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ABSTRACT
With the emerging popularity of cloud computing, the problem
of how to query over cryptographically-protected data has been
widely studied. However, most existing works focus on querying
protected relational databases, few works have shown interests in
graph databases. In this paper, we first investigate and summarise
two single-instruction queries, namely Graph Pattern Matching
(GPM) and Graph Navigation (GN). Then we follow their design
intuitions and leverage secure Multi-Party Computation (MPC) to
implement their functionalities in a privacy-preserving manner.
Moreover, we propose a general framework for processing multi-
instruction query on secret-shared graph databases and present
a novel cryptographic primitive Oblivious Filter (OF) as a core
building block. Nevertheless, we formalise the problem of OF and
present its constructions using homomorphic encryption. We show
that with OF, our framework has sub-linear complexity and is
resilient to access-pattern attacks. Finally, we conduct an empirical
study to evaluate the efficiency of our proposed OF protocol.
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1 INTRODUCTION
Graph Database-as-a-Service (GDaaS) has gained much popularity
in the industry recently. Many cloud service providers (CSPs) offer
built-in GDaaS such as Google’s Aura and Amazon’s Neptune. How
to resolve people’s concern over the confidentiality of their data and
provide search functionality has become one of the most imperative
challenges for cloud databases.

This problem has been comprehensively studied for relational
databases. First introduced in 2000 by Song [53], the problem of
Protected Database Search (PDS) has motivated the research in dif-
ferent aspects such as Private Information Retrieval (PIR) [18, 27],
Searchable Symmetric Encryption (SSE) [13], and Order-Preserving
Encryption (OPE) [3]. Roughly, in PDS, data owner securely out-
sources its data onto cloud servers (presumably in an encrypted
or secret-shared form), and then client performs searches on the
protected data. The security of PDS requires that cloud servers
eventually learn nothing about the securely-outsourced data except
the search results. To date, existing work on PDS can be divided into
three categories: encryption based solutions[42, 44, 50, 55, 58, 59],
secret-sharing based solutions [6], and trusted-hardware based so-
lutions [26]. Despite the extensive study of PDS problem, most of
the work target on relational databases [6, 26, 42, 44, 50, 55, 58, 59].
There is a lack of study on searching over protected graph databases.
Unlike relational databases, graph databases by design maintain

the relationship between nodes, which allows fast and efficient
connection check between two nodes [8]. To bridge the gap, in this
work, we bring the PDS problem to graph databases, and study the
Protected Graph Database Search (PGDS) problem.

Problem andChanllenges. Similar to PDS, PGDS aims to provide
search functionality over on a cryptographically-protected and out-
sourced graph database. Many works [6, 45] and industrial systems
such as Crypten [1] and TFEncrypted [20] leverage secret-share
secure computation model to provide protection for secret data.
Therefore, we focus on the PGDS problem where the outsourced
graph data is protected by a secret sharing scheme (e.g. [52]). Gen-
erally, in our solution of PGDS, we assume the existence of three
types of participants:

• An honest data holder H who holds a private graph data-
base but has limited storage and computation resources, and
thereforeH outsources its private data to servers;
• Two non-colluding cloud servers S0,S1 who have practical
storage, computation, and networking capability;
• An honest client who C performs secure searching function-
ality by interacting with S0 and S1.

Intuitively, for privacy concern, cloud servers should not learn
anything about the underlying graph data except for metadata (e.g.,
the number of vertices and edges). Also, since we facilitate two-
party secret sharing for secure computation, we further restrict our
threat model to a single semi-honest adversary.

There are two challenges towards the secret-sharing based PGDS
problem. First, scalability. This is because graph data can contain
millions or even trillions of edges and vertices in the real-world
application, e.g. social graphs, interest graphs, and consumption
graphs. Therefore it is essential for the solution to be highly-scalable.
Second, security. Previous works on PDS leaks access patterns in
order to boost performance [13], which further broadens the at-
tack plane. Recent work [36] has demonstrated a practical attacks
utilising access patterns. In this work, we aim at eliminating all
information leakages, especially access patterns.

1.1 Existing Work
Apart from the vast amount of work on relational databases based
PDS, recently, Lai et al. [39] proposed GraphSE2, which addresses
the problem of PGDS by leveraging a SSE scheme called Oblivious
Cross-Tags (OXTs) [13] protocol. In particular, GraphSE2 provides
an encrypted structural data model to facilitate parallel and en-
crypted data access (like set operations and graph traversal). How-
ever, it also inherits the leakage from the original OXT protocol
and inevitably leaks access patterns, and thus is prone to access
pattern attacks, which contradicts the initiatives of this work.
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1.2 Our Contribution
To resolve the above challenges, in this paper, we propose a novel
query processing system for secret-shared PGDS problem. In partic-
ular, our system can be seen as a graph traversal machine working
on secret-shared graph databases. There are two general features
supported by our system: Graph Pattern Matching (GPM) and Graph
Naviagtion (NG). We begin by introducing a novel graph sharing
scheme which serves as the infrasturcture of our system, and then
present the secure evaluation of GPM based on Ullmann’s algo-
rithm [56], and secure evaluation of GN based on Gremlin [49],
a popular industrial query processing machine. Afterwards, we
propose a secure evaluation framework for multi-instruction query,
which allows the evaluation of composed single instructions. The
proposed secure evaluation framework for multi-instruction query
relies on a novel cryptographic primitive: Oblivious Filter. Similar
to the famous oblivious transfer [17, 38], oblivious filter is a two-
party functionality between a server and a client, where the client
obliviously filters an input list from server, and obtains the result
in a secret-shared form. During the protocol, both server and client
know nothing about the result. We also present a variant of OF, i.e.,
Secret-Shared Oblivious Filter, which can be used as a secret-input
and secret-output blackbox filter, improving the scalability of our
framework. Afterwards, we provide a HE-based construction of OF
and prove its security under the simulation-based security.
Contribution.We summarize our main contributions in this paper
as follows.
• We introduce a new graph sharing scheme which allows efficient
connectivity check between two nodes, and has practical storage
complexity. The graph sharing scheme only leaks the metadata.
• We summarize exiting queries on graph database into two single
instruction queries, i.e., GPM and GN, and propose their secure
evaluations.
• We propose a secure graph traversal machine based on oblivi-
ous filter. Our traversal machine works on secret-shared graph
databases, and allows evaluation on the sequential composition
of multiple instructions.
• We introduce a new cryptographic primitive, i.e., oblivious filter,
allowing obliviously filtering the database with conditions. We
also provide its HE-based construction, which is secure under a
semi-honest non-adaptive adversary.
• We conduct an empirical study to evaluate the performance of
our proposed building block — oblivious filter.

2 BACKGROUNDS AND TOOLS
In this section, we present some background knowledge and defini-
tions about graphs, databases, and some cryptographic primitives.
In summary, Section 2.1 first introduces two secure computation
techniques: secret sharing and additive homomorphic encryption.
Then Section 2.2 shows how to model and represent graph data.
Finally Section 2.3 takes a in-depth look at two fundamental query
functionalities, i.e., graph pattern matching and graph navigation.
Syntax. Our solution involves many interactions among a data
holder H , two cloud servers S0,S1, and a client C. In the following
of this paper, we use a pair with angle brackets, i.e., ⟨ and ⟩, to denote
the data that is only visible to the corresponding party. The ordering
that we use is ⟨H ,S0,S1, C⟩. For example ⟨𝑥,𝑦, 𝑧, 𝑘⟩means that 𝑥 is

only visible toH , 𝑦 is only visible to S0, 𝑧 is only visible to S1, and
𝑘 is only visible to C. Also we use ⊥ to represent empty. We further
simplify the notation and omit the empty symbol ⊥. That is, we use
⟦𝑥⟧ or ⟨⟦𝑥⟧0, ⟦𝑥⟧1⟩ as an abbreviation of ⟨⊥, ⟦𝑥⟧0, ⟦𝑥⟧1,⊥⟩, ⟨𝑥, ◦⟩
as an abbreviation of ⟨𝑥,⊥,⊥,⊥⟩, and ⟨◦, 𝑥⟩ as an abbreviation of
⟨⊥,⊥,⊥, 𝑥⟩.

2.1 Secure Computation Techniques
Secure computation addresses the main challenge of the secret-
share based PGDS problem. We introduce the basic concepts and
notations of two secure computation techniques, i.e., secret-sharing
and additive homomorphic encryption.
Secret sharing. Secret sharing is a cryptography primitive aiming
to distribute a secret among a group of parties (participants), such
that each party holds a share of the secret [52]. And secret sharing
ensures that only with a sufficient amount of participants, the secret
can be revealed. More formally, a secret sharing scheme is a pair
of algorithms between 𝑡 parties: (Shr,Rec). Since in Secret Shared
Graph Database (SSGD), we only consider the situation with a
distributor and two receivers, the functionalities of secret sharing
from H to S0 and S1 could be denoted as:
• ⟨⟦𝑥⟧0, ⟦𝑥⟧1⟩ ← Shr(⟨𝑥, ◦⟩),
• ⟨𝑥, ◦⟩ ← Rec(⟨⟦𝑥⟧0, ⟦𝑥⟧1⟩).

