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Abstract. In a recent breakthrough, Mahadev constructed an interac-
tive protocol that enables a purely classical party to delegate any quan-
tum computation to an untrusted quantum prover. We show that this
same task can in fact be performed non-interactively (with setup) and
in zero-knowledge.
Our protocols result from a sequence of significant improvements to the
original four-message protocol of Mahadev. We begin by making the first
message instance-independent and moving it to an offline setup phase.
We then establish a parallel repetition theorem for the resulting three-
message protocol, with an asymptotically optimal rate. This, in turn,
enables an application of the Fiat-Shamir heuristic, eliminating the sec-
ond message and giving a non-interactive protocol. Finally, we employ
classical non-interactive zero-knowledge (NIZK) arguments and classical
fully homomorphic encryption (FHE) to give a zero-knowledge variant
of this construction. This yields the first purely classical NIZK argument
system for QMA, a quantum analogue of NP.
We establish the security of our protocols under standard assumptions
in quantum-secure cryptography. Specifically, our protocols are secure in
the Quantum Random Oracle Model, under the assumption that Learn-
ing with Errors is quantumly hard. The NIZK construction also requires
circuit-private FHE.

1 Introduction

Quantum computing devices are expected to solve problems that are infeasible
for classical computers. However, as significant progress is made toward con-
structing quantum computers, it is challenging to verify that they work cor-
rectly, particularly when devices reach scales where classical simulation is infea-
sible. This problem has been considered in various models, such as with multiple
entangled quantum provers [42,35,25,30,24,37,18,27] or with verifiers who have
limited quantum resources [14,13,36,2]. Such solutions are not ideal since they
require assumptions about the ability of the provers to communicate or require
the verifier to have some quantum abilities.

In a major breakthrough, Mahadev recently described the first secure proto-
col enabling a purely classical verifier to certify the quantum computations of a



single untrusted quantum prover [34]. The Mahadev protocol uses a quantum-
secure cryptographic assumption to give the classical verifier leverage over the
quantum prover. The protocol is sound under the assumption that Learning
with Errors (LWE) does not admit a polynomial-time quantum algorithm. This
assumption is widely accepted, and underlies some of the most promising can-
didates for quantum-secure cryptography [3].

The Mahadev protocol. Mahadev’s result settled a major open question concern-
ing the power of quantum-prover interactive arguments (QPIAs). In a QPIA, two
computationally-bounded parties (a quantum prover P and a classical verifier V)
interact with the goal of solving a decision problem. Mahadev’s result showed
that there is a four-round4 QPIA for BQP with negligible completeness error
and constant soundness error δ ≈ 3/4. The goal of the protocol is for the ver-
ifier to decide whether an input Hamiltonian H from a certain class (which is
BQP-complete) has a ground state energy that is low (YES) or high (NO).

The protocol has a high-level structure analogous to classicalΣ-protocols [21]:

1. V generates a private-public key pair (pk, sk) and sends pk to P;
2. P prepares the ground state of H and then coherently evaluates a certain

classical function fpk. This yields a state of the form
∑
x αx|x〉X |fpk(x)〉Y ,

where the ground state is in a subregister of X. P measures Y and sends the
result y to V. P holds a superposition over the preimages of y.

3. V replies with a uniformly random challenge bit c ∈ {0, 1}.
4. If c = 0 (“test round”), P measures X in the computational basis and sends

the outcome. If c = 1 (“Hadamard round”), P measures X in the Hadamard
basis and sends the outcome.

After the four message rounds above are completed, the verifier uses their knowl-
edge of H and the secret key sk to either accept or reject the instance H.

Our results. In this work, we show that the Mahadev protocol can be transformed
into protocols with significantly more favorable parameters, and with additional
properties of interest. Specifically, we show how to build non-interactive proto-
cols (with setup) for the same task, with negligible completeness and soundness
errors. One of our protocols enables a verifier to publish a single public “setup”
string and then receive arbitrarily many proofs from different provers, each for
a different instance. We also construct a non-interactive protocol that satisfies
the zero-knowledge property [10].

In principle, one could ask for slightly less interaction: the prover and the
verifier receive the instance from a third party, and then the prover simply sends
a proof to the verifier, with no setup. While we cannot rule such a protocol out,
constructing it seems like a major challenge (and may even be impossible). Such
a proof must be independent of the secret randomness of the verifier, making

4 We take one round to mean a single one-way message from the prover to the verifier,
or vice-versa. The Mahadev protocol involves four such messages.
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it difficult to apply Mahadev’s “cryptographic leash.” Without cryptographic
assumptions, such a protocol would imply BQP ⊆ MA [1], which is unlikely.

All of our results are conditioned on the hardness of the LWE problem for
quantum computers; we call this the LWE assumption. This assumption is in-
herited from the Mahadev protocol. For the zero-knowledge protocol, we also
require fully-homomorphic encryption (FHE) with circuit privacy [38]. Our se-
curity proofs hold in the Quantum Random Oracle Model (QROM) [11]. For
simplicity, we assume that the relevant security parameters are polynomial in
the input BQP instance size n, so that efficient algorithms run in time poly(n)
and errors are (ideally) negligible in n.

Transforming the Mahadev protocol. We apply several transformations to the
Mahadev protocol:

1. making the first message instance-independent (i.e., moving it to an offline
setup phase);

2. applying parallel repetition, via a new parallel repetition theorem;
3. adding zero-knowledge, by means of classical NIZKs and classical FHE; and
4. applying Fiat-Shamir (in the QROM [11]).

Establishing that these transformations satisfy desirable properties is challeng-
ing. For instance, since cheating provers can now be quantum, classical parallel
repetition theorems do not apply.

Instance-independent setup. Our first transformation is relatively simple, at a
high level. Instead of setting the basis choice depending on the 2-local term of
that we want to measure, we can just pick the basis uniformly at random and
the choice is correct with probability 1

4 . When we consider multiple copies of
the ground state, and each copy is assigned both a random choice of basis and
a 2-local terms, then about 1

4 of the copies get a consistent assignment. Thus,
we can make the initial message instance-independent (and move it to an offline
setup phase) by increasing the number of parallel measurements by a constant
factor. We explain this transformation in more detail in Section 3. We refer to
the resulting protocol as “the three-round Mahadev protocol,” denoted by M.

Parallel repetition. Parallel repetition of a protocol is a very desirable property
since it decreases the soundness error exponentially, without increasing the num-
ber of rounds of interaction (as in serial repetition). Given the importance of the
Mahadev protocol, parallel repetition could be a useful tool for applying it in
practice. However, several complications arise when attempting to show this.
First, the Mahadev protocol is clearly private-coin, which is precisely the cate-
gory of protocol that is challenging even in the classical setting [6,29]. Second,
classical proofs of parallel repetition typically involve constructing a single-copy
prover that uses many rounds of nested rejection sampling. The quantum ana-
logue of such a procedure, quantum rewinding, can only be applied in special
circumstances [45,5] and seems difficult to apply to parallel repetition.
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We establish our new parallel repetition theorem with alternative techniques,
suited specifically for the Mahadev protocol. We show that, for NO instances, the
accepting paths of the verifier for the two different challenges (c = 0 and c = 1)
correspond to two nearly (computationally) orthogonal projectors. We also show
that this persists in k-fold parallel repetition, meaning that each pair of distinct
challenge strings c, c′ ∈ {0, 1}k corresponds to nearly orthogonal projectors.
From there, a straightforward argument shows that the prover cannot succeed
on a non-negligible fraction of challenge strings. We show that k-fold parallel
repetition yields the same optimal soundness error δk as sequential repetition.

Taken together with the first transformation, the result is a three-round
QPIA (with offline setup) for verifying BQP. We denote the k-fold parallel rep-
etition of M by Mk.

Theorem 1.1. Under the LWE assumption, Mk is a three-round protocol (with
offline setup) for verifying BQP with completeness 1 − negl(n) and soundness
error 2−k + negl(n).

Zero-knowledge. Zero-knowledge is a very useful cryptographic property of proof
systems. Roughly, a protocol is zero-knowledge if the verifier “learns nothing”
from the interaction with the honest prover, except that they have a “yes” in-
stance. This notion is formalized by requiring an efficient simulator whose output
distribution is indistinguishable from the distribution of the protocol outcomes.

