways to define plain zero knowl-
edge; in the first variant the distinguisher is given the witness [12], while in the
second variant the distinguisher is not given the witness [1]. Although the latter
notion is weaker, we argue that it is a natural definition, since the simulation
paradigm guarantees formalizes the notion that V ∗ could generate an indistin-
guishable view itself. Since V ∗ does not have the witness, indistinguishability
relative to distinguishers who don’t have the witness is natural. In addition, our
result in Section 4 relies on this fact crucially. We define two variants of plain
zero-knowledge, one with uniform verifiers and distinguishers, and the other with
non-uniform machines.

Definition A.4 (plain zero-knowledge). Let (P, V) be an interactive proof
system for a language L. We say that (P, V), is statistical/computational uniform
plain zero-knowledge if for every probabilistic polynomial-time V ∗ there exists a
probabilistic polynomial-time algorithm S such that the following two ensembles
are uniform computationally indistinguishable:

21

– {〈P, V ∗〉(x)}x∈L
– {S(x)}x∈L

We say that the proof system is non-uniform plain zero-knowledge if the above
holds for every non-uniform probabilistic polynomial-time V ∗ and with non-
uniform computational indistinguishability. If the above holds with statistical
closeness then it is plain statistical zero-knowledge, and if only for the specified
verifier then it is honest-verifier plain zero-knowledge.

We remark that our definition is different to the standard definition of uni-
form zero-knowledge by Goldreich [11], since we quantify over every x ∈ L and
do not require uniform generation of the inputs. The reason for this is that the
aim of [11] was to consider a fully uniform treatment of zero knowledge, in-
cluding the use of uniform hardness assumptions only. In contrast, our aim in
this relaxation is to achieve deterministic-prover zero knowledge, and we do not
mind using non-uniform hardness assumptions. Thus, it suffices for us to use
this simpler formulation.

A.3 Collections of One-Way Functions

For the sake of completeness, we recall the definition of families (or collections)
of functions.

Definition A.5. A collection of functions consists of an infinite set of indices
I, a corresponding set of functions {fi}i∈I , and a set of finite domains {Di}i∈I ,

where the domain of fi is Di. A collection of functions (I, {fi}, {Di}) is called
one-way if there exist three probabilistic polynomial-time algorithms I, D and F
such that the following conditions hold:

1. Easy to sample and compute: The output distribution of algorithm I on input
1n is a random variable assigned values in the set I ∩ {0, 1}n. The output
distribution of algorithm D on input i ∈ I is a random variable assigned
values in the set Di. On input i ∈ I and x ∈ Di, algorithm F always outputs
fi(x); i.e., F (i, x) = fi(x).

2. Hard to invert: For every probabilistic polynomial-time algorithm A′, every
positive polynomial p(·) and all sufficiently large n’s,

Pr[A′(In, fIn(Xn)) ∈ f−1In (fIn(Xn))] <
1

p(n)

where In is a random variable denoting the output distribution of I(1n) and
Xn is a random variable denoting the output distribution of D on input (ran-
dom variable) In. We denote a collection of one-way functions by its algorithms
(I,D, F).

22

B Full Proof of Zero-Knowledge for Protocol 2.4

Theorem B.1. Protocol 2.4, denoted (P, V), is honest-verifier zero knowledge.

Proof: We begin by constructing a “hybrid” proof system (P1, V1) that is
the same as (P, V) except that the random tape b used to run P is chosen
independently of the string r sent by V .

Proof system (P1, V1) for L:

– Input: common input x ∈ {0, 1}n (and witness w for P)
– The protocol:

1. V chooses a random string r ∈R {0, 1}n·p(n), and sends r to P .
2. Denote the message achieved from V by r = (r1, · · · , rp(n)), where each
ri ∈ {0, 1}n.

3. P chooses a random string b ∈ {0, 1}p(n).
4. P runs P ′ with input x, witness w, and random tape b.
5. V runs V ′ with input x and a uniform random tape.

We claim that{
〈P1, V1〉(x, z)

}
x∈L;z∈{0,1}∗

c≡
{
〈P, V 〉(x, z)

}
x∈L;z∈{0,1}∗

. (1)

This follows from the indistinguishability of hard-core bits from random, as in
Lemma 2.2. Formally, assume by contradiction that there exists a probabilistic
polynomial-time distinguisher D and a polynomial q(·) such that for infinitely
many x’s,∣∣∣Pr [D(〈P1, V1〉(x, z), x, z) = 1]− Pr [D(〈P, V 〉(x, z), x, z) = 1]

∣∣∣ > 1

q(|x|)
.