Additionally, secret-sharing scheme has been the building block
for many multiparty computation (MPC) protocols [24, 29]. We use
additive secret sharing with the field of power of two to facilitate
efficient arithmetic and boolean operations.
Additive homomorphic encryption. Additive homomorphic en-
cryption is an asymmetric encryption scheme which allows addi-
tion operation on the encrypted data [22, 47, 48]. With a formal
description, additive homomorphic encryption is a tuple of algo-
rithms (Gen, Enc,Dec, Eval), with “+” as its homomorphic opera-
tion. Briefly,
• (pk, sk) ← Gen(1𝜆): Taking a security parameter 𝜆, Gen
generates the public key pk and secret key sk,
• 𝑐 ← Encpk (𝑚): Enc encrypts a message𝑚 with public key,
and returns a cipher 𝑐 ,
• 𝑚 ← Decsk (𝑐): Dec decrypts a cipher 𝑐 with secret key, and
reveals the message𝑚.

As for additive homomorphism, those schemes allow the secure
evaluation of Enc(𝑚1 +𝑚2) using two ciphers 𝑐0, 𝑐1 and the public
key, that is, Encpk (𝑚1 +𝑚2) = Eval(Encpk (𝑚1), Encpk (𝑚2)). The
security of additive HE schemes is defined by the generally-adopted
semantic security [30] with a computationally-bounded adversary.
Appendix A describes the detailed construction of an additive ho-
momorphic encryption scheme — paillier encryption [48].

2.2 Graph Model and Representation
Graph databases use graph model as the basic data structure for
graphs. To begin with, there are two most popular graph models
in the literature: Resource Description Framework (RDF) [9] and
Labeled Property Graph (LPG) [5]. For simplicity, in this work, we
choose a limited, yet simple and widely-adopted variant of LPG
model — Edge-labeled Graph Model [4], where edges are assigned
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with labels to indicate different relationships between nodes. In the
following, we give a formal definition of edge-labeled graph model.

Definition 2.1 (Edge-labeled graph). An edge-labeled graph𝐺 is a
pair (𝑉 , 𝐸), where 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑛} is a finite set of vertices, and
𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑚} is a finite set of edges, with 𝑛 and𝑚 denoting the
number of vertices and edges, respectively. In addition, 𝐸 ⊆ 𝑉×𝐿×𝑉 ,
where 𝐿 is a set of labels.

Jane
works_in

Bank
customer_of

Figure 1: A simple example of edge-labeled graph, where
works_in and customer_of are two labels between vertices
‘Jane’ and ‘Bank’.

Most existing graph databases use either adjacency matrix or ad-
jacency list to represent edge-labeled graph, e.g. OrientDB1, Neo4j2,
and MS Graph Engine3. Theoretically, adjacency matrix has stor-
age complexity of 𝑂 (𝑛2), and can check connectivity in 𝑂 (1). In
contrast, adjacency list has storage complexity of 𝑂 (𝑛 +𝑚), and
can check connectivity in 𝑂 ( |𝐴𝑢 |) ⊆ 𝑂 (𝑑), where 𝐴𝑢 stands for
the adjacency list for vertex 𝑢, and 𝑑 denotes the maximum degree
in 𝐺 . We notice that the storage requirement of adjacency matrix
grows squarely with the size of vertices, and thus is not an ideal
solution for large-scale graph data. Thus, we adopt the adjacency
list to represent the underlying graph data.

More concretely, to represent a string-format graph, we first
use two string lists 𝑉 and 𝐿 to store the mappings between a valid
string and its ID. That is, 𝑉 : Σ∗ → ind(𝑉 ) and 𝐿 : Σ∗ → ind(𝐿),
where we use Σ∗ to denote a valid string, and ind(∗) to denote the
indexes of a certain type. Afterwards, we use indexed adjacency list
to denote the relationships between vertex-IDs. For the example
in Figure 1, let 𝑉 = {“Jane” : 𝑣1, “Bank” : 𝑣2}, 𝐿 = {“works_in” :
𝑙1, “customer_of” : 𝑙2}, the above example can be represented in
the following indexed adjacency list:

𝑣1 : (𝑙1, 𝑣2), (𝑙2, 𝑣2),
𝑣2 : \.

2.3 Graph Query Functionalities
Graph query languages express the searching functionality and
serve as the core component of graph database systems. Currently,
there are many practical graph query languages in the industry,
e.g. Cypher[25], SPARQL[33] and Gremlin[49]. Even though these
languages differ enormously in purpose, expressivity, implemen-
tation, and so on. On the high level, graph query languages share
two most fundamental functionalities [4, 8], namely Graph Pattern
Matching (GPM) and Graph Navigation (GN).

2.3.1 Graph Pattern Matching (GPM). In the theory of graph query
languages, GPM refers to the problem of finding exact graph pattern
matches for a given graph. Formally, we define an edge-labeled
graph pattern as a graph 𝐺̃ comprises of constants and variables,
1OrientDB: https://www.orientdb.org/
2Neo4j: https://neo4j.com/
3MS Graph Engine: https://www.graphengine.io/

Inputs. Graph 𝐺 , graph pattern 𝐺̃ , and a possible match set 𝐻 .
Outputs. False if there is no match; Return the matches other-
wise.
Algorithm. Starts from an empty root. For variable 𝛿𝑖 ∈ Var(𝐺̃),
every node in the search-tree at level 𝑖 represents a mapping from
𝛿𝑖 to a possible vertex 𝑣 ∈ 𝐺 . Then every path that connecting
the root and the leaf is a possible match ℎ ∈ 𝐻 . To find a match:

(1) Prune subtrees by eliminating repeated variables values,
that is, the matchingℎ is an injective (one-to-one) mapping.

(2) Forward check if all the edges connecting two nodes in the
tree preserve the relationships between their correspond-
ing variables, if not, delete the edges.

(3) Return the path which remained in the tree from root to a
leaf.

Example.

𝛿1

𝛿2

𝑣1 ...... 𝑣 |𝑉 |

𝑣2... 𝑣 |𝑉 |−1𝑣1... 𝑣1...𝑣 |𝑉 | 𝑣 |𝑉 |

Figure 2: Ullmann’s match algorithm [56] for edge-labeled
graph.

where constants are denoted as Const(𝐺) ⊆ 𝑉 ∪𝐸∪𝐿 and variables
are denoted as Var(𝐺). For instance, a graph pattern query “Search
for the people that Marko knows” towards graph 𝐺 = (𝑉 , 𝐸) could
be turned into a graph pattern 𝐺̃ = (𝑉̃ , 𝐸), where 𝑉̃ = {“Marko”, 𝛿},
and 𝐸 = {(“Marko”, “knows”, 𝛿)}, where 𝛿 is the variable. To find a
match, the graph pattern 𝐺̃ is first matched to the graph𝐺 , and then
the graph database searches for the occurrences of the pattern. The
GPM problem is known to be NP-hard theoretically by reduction
from the graph homomorphism problem [31]. However, in reality,
the size of the graph pattern query is usually much smaller than
the size of graph database, and many existing works [2, 16, 43]
have showed that the GPM problem can be solved in polynomial
time and even subpolynomial time with a fixed-size query. More
formally, a match for a graph pattern is defined as follows:

Definition 2.2 (Match). Given an edge-labeled graph 𝐺 = (𝑉 , 𝐸)
and a graph pattern 𝐺̃ = (𝑉̃ , 𝐸), a match ℎ of 𝐺̃ in 𝐺 is a mapping
from Const∪Var to Const such that the mapping ℎ maps constants
to themselves and variables to constants; if the image of 𝐺̃ under ℎ
is contained within 𝐺 , then ℎ is a match.

Technically, we follow Ullmann’s basic approach [56] to find the
matches. It requires to list all possible mappings of vertices in the
graph pattern and invoke a depth-first tree search algorithm. Since
Ullmann’s algorithm has exponential search space, it is common to
involve a pre-processing phase to prune unpromising subtrees. We
denote the match search tree of graph 𝐺 as Tree(𝐺), and show the
details of Ullmann’s match algorithm in Figure 2.
An example. Now, we give an example of processing the GPM
query in Figure 3, where Figure 3 (a) describes a graph data 𝐺 =

(𝑉 , 𝐸) and Figure 3 (b) shows a graph pattern query 𝐺̃ = (𝑉̃ , 𝐸), and
the query is “Find the person who Jim knows, and the place this
person works in”. Following Ullmann’s algorithm, first we build
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the possible search tree for graph pattern 𝐺̃ and prune the repeated
values. As the result, we obtain Figure 4 with a total of six possible
matches.