In our next result, we show how to modify the protocol Mk of Theorem 1.1
to achieve zero-knowledge against arbitrary classical verifiers. Our approach is
similar to that of [19], but uses a purely classical verifier. Instead of the prover
providing the outcomes of the measurements to be checked by the verifier (as
in Mk), a classical non-interactive zero-knowledge proof (NIZK) is provided.
However, the NP statement “the measurements will pass verification” depends on
the inversion trapdoor of the verifier, which must remain secret from the prover.
To overcome this obstacle, we use classical fully homomorphic encryption (FHE).
In the setup phase, an encryption of the verifier’s secret keys is provided to the
prover, enabling the prover to later compute the NIZK homomorphically. To
establish the zero-knowledge property, we require the FHE scheme to have circuit
privacy, which means that the verifier cannot learn the evaluated circuit from
the ciphertext provided by the prover. To prove the zero-knowledge property, we
also need the extra assumption that the setup phase is performed by a trusted
third party, since we cannot rely on the verifier to perform it honestly anymore.

In classical zero-knowledge arguments, it is common to consider efficient
provers who are provided an NP-witness of the statement to prove. In the quan-
tum setting, if we assume that the quantum polynomial-time prover has access
to a quantum proof of a QMA statement,5 we achieve the following.

5 QMA is a quantum analogue of NP. In QMA, an untrusted quantum proof is given
to a quantum poly-time verifier.
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Theorem 1.2 (informal). Under the LWE assumption, if circuit-private FHE
exists, then there exists a three-round zero-knowledge argument for QMA (with
trusted setup) with negligible completeness and soundness error.

Fiat-Shamir transformation. In the above protocols (both Mk and its ZK-
variant), the second message of the verifier is a uniformly random c ∈ {0, 1}k. In
the final transformation, we eliminate this “challenge” round via the well-known
Fiat-Shamir transform [23]: the prover generates the challenge bits c ∈ {0, 1}k
themselves by evaluating a public hash function H on the transcript of the pro-
tocol thus far. In our case, this means that the prover selects6 c := H(H, pk, y).
Of course, the verifier also needs to adapt their actions at the verdict stage, us-
ing c = H(H, pk, y) when deciding acceptance/rejection. The resulting protocols
now only have a setup phase and a single message from the prover to the verifier.

Fiat-Shamir (FS) is typically used to establish security in the Random Oracle
Model, in the sense that FS preserves soundness up to negligible loss provided
H has superpolynomially large range [7,40]. It is straightforward to see that this
last condition is required; it is also the reason we applied parallel repetition
prior to FS. A well-known complication in the quantum setting is that quantum
computers can evaluate any public classical function H in superposition via
the unitary operator UH : |x〉|y〉 7→ |x〉|y ⊕H(x)〉. This means we must use the
Quantum Random Oracle Model (QROM) [11], which grants all parties oracle
access to UH. Proving the security of transformations like FS in the QROM is the
subject of recent research, and newly developed techniques have largely shown
that FS in the QROM preserves soundness for so-called Σ-protocols [22,33].
Extending those results to our protocols is relatively straightforward. Applying
FS to Mk then yields the following.

Theorem 1.3. Let k = ω(log n), and let FS(Mk) denote the protocol result-
ing from applying Fiat-Shamir to the k-fold parallel repetition of the three-round
Mahadev protocol. Under the LWE assumption, in the QROM, FS(Mk) is a non-
interactive protocol (with offline setup) for verifying BQP with negligible com-
pleteness and soundness errors.

If we instead apply the Fiat-Shamir transform to the zero-knowledge protocol
from Theorem 1.2, we achieve the following.7

Theorem 1.4 (informal). Under the LWE assumption, in the QROM, there
exists a classical non-interactive zero-knowledge argument (with trusted offline
setup) for QMA, with negligible completeness and soundness errors.

Related results. After an initial version of our work was made public, showing
how the Mahadev protocol can be reduced to four rounds using parallel rep-
etition and the Fiat-Shamir transform, Chia, Chung, and Yamakawa posted a

6 Here pk and y are k-tuples since we are transforming parallel-repeated protocols.
7 Note that FS(Mk) in Theorem 1.3 is also a protocol for verifying QMA with negligible

error if the prover is given a quantum witness.
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preprint [17] describing the same result, with an alternative proof of parallel
repetition. They also showed how to make the verifier run in polylog time using
indistinguishability obfuscation. Our work was performed independently, and
we subsequently improved our result to make the protocol non-interactive with
setup and zero-knowledge.

Radian and Sattath [41] recently established what they call “a parallel rep-
etition theorem for NTCFs,” which are the aforementioned classical functions
fpk. However, the context of [41] is very different from ours and their parallel
repetition theorem follows from a purely classical result.

Broadbent, Ji, Song, and Watrous [16] presented the first quantum zero-
knowledge proofs for QMA with efficient provers. Vidick and Zhang [44] com-
bined this protocol with the Mahadev protocol [34] to make the communication
classical. Broadbent and Grilo [15] showed a “quantum Σ” zero-knowledge proof
for QMA (with a quantum verifier). In the non-interactive setting, Coladangelo,
Vidick, and Zhang [19] constructed a non-interactive zero-knowledge argument
with quantum setup and Broadbent and Grilo [15] showed a quantum statistical
zero-knowledge proof in the secret parameter model.

Open problems. This work raises several natural open questions. First, is it
possible to prove the soundness of our protocol when the oracle H is instantiated
with a concrete (e.g., correlation-intractable [39]) hash function? Our current
analysis only applies in an idealized model.

Another natural line of work is studying parallel repetition for other QPIAs
such as [26,44,12], perhaps including small modifications such as “random ter-
mination” as needed in purely classical private-coin protocols [29,31,8].

Finally, a similar classical NIZK protocol can also be achieved using the
techniques of locally simulatable proofs [28,15]. We leave as an open problem
understanding whether such a protocol could give us extra useful properties.

2 Preliminaries and notation

Most algorithms we consider are efficient, meaning that they run in time poly-
nomial in both the input size (typically n) and the security parameter (typically
λ). We assume that n and λ are polynomially-related. The two main classes
of algorithms of interest are PPT (probabilistic poly-time) and QPT (quantum
poly-time). We say that f = negl(n) if f = o(n−c) for every constant c. We
denote by Uf the efficient map that coherently implements a classical function
f : {0, 1}n → {0, 1}m, i.e., Uf |x〉|y〉 = |x〉|y⊕f(x)〉, when there exists an efficient
deterministic circuit that computes f .

2.1 The local Hamiltonian problem and verification for BQP

Any promise problem L = (Lyes, Lno) ∈ QMA can be reduced to the local Hamil-
tonian problem such that for x ∈ Lyes, the Hamiltonian Hx has a low-energy
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ground state |ψx〉, and for x ∈ Lno, all quantum states have large energy [32].
While the quantum witness |ψx〉 may be hard to prepare for general L ∈ QMA,
it can be prepared efficiently if L ∈ BQP. Furthermore, the problem remains
QMA-complete even with a Hamiltonian that can be measured by performing
standard (Z) and Hadamard (X) basis measurements [9,20,36].

Problem 2.1. The 2-local ZX-Hamiltonian promise problem zxa,b = (zxyes, zxno),
with parameters a, b ∈ R, b > a and gap b−a > poly(n)−1, is defined as follows.
An instance is a local Hamiltonian H =

∑
i<j Jij(XiXj + ZiZj), where Jij ∈ R

with 2
∑
i<j |Jij | = 1 and each Xi (resp. Zi) is a Pauli X (resp. Pauli Z) gate

acting on the ith qubit. For H ∈ zxyes, the smallest eigenvalue of H is at most
a, while if H ∈ zxno, the smallest eigenvalue of H is at least b.

Note that given the normalization factors, we can see that each term (XiXj

or ZiZj) is associated with the probability pij = |Jij |. When working with
Hamiltonian terms S, we overload the notation for convenience. First, we write
Sj to denote the Pauli operator assigned by S to qubit j, so that S =

⊗
j Sj .

Second, we write i ∈ S to indicate that i is a qubit index for which S does not
act as the identity, i.e., Si 6= 1. We let pS := pij for i, j ∈ S and mS ∈ {±1} be
the sign of Jij .