We construct a non-uniform polynomial-time distinguisher D′ that distinguishes(
U

(1)
n , B(f−1(S(1n;U

(1)
n)))

)
, . . . ,

(
U

(p(n))
n , B(f−1(S(1n;U

(p(n))
n)))

)
from U(n+1)·p(n)

with at least the same probability, as follows. Upon receiving an input string r
of length (n+ 1) · p(n) and advice (x,w) with |x| = n, D′ works as follows:

1. D′ parses r into (r1, b1), . . . , (rn, bp(n)) and sets b = (b1, . . . , bp(n)).

2. D′ computes 〈P ′((xn, wn); b), V ′〉(xn) and obtains the resulting verifier’s
view. (We stress that P ′ is run using randomness b, and V ′ is run with
a uniform random tape.)

3. D′ invokes D on the “view” including r1, . . . , rp(n):(
(r1, . . . , rp(n)), 〈P ′((xn, wn); b), V ′〉(xn)

)
and returns whatever D outputs.

23

Clearly, when D′ receives input(
U (1)
n , B(f−1(S(1n;U (1)

n)))
)
, . . . ,

(
U (p(n))
n , B(f−1(S(1n;U (p(n))

n)))
)
,

the view generated is exactly that of (P, V), since P ′’s coins b are the hard-
core bits from the preimages of r1, . . . , rn. In contrast, when D′ receives input
U(n+1)·p(n), the view generated is exactly that of (P1, V1), since P ′’s coins b
are random and independent of r1, . . . , rn. Thus, for infinitely many n’s, D′

distinguishes a series of hard-core predicates from random with probability at
least 1/q(n), in contradiction to Lemma 2.2.

Next, we prove that (P1, V1) is auxiliary-input honest-verifier zero-knowledge.
This follows from the fact that (P ′, V ′) is auxiliary-input honest-verifier zero-
knowledge, and so has a simulator S ′. In particular, the only difference between
(P1, V1) and (P ′, V ′) is that V1 sends a uniform random string r at the onset of
the protocol. However, this string is not used for anything in the sequel. Thus, we
can construct a simulator S1 for (P1, V1) who chooses a random r ∈ {0, 1}n·p(n)
and outputs r followed by S ′(x). By the assumption that S ′ is a good simulator
for (P ′, V ′) we have that{

S ′(x, z)
}
x∈L;z∈{0,1}∗

c≡
{
〈P ′(w), V ′(z)〉(x)

}
x∈L;z∈{0,1}∗

and so{
S1(x, z)

}
≡
{
Un·p(n),S ′(x, z)

}
c≡
{
Un·p(n), 〈P ′(w), V ′(z)〉(x)

}
≡
{
〈P1(w), V1(z)〉(x)

}
.

Combining the above with Eq. (1), we conclude that{
S1(x, z)

}
x∈L;z∈{0,1}∗

c≡
{
〈P (w), V (z)〉(x)

}
x∈L;z∈{0,1}∗

,

completing the proof. ut

C Full Proof of Zero-Knowledge for Protocol 4.5

Theorem C.1. Protocol 4.5, denoted (P, V), is honest-verifier zero knowledge.

Proof: We define two “hybrid” protocols (P ′, V ′) and (P ′′, V ′′):

Protocol (P ′, V ′):

– Input: common input x ∈ {0, 1}n (and witness w1 for P)
– The protocol:

1. P ′ chooses a random s ∈ {0, 1}`(n).
2. P ′ computes r = G(s) ∈ {0, 1}p(n).
3. P ′ and V ′ run the zero-knowledge proof (PL, VL), where P ′ runs PL on

input (x,w1) with random tape r, and V ′ runs VL on input x and a
uniform random tape.

24

Protocol (P ′′, V ′′):

– Input: common input x ∈ {0, 1}n (and witness w1 for P)
– The protocol:

1. P ′′ chooses a random r ∈ {0, 1}p(n).
2. P ′′ and V ′′ run the zero-knowledge proof (PL, VL), where P ′′ runs PL

on input (x,w1) with random tape r, and V ′′ runs VL on input x and a
uniform random tape.

We begin by proving that the output distributions of (P, V) and (P ′, V ′) are
computationally indistinguishable; formally,{

〈P, V 〉(SL(1n))
}
n∈N

c≡
{
〈P ′, V ′〉(S1

L(1n))
}
n∈N

.