Jane
works_in

Bank
customer_of

Jim knows

𝛿1 𝛿2
works_inJim knows

(a) A graph data

(b) A GPM query with variable 𝛿1, 𝛿2

Figure 3: An example of the GPM problem.

To find the match of 𝐺̃ in the depth-first manner, we begin by
looking at the first value of 𝛿1 on level 1 (that is “Jim”). In the graph
pattern 𝐺̃ = (𝑉̃ , 𝐸), we extract the edges containing 𝛿1 only, that
is, (“Jim”, “knows”, 𝛿1). By substituting 𝛿1 with its value “Jim”, we
obtain (“Jim”, “knows”, “Jim”), which is not an edge in the original
graph, therefore, we delete this node and its subtrees. After many
iterations, the algorithm reaches the end, and the remaining paths
are the matches. In this example, we have 𝛿1 = “Jane” and 𝛿2 =

“Bank” (the dash line in Figure 4).

𝛿1

𝛿2

Jim Jane Bank

Jane JaneJim JimBank Bank

Figure 4: Possible matching tree.

2.3.2 Graph Navigation (GN). In general, GN allows navigation
towards the graph topology. GN queries have long been established
as the core of navigational querying in graphs by the research com-
munity [7, 11, 57] and are widely adopted in graph query languages
(e.g. SPARQL, Cypher and Gremlin). One typical example of such
a query is “finding all friends-of-a-friend of Marko”. Here we are
not only interested in the immediate acquaintances of a person,
but also the people she might know through other people; namely,
her friends-of-a-friend, their friends, and so on. Traditionally, the
functionality of graph navigation uses a basic component called
Path Query, where path query navigates through arbitrary number
of edges in the graph. Formally, we define path query as follows.

Definition 2.3 (Path Query). Given an edge-labeled graph 𝐺 =

(𝑉 , 𝐸), a path query has the general form 𝑃 = 𝑥 →𝛼 𝑦, where 𝑥,𝑦
specify the beginning and the ending nodes (vertices) of the path,
and 𝛼 denotes the condition (traversal instruction) on the paths.

Generally, the evaluation of a path query 𝑃 = 𝑥 →𝛼 𝑦 over 𝐺 ,
denoted as 𝑃 (𝐺), consists of all the paths in𝐺 who conform the con-
dition 𝛼 . Due to the fact that the evaluation of a path query differs
vastly from different systems, we focus on Gremlin’s processing
system, and introduce the details in Section 2.3.3.

2.3.3 Graph Query Language Processing. Industrial graph query
processing systems use different mechanisms and semantics to
process GPM and GN queries. For instance, SPARQL [33] processes
graph queries in a non-instructive and expressive fashion, while
Gremlin [49] processes graph queries through graph traversal.

In this work, we focus on the more general framework — Grem-
lin’s graph traversal machine. A traversal machine in Gremlin is
defined as 𝑡 ∈ 𝑇 , which traverses over a graph 𝐺 according to
an instruction set Ψ. Here, we take a simplified formalization of a
graph traversal machine for edge-labeled graph, that is,

𝑇 = (𝑈 × Ψ),

where 𝑈 = 𝑉 ∪ 𝐸 ∪ 𝐿 is the traverser’s location in the graph 𝐺 .
Evaluating a single step traversal instruction𝜓 ∈ Ψ in Gremlin can
be taken as a specification of one of the following maps:

(1) flatMap
• P(𝑉 ) → P(𝐸): Move the traverser from vertices to edges;
• P(𝐸) → P(𝑉 ): Move the traverser from edges to vertices;
• P(𝑈 )×𝐺̃ → P(𝑈 ): Move the traverser according to graph
pattern 𝐺̃ ;

(2) filter
• P(𝐸) × 𝐼𝑒 → P(𝐸): Filter edges with the index set 𝐼𝑒 ;
• P(𝑉 ) × 𝐼𝑣 → P(𝑉 ): Filter vertices with the index set 𝐼𝑣 ;
• P(𝐸) × 𝐿 → P(𝐸): Filter edges with the label 𝑙 ∈ 𝐿;

where we use P(∗) to denote the power set of ∗. Since we use a
simplified representation for the graph traverser, it only supports
the most basic graph traversal — Simple Traversal, where traversal
instructions are processed in a sequential order (𝜓1 { 𝜓2 { ... {
𝜓 |Ψ |). For the rest of this paper, we use the term “instruction” or
“traversal instruction” to short for a single step traversal instruction.

Following this intuition, we further detail the categorization of
our graph query languages, namely single-instruction query and
multi-instruction query, where a single-instruction query contains
only one traversal instruction and multi-instruction query con-
sists of multiple instructions. In Section 4 and Section 5, we will
present how to securely evaluate single-instruction query andmulti-
instruction query on secret shared graph database, respectively.

3 GRAPH SHARING SCHEME
Though we specify the plaintext graph model and representation,
it still remains a challenge of how to securely and efficiently share
the graph between two parties. One the one side, the graph sharing
scheme should be secure against a semi-honest adversary, and on
the other side, it should also support: (1) secure validity check for
a constant string (whether the string exists in vertices set or label
set); (2) secure connectivity check for two string-format vertices,
including the case of shared string vs. public string, shared string
vs. shared string, and public string vs. public string. Here, shared
means that the string is secret shared between S0,S1, and public
means that the string is public to both S0 and S1.

Intuitively, as is shown in the previous section, an edge-labeled
graph 𝐺 could be sufficiently represented by a vertex list 𝑉 , a label
list 𝐿, and an adjacency list 𝐴. This graph representation method
uses𝑉 and 𝐿 for validity check of a string and retrieves the string’s
index if it is valid. Afterwards, given two vertex-IDs, the adjacency
list 𝐴 checks the connectivity of the two vertices.
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In our solution, we adopt such design intuition and utilize two
different data structures for the graph sharing scheme, namely
shared lookup table and shared adjacency list. To begin with, we
use hash(𝑣) to represent hashed strings, where hash(∗) is a crypto-
graphic hash function. First, we hash all the strings in the original
graph, and share the hashed values 𝑆 = hash(𝑉 ) ∪ hash(𝐿), i.e.,
⟨⟦𝑆⟧0, ⟦𝑆⟧1⟩ ← Shr(⟨𝑆, ◦⟩). The shared string list is later used for
string’s validity checking. Then, to allow secure connectivity check
of two vertices, we build a shared index lookup table ⟦𝑇⟧, which
allows index retrieving for a vertex string or a label string. Finally,
we share the indexed adjacency list ⟦𝐴⟧ to allow the connectivity
check between two vertices. We will describe the details of shared
lookup table ⟦𝑇⟧ and shared adjacency list ⟦𝐴⟧ later. In summary,
a shared graph ⟦𝐺⟧ is represented as:

⟦𝐺⟧ = (⟦𝑆⟧, ⟦𝑇⟧, ⟦𝐴⟧).

Shared lookup tables ⟦𝑇⟧. Formally, a shared lookup table asso-
ciates with algorithms BuildT and LookupT. Let 𝑋 = {𝑥0, ..., 𝑥𝑑−1}
and 𝑌 = {𝑦0, ..., 𝑦𝑑−1} be two sets with the same length 𝑑 , and we
want to share the mapping 𝑋 ↦→ 𝑌 . Additionally, we define the
final result ⟦𝑇⟧ as a set of polynomial coefficients ⟦𝑎0⟧, ..., ⟦𝑎𝑑−1⟧,
where the shared ⟦𝑎𝑖⟧ are the coefficients used to retrieve the map-
ping results. For sharing the graph, we build a shared index lookup
table by ⟦𝑇⟧ ← BuildT(hash(𝑉 ), ind(𝑉 )).

Notation. 𝑋 = {𝑥0, ..., 𝑥𝑑−1} and 𝑌 = {𝑦0, ..., 𝑦𝑑−1} have 𝑑 ele-
ments, and we also define ⟦𝑇⟧ = ⟦𝑎0⟧, ..., ⟦𝑎𝑑−1⟧.
Algorithm 1. ⟦𝑇⟧ ← BuildT(𝑋,𝑌 ).

(1) Data holder gets the polynomial coefficients from the input
mapping: 𝑎0, ..., 𝑎𝑑−1 ← LagrangeInterpolation(𝑋 ↦→ 𝑌 );

(2) For every 𝑎 ∈ {𝑎0, .., 𝑎𝑑−1}, data holder shares the coeffi-
cients to servers: ⟦𝑎⟧ ← Shr(⟨𝑎, ◦⟩).

Algorithm 2. ⟦𝑦⟧ ← LookupT(𝑥, ⟦𝑇⟧).
(1) Si calculates ⟦𝑦⟧𝑖 = ⟦𝑎0⟧𝑖 + ⟦𝑎1⟧𝑖𝑥 + ... + ⟦𝑎𝑑−1⟧𝑖𝑥𝑑−1.