Morimae and Fitzsimons present a protocol (the “MF protocol”) with a quan-
tum prover P and a limited verifier V who only needs to perform single-qubit
X and Z basis measurements [36]. P prepares the ground state of the Hamil-
tonian and sends it to V, who then samples a term S with probability pS and
performs the corresponding measurement {M±1 = 1±S

2 }. Notice that Z or X
basis measurements suffice to estimate the energy of S. The success probability
with input state ρ is

∑
S pS tr(M−mSρ) = 1

2 −
1
2 tr(Hρ), and negligible error can

be achieved with parallel repetition.8

In the following discussion, we encode S by an n-bit string h(S): for each
i ∈ S, set hi = 0 (resp. 1) for a Z (resp. X) basis measurement. For other
qubits, the choice is irrelevant but we set hi = 0 for concreteness. We let αh,ρ :=
tr(M−mSρ) denote the success probability of the MF protocol described above
with the state ρ, conditioned on the event that h = h(S) is sampled. Thus the
success probability with ρ is Eh[αh,ρ].

2.2 The Mahadev protocol for BQP verification

The Mahadev protocol relies crucially on two special classes of functions: Noisy
Trapdoor Claw-free Functions (NTCFs) F and Noisy Trapdoor Injective Func-
tions (NTIFs) G. Both can be constructed based on the LWE assumption [12,34]
and come with four polynomial-time algorithms (GenF ,ChkF , InvF ,SampF ) and

8 V receives T copies of the ground state of H and performs an independent test on
each copy. By accepting if at least (2−a−b)T/4 copies accept, both the completeness
and soundness errors are suppressed to negligible with polynomial T (|x|) (cf. [34,
Theorem 8.4]). See [43, Section 3] for details.
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(GenG ,ChkG , InvG ,SampG). For complete details, and for the LWE construction,
see [12,34].

The Mahadev protocol [34] for BQP verification allows V to request an X or
Z basis measurement outcome without revealing the basis to P. The aim of the
protocol is to verify that the prover’s response, when appropriately decoded, is
close to the measurement outcomes of some n-qubit quantum state ρ. Crucially,
this guarantee holds simultaneously for all basis choices h ∈ {0, 1}n, where 0
(resp. 1) denotes a Z (resp. X) basis measurement. With this guarantee, the
verifier can then apply the verification procedure of the MF protocol to the
decoded responses of the prover in order to decide acceptance or rejection.

In the following protocol, for each qubit, if Z (resp. X) basis measurement
is desired, then an NTIF (resp. NTCF) key is sent. Since ChkF and ChkG (resp.
SampF and SampG) are identical [34], we denote them by Chk (resp. Samp). We
let Gen(1λ, h) for h ∈ {0, 1}∗ denote the following key generation algorithm: for
every bit i of h, run (pki, ski) ← GenG(1λ) if hi = 0 and (pki, ski) ← GenF (1λ)
if hi = 1. Set pk = (pki)i and sk = (ski)i and output the key pairs (pk, sk).

Protocol 1 (Mahadev protocol).

Setup. Choose a security parameter λ ≥ n. Both P and V receive an in-
stance of Problem 2.1, namely H =

∑
S pS

1+mSS
2 .

Round V1. V samples r terms S = (S1, . . . , Sr) and computes h = h(S),
the concatenation of h(S1), . . . , h(Sr). V generates the key pair
(pk, sk)← Gen(1λ, h) and sends pk to P.

Round P1. P prepares |φ〉⊗r =
∑
b∈{0,1}nr φb|b〉W , r copies of the n-qubit

ground state of H. For j ∈ [r], ` ∈ [n] and each qubit Wj` in W ,
P performs Samp on input the key pkj` coherently and yields a state
negligibly close to 1

|X |n/2
∑
x∈Xn

∑
b∈{0,1}nr φb|b〉W |x〉X |ψfpk(b,x)〉Y ,

where |ψfpk(b,x)〉 :=
⊗

j∈[r],`∈[n] |ψfpkj` (bj`,xj`)〉. Next, P measures

Y and sends the outcome y to V.
Round V2. V responds with a uniformly random “challenge” bit c ∈ {0, 1}. We

call c = 0 =: t a “test round” and c = 1 =: h a “Hadamard round.”
Round P2. If c = t, P measures WX in the computational basis. If c = h, P

measures WX in the Hadamard basis. In either case, P sends the
measurement outcome (w, t) to V.

Verdict. If c = t, V accepts if
∧
j∈[r],`∈[n] Chk(pkj`, wj`, tj`, yj`) = 1.

If c = h, V performs the following: for each copy j and qubit ` ∈ [n],
1. if hj` = 0, run (ej`, xbj`,yj`) ← InvG(skj`, yj`). If hj` = 1, run

x0,yj` ← InvF (skj`, 0, yj`) and x1,yj` ← InvF (skj`, 1, yj`) to get
both preimages. Then compute ej` = tj` · (x0,yj` ⊕x1,yj`)⊕wj`.
If any of the above the algorithms returns reject for any j, `,
or tj` is trivial (e.g., 0n, see [12]), reject. Otherwise store e =
(ej`)j∈[r],`∈[n] as the witness to the next check.

2. V sets vj = 1 if the witness (ej`)`∈Sj satisfies M−mSj (defined

in Section 2.1).9

9 A string e satisfies a projector M if 〈e|M |e〉 = 1, i.e., |e〉 lies in the support of M .
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Finally, V accepts if
∑
j∈[r] vj ≥ (2− a− b)r/4.

Theorem 2.1 (Theorems 1.1 and 8.6 in [34]). Under the LWE assumption,
Protocol 1 is a four-message quantum-prover interactive argument for the class
BQP with completeness error negl(n) and soundness error 3/4 + negl(n).

3 Instance-independent key generation

We now show how to generate the keys in the Mahadev protocol before the par-
ties receive the input Hamiltonian, in an offline setup phase. To that end, we
modify the MF protocol so the sampling of the Hamiltonian term is independent
of the performed measurements. In our variant, for some r = poly(n), V sam-
ples n-bit strings h1, . . . , hr uniformly and independent 2-local terms S1, . . . , Sr
according to distribution π (in which S is sampled with the probability pS from
Section 2.1). We say the bases hi and the terms Si are consistent if, when the
observable for the jth qubit in Si is Z (resp., X) then the jth bit of hi is 0
(resp., 1). Since hi is uniformly sampled and Si is 2-local, they are consistent
with probability at least 1

4 .

In an r-copy protocol, we let A := {i ∈ [r] : hi and Si are consistent} and
denote t = |A|. For each i ∈ A, Vi decides as in the MF protocol: if i /∈ A, then
Vi accepts. Thus we consider the following protocol.

Protocol 2 (A modified parallel-repeated MF protocol for zxa,b).

Setup. V samples the bases h1, . . . , hr ← {0, 1}n uniformly.
Round 1. P sends the witness state ρ (r copies of the ground state).
Round 2. V measures the quantum state ρ in the bases h1, . . . , hr. For each

copy i ∈ [r], V samples terms S1, . . . , Sr ← π. V records the sub-
set A ⊆ [r] of consistent copies. For each copy i ∈ A, V sets
vi = 1 if the outcome satisfies M−mS and 0 otherwise. V accepts if∑
i∈A vi ≥ (2− a− b)|A|/4.

For sufficiently large r, with high probability, there are around r/4 consistent
copies. Thus to achieve the same completeness and soundness, it suffices to
increase the number of copies by a constant factor. We thus have the following
fact.

Lemma 3.1. The completeness error and soundness error of Protocol 2 are
negligible, provided r = ω

(
logn

(b−a)2
)

copies are used.

Proof. First we observe that for each copy, with probability 1/4, V measures
the quantum state with a term sampled from the distribution π; otherwise V
accepts. Thus for an instance H, the effective Hamiltonian to verify is H̃⊗r

where H̃ = 31+H
4 . Following the standard parallel repetition theorem for QMA,

we know that P’s optimal strategy is to present the the ground state of H̃, which
is also the ground state of H.
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With probability
(
r
t

)
( 1
4 )t( 3

4 )r−t, there are t consistent copies. Now for i ∈ A,
we let Xi be a binary random variable corresponding to the decision of Vi. For
soundness, by Hoeffding’s inequality10 the success probability for A such that
|A| = t is

Pr[accept|A] = Pr

[
1

t

∑
i∈A

Xi ≥
c+ s

2

]

≤ Pr

[
1

t

∑
i∈A

Xi − s ≥
c− s

2

]
≤ 2e−

tg2

2 ,

where g = c− s is the promise gap. Then the overall success probability is

Pr[accept] = 2 · 4−r
r∑
t=0

(
r

t

)
3r−te−tg

2/2

= 2

(
e−g

2/2 + 3

4

)r
≤ 2(1− g2/16)r ≤ 2e−rg

2/16 (1)

since 1 − x/2 ≥ e−x for x ∈ [0, 1] and 1 − x ≤ e−x for x ≥ 0. Thus r =
ω(g−2 log n) suffices to suppress the soundness error to n−ω(1). Since g−1 =
poly(n), polynomially many copies suffice to achieve negligible soundness error.