Assume by contradiction that there exists a probabilistic polynomial-time al-
gorithm D and a polynomial p(·) such that for infinitely many n’s, algorithm
D distinguishes 〈P, V 〉(SL(1n)) from 〈P ′, V ′〉(S1

L(1n)) with probability at least
1

p(n) . We use D to construct D′ that distinguishes (S1
L(1n),Ext(S2

L(1n))) from

(S1
L(1n), U`(n)) with at least the same probability.
Upon receiving inputs (S1

L(1n), s), D′ computes r = G(s) and generates
the output of the interaction between prover PL(S1

L(1n)) with random-tape
r and verifier VL(SL(1n)). Next D′ runs D on the output of the interaction
and outputs whatever D outputs. Clearly, if s = Ext(S2

L(1n)) then D′ outputs
D(〈P, V 〉(SL(1n))), whereas if s is random then D′ outputs D(〈P ′, V ′〉(S1

L(1n))).
Thus, D′ distinguishes on infinitely many n’s with probability at least 1

p(n) . This

contradicts the assumption that L has high extractable entropy.
Next, we prove that{

〈P ′, V ′〉(S1
L(1n))

}
n∈N

c≡
{
〈P ′′, V ′′〉(S1

L(1n))
}
n∈N

.

This follows from a straightforward reduction to the assumption that G is a
pseudorandom generator that is secure for non-uniform distinguishers (the non-
uniformity is needed for the infinite series of n’s for which indistinguishability
does not hold).

Noting now that (P ′′, V ′′) is identical to the original (PL, VL) that is zero
knowledge, we conclude that (P, V) is zero-knowledge. Since P is deterministic,
this concludes the proof.

ut

D Instantiations of Collections of Dense 1–1 One-Way
Functions

In this section, we show that collections of dense doubly-enhanced 1–1 one-way
functions can be instantiated under standard assumptions. We remark that this
includes the discrete log assumption (an assumption under which we do not
know how to construct trapdoor permutations).

25

The RSA assumption. The RSA collection of functions has an index set con-
sisting of pairs (N, e), where N is a product of two primes (p and q) and e is
relatively prime to φ(N) = (p − 1)(q − 1). The fact that the RSA collection
fulfills the doubly-enhanced requirement was shown in [18]. The fact that it
is dense follows from the fact from the density of prime numbers. In particu-
lar, by Bertrand’s postulate, the number of n/2-bit prime numbers is at least

α
def
= 2n/2

3n/2 = 2n/2−1

3n . Thus, the number of n-bit numbers that are the product of

two distinct primes is at least
(
α
2

)
≈ 2n−2

18n2 >
2n

n3 , where the last inequality holds
for large enough n. Thus, one can take `(n) = n3 and a random n-bit number is
a valid RSA modulus with probability at least 1/`(n). Observe that for RSA, it
is also necessary to find e that is relatively prime to φ(N). However, the prover
can do this deterministically, and can send back to the verifier the index of the
modulus and the public exponent e. (Recall that a cheating prover cannot gain
anything by cheating, so this is valid.)

The Factoring assumption. The same idea as above can be used to show that (a
variant of) the Rabin function meets all requirements (see [18] for the fact that
such a variant can be shown to be doubly enhanced).

The Discrete-Logarithm assumption. The discrete log assumption (over a finite
field) states that the collection of functions DLPp,g(x) = gx mod p, for a ran-
dom safe prime p and generator g is one way. The standard sampler I for this
collection samples random q until q and p = 2q+ 1 are prime, and takes g to be
any square. Regarding the enhancements, we define S for the function DLPp,g
who outputs a value y ∈ Z∗p that is statistically close to uniform by repeatedly
choosing y of length p and outputting it if y < p (and aborting if n repetitions
fail). Since each attempt succeeds with probability at least 1/2, this fulfills the
condition. Since the value y is almost uniform, and the randomness used by S
defines y directly, it is hard to invert DLPp,g on y under the standard discrete
log assumption. Regarding the requirement to generate pairs of random coins
for S and its inverse, this can be easily achieved by choosing a random x ∈ Zq
and computing y = gx. Then, S as above is run until it succeeds. Finally, all of
the random coins used by S in the failed attempt are output, and y is taken as
the random coins used by S in the last successful attempt. Algorithm R then
outputs these coins, together with x. Finally, regarding the dense requirement,
this is the case for the version of the discrete log assumption where a random
prime p is taken, and not a safe prime. However, the density of safe primes is
not known. Nevertheless, our protocol can easily be instantiated in this case
by having (the honest) V generate p, g, and sending the function description to
the prover. This works since unlike in the RSA and factoring assumptions, the
randomness used to sample p reveals nothing.

Summary. We conclude that deterministic-prover honest-verifier zero-knowledge
can be achieved under standard assumptions. That is:

26

Corollary D.1. If the RSA, factoring or discrete log assumptions hold, then
every language L ∈ NP has an honest-verifier public-coin deterministic-prover
auxiliary-input zero-knowledge proof.

27

	Deterministic-Prover Zero-Knowledge Proofs