Figure 5: Algorithms for shared lookup table.

In Figure 5, we use the term “LagrangeInterpolation” to denote
the function that outputs a polynomial (degree 𝑑 − 1) that interpo-
lates the input mapping. The resulting coefficients 𝑎0, .., 𝑎𝑑−1 and
the polynomial 𝑓 (𝑥) = ∑𝑑−1

𝑖=0 𝑎𝑖𝑥
𝑖 satisfies that 𝑓 (𝑥𝑖 ) = 𝑦𝑖 for all

𝑥𝑖 ∈ 𝑋 and 𝑦𝑖 ∈ 𝑌 . The computation complexity of computing
all coefficients of LagrangeInterpolation is 𝑂 (𝑑 log𝑑) according to
[54], and sharing the coefficients requires 𝑑 |⟦∗⟧|-bit communica-
tion, where |⟦∗⟧| indicates the bit size of the shares. As for the
lookup algorithm, evaluating the polynomial only requires 𝑑 addi-
tions and 𝑑 multiplications using Horner’s Method [34], and lookup
algorithm requires no extra communication cost.
Shared adjacency list ⟦𝐴⟧. The objective of a shared adjacency
list is to allow the connectivity check for two vertices with a given
label. A simple way is to reconstruct all the indexes and apply a
plaintext lookup, but unfortunately this leaks access patterns. To
share the adjacency list, first we use an indexed representation for
the head node (the 𝑢 of the 𝐴𝑢 ) of the adjacency list, and then we
include the tail node’s index in the edge representation, and pad

every line in adjacency list to the maximum degree 𝑑 with “0”s.
Finally, we share the mapped element in the adjacency list (notice
that we do not need to share the head vertex indexes as long as
they are stored in order). For example, the shared adjacency list of
Figure 1’s case is:

ind(𝑣0) :
(⟦ind(𝑙0)⟧𝑖 , ⟦ind(𝑣1)⟧𝑖 ), (⟦ind(𝑙1)⟧𝑖 , ⟦ind(𝑣1)⟧𝑖 )

ind(𝑣1) :
(⟦ind(0)⟧𝑖 , ⟦ind(0)⟧𝑖 ), (⟦ind(0)⟧𝑖 , ⟦ind(0)⟧𝑖 )

where S0 holds the list with 𝑖 = 0 and S1 holds the list with 𝑖 = 1.
This secret sharing scheme has storage complexity of𝑂 (4𝑛𝑑+2𝑛+𝑚)
on both server’s size and checks connectivity of two vertices with
𝑂 (𝑑) secure equality test operations. We denote the adjacency list
as 𝐴, and shared adjacency list as ⟦𝐴⟧.
Security. This sharing scheme for graphs inevitably inherits the
leakage profile from shared lookup table and shared adjacency list.
All those leakages are leaked to servers S0 and S1. Specifically, ⟦𝑆⟧
leaks the total number of vertices and labels (|𝑉 | + |𝐿 |), ⟦𝑇⟧ leaks
the number of vertices (|𝑉 |), and the shared adjacency list ⟦𝐴⟧
additionally leaks the maximum degree of the graph (𝑑). Here, we
only discuss the leakage of those data structures, and we leave the
security of connectivity check in Section 4. In summary, the leakage
profile of this sharing scheme is defined as:

Lshare = ( |𝑉 |, |𝐿 |, 𝑑) .

4 SECURE EVALUATION OF A
SINGLE-INSTRUCTION QUERY

In the previous section, we introduce how to convert GPM (graph
pattern) queries and GN (path) queries into traversal instructions.
In this section, we show the secure processing of single-instruction
queries (e.g. a GPM query or a GN query which could be translated
into only a single instruction). The security of our protocols follows
the standard semi-honest definition using simulation-based tech-
nique [12, 28], where security says the behaviour of the adversary
can be simulated given only the view of an honest participant.
Methodology. Aiming at secure and efficient single-instruction
query evaluation, we first formalise the ideal functionalities of
answering GPM and GN queries. We then present and analyse the
secure constructions using real world vs. ideal world simulation
paradigm. To allow an easy analysis, we describe functionalities
with a leakage profile L, which models the information leakage.
Also, some of our proposed protocols leverage a known secure
equality test protocol in MPC. To give an abstraction of the whole
protocol, we prove the security in the MPC-hybrid model, where
we assume the presence of a secure equality test functionality EQ .
The detailed constructions are shown in [14].

4.1 Securely Evaluating A GPM Query
Recall that a GPM query is essentially a graph pattern that could
be represented as a graph 𝐺̃ = (𝑉̃ , 𝐸), containing constants and
variables. Formally, we adopt the graph pattern matching algorithm
from Ullmann[56], and describe the functionality of GPM as FGPM
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in Figure 6, where we use isIn(𝑥 ∈ X,X ∈ X∗) to denote an al-
gorithm which checks if the element 𝑥 belongs to the set X. This
functionality works between C, S0, and S1 and allows the secure
evaluation of a graph pattern query (containing a single instruc-
tion) over the secret shared graph database. The ideal functionality
FGPM could be split into three phases:

(1) Check phase, where the client checks the validity of a given
graph pattern by sending all strings in graph pattern to the
ideal functionality;

(2) GetID phase, where the client retrieves IDs for every query
string;

(3) Query phase where the client first builds Tree(𝐺̃), and then
checks the existence of an edge in Tree(𝐺̃) in a depth-first-
search manner.

Global Parameters. Security parameter 𝜆.
Check. Given a hash set Hset from C, and ⟦𝐺⟧𝑖 from S𝑖 ,

(1) Invokes (𝑆,𝑇 ,𝐴) ← Rec(⟦𝐺⟧);
(2) For all 𝜎 𝑗 ∈ Hset, invokes 𝑏 𝑗 ← isIn(𝜎 𝑗 , 𝑆). Leaks |Hset|

to S𝑖 ;
(3) Returns 𝑏1, ..., 𝑏 |Hset | to C.

GetID. Given a hash set Hset from C, and ⟦𝐺⟧𝑖 from S𝑖 ,
(1) Invokes (𝑆,𝑇 ,𝐴) ← Rec(⟦𝐺⟧);
(2) For all 𝜎 𝑗 ∈ Hset, invokes ind𝑗 ← FLookupT (𝜎 𝑗 ,𝑇 );
(3) Returns ind1, ..., ind |Hset | to C.

Query. On receiving Eset from C, and ⟦𝐺⟧𝑖 from S𝑖 ,
(1) Invokes (𝑆,𝑇 ,𝐴) ← Rec(⟦𝐺⟧);
(2) For every (ℎ 𝑗 , 𝑙 𝑗 , 𝑡 𝑗 ) ∈ Eset, finds 𝐴ℎ 𝑗

, and invokes 𝑏 𝑗 ←
isIn((𝑙, 𝑡), 𝐴ℎ 𝑗

);
(3) Returns 𝑏1, ..., 𝑏𝑘 to C.

Figure 6: Ideal Functionality FGPM.

Protocols in Figure 7, 8, and 9 describe the detailed constructions
of Check phase, GetID phase, and Query phase for functionality
FGPM, respectively.

C.Check. Given a graph pattern 𝐺̃ , client C:
(1) Initiates Hset = ∅;
(2) For all 𝜙 𝑗 ∈ Const(𝐺̃), calculates and pushes hash(𝜙 𝑗 )

into Hset;
(3) Sends Hset to servers S𝑖 ;
(4) On receiving messages from S𝑖 , invokes 𝑏1, ..., 𝑏 |Hset | ←

Rec(⟨⟦𝑏1⟧0, ..., ⟦𝑏 |Hset |⟧0, ⟦𝑏1⟧1, ..., ⟦𝑏 |Hset |⟧1⟩), aborts if
∃ 𝑗 ≤ |Hset|, 𝑏 𝑗 = 0.

S𝒊 .Check. On receiving a hashed list Hset from C, server S𝑖 :
(1) Initiates ⟦𝑏1⟧𝑖 , ..., ⟦𝑏 |Hset |⟧𝑖 = 0;
(2) For every 𝜎 𝑗 ∈ Hset:
(a) For every shared hashed string ⟦𝑠⟧𝑖 ∈ ⟦𝑆⟧𝑖 , calculates
⟦𝑏 𝑗⟧𝑖 = ⟦𝑏 𝑗⟧𝑖 + EQ (𝜎 𝑗 , ⟦𝑠⟧𝑖 );

(3) Sends ⟦𝑏1⟧𝑖 , ..., ⟦𝑏 |Hset |⟧𝑖 to C.

Figure 7: Protocol ΠGPM .Check for functionality FGPM.