For completeness, again by Hoeffding’s inequality,

Pr[reject|A] = Pr

[
1

t

∑
i∈A

Xi <
c+ s

2

]

≤ Pr

[
c− 1

t

∑
i∈A

Xi >
c− s

2

]
≤ 2e−

tg2

2 .

By the same calculation as in (1), the completeness error is negligible if we set
r = ω(g−2 log n). ut

Remark 3.1. The terms Si are sampled independently of the interaction in the
protocol. We let term(H, s) denote the deterministic algorithm that outputs a
term from H according to distribution π when provided the randomness s ∈
{0, 1}p for sufficiently large polynomial p. For bases h ∈ {0, 1}nr and s ∈ {0, 1}p,
αh,s,ρ denotes the success probability when P sends the quantum state ρ.

The modifications to the MF protocol which resulted in Protocol 2 above can
also be made (with minor adjustments) to the Mahadev protocol (Protocol 1).
These changes are as follows:

1. In Round V1, the measurement bases h are sampled uniformly at random
and S is not sampled.

10 Pr[ 1
n

∑
iXi − µ ≥ δ] ≤ e

−2tδ2 for i.i.d. X1, . . . , Xn ∈ [0, 1].
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2. In the Verdict stage for a Hadamard round (c = 1), V computes the mea-
surement outcomes, as in check 1. Then V samples terms S1, . . . , Sr ← π
and for the consistent copies, V performs the check in 2.

We refer to this variant of Protocol 1 as “the three-round Mahadev protocol”,
and denote it by M.

4 A parallel repetition theorem for the Mahadev protocol

In a k-fold parallel repetition of M, an honest prover runs the honest single-
fold prover independently for each copy of the protocol. Meanwhile, the honest
verifier runs the single-fold verifier independently for each copy, accepting if and
only if all k verifiers accept. The completeness error clearly remains negligible.
To control soundness error, we establish a parallel repetition theorem.

In preparation, we fix the following notation related to the Verdict stage of
M. We refer frequently to the notation from our description of Protocol 1 above,
which applies to M as well. First, the check

∧
j∈[r],`∈[n] Chk(pkj`, wj`, tj`, yj`) = 1

in a test round is represented by a projection Πsk,t acting on registers WXY .
Specifically, this is the projector whose image is spanned by all inputs (w, t, y)
that are accepted by the verifier in the Verdict stage. Note that running Chk
does not require the trapdoor sk, but the relation implicitly depends on it. For
notational convenience, we also denote Πsk,t as Πs,sk,t, though the projector
does not depend on s (defined in Remark 3.1). Second, the two Hadamard round
checks 1 and 2 of the Verdict stage are represented by a projector Πs,sk,h.

4.1 A lemma for the single-copy protocol

We begin by showing an important fact about the single-copy protocol: the
verifier’s accepting paths associated to the two challenges correspond to nearly
orthogonal11 projectors. Moreover, in a certain sense this property holds even
for input states that are adaptively manipulated by a dishonest prover after they
have learned which challenge will take place. This fact is essential in our analysis
of the parallel repetition of many copies in the following sections.

The setup. As discussed in [34], any prover P can be characterized as follows.
First, pick a state family |Ψpk〉; this state is prepared on registers WXY E after
receiving pk. Here Y is the register that will be measured in Round P1, W and
X are the registers that will be measured in Round P2, and E is the private
workspace of P. Then, choose two unitaries Ut and Uh to describe the Round P2

actions of P before any measurements, in the test round and Hadamard round,
respectively. Both Ut and Uh act on WXY E, but can only be classically con-
trolled on Y , as they must be implemented after P has measured Y and sent the

11 Strictly speaking, the projectors are only nearly orthogonal when applied to states
prepared by efficient provers.
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result to the verifier. (Of course, a cheating prover is not constrained to follow
the honest protocol, but we can nevertheless designate a fixed subsystem Y that
carries their message.) We will write P = (|Ψpk〉, Ut, Uh), where it is implicit that
|Ψpk〉 is a family of states parameterized by pk.

At the end of the protocol, the registers WXY are measured and given to
the verifier. Recall that we can view the final actions of the verifier as apply-
ing one of two measurements: a test-round measurement or a Hadamard-round
measurement. Let Πs,sk,t and Πs,sk,h denote the “accept” projectors for those
measurements, respectively. For a given prover P, we additionally define

ΠUt

s,sk,t := U†t (Πs,sk,t ⊗ 1E)Ut , Π
Uh

s,sk,h := U†h(HWXΠs,sk,hHWX ⊗ 1E)Uh ,

whereHWX denotes the Hadamard transform on registersWX, i.e., the Hadamard
gate applied to every qubit in those registers. These projectors have a natural
interpretation: they describe the action of the two accepting projectors of the
verifier on the initial state |Ψpk〉 of the prover, taking into account the (adaptive)
attacks the prover makes in Round P2.

A key lemma. We now prove a fact about the single-copy protocol. The proof is
largely a matter of making some observations about the results from [34], and
then combining them in the right way.

Recall that, after the setup phase, for any instance H of the ZX-Hamiltonian
problem (Problem 2.1), M begins with the verifier V making a measurement
basis choice h ∈ {0, 1}nr for all the qubits. After interacting with a prover P,
the verifier either rejects or produces a candidate measurement outcome, which
is then tested as in Protocol 2. We let DP,h denote the distribution of this
candidate measurement outcome for a prover P and basis choice h, averaged
over all measurements and randomness of P and V. It is useful to compare DP,h
with an “ideal” distribution Dρ,h obtained by simply measuring some (nr)-qubit
quantum state ρ (i.e., a candidate ground state) according to the basis choices
specified by h, with no protocol involved. Formally, we state the following lemma.

Lemma 4.1. Let P = (|Ψpk〉, Ut, Uh) be a prover in M such that, for every
h ∈ {0, 1}nr and s ∈ {0, 1}p,

E
(pk,sk)←Gen(1λ,h)

[〈Ψpk|ΠUt

s,sk,t|Ψpk〉] ≥ 1− negl(n) . (2)

Then there exists an (nr)-qubit quantum state ρ such that, for every h, s,

E
(pk,sk)←Gen(1λ,h)

[〈Ψpk|Π
Uh

s,sk,h|Ψpk〉] ≤ αh,s,ρ + negl(n) ,

where αh,s,ρ (see Remark 3.1) is the success probability in the MF protocol with
basis choice h and quantum state ρ.

Proof. Up to negligible terms, (2) means that P is what Mahadev calls a perfect
prover. She establishes two results ([34, Claim 7.3] and [34, Claim 5.7]) which,
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when taken together, directly imply the following fact about perfect provers.
For every perfect prover P, there exists an efficiently preparable quantum state
ρ such that DP,h is computationally indistinguishable from Dρ,h for all basis
choices h ∈ {0, 1}nr. In particular, the proof is obtained in two steps. First,
for every perfect prover, there exists a nearby “trivial prover” whose attack in a
Hadamard round commutes with standard basis measurement on the committed
state [34, Claim 5.7]. Second, for every trivial prover, the distribution is compu-
tationally indistinguishable from measuring a consistent quantum state ρ in any
basis h [34, Claim 7.3]. Mahadev shows this for exactly perfect provers, but the
proofs can be easily adapted to our “negligibly-far-from-perfect” case.

Now consider two ways of producing a final accept/reject output of the ver-
ifier. In the first case, an output is sampled from the distribution DP,h and the
verifier applies the final checks in M. In this case, the final outcome is obtained

by performing the measurement {ΠUh

s,sk,h,1−Π
Uh

s,sk,h} on the state |Ψpk〉, and ac-
cepting if the first outcome is observed. In the second case, an output is sampled
from the distribution Dρ,h and the verifier applies the final checks in the MF
protocol. In this case, the acceptance probability is αh,s,ρ simply by definition.
The result then follows directly. ut

Notice that for the soundness case, there is no state that succeeds non-
negligibly in the MF protocol. In this case, Lemma 4.1 implies that for perfect
provers the averaged projection

E
(pk,sk)←Gen(1λ,h),h,s

[〈Ψpk|Π
Uh

s,sk,h|Ψpk〉]

is negligible. In other words, provers who succeed almost perfectly in the test
round must almost certainly fail in the Hadamard round. We emphasize that
this is the case even though the prover can adaptively change their state (by
applying Ut or Uh) after learning which round will take place. This formalizes
the intuitive claim we made at the beginning of the section about “adaptive
orthogonality” of the two acceptance projectors corresponding to the two round
types.