C.GetID. Given a graph pattern 𝐺̃ , client C:
(1) Initiates Hset = ∅;
(2) For all 𝜙 𝑗 ∈ Const(𝐺̃), calculates and pushes hash(𝜙 𝑗 )

into Hset;
(3) Sends Hset to servers S𝑖 ;
(4) On receiving S𝑖 ’s messages, invokes ind1, ..., ind |Hset | ←

Rec(⟨⟦ind1⟧0, ..., ⟦ind |Hset |⟧0, ⟦ind1⟧1, ..., ⟦ind |Hset |⟧1⟩).
S𝒊 .GetID. On receiving a hash set Hset from C,

(1) For all 𝜎 𝑗 ∈ Hset, invokes ⟦ind𝑗⟧𝑖 ← LookupT(⟦𝑇⟧, 𝜎 𝑗 );
(2) Sends ⟦ind1⟧𝑖 , ..., ⟦ind |Hset |⟧𝑖 to C.

Figure 8: Protocol ΠGPM .GetID for functionality FGPM.

C.Query. Once client has ind1, ..., ind |Hset | ,
(1) Replaces all 𝜙 𝑗 ∈ Const(𝐺̃) with ind𝑗 ;
(2) Builds the match search tree Tree(𝐺̃) by replacing vari-

ables with possible vertex-IDs, then prunes repeated
vertex-IDs over a possible match path (from root to a leaf).

(3) Performs forward check in a depth-first manner, for each
possible match path, at level 𝑗 of Tree(𝐺̃),

(a) Let Eset represents all edges in 𝐺̃ containing 𝛿 𝑗 only or
𝛿 𝑗 with lower-level variables;

(b) Sends Eset to S𝑖 as Query2;
(c) Invokes 𝑏 ← Rec(⟨⟦𝑏⟧0, ⟦𝑏⟧1⟩);
(d) Delete the nodes if 𝑏 = 0.

S𝒊 .Query. On receiving Eset from C, for every (ℎ, 𝑙, 𝑡) ∈ Eset:
(1) Finds the shared adjacency list ⟦𝐴ℎ⟧𝑖 ;
(2) Initiates ⟦𝑏⟧𝑖 = 1;
(3) For each edge (ℎ, ⟦𝑙 ′⟧𝑖 , ⟦𝑡 ′⟧𝑖 ) ∈ ⟦𝐴ℎ⟧𝑖 , ⟦𝑏⟧𝑖 = (⟦𝑏⟧𝑖 +

2 − (EQ (⟦𝑙 ′⟧𝑖 , 𝑙) − EQ (⟦𝑡 ′⟧𝑖 , 𝑡))));
(4) Sends ⟦𝑏⟧𝑖 back to C.

Figure 9: Protocol ΠGPM .Query for functionality FGPM.

Lemma 4.1. Protocol ΠGPM is secure against non-adaptive adver-
sary in the MPC-hybrid model.

Proof sketch. For the security proof of ΠGPM, we use a simulator
for each server in an invocation of ΠGPM .Check, ΠGPM .GetID and
ΠGPM .Query, and prove its security in the MPC-hybrid model.
Simulator for S𝑖 : During the Check phase, S𝑖 eventually receives
nothing, therefore the simulation for Check phase is trivial. To
simulate the getID phase and query phase, the simulator uniformly
samples random IDs for every edge header 𝜙∗, and then obtains
the final result. This simulation is indistinguishable from the real
execution under the condition that the simulator cannot distinguish
between a randomly sampled vertex-ID and the real vertex-ID
for a specific string. Since we only assume a non-adaptive semi-
honest adversary and the real vertex-IDs are no-repeatable and
independently distributed, the simulation completes.
Communication efficiency. The check phase only runs in one
round and has communication complexity of 𝑂 ( |Const(𝑄) |) for C,
S0, and S1. And the getID phase has communication complexity of
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𝑂 ( |Const((𝑄) |) for S0 and S1. As for query phase, the communi-
cation complexity depends on the actual query, while at the worst
case, it invokes𝑂 (𝑘𝑡 (𝑑 +𝑛+𝑚)) equality test operations, where 𝑘 is
the number of variables in the query, 𝑡 is the number of all possible
combinations of variables, i.e., the length of the list 𝐿, and 𝑑 is the
maximum degree of vertices. Existing frameworks such as SPDZ
[19, 23, 37] can perform equality test with online communication
complexity of𝑂 (𝛽) bits for 𝛽-bit integers [21]. This brings the total
communication complexity of secure GPM to 𝑂 (𝑘𝑡𝛽 (𝑑 + 𝑛 +𝑚))
bits.

4.2 Securely Evaluating A Single-Instruction
GN Query

Recall that in Section 2.3.2, GN queries allow the navigation towards
the topology of the graph. Similar to FGPM, the ideal functionality
FGN could be divided into three phases:

(1) Check phase, where the client checks if a rich-text query is
valid. This phase is identical to FGPM .Check;

(2) GetID phase, where the client retrieves IDs for every query
string. This phase is identical to FGPM .GetID;

(3) Query phase, which takes a shared traverser as input and
outputs a new shared traverser based on the latest traversal
instruction;

Query.flatMap. On receiving a flatMap instruction𝜓 , and shared
candidate set ⟦𝑈⟧,

(1) Invokes (𝑆,𝑇 ,𝐴) ← Rec(⟦𝐺⟧),𝑈 ← Rec(⟦𝑈⟧);
(2) Gets the adjacency list 𝐴ind(𝑢) for every ind(𝑢) ∈ ind(𝑈 ),

finds its neighbor vertex index 𝑢 ′ with label defined in
instruction𝜓 , pushes 𝑢 ′ into𝑈 ′;

(3) Invokes ⟦𝑈 ′⟧ ← Shr(𝑈 ′).
Query.filter. On receiving a filter instruction𝜓 , and shared can-
didate set ⟦𝑈⟧,

(1) Invokes (𝑆,𝑇 ,𝐴) ← Rec(⟦𝐺⟧),𝑈 ← Rec(⟦𝑈⟧);
(2) Filters ind(𝑈 ) with condition defined by instruction 𝜙 .

Pushes the filtered elements into𝑈 ′;
(3) Invokes ⟦𝑈 ′⟧ ← Shr(𝑈 ′).

Figure 10: Ideal Functionality FGN .Query.

Formally, a traverser is defined as 𝑡 = (⟦𝑈⟧,𝜓 ), where 𝑈 is an
abstract term referring to the location of the traverser, and𝜓 is a
traversal instruction extracted from the rich-text query. Note that
we have listed all the possible instructions in Section 2.3.3. Also,
since we take different approaches for different instructions, we
further divide the functionality of query phase into: Query.flatMap
and Query.filter. We show the ideal functionality of processing a
single-instruction GN query in Figure 10.

More precisely, in the secure instantiation of FGN, the repre-
sentation of the location indicator𝑈 depends on current traversal
location. That is to say, if the input traverser 𝑡 = (𝑈 ,𝜙) locates
within a vertex set, 𝑈 is defined as 𝑈 ⊆ ind(𝑉 ) = {𝑣1, ..., 𝑣∗}, and
we additionally use𝐴𝑈 = {𝐴𝑣1 , ..., 𝐴𝑣∗ } to denote the adjacency list
corresponding to𝑈 . By such construction of𝐴𝑈 , FGN naturally sup-
ports mapping from vertex set to edge set. On the other hand, if the

C.Query.flatMap Given a single-instruction path query with
condition 𝛼 , C:

(1) Sends ind(𝑈 ),𝜓𝑣→𝑒 or𝜓𝑒→𝑣 to S𝑖 ;
(2) On receiving server’s messages, invokes 𝑏1, ..., 𝑏𝑘 ←

Rec(⟨⟦𝑏1⟧0, ..., ⟦𝑏𝑘⟧0, ⟦𝑏1⟧1, ..., ⟦𝑏𝑘⟧1⟩);
S𝒊 .Query.flatMap
On receiving ind(𝑈 ) and an instruction𝜓𝑣→𝑒 from C,

(1) Extracts current candidate set ⟦𝑢 𝑗⟧𝑖 ∈ ⟦𝑈⟧𝑖 , and its cor-
responding shared adjacency list ⟦𝐴𝑈 ⟧𝑖 ;

(2) For all ⟦𝐴𝑢 𝑗
⟧𝑖 ∈ ⟦𝐴𝑈 ⟧𝑖 , filters and gets the indication vec-

tor for every edge in ⟦𝐴𝑈 ⟧𝑖 , that is ⟦𝑏1⟧𝑖 , ..., ⟦𝑏 |𝑈 |𝑑⟧𝑖 ←
EQ (⟦𝐴𝑢 𝑗

(∗)⟧𝑖 , 𝜙𝑣→𝑒 );
(3) Sends ⟦𝑏1⟧𝑖 , ..., ⟦𝑏 |𝑈 |𝑑⟧𝑖 to C;

On receiving ind(𝑈 ) and an instruction𝜓𝑒→𝑣 from C,
(1) Extracts current candidate set ⟦𝐸𝑢 𝑗

⟧𝑖 ∈ ⟦𝐸𝑈 ⟧𝑖 which is
in the form of (label, tail vertex): (⟦𝑙⟧, ⟦𝑡⟧);

(2) For all ⟦𝐸𝑢 𝑗
⟧𝑖 ∈ ⟦𝐸𝑈 ⟧𝑖 , filters and gets the indication

vector for every edge in ⟦𝐸𝑈 ⟧𝑖 , that is ⟦𝑏1⟧𝑖 , ..., ⟦𝑏 |𝑈 |⟧𝑖 ←
EQ (⟦𝐸𝑢 𝑗

(∗)⟧𝑖 , 𝜙𝑒→𝑣);
(3) Sends ⟦𝑏1⟧𝑖 , ..., ⟦𝑏 |𝑈 |⟧𝑖 to C;

Figure 11: ProtocolΠGN .Query.flatMap for functionalityFGN.