4.2 The parallel repetition theorem

Characterization of a prover in the k-fold protocol. We now discuss the behavior
of a general prover in a k-fold protocol. We redefine some notation, and let V be
the verifier and P an arbitrary prover in the k-fold protocol.

In the Setup phase, the key pairs (pk1, sk1), . . . , (pkk, skk) are sampled ac-
cording to the correct NTCF/NTIF distribution.12 The secret keys sk = (sk1, . . . ,
skk)13 are given to V, whereas pk = (pk1, . . . , pkk) is given to P.

In Round P1, without loss of generality, the action of P prior to measure-
ment is to apply a unitary U0,pk on the zero state |0〉WXYE , producing the

12 Recall that the keys are sampled by choosing uniform bases h and running Gen(1λ, h).
13 The verifier can learn the corresponding bases h from sk; see [34] for details.
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state |Ψpk〉WXYE := U0,pk|0〉WXYE . Each of W,X, Y is now a k-tuple of regis-
ters, and E is the prover’s workspace. To generate the “commitment” message
to V, P performs standard basis measurement on Y . We write |Ψpk〉WXYE =∑
y βy|Ψpk,y〉WXE |y〉Y . When the measurement outcome is y, the side state P

holds is then |Ψpk,y〉WXE . In the following analysis of the success probability of
P, we consider the superposition |Ψpk〉WXYE instead of a classical mixture of
the states |Ψpk,y〉WXE using the principle of deferred measurement.

In Round P2, without loss of generality, the action of P consists of a general
operation (that can depend on c), followed by the honest action. The general
operation is some efficient unitary Uc on WXY E. The honest action is measure-
ment in the right basis, i.e., for each i, WiXi is measured in the standard basis
(if ci = 0) or the Hadamard basis (if ci = 1). Equivalently, the honest action is

(i.) apply HcWX :=
⊗k

i=1(Hci)WiXi , i.e., for each {i : ci = 1} apply a Hadamard
to every qubit of WiXi, and then (ii.) apply standard basis measurement.

In the Verdict stage, V first applies for each i the two-outcome measurement
corresponding to the Πsi,ski,ci from the single-copy protocol. The overall decision
is then to accept if the measurements accept for all i. We let

(Πs,sk,c)WXY :=

k⊗
i=1

(Πsi,ski,ci)WiXiYi
(3)

denote the corresponding acceptance projector for the entire k-copy protocol.
The effective measurement on |Ψpk〉WXYE is then described by the projection(

ΠUc
s,sk,c

)
WXYE

:= (U†c )WXYE(HcΠs,sk,c,yH
c ⊗ 1E)(Uc)WXYE .

The success probability of P, which is characterized by the state |Ψpk〉 and family

of unitaries {Uc}c∈{0,1}n , is thus E(pk,sk)←Gen(1λ,h),h,s,c

[
〈Ψpk|ΠUc

s,sk,c|Ψpk〉
]
.

The proof of parallel repetition. Recall that Lemma 4.1 states that the projectors
corresponding to the two challenges in M are nearly orthogonal, even when
one takes into account the prover’s adaptively applied unitaries. We show that
this property persists in the k-copy protocol. Specifically, we show that all 2k

challenges are nearly orthogonal (in the same sense as in Lemma 4.1) with respect
to any state |Ψpk〉 and any post-commitment unitaries Uc of the prover.

This can be explained informally as follows. For any two distinct challenges
c 6= c′, there exists a coordinate i such that ci 6= c′i, meaning that one enters
a test round in that coordinate while the other enters a Hadamard round. In
coordinate i, by the single-copy result (Lemma 4.1), the prover who succeeds
with one challenge should fail with the other. A complication is that, since we are
dealing with an interactive argument, we must show that a violation of this claim
leads to an efficient single-copy prover that violates the single-copy result. Once
we have shown this, we can then apply it to any distinct challenge pairs c 6= c′.
It then follows that we may (approximately) decompose |Ψpk〉 into components
accepted in each challenge, each of which occurs with probability 2−k. We can
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then use this decomposition to express the overall success probability of P in
terms of this decomposition. As |Ψpk〉 is of course a normalized state, it will
follow that the overall soundness error is negligibly close to 2−k.

The “adaptive orthogonality” discussed above is formalized in Lemma 4.2.
Recall that any prover in the k-fold parallel repetition of M can be characterized
by a state family {|Ψpk〉}pk that is prepared in Round P1 and a family of unitaries
{Uc}c∈{0,1}k that are applied in Round P2.

Lemma 4.2. Let P be a prover in the k-fold parallel repetition of M that pre-
pares |Ψpk〉 in Round P1 and performs Uc in Round P2. Let a, b ∈ {0, 1}k such
that a 6= b and choose i such that ai 6= bi. Then there is an (nr)-qubit quantum
state ρ such that for every basis choice h and randomness s,

E
(pk,sk)←Gen(1λ,h)

[
〈Ψpk|ΠUb

s,sk,bΠ
Ua
s,sk,a +ΠUa

s,sk,aΠ
Ub
s,sk,b|Ψpk〉

]
≤ 2α

1/2
hi,si,ρ

+ negl(n) ,

where αhi,si,ρ (see Remark 3.1) is the success probability with ρ conditioned on
the event that hi is sampled.

Proof. Since we are proving an upper bound for a quantity that is symmetric
under the interchange of b and a, we can assume that bi = 0 and ai = 1 without
loss of generality.

We first claim that there exists a quantum state ρ such that

E
(pk,sk)←Gen(1λ,h)

[
〈Ψpk|ΠUb

s,sk,bΠ
Ua
s,sk,aΠ

Ub
s,sk,b|Ψpk〉

]
≤ αhi,si,ρ + negl(n) (4)

for all basis choices h and randomness s. For a contradiction, suppose that is
not the case. Then there exists a basis choice h∗ and s∗ and a polynomial η such
that for every state ρ,

E
(pk,sk)←Gen(1λ,h∗)

[
〈Ψpk|ΠUb

s∗,sk,bΠ
Ua
s∗,sk,aΠ

Ub
s∗,sk,b|Ψpk〉

]
> αh∗

i ,s
∗
i ,ρ

+ 1/η(n) .

We show that this implies the existence of an efficient prover P∗ for the single-
copy three-round Mahadev protocol M who violates Lemma 4.1. Define the
following projector on WXY E:

Σa := U†a(Ha ⊗ 1E)((1⊗ · · · ⊗ 1⊗Π ⊗ 1⊗ · · · ⊗ 1)⊗ 1E)(Ha ⊗ 1E)Ua .

Here Π denotes the single-copy protocol acceptance projector for the Hadamard
round, with key ski and basis choice h∗i , s

∗
i . In the above, Π acts on the ith

set of registers, i.e., WiXiYi. The projector Σa corresponds to performing the
appropriate Hadamard test in the ith protocol copy, and simply accepting all
other copies unconditionally. It follows that ΠUa

s,sk,a � Σa, and we thus have

E
(pk,sk)←Gen(1λ,h∗)

[
〈Ψpk|ΠUb

s∗,sk,bΣaΠ
Ub
s∗,sk,b|Ψpk〉

]
≥ E

(pk,sk)←Gen(1λ,h∗)

[
〈Ψpk|ΠUb

s∗,sk,bΠ
Ua
s∗,sk,aΠ

Ub
s∗,sk,b|Ψpk〉

]
> αh∗

i ,s
∗
i ,ρ

+ 1/η. (5)
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The single-copy prover P∗ interacts with the single-copy verifier V∗ as follows.

– In the Setup phase, after receiving the public key pk∗, initialize k − 1 in-
ternally simulated verifiers, and set pk to be the list of their keys, with pk∗

inserted in the ith position. Let h = (h1, . . . , hk) be the basis choices, and
note that all but hi are known to P∗.

– Using the algorithms of P, perform the following repeat-until-success (RUS)
procedure for at most q = η4 steps.
1. Prepare the state |Ψpk〉 on registers WXY E, and then apply the unitary
Ub.

2. Apply the measurement determined by Πs,sk,b (defined in (3)); for index
i we can use pk∗ because bi = 0; for the rest we know the secret keys.