C.Query.filter Given a single-instruction path query with con-
dition 𝛼 ,

(1) Sends ind(𝑈 ),𝜓 to S𝑖 ;
(2) On receiving server’s messages, invokes 𝑏1, ..., 𝑏 |𝑈 |𝑑 ←

Rec(⟨⟦𝑏1⟧0, ..., ⟦𝑏 |𝑈 |𝑑⟧0, ⟦𝑏1⟧1, ..., ⟦𝑏 |𝑈 |𝑑⟧1⟩);
S𝒊 .Query.filter
On receiving an instruction𝜓 from C,

(1) Extracts current candidate set ⟦𝑢 𝑗⟧𝑖 ∈ ⟦𝑈⟧𝑖 , and its cor-
responding shared adjacency list ⟦𝐴𝑈 ⟧𝑖 ;

(2) For all ⟦𝐴𝑢 𝑗
⟧𝑖 ∈ ⟦𝐴𝑈 ⟧𝑖 , filters and gets the indication vec-

tor for every edge in ⟦𝐴𝑈 ⟧𝑖 , that is ⟦𝑏1⟧𝑖 , ..., ⟦𝑏 |𝑈 |𝑑⟧𝑖 ←
EQ (⟦𝐴𝑢 𝑗

(∗)⟧𝑖 , 𝜙𝑣→𝑒 );
(3) Sends ⟦𝑏1⟧𝑖 , ..., ⟦𝑏 |𝑈 |𝑑⟧𝑖 to C;

Figure 12: Protocol ΠGN .Query.filter for functionality FGN.

traverser locates within an edge set,𝑈 is defined as𝑈 = ind(𝐸) =
{𝑒1, ..., 𝑒∗}, and we use 𝐸𝑈 = {𝐴𝑣1 (1), ..., 𝐴𝑣1 (𝑑), 𝐴𝑣2 (1), ..., 𝐴𝑣∗ (𝑑)}
to denote the corresponding edge set extracted from 𝐴. Note that
at the beginning of each traversal, we define the initial location
as 𝑉𝑔 , where 𝑉𝑔 = ind(𝑉 ). We present two secure instantiations
for FGN .Query, i.e., FGN .Query.FlatMap and FGN .Query.Filter, in
Figures 11 and 12, respectively. Since we use standard MPC arith-
metic for the protocol, consequently, the protocol is secure under
the MPC-hybrid model and the security proof is trivial.
Communication efficiency. The communication cost for those
protocols depending on the instruction and the database itself,
and it requires 𝑂 ( |𝑈 |) equality test operation and additionally
𝑂 ( |Const(𝑄) |) communications.
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5 SECURE EVALUATION OF A
MULTI-INSTRUCTION QUERY

Now that we have introduced how to securely evaluate a single-
instruction query in Section 4. It still remains a question: can pro-
tocols ΠGPM and ΠGN preserve efficiency and security under the
compositions of single instruction queries?

To answer this question, we first observe that secure Single In-
struction Evaluation (SIE) protocols (ΠGPM .Query andΠGN .Query)
share a common structure. We show the general structure of SIE in
Figure 13, where Π.Query takes input of a single instruction (ΠGPM
or ΠGN) and a traversal location set (not required for ΠGPM), and
outputs a shared indicator vector ⟦b⟧ (when client and server do
not invoke reconstruction function). For the case of SIE, ⟦b⟧ is first
reconstructed to client, and client then filters the ind(𝐺) (which
equals to ind(𝑉 )∪ind(𝐸)∪ind(𝐿)), and finally gets the query result.
However, this interactive approach is not desired when facing a
multi-instruction query, since the whole evaluation process will
involve 𝑂 ( |Ψ|) interactions between servers and client. Also such
naive composition of SIE will have linear communication com-
plexity, which also contradicts the goal (sub-linear) of this work.
Moreover, reconstructing ⟦b⟧ to servers inevitably leaks internal
traversal locations. Therefore, how to perform filter in an oblivious
manner, without reconstructing ⟦b⟧, is the key to achieve sublinear
complexity.

Π.Query ⟦b⟧

⟦𝑈⟧
𝜓1, ....,𝜓 |Ψ |

⟦𝑈 ′⟧
𝜓2, ....,𝜓 |Ψ |

filter

Single Instruction Evaluation (SIE)

ind(𝐺)

Figure 13: Single Instruction Evaluation (SIE).

In this work, we propose a novel cryptographic primitive called
Oblivious Filter, which we will present in details in Section 6. We
denote the Single Instruction Evaluation with Oblivious Filter as OF-
SIE, and show the framework of secure multi-instruction evaluation
in Figure 14, where OF-SIE is sequentially executed. Informally, for
a traverser 𝑡 = (⟦𝑈⟧,Ψ) with instruction set Ψ = {𝜓1, ..,𝜓 |Ψ |}, the
evaluation routine works as follows:

result← OF-SIE(...OF-SIE(OF-SIE(𝑡 = (⟦𝑈⟧,Ψ))) ...),

where we denote the initial location as ⟦𝑈⟧, and result location as
⟦𝑈 ′⟧. Since each shared location set for OF-SIE is a strict subset of
ind(𝐺), sub-linear communication complexity is guaranteed.

⟦𝑈⟧
𝜓1, ....,𝜓 |Ψ |

OF-SIE ... ⟦𝑈 ′⟧
∅ resultRecOF-SIE

Figure 14: Multi-Instruction Evaluation Framework.

6 OBLIVIOUS FILTER
In this section, we present the building block for our proposed
general query processing system, i.e., oblivious filter.
Definition. We define the oblivious filter primitive as a 2-party
functionality between a server and a client. A server holds a list of
pairs (t, v), and every pair consists of an indication bit 𝑡𝑖 ∈ {0, 1}
and a fixed finite value 𝑣𝑖 ∈ V . The client holds a choice bit 𝑐 ∈
{0, 1}. Intuitively, oblivious filter performs a secure filtering on the
list of pairs (t, v), and outputs 𝑣𝑖 in secret sharing format if 𝑣𝑖 ’s
indication bit equals to the choice bit, namely 𝑡𝑖 = 𝑐 . The size of
output is denoted as 𝑛 (the notations in this section are independent
from other sections ). We describe this functionality in Figure 15.

Inputs. A list of𝑚 pairs (t, v) from server, where t ∈ {0, 1}𝑚, v ∈
V𝑚 ; A choice bit vector c ∈ {0, 1}𝑚 from client.
Outputs (shared). ⟦v′⟧, s.t. v′ ⊆ v, and for every element 𝑣 ′ ∈
v′, its corresponding 𝑡 ′ equals to 𝑐 .

Figure 15: Functionality of Oblivious Filter.

Relations with other primitives. Oblivious filter can be seen as
a instantiation of Private Function Evaluation (PFE) [32, 35] with
shared outputs. Moreover, one building block for PFE — Oblivious
Extended Permutation (OEP) [40] could be seen as a relaxation of
oblivious filter, where the filter function is held by client instead of
both parties. Roughly, OEP assumes that server holds an extended
permutation 𝜋 : {1, ..,𝑚} → {1, ..., 𝑛}, a mask r ∈ V𝑛 , while client
holds a private input v ∈ V𝑚 . At the end of OEP protocol, client
learns {𝑣𝜋−1 (1) + 𝑟1, ..., 𝑣𝜋−1 (𝑛) + 𝑟𝑛}, and server holds {𝑟1, ..., 𝑟𝑛}.
Though the design intuition is similar, oblivious filter takes a simpler
construction from homomorphic encryption (other than universal
circuits), which makes it more communication-efficient than the
OEP protocols.

Additionally, oblivious filter can also be seen as a simpler version
of Private Secret-Shared Set Intersection (PS3I) [10] and therefore
has a more efficient construction comparing with PSI, which as-
sumes two parties hold a list (t𝑐 , v𝑐 ) and (t𝑠 , v𝑠 ) respectively, and
the protocol finally outputs the shared intersection of v′c and v′s.
Notice that for all 𝑣 ′𝑐 ∈ v′𝑐 ⊆ v𝑐 and 𝑣 ′𝑠 ∈ v′𝑐 ⊆ v𝑠 , 𝑡𝑐,𝑖 = 𝑡𝑠,𝑖 holds.
PS3I ensures that at the end of the protocol, two parties only learn
the shares the intersection and nothing else.

Our work is also related to other primitives, such as Oblivious
Data Structures [51] and Oblivious Shuffling [15, 35, 41, 46]. In the
literature, there are three approaches for PFE protocol construction
[35]: homomorphic encryption, universal circuit, and oblivious
switching network. We follow such design intuition and try to
build oblivious filter based on HE.
Security of oblivious filter. Roughly, we define that an instan-
tiation of oblivious filter should follow simulation-based security
with the presence of a semi-honest adversary. That is, at the end of
the protocol, server should know nothing about 𝑐 and client should
know nothing about (t, v). Formally, security holds that any party’s
view during the attack can be simulated given only its own input
and output.
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Definition 6.1 (semi-honest security). Let ΠOF be an oblivious
filter protocol. We say that ΠOF is secure against semi-honest ad-
versary in the two-party settings if for all adversaries A, there
exists a polynomial-time simulator S, such that

Pr[RealΠOF
A (𝜆) = 1] − Pr[IdealΠOF

A,S (𝜆) = 1] ≤ negl(𝜆).

In the following of this section, we will present a construction of
oblivious filter using HE, and then introduce a variant of oblivious
filter, namely secret-shared oblivious filter.

6.1 Construction of OF from HE
We first present a simple construction of oblivious filter based on
partially homomorphic encryption scheme. We present the descrip-
tion of this protocol (OF-HE) in Figure 16. The main idea is that
server first performs a secure evaluation to shuffled indicator vector,
without knowing additional information about t.

During the setup phase, both parties generate encryption key
pairs by (pk, sk) ← Gen(1𝜆), and exchange public key with each
other. At the beginning of the protocol, client first uses its public
key to encrypt its choice vector c and sends it to server. Then server
performs secure evaluation between the encrypted c and t, and
gets the encrypted c − t. Afterwards, server generates a random
permutation 𝜋𝑠 ∈ 𝑆𝑚 , and encrypts and shuffles the value v. After
it, server sends it to client (𝜋𝑠 (Encpkc (c − t)), 𝜋𝑠 (Encpks (v))).

Then client filters Encpk (𝜋𝑠 (v))) by decrypting the first part
of server’s message 𝜋𝑠 (Encpkc (c − t)). As a result, client gets a
new vector Encpks (𝜋𝑠 (v′))). Then client samples a new vector r
and gets Encpks (v′ − r)). Next, client applies a new permutation
𝜋𝑐 ∈ 𝑆𝑛 to the encrypted result and sends Encpks (𝜋𝑐 (v′ − r))) back
to server. After decryption, server sets ⟦v′⟧0 = v′ − r and client
sets ⟦v′⟧1 = r.

Lemma 6.2. The protocol described in Figure 16 is a secure instan-
tiation for oblivious filter functionality.

The correctness of the simple construction could be easily veri-
fied. As for the security of this construction, we prove the security
of OF-HE in Appendix B.

Now we analyse the complexity of this protocol.
• Round complexity: Constant-round and communicating𝑚+𝑛
ciphers in total.
• Computation complexity: Server performs𝑚 + 𝑛 public-key
operations and Client performs 𝑛 times HE evaluations.

6.2 Secret-Shared Oblivious Filter
Since we use a shared input and shared output format in our query-
ing framework, in this subsection, we present a variant of OF, i.e.,
Secret Shared Oblivious Filter (SS-OF) input. In this variant of OF,
we assume that server and client both hold the shares of a list (t, v),
and they both know a public choice bit 𝑐 ∈ {0, 1}. We formally
describe this functionality in Figure 17. In the following, we will
present two different construction of SS-OF.

6.2.1 Construction of SS-OF from Oblivious Filter. SS-OF function-
ality can be achieved from a two-fold oblivious filter (see Figure
18). For the first round, 𝑃0 inputs ⟦t⟧0 and ⟦v⟧0 to ΠOF, and 𝑃1
inputs ⟦t⟧1. Then ΠOF outputs ⟦⟦v′⟧0⟧0 to 𝑃0, and ⟦⟦v′⟧0⟧1 to
𝑃1. For the second round, 𝑃0 inputs ⟦v⟧0 to ΠOF, and 𝑃1 inputs

Inputs. A list of𝑚 pairs (t, v) from server, where t ∈ {0, 1}𝑚, v ∈
V𝑚 ; A choice bit vector c ∈ {0, 1}𝑚 from client.
Outputs (shared). ⟦v′⟧, s.t. v′ ⊆ v, and for every element 𝑣 ′ ∈
v′, its corresponding 𝑡 ′ equals to 𝑐 .
Setup. Server and client both runGen(1𝜆), and sends their public
key to the other party.
Protocol.

(1) Client uses its own public key pkc to encrypt the choice
vector c, then sends Encpkc (c) to server.

(2) Server generates a random permutation 𝜋𝑠 ∈ 𝑆𝑚 , and
gets Encpkc (c − t) ← Eval(Encpkc (c), Encpkc (t)), shuffles
the result (𝜋𝑠 (Encpkc (c − t)), Encpks (𝜋𝑠 (v))) and sends to
client.

(3) Client performs decryption on server’s first message, and
gets 𝜋𝑠 (c− t). Then client filters second message based on
𝜋𝑠 (c − t):

(a) Initiates an empty set: v′𝑠 = ∅.
(b) For every item Encpk𝑠 (𝑣𝜋𝑠 (𝑖) ) in 𝜋𝑠 (Enc,pk𝑠 (v)), if
(𝑐𝜋𝑠 − 𝑡𝜋𝑠 ) = 0, push Encpk (𝑣𝜋𝑠 (𝑖) ) into v′𝑠 .

(c) The final size of v′𝑠 is denoted as 𝑛.
(4) Client randomly samples a size-𝑛 vector r ←$ V𝑛 and

a random permutation 𝜋𝑐 ∈ 𝑆𝑛 . Then client evaluates
Encpks (𝑣 ′𝑖 − 𝑟𝑖 ) ← Eval(Encpks (𝑣 ′𝑖 ), Encpks (𝑟𝑖 )) and up-
dates v′𝑠 by Encpks (v′ − r). Finally, client applies the per-
mutation and sends back 𝜋𝑐 (Encpks (v′ − r)) to server .

(5) Server decrypts the message and gets ⟦v′⟧0 = 𝜋𝑐 (v′ − r).
Client gets ⟦v′⟧1 ← 𝜋𝑐 (r).

Figure 16: Instantiation of OF from Additive HE (OF-HE).

Inputs (shared). A list of 𝑚 pairs of shares (⟦t⟧, ⟦v⟧), where
t ∈ {0, 1}𝑚, v ∈ V𝑚 . A public choice bit 𝑐 ∈ {0, 1}
Outputs (shared). ⟦v′⟧, s.t. for all 𝑣 ′ ∈ v′, its corresponding 𝑡 ′
equals to 𝑐 .

Figure 17: Functionality of SS-OF.

⟦t⟧1 and ⟦v⟧1, then ΠOF outputs ⟦⟦v′⟧1⟧0 to 𝑃0, and ⟦⟦v′⟧1⟧1 to
𝑃1. Finally, ⟦⟦v′⟧0⟧0 + ⟦⟦v′⟧1⟧0 and ⟦⟦v′⟧0⟧1 + ⟦⟦v′⟧1⟧1 are the
reshares of the result v′.

6.2.2 Construction of SS-OF from Oblivious Shuffle. We borrow the
idea from [41], and propose a generic construction of SS-OF from
Oblivious Shuffle in Figure 19. The communication and computation
complexities of this construction mainly depend on the oblivious
shuffle protocol, and to the best of our knowledge, the most effi-
cient secret-shared shuffle protocol [15] achieves 𝑂 (𝑁 log𝑁 · 𝜆)
communication, where 𝑁 is the set size and 𝜆 is the security pa-
rameter. With an efficient secret-shared shuffle protocol such as
[15], constructing SS-OF from oblivious shuffle is also efficient.

7 EXPERIMENT
We implement the additive homomorphic encryption based oblivi-
ous filter using Paillier encryption scheme, which is implemented
using C++ with GMP library. Our test environment is Quad-Core
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Table 1: Running time of OF-HE by filtering 50% of client’s input data.