3. If the measurement rejects, go to step (1.), and otherwise apply U†b and
output the state.

If the RUS procedure does not terminate within q steps, then P∗ prepares
a state14 |Φ∗pk〉 by performing Samp coherently on |0n〉W (see Round 2 of
Protocol 1).
Note that if P∗ terminates within q steps, the resulting state is

|Φpk〉 :=
ΠUb
s∗,sk,b|Ψpk〉

‖ΠUb
s∗,sk,b|Ψpk〉‖

;

otherwise |Φ∗pk〉 is prepared.
– For the Round P1 message, measure the Yi register of |Φpk〉 and send the

result to V∗.
– When V∗ returns the challenge bit w in Round 3, if w = bi = 0, apply Ub

(resp. 1) to |Φpk〉 (resp. |Φ∗pk〉), and otherwise apply Ua. Then behave hon-
estly, i.e., measure WiXi in computational or Hadamard bases as determined
by w, and send the outcomes.

By the RUS construction and the fact that bi = 0, the state |Φpk〉 or |Φ∗pk〉 is in the
image of the test-round acceptance projector in the ith coordinate. This means
that, when V∗ enters a test round, i.e., w = 0 = bi, P∗ is accepted perfectly.
In other words, P∗ is a perfect prover15 and thus satisfies the hypotheses of
Lemma 4.1.

Now consider the case when V∗ enters a Hadamard round, i.e., w = 1. Let

Ω := {(pk, sk) : 〈Ψpk|ΠUb
s∗,sk,b|Ψpk〉 > q−1/2}

denote the set of “good” keys. For (pk, sk) ∈ Ω, the probability of not termi-
nating within q = poly(n) steps is at most (1− q−1/2)q ≤ e−

√
q. Therefore, the

14 To pass the test round, any efficiently preparable state suffices.
15 While we used Πh∗,sk,b in the RUS procedure, and h∗

i is (almost always) not equal
to the hi selected by V∗, the result is still a perfect prover state. This is because, as
described in Protocol 1, the acceptance test in the test round is independent of the
basis choice.
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success probability of RUS for the good keys is 1− negl(n). Thus we have

E
sk|Ω

[〈Φpk|Σa|Φpk〉] Pr[Ω] ≤ αh∗
i ,s

∗
i ,ρ

+ negl(n)

where we let EX|E [f(X)] := 1
Pr[E]

∑
x∈E p(x)f(x) denote the expectation value

of f(X) conditioned on event E for random variable X over finite set X with
distribution p and function f : X → [0, 1]. Now we divide (5) into two terms and
find

αh∗
i ,s

∗
i ,ρ

+ η−1 < E
(pk,sk)

[
〈Ψpk|ΠUb

s∗,sk,bΣaΠ
Ub
s∗,sk,b|Ψpk〉

]
= Pr[Ω] E

(pk,sk)|Ω

[
〈Ψpk|ΠUb

s∗,sk,bΣaΠ
Ub
s∗,sk,b|Ψpk〉

]
+ Pr[Ω] E

(pk,sk)|Ω

[
〈Ψpk|ΠUb

s∗,sk,bΣaΠ
Ub
s∗,sk,b|Ψpk〉

]
≤ Pr[Ω] E

(pk,sk)|Ω

[
〈Ψpk|ΠUb

s∗,sk,bΣaΠ
Ub
s∗,sk,b|Ψpk〉

]
+ q−1/2

≤ αh∗
i ,ρ

+ negl(n) + q−1/2.

Since q = η4, this is a contradiction. Therefore (4) holds for every h, s, i.e.,

E
(pk,sk)←Gen(1λ,h)

[〈Ψpk|ΠUb
s,sk,bΠ

Ua
s,sk,aΠ

Ub
s,sk,b|Ψpk〉] ≤ αhi,si,ρ + negl(n).

It then follows that

E
(pk,sk)←Gen(1λ,h)

[
〈Ψpk|ΠUb

h,sk,bΠ
Ua
h,sk,a +ΠUa

h,sk,aΠ
Ub
h,sk,b|Ψpk〉

]
= 2 E

(pk,sk)←Gen(1λ,h)

[
Re(〈Ψpk|ΠUb

h,sk,bΠ
Ua
h,sk,a|Ψpk〉)

]
≤ 2 E

(pk,sk)←Gen(1λ,h)

[
|〈Ψpk|ΠUb

h,sk,bΠ
Ua
h,sk,a|Ψpk〉|

]
≤ 2 E

(pk,sk)←Gen(1λ,h)

[
〈Ψpk|ΠUb

h,sk,bΠ
Ua
h,sk,aΠ

Ub
h,sk,b|Ψpk〉

1/2
]

≤ 2 E
(pk,sk)←Gen(1λ,h)

[
〈Ψpk|ΠUb

h,sk,bΠ
Ua
h,sk,aΠ

Ub
h,sk,b|Ψpk〉

]1/2
≤ 2α

1/2
hi,si,ρ

+ negl(n)

as claimed. ut

We remark that this adaptive orthogonality is guaranteed under a computa-
tional assumption. Assuming that no efficient quantum adversary can break the
underlying security properties based on plain LWE, the projections are pairwise
orthogonal in the sense of averaging over the key pairs (pk, sk) and with respect
to any quantum state |Ψpk〉 prepared by an efficient quantum circuit.

We also emphasize that, in Lemma 4.2, for each pair a 6= b the left-hand side
is upper-bounded by the acceptance probability of measuring some state ρ in the
basis hi, and the quantum state ρmay be different among distinct choices of (a, b)
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and i. This implies that if P succeeds with one particular challenge perfectly16

when we average over h and s, Lemma 4.2 and standard amplification techniques
(see Section 3) imply that it succeeds on challenge b 6= a with probability at most
E(pk,sk)←Gen(1λ)〈Ψpk|Πs,sk,b|Ψpk〉 ≤ negl(n). We note that this strategy leads to

acceptance probability at most 2−k + negl(n).

Since pairwise orthogonality holds with respect to any efficiently preparable
quantum state by Lemma 4.2, our parallel repetition theorem follows.

First, we state a key technical lemma.

Lemma 4.3. Let A1, . . . , Am be projectors and |ψ〉 be a quantum state. Suppose
there are real numbers δij ∈ [0, 2] such that 〈ψ|AiAj+AjAi|ψ〉 ≤ δij for all i 6= j.

Then 〈ψ|A1 + · · ·+Am|ψ〉 ≤ 1 +
(∑

i<j δij
)1/2

.

Proof. Let α := 〈ψ|A1 + . . .+Am|ψ〉. We have

α2 ≤ 〈ψ|(A1 + · · ·+Am)2|ψ〉

= α+
∑
i<j

〈ψ|AiAj +AjAi|ψ〉 (6)

≤ α+
∑
i<j

δij

The first inequality holds since |ψ〉〈ψ| � 1, and thus

〈ψ|(A1 + · · ·+Am)|ψ〉〈ψ|(A1 + · · ·+Am)|ψ〉 ≤ 〈ψ|(A1 + · · ·+Am)2|ψ〉.

The equality (6) holds since each Ai is idempotent, and thus

〈ψ|(A1 + · · ·+Am)2|ψ〉 = 〈ψ|A2
1 + · · ·+A2

m|ψ〉+
∑
i<j

〈ψ|AiAj +AjAi|ψ〉

= 〈ψ|A1 + · · ·+Am|ψ〉+
∑
i<j

〈ψ|AiAj +AjAi|ψ〉.

Now observe that for β > 0, x2 ≤ x + β implies x ≤ 1
2 (1 +

√
1 + 4β) ≤ 1

2 (1 +

(1 + 2
√
β)) = 1 +

√
β. Thus α ≤ 1 +

√∑
i<j δij as claimed. ut

Observe that when the projectors are mutually orthogonal, we have A1 + · · ·+
Am � 1 and the bound clearly holds. Lemma 4.3 describes a relaxed version
of this fact. In our application, the projectors and the state are parameterized
by the key pair, and we use this bound to show that the average of pairwise
overlaps is small. We are now ready to establish our parallel repetition theorem.

Lemma 4.4. Let k be a positive integer and let {Uc}c∈{0,1}k be any set of uni-
taries that may be implemented by P after the challenge coins are sent. Let |Ψpk〉
be any state P holds in the commitment round, and suppose P applies Uc fol-
lowed by honest measurements when the coins are c. Then there exists a negligible
function ε such that V1, . . . ,Vk accept P with probability at most 2−k + ε(n).
16 More concretely, if for some fixed a, Πs,sk,a|Ψpk〉 = |Ψpk〉.
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Proof. The success probability of any prover in the k-fold protocol is

Pr[success] = 2−k E
(pk,sk)←Gen(1λ,h),h,s

[〈Ψpk|
∑
c

ΠUc
s,sk,c|Ψpk〉]

where h, s are drawn from uniform distributions.

Define a total ordering on {0, 1}k such that a < b if ai < bi for the smallest
index i such that ai 6= bi. Then by Lemma 4.3, we have

Pr[success] ≤ 2−k + 2−k E
h,s

[∑
a<b

E
(pk,sk)←Gen(1λ,h)

[〈Ψpk|ΠUa
s,sk,aΠ

Ub
s,sk,b +ΠUb

s,sk,bΠ
Ua
s,sk,a|Ψpk〉]

]1/2
.

By Lemma 4.2, there exists a negligible function δ such that

E
(pk,sk)←Gen(1λ,h)

[〈Ψpk|ΠUa
s,sk,aΠ

Ub
s,sk,b +ΠUb

s,sk,bΠ
Ua
s,sk,a|Ψpk〉] ≤ 2α

1/2
hi(a,b),ρab

+ δ

for every pair (a, b). Here i(a, b) is the smallest index i such that ai 6= bi and ρab
is the reduced quantum state associated with a, b, as guaranteed by Lemma 4.2.
Let µ be the soundness error of the MF protocol. We have

Pr[success] ≤ 2−k + 2−k E
h,s

[∑
a<b

(
2α

1/2
hi(a,b),si(a,b),ρab

+ δ
)]1/2

≤ 2−k + 2−k E
h,s

[∑
a<b

2α
1/2
hi(a,b),si(a,b),ρab

]1/2
+ 2−k

√(
2k

2

)
δ1/2

≤ 2−k + 2−k

[∑
a<b

2

(
E
h,s

[αhi(a,b),si(a,b),ρab ]

)1/2
]1/2

+ δ1/2

≤ 2−k + 2−k

[∑
a<b

2µ1/2

]1/2
+ δ1/2

≤ 2−k + 2−k
[
2k(2k − 1)µ1/2

]1/2
+ δ1/2

≤ 2−k + µ1/4 + δ1/2

where the second and third inequalities hold by Jensen’s inequality. Amplifying
the soundness of the MF protocol, µ is negligible using polynomially many copies
by Lemma 3.1. Thus the soundness error is negligibly close to 2−k. ut

We note that Mahadev shows the soundness error for a single-copy protocol
is negligibly close to 3/4 [34], whereas Lemma 4.4 implies the error can be
upper bounded by 1/2+negl(n). Mahadev obtains soundness error 3/4+negl(n)
by considering a general prover P who, for each basis h, succeeds in the test
round (characterized by Πh,sk,t) with probability 1 − ph,t, in the first stage of
the Hadamard round with probability 1 − ph,h, and in the second stage of the

19



Hadamard round with probability at most
√
ph,t + ph,h + αh,ρ + negl(n) for

some state ρ [34, Claim 7.1]. These contributions are combined by applying the
triangle inequality for trace distance. This analysis is loose since the two stages
are both classical, and P must pass both stages to win the Hadamard round.

Finally, Lemma 4.4 immediately implies the following theorem.

Theorem 4.1. Let Mk be the k-fold parallel repetition of the three-round Ma-
hadev protocol M. Under the LWE assumption, the soundness error of Mk is at
most 2−k + negl(n).

For completeness, we present the three-round protocol Mk.

Protocol 3 (Verification with instance-independent setup).

Setup. V samples random bases h ∈ {0, 1}nrk and runs the key generation
algorithm (pk, sk) ← Gen(1λ, h). V samples a string s ∈ {0, 1}prk
uniformly. V sends the public keys pk to P.

Round P1. P queries Samp coherently on the witness state |ψ〉⊗rk, followed by
a standard basis measurement on register Y . The outcome is sent
to V.

Round V2. V samples c1, . . . , ck ← {0, 1} and sends c = (c1, . . . , ck) to P.
Round P2. For each i ∈ [k], j ∈ [r], ` ∈ [n],

1. if ci = 0, P performs a standard basis measurement and gets
uij` = (wij`, tij`);

2. if ci = 1, P performs a Hadamard basis measurment and gets
uij` = (wij`, tij`).

P sends u to V.
Verdict. For each i ∈ [k],

1. If ci = 0, V accepts iff
∧
j,` Chk(pkj`, wj`, tj`, yj`) = 1.

2. If ci = 1, V records the set Ai ⊆ [r] of consistent copies. For
each j ∈ Ai and ` ∈ [n]:
(a) If hij` = 0, run (bij , xbij ,yij ) ← InvG(skij , yij). Set eij` =

bij`; if hij = 1, compute x0,yij` , x1,yij` and eij` = tij` ·
(x0,yij` ⊕ x1,yij`) ⊕ wij. If any of the algorithms rejects or
any of tij` is trivial (e.g., tij` = 0, see [34]), V sets vij = 0;
otherwise enters the next step.

(b) V computes the terms Sij = term(H, sij) for each i ∈
[k], j ∈ [r]. Set vij = 1 if (eij`)`∈Sij satisfies M−mSij and

vij = 0 otherwise.
Then V sets vi = 1 if

∑
j∈Ai vij ≥ (2 − a − b)|Ai|/4 and 0

otherwise.
V accepts iff vi = 1 for every i ∈ [k].

The verdict function is verdict(H, s, sk, y, c, u) :=
∧k
i=1 vi.

Theorem 4.2. For r = ω( logn
(b−a)2 ) and k = ω(log n), Protocol 3 is a quan-

tum prover interactive argument for zxa,b with negligible completeness error and
soundness error.
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5 A classical zero-knowledge argument for QMA

To turn Mk into a zero-knowledge protocol, we first consider an intermediate
protocol in which P first encrypts the witness state |ψ〉⊗rk with a quantum one-
time pad. Then in Round P2, P sends the one-time pad key β, γ along with the
response u. In the verdict stage, V uses the keys to decrypt the response. We
denote the verdict function as

verdict′(H, s, sk, y, c, β, γ, u) := verdict(Hβ,γ , s, sk, y, c, u) (7)

where Hβ,γ := XβZγHZγXβ is the instance conjugated by the one-time pad.

Obviously, this is not zero-knowledge yet, as the verifier can easily recover
the original measurement outcomes on the witness state. To address this issue,
we take the approach of [16,19] and invoke a NIZK protocol for NP languages.
The language L that we consider is defined as follows:

L := {(H, s, sk, ξ, y, c, χ) : ∃ τ = (β, γ, u, r1, r2),

ξ = commit(u; r1) ∧ χ = commit(β, γ; r2)

∧ verdict′(H, s, sk, y, c, β, γ, u) = 1},

where r1, r2 are the randomness for a computationally secure bit commitment
scheme. However, this alone is insufficient since, to agree on an instance without
introducing more message exchanges, V must reveal sk, s before P sends a NIZK
proof. Revealing sk, s enables a simple attack on soundness: P can ensure the
verifier accepts all instances by using the secret key to forge a valid response u,
committing to it, and computing the NIZK proof.

The solution is to invoke a quantum-secure classical FHE scheme and to
let P homomorphically compute a NIZK proof. This requires P to only use
an encrypted instance. In the setup phase, P is given the ciphertexts csk =
FHE.Enchpk(sk) and cs = FHE.Enchpk(s). Next, in Round P2, P computes
cx = FHE.Enchpk(x) where x := (H, s, sk, ξ, y, c, χ) since the partial transcript
(y, c, ξ, χ) has already been fixed. P then computes

ce = FHE.Evalhpk(NIZK.P, cc, cx, cτ) = FHE.Enchpk(NIZK.P(crs, x, τ)),

where cτ = FHE.Enchpk(τ), and sends ce to V. Finally, V decrypts the encrypted
NIZK proof ce and outputs NIZK.V(crs, x, e). The above transformation yields a
three-message zero-knowledge protocol for quantum computation with trusted
setup from a third party, described as follows.

Protocol 4 (Setup phase setup(λ,N,M)). The algorithm setup takes two
integers N,M as input, and outputs two strings stV , stP with the following steps.