Key size 1024 bit 2048 bit
Input data size 100 1,000 10,000 100,000 100 1,000 10,000 100,000

Offline time
Server 0.366872 3.73717 40.4863 400.302 1.83838 18.9394 187.717 1953.53
Client 0.373998 3.74880 40.3731 399.779 1.84555 18.9853 187.553 1950.47

Online time
Server 0.062351 0.647129 7.31345 67.1577 0.363488 4.07819 44.9030 399.079
Client 0.131378 1.28905 14.3267 127.836 0.831858 8.41821 96.0366 821.004

Inputs (shared). A list of 𝑚 pairs of shares (⟦t⟧, ⟦v⟧), where
t ∈ {0, 1}𝑚, v ∈ V𝑚 ; A public choice bit 𝑐 ∈ {0, 1}.
Outputs (shared). ⟦v′⟧, s.t. for all 𝑣 ′ ∈ v′, its corresponding 𝑡 ′
equals to 𝑐 .
Setup. 𝑃0 runs (pk, sk) ← Gen(1𝜆), and sends pk to 𝑃1.
Protocol.

(1) 𝑃0 and 𝑃1 performs a OF protocol, where 𝑃0 inputs ⟦t⟧0
and ⟦v⟧0, 𝑃1 inputs ⟦t⟧1.

(2) At the end, 𝑃0 receives share ⟦⟦v′⟧0⟧0, and 𝑃1 receives
share ⟦⟦v′⟧0⟧1.

(3) Switch roles of 𝑃0 and 𝑃1, where 𝑃0 inputs ⟦t⟧1 and ⟦v⟧1.
(4) At the end, 𝑃0 receives share ⟦⟦v′⟧1⟧0, and 𝑃1 receives

share ⟦⟦v′⟧1⟧1.
(5) 𝑃0 calculates the reshared result as ⟦v̂′⟧0 = ⟦⟦v′⟧0⟧0 +
⟦⟦v′⟧1⟧0, and 𝑃1 calculates the reshared result as ⟦v̂′⟧1 =
⟦⟦v′⟧0⟧1 + ⟦⟦v′⟧1⟧1.

Figure 18: Constructing SS-OF from OF.

(1) Both parties apply a secret-shared shuffling protocol to permute
the original data (⟦𝜋 (t)⟧, ⟦𝜋 (v)⟧) ← Permute(⟦𝜋⟧, (⟦t⟧, ⟦v⟧)),
where the 𝑖-th permuted element is denoted as (⟦𝑡𝜋 (𝑖)⟧, ⟦𝑣𝜋 (𝑖)⟧).
(2) Both parties reconstruct the permuted vector ⟦𝜋 (t)⟧ of the
resulting database (⟦𝜋 (t)⟧, ⟦𝜋 (v)⟧),
(3) Both parties keep the shares of ⟦v𝜋 (𝑖)⟧ for which the corre-
sponding indicator bit t𝜋 (𝑖) = 𝑐 .

Figure 19: Constructing SS-OF from oblivious shuffle.

Intel Core i5 2.40GHz CPU with 16G RAM, and we have run the test
on different size of databases in LAN. Specifically in our experiment,
our protocol can finish oblivious filter on 105 data within about 30
minutes. We report the experimental result of OF using HE (OF-HE)
in Table 1, where we set the modulus to 1,024 bit and 2,048 bit,
respectively. From them, we can find that the evaluation time of OF
are linear with data size on both server and client’s sides, which
indicates its scalability.

8 CONCLUSION
In this paper, we focus on the problem of how to perform scalable
and secure query on secret shared graph databases. To do this,
we first summarized the queries on secret sharing graph database
into two single instruction queries, i.e., Graph Pattern Matching
(GPM) and Graph Navigation (GN), and a multi-instruction that is
composed by single instruction queries. We then leveraged secure

multiparty computation technique to securely evaluate GPM and
GN. Next, we proposed a general framework for processing multi-
instruction query and introduced a novel cryptographic primitive
Oblivious Filter (OF) as a core building block. We constructed OF
with homomorphic encryption and proved that our proposed frame-
work has sub-linear complexity and is resilient to access-pattern
attacks. Finally, empirical study demonstrated the efficiency of our
proposed OF protocol.
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A PAILLIER ENCRYPTION
We introduce the paillier encryption scheme [48] which is used
to construct oblivious filter. Paillier is an instantiation of additive
homomorphic encryption with algorithms (Gen, Enc,Dec, Eval).
We introduce the details of these algorithms below.
Key Generation. (pk, sk) ← Gen(1𝜆): Taking a security param-
eter 𝜆 as input, generates the public key pk for encryption, and
secret key sk for decryption.
• First, generate two large prime numbers with bit size equal
to the security parameter 𝑞, 𝑝 ← large prime, and ensure
that gcd(𝑝𝑞, (𝑝 − 1) (𝑞 − 1)) = 1.
• Let 𝑛 = 𝑝𝑞 and calculate 𝜆 = lcm(𝑝 − 1, 𝑞 − 1).
• Randomly select a group generator for 𝑛2, 𝑔 ←$ Z∗

𝑛2 , and
ensure that 𝑛 divides the order of 𝑔, if not, repeat this step.
• Calculate 𝜇 = (𝐿(𝑔𝜆 mod 𝑛2))−1 mod 𝑛, where 𝐿(𝑥) =

(𝑥 − 1)/𝑛.
• Let pk = (𝑛,𝑔) and sk = (𝜆, 𝜇).

Encryption. 𝑐 ← Encpk (𝑚): Taking a message𝑚 and public key
pk as input, return the encrypted cipher 𝑐 .
• Randomly select a number 𝑟 ←$ Z∗𝑛 .
• Generate the ciphertext 𝑐 = 𝑔𝑚𝑟𝑛 mod 𝑛2.

Decryption.𝑚 ← Decsk (𝑐): Taking a ciphertext 𝑐 and secret key
sk as input, return the decrypted message m.
• 𝑚 = 𝑐𝜆𝜇 mod 𝑛.

Evaluation. 𝑐 = Evalpk (𝑐0, 𝑐1):
• Calculate 𝑐 = 𝑐0 · 𝑐1 mod 𝑛2.

Here we do not illustrate the details of the correctness and the
security properties of paillier, for those who are interested we refer
to the original work [48]. Other additive homomorphic encryption
schemes can be found in [22, 47].

B SECURITY PROOF OF LEMMA 6.2
In this part, we prove the security of Lemma 6.2 using real world vs.
ideal world simulation-based technique [12, 28]. First, recall that

Lemma 6.2. The protocol described in Figure 16 is a secure instanti-
ation for oblivious filter functionality against adaptive semi-honest
adversary assuming the existence of a IND-CCA2 secure additive
homomorphic encryption scheme.

To start the proof, we first introduce the real/ideal models for
the construction of oblivious filter functionality from HE, which
we denote as ΠHE. Since OF is a two-party functionality between
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a server and a client, where the server holds the private list (t, v),
and the client holds the private choice vector c, where t, c ∈ {0, 1}𝑛 ,
and v ∈ V𝑛 . We denoteV as the value space.

Definition B.1. Let 𝑓 = (𝑓𝑠 , 𝑓𝑐 ) be two functionality, we say a
protocol Π securely computes 𝑓 in the presence of static semi-
honest adversaries if there exists a probabilistic polynomial-time
algorithm 𝑆𝑠 and 𝑆𝑐 such that

{(𝑆𝑠 (1𝜆, t, v, ⟦v′⟧𝑠 ), v)}
𝑐≡ {(viewΠ

𝑠 (𝜆, t, c), outputΠ (𝜆, t, ,c))},

{(𝑆𝑐 (1𝜆, c, ⟦v′⟧𝑐 ), v)}
𝑐≡ {(viewΠ

𝑐 (𝜆, v), outputΠ (𝜆, t, ,c))}.

IND-CCA2 Security. Indistinguishability under adaptive Chosen
Ciphertext Attack (IND-CCA2) is defined as an adversary game,
where the adversary is given access to both encryption and decryp-
tion oracle. The game is defined as follows:

Simulator 𝑆𝑠 . To simulate the server in OF, extract the output size
𝑛 from the ideal output ⟦v′⟧𝑠 . Then uniformly sample a boolean
list c←$ {0, 1}𝑚 , a random permutation 𝜋𝑠 , securely evaluate and
send 𝜋𝑠 (Encpkc (c − t)) and 𝜋𝑠 (Encpks (v)) to the client. This simu-
lation is computationally indistinguishable from the real execution
assuming the encryption scheme is IND-CCA2 secure. To this end,
the simulation is finished since it only receives the filter result
afterwards.
Simulator 𝑆𝑐 . To simulate the client in OF, first send Encpkc (c)
to the server. Afterwards, extract the output size 𝑛 from the ideal
output ⟦v′⟧𝑐 and uniformly sample a list r←$ V𝑛 , and send to the
client. This simulation is computationally indistinguishable from
the real execution assuming the encryption scheme is IND-CCA2
secure.
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