1. Run crs← NIZK.Setup(1λ).
2. Sample uniform bases h← {0, 1}N and run (pk, sk)← Gen(1λ, h).
3. Run the FHE key generation algorithm (hpk, hsk)← FHE.Gen(1λ).
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4. Run encryption on the secret key csk ← FHE.Enchpk(sk).
5. Choose keys (β, γ) and randomness r1 uniformly and compute ξ = commit(β, γ; r1).
6. Sample a random string s1, . . . , sM ∈ {0, 1}p (see Remark 3.1) uniformly

and compute its encryption cs = FHE.Enchpk(s).

Output stV = (crs, sk, hsk, hpk, ξ) and stP = (crs, pk, hpk, csk, cs, β, γ, r1).

Protocol 5 (An interactive protocol).

Setup. Run stV , stP ← setup(λ, nrk, rk). Send stV = (crs, sk, hsk, hpk, ξ)
to V and stP = (crs, pk, hpk, csk, cs, β, γ, r1) to P.

Round P1. P aborts if pk is invalid. P queries Samp coherently on the witness
state XβZγ |ψ〉⊗rk.

Round V2. V samples c1, . . . , ck ← {0, 1} and sends c = (c1, . . . , ck) to P.
Round P2. For each i ∈ [k], j ∈ [r], ` ∈ [n],

1. if ci = 0, P performs a standard basis measurement and gets
uij` = (wij`, tij`).

2. if ci = 1, P performs a Hadamard basis measurement and gets
uij` = (wij`, tij`).

P sends χ := commit(u; r2) and

ce := FHE.Evalhpk(NIZK.P, cc, cx, cτ),

where cc, cx and cτ are the encryptions of crs, x and τ respectively.
Verdict. V accepts if NIZK.V(crs, x,FHE.Dechsk(ce)) = 1.

We show Protocol 5 is complete, sound, and zero-knowledge. For the detailed
proofs, see the full version [4].

Theorem 5.1. Protocol 5 has negligible completeness and soundness errors.

Theorem 5.2. Assuming the existence of a non-interactive bit commitment
scheme with perfect binding and computational hiding, Protocol 5 is zero-knowledge.

6 Round reduction by Fiat-Shamir transformation

In this section we show that the Fiat-Shamir transformation can be used make
the k-fold parallel three-round Mahadev protocol M non-interactive with a setup
phase, while keeping both the completeness and the soundness errors negligible.
This will also be the case for the zero-knowledge variant of the same, i.e., Pro-
tocol 5.

6.1 Fiat-Shamir for Σ-protocols in the QROM

The Fiat-Shamir (FS) transformation turns any public-coin three-message in-
teractive argument, also called a Σ-protocol, into a single-message protocol in
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the random oracle model (ROM). In the standard approach, one proves that the
Fiat-Shamir transformation preserves soundness in the ROM. In this idealized
cryptographic model, all parties receive oracle access to a uniformly random
function H. Against quantum adversaries, there is a well-known complication:
a quantum computer can easily evaluate any actual instantiation of H (with a
concrete public classical function) in superposition via

UH : |x, y〉|z〉 7→ |x, y〉|z ⊕H(x, y)〉 .

We thus work in the Quantum Random Oracle Model (QROM), in which all
parties receive quantum oracle access to UH.

We make use of the following theorem of [22]; we describe the underlying
reduction in the full version [4].

Theorem 6.1 (Quantum security of Fiat-Shamir [22, Theorem 2]). For
every QPT prover AH in the transformed protocol, there exists a QPT prover S
for the underlying Σ-protocol such that

Pr
Θ

[V (x, y,Θ,m) = 1 : (y,m)← 〈SA, Θ〉]

≥ 1

2(2q + 1)(2q + 3)
Pr
H

[V (x, y,H(x, y),m) = 1, (y,m)← AH(x)]− 1

(2q + 1)|Y|
.

In the above, (y,m) ← 〈SA, Θ〉 indicates that y and m are the first-round and
third-round (respectively) messages of SA, when it is given the random challenge
Θ in the second round.

6.2 Extension to generalized Σ-protocols

In this section, we show that Fiat-Shamir also preserves soundness for a more
general family of protocols, which we call “generalized Σ-protocols.” In such a
protocol, V can begin the protocol by sending an initial message to P.

Protocol 6 (Generalized Σ-protocol). Select a public function f : R×L→
W, a finite set C, and a distribution D over R. The protocol begins with P and
V receiving an input x.

Round 1. V samples randomness r ∈ R from distribution D and computes
message w = f(r, x), which is sent to P.

Round 2. P sends a message y to V.
Round 3. V responds with a uniformly random classical challenge c ∈ C.
Round 4. P sends a response m to V.
Verdict. V outputs a bit computed by a Boolean function V (r, x, y, c,m).

Notice that the original Mahadev protocol [34] is a generalized Σ-protocol:
the distribution D describes the distribution for the secret key, and f com-
putes the public key. Similarly, the k-fold parallel repetition of our instance-
independent protocol is also a generalized Σ-protocol since our trusted setup
phase can be seen as a message from the verifier.
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Fiat-Shamir for generalized Σ protocols. The FS transformation for generalized
Σ-protocols is similar to standard ones: in the Verdict stage, V computes c =
H(x,w, y) and accepts if and only if V (r, x, y, c,m) = 1.

Protocol 7 (FS-transformed generalized Σ-protocol). Select a public
function f : R× L→W, a finite set C, and a distribution D over R. P and V
receive an input x and are given access to a random oracle H.

Round 1. V samples randomness r ∈ R from distribution D, and computes
message w = f(r, x), which is sent to P.

Round 2. P sends a message (y,m) to V.
Verdict. V computes c = H(x,w, y) and then outputs a bit computed by a

Boolean function V (r, x, y, c,m).

To show that generalized Σ-protocols remain secure under the FS transfor-
mation, similarly to the idea for Σ-protocols, we give a reduction. Conditioned
on any randomness r, the prover is AHr (x) := AH(x, f(r, x)).17 The prover B in
the Σ-protocol runs SAr and outputs its decision. Given the success probability
of A, we establish a lower bound on that of B, as follows. For the proof, see the
full version [4].

Lemma 6.1 (Fiat-Shamir transformation for generalized Σ-protocols).
Suppose that

Pr
r,H

[V (r, x, y,H(x, f(r, x), y),m) = 1 : (y,m)← AH(x, f(r, x))] = ε.

Then

Pr
r,Θ

[V (r, x, y,Θ,m) = 1 : (y,m)← 〈B, Θ〉] ≥ ε

2(2q + 1)(2q + 3)
− 1

(2q + 1)|Y|
.

Lemma 6.1 immediately gives the following theorem.

Theorem 6.2. If a language L admits a generalized Σ-protocol with soundness
error s, then after the Fiat-Shamir transformation, the soundness error against
provers who make up to q queries to a random oracle is O(sq2 + q|Y|−1).

Proof. Suppose there is a prover who succeeds in the transformed protocol with
success probability ε. Then by Lemma 6.1, we may construct a prover who

succeeds with probability at least ε
O(q2) −O

(
1

q|Y|

)
. By the soundness guarantee,

we have ε
O(q2) −O

(
1

q|Y|

)
≤ s and thus ε ≤ O(q2s+ q|Y|−1). ut

By Theorem 6.2, if both s and |Y|−1 are negligible in security parameter λ,
the soundness error of the transformed protocols remains negligible against an
efficient prover who makes q = poly(λ) queries. Theorem 1.3 follows directly
from Theorem 6.2.
17 Though the prover does not learn the private randomness r, its action depends on
r implicitly.
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6.3 Non-interactive zero-knowledge for QMA

We now show that, using the Fiat-Shamir transformation, our three-round proto-
col proposed in Protocol 5 can be converted into a non-interactive zero-knowledge
argument (with trusted setup) for QMA in the Quantum Random Oracle model.
The resulting protocol is defined exactly as Protocol 5, with two modifications:
(i.) instead of Round V2, the prover P computes the coins c by evaluating the
random oracle H on the protocol transcript thus far, and (ii.) the NIZK instance
x is appropriately redefined using these coins.

We remark that since the setup in this protocol is trusted, it follows from
Theorem 6.2 that the compressed protocol is complete and sound, and therefore
we just need to argue about the zero-knowledge property.

Theorem 6.3. The Fiat-Shamir transformation of Protocol 5 is zero-knowledge.

Proof. The simulator SV∗
2 can sample the trapdoor keys for NTCF/NTIF func-

tions and private keys for the FHE scheme, enabling simulation of the transcript
for every challenge sent by the verifier. In particular, one can run the same proof
with the variant SH that queries the random oracle H for the challenges instead
of receiving it from a malicious verifier V∗. ut
